
Application Note AC412

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC
v11.4

Table of Contents

Purpose
This application note describes the methods and steps of how to enter and exit Flash*Freeze (F*F)
mode. The application note further shows how to set different user-defined settings that define the
behavior of static random-access memory (SRAM) blocks during F*F entry and exit modes using Libero®

System-on-Chip (SoC) software. It also describes how to use System Services provided by the
CoreSystemServices soft IP to enter into F*F mode.

Introduction
Microsemi® IGLOO®2 field programmable gate array (FPGA) devices provide an ultra-low static power
solution through F*F technology. Entry into F*F mode retains all the SRAM and registers information and
F*F exit mode achieves rapid recovery to Active mode.

One of the functions of the System Controller in the IGLOO2 device is to handle the System Services
requests through the communication block (COMM_BLK). The System Services are grouped into
different services. Refer to the IGLOO2 FPGA System Controller User Guide for more details. The
IGLOO2 device enters into F*F mode by using the F*F services request that the System Controller
provides. You can set some of the F*F hardware settings options during the design time, such as the
clock source to be used as the standby clock source for the high performance memory subsystem
(HPMS) during F*F or defining the state of the fabric SRAM during F*F mode.

The HPMS stand by clock source and the state of the SRAMs are configured in the F*F hardware
settings in the Libero SoC software. The fabric SRAM state during F*F can either be Sleep or Suspend.
In Suspend mode, the large SRAM (LSRAM) and micro SRAM (uSRAM) contents are retained. That is,
when the device exits F*F mode, the contents of the SRAMs are retained. In Sleep mode, the SRAMs
contents are not retained. Exiting from F*F is achieved through user configurable mechanism through
external I/O events (either transitions or pattern matching on I/Os). The state and the role that I/Os play
during F*F must be specified during the design time using Libero SoC. There are three different settings
available. These settings are categorized as the I/O state in F*F mode, I/O availability in F*F mode, and
I/O role in exiting from F*F mode.

Purpose . 1
Introduction . 1
References . 2
Design Requirements . 2
Design Description . 2

Entering into F*F Mode . 4
Exiting from F*F Mode . 4

Hardware Implementation . 5
Running the Design . 10

Steps to Run the Design . 10

Conclusion . 15

Appendix A - Design Files . 16

List of Changes . 17

Sup
ers

ed
ed
August 2014 1

© 2014 Microsemi Corporation

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.4
Depending on the type of the I/O, some or all of these options may not be available. Refer to the IGLOO2
FPGA Low Power Design User Guide for more details.

This application note describes how to set the different user-defined settings during the design time using
the Libero SoC software. It also describes in detail how to enter F*F mode using the System Services,
through the CoreSysServices soft IP, which provides access to the System Services. The
CoreSysServices soft IP communicates with the COMM_BLK through one of the fabric interfaces
controllers (FICs). Each System Service has a service request phase and a response phase. For more
details, refer to the CoreSysServices IP Handbook which can be accessed through Libero SoC
software. Managing the MDDR, FDDR, or SERDES before and after F*F mode, power measurements,
are not discussed in this document.

References
The following list of references is used in this document. The references complement and help in
understanding the relevant Microsemi IGLOO2 FPGA device flows and features that are demonstrated in
this document.

• IGLOO2 FPGA System Controller User Guide

• IGLOO2 FPGA Low Power Design User Guide

• IGLOO2 Evaluation Kit

Design Requirements
Table 1 shows the design requirements.

Design Description
The design example consists of the HPMS configured using System Builder, a counter, SRAM wrapper
logic, IP cores (CoreSysServices, CoreAHBLite, CoreAHBToAPB3, and CoreAPB3), FLASH_FREEZE
macro, fabric AHB master, on-chip 1 MHz RC oscillator, fabric CCC (FCCC), and F*F request and
command generator logic (FF_BLKS). The fabric AHB master along with the SRAM wrapper
(AHBMASTER_FIC_RAM) are used to initialize the fabric SRAM by moving data from the embedded
nonvolatile memory (eNVM) to the fabric SRAM through FIC_0 AHB master and slave interfaces using
the AHB master in the fabric. A Data Storage client is defined in the eNVM with the data to be written to
the SRAM. This is used to demonstrate the state of the fabric SRAM content after exiting from F*F mode.

In Active mode (non F*F), the HPMS_CCC is configured to provide a 100 MHz clock that is sourced from
the FPGA fabric through the CLK_BASE port. The FCCC is configured to provide the 50 MHz
CLK_BASE reference. The on-chip 1 MHz oscillator is the reference clock source for the FCCC.

Table 1 • Design Requirements

Design Requirements Description

Hardware Requirements

IGLOO2 Evaluation Kit Rev C, Rev D, or later

Host PC Any 64-bit Windows Operating System

Software Requirements

Libero SoC v11.4

FlashPro programming software v11.4

Host PC Drivers USB to UART drivers

Set the following SmartDebug flag before launching
the Libero SoC v11.4 software:
data SMART_DEBUG_DISABLE_JTAG_RESET 1

SmartDebug:
http://soc.microsemi.com/kb/article.aspx?id=KI8956

Sup
ers

ed
ed
2

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010
http://soc.microsemi.com/kb/article.aspx?id=KI8956
http://www.microsemi.com/index.php?option=com_content&id=2067&lang=en&view=article&tab=documentation
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010
http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

Design Description
The CoreSysServices IP is configured to use only the F*F service option. It sends the F*F command to
the System Controller whenever it receives the F*F request enable and command from the FF_BLKS
logic. The FF_BLKS logic generates the F*F request and command based on the F*F entry input signal
(ff_trig). The FF_BLKS logic also monitors the busy signal from the CoreSysServices IP and the
FF_TO_START signal from the FLASH_FREEZE macro.

The output of a counter is connected to a set of light-emitting diodes (LEDs) to monitor the state of the
fabric while entering and exiting F*F mode. Table 2 shows the LEDs ports assignments.

Figure 1 shows the top-level block diagram with the main blocks used in the design.

Table 2 • LED to Pins Assignments (IGLOO2 Evaluation Kit Board)

Counter Output Package Pin

LED_1 F4

LED_2 F3

LED_3 G7

LED_4 H7

Figure 1 • Top-Level Block Diagram of the Design

Sup
ers

ed
ed
3

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.4
Entering into F*F Mode
Entering into F*F mode is done through System Services using CoreSysServices IP core. The F*F
request and command service is generated by initiating F*F entry request through the port ff_trig to the
FF_BLKS. Upon the trigger of the ff_trig port, the FF_BLKS sends a service enable request along with a
service command byte describing the function to be performed. The F*F service requests the System
Controller to execute the F*F entry sequence. When the F*F service begins execution, the System
Controller informs the HPMS by sending a command byte E0H that F*F shutdown is imminent. The
service is stalled until this command byte can be accepted by the COMM_BLK FIFO. If a new service
request is received while servicing another request, the new service request is immediately aborted.
Refer to the "Flash*Freeze Service" section in the IGLOO2 FPGA System Controller User Guide for
more details.

As the F*F system service command is initiated, the System Controller disables the fabric, each eNVM
block, or the MSS PLL circuit based on the options specified. All these options are available as System
Services through CoreSysServices IP core by defining the SERV_OPTION_MODE [2:0] input. This
defines the mode options for F*F. Refer to the CoreSysServices IP Handbook for more details.

Exiting from F*F Mode
In IGLOO2, exiting from F*F mode can be initiated by external I/Os events. User I/Os (MSIO, MSIOD, or
DDRIO) that are single-ended inputs can participate in the F*F exit in the following two ways:

• I/O Activity: Force F*F exit upon an activity (Wake_On_Change)

• I/O Signature: Force F*F exit upon a signature (Wake_On_1/Wake_On_0) match in which the I/O
participates with other I/Os to trigger F*F exit. This is a logical AND behavior where all I/Os must
meet the Low Power Exit settings.

The external I/O events are specified during the design time using the I/O Editor in the Libero SoC
software. Only input I/Os participate in the F*F exit event.

Note: The Wake_On_Change is a logical OR behavior with I/Os that are set as Wake_ON_1/
Wake_ON_0. This means that to wake from F*F, it must be {(All Wake-on-0 ANDed) ANDed with
(All Wake-on-1 ANDed)} ORed with (All Wake-on-Change ORed).

I/O Activity
In I/O Activity mode, an input I/O can be selected to be part of a transition. The value at the pin of the
activity I/O is latched before going to Low Power mode. When a change happens on the configured I/O,
the device wakes up from F*F mode. The change can either be 1-to-0 or 0-to-1. This option is equivalent
to the Wake_On_Change option in the I/O Editor. This can be set on more than one I/O. The
Wake_On_Change is a logical OR behavior with other I/Os that are set as Wake_On_Change.

I/O Signature
Any input I/O can be selected to be a part of a signature match value that is used to wake-up from F*F
mode. All the selected I/Os have to match a static predetermined value at the same time. If the
configured signature values match the values at I/Os, then the device exits from F*F mode. I/Os can be a
mixture of different signature settings. An I/O can be configured to participate in the F*F exit upon a
0-to-1 or it can be configured to participate in the F*F exit upon a 1-to-0 transition. These options are
equivalent to Wake_On_1 (transition from 0-to-1) and Wake_On_0 (transition from 1-to-0) settings in the
I/O Editor in the Libero SoC software.

All other I/Os that are not participating in the F*F exit mechanism are tristated or held to the previous
state (LAST_VALUE) before entering F*F mode. The Selection is set using I/O state in Flash*Freeze
mode column options in the I/O Editor using the Libero SoC, as shown in Figure 7 on page 9.

SW5 (four different dual in-line package (DIP) switches) on the IGLOO2 Evaluation Kit board is used to
demonstrate the pattern matching wake-up mechanism. Four different inputs are created in the top-level
design where each input is assigned to a DIP switch as shown in Figure 2 on page 5.

Sup
ers

ed
ed
4

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038

Hardware Implementation
SW4 on the Evaluation Kit board is used to demonstrate the transition (Wake_On_Change) wake-up
event mechanism, as shown in Figure 2.

Hardware Implementation
The hardware implementation involves configuring the HPMS and the necessary F*F settings. The
HPMS configuration is done by using the System Builder. The design example consists of the HPMS, a
counter, SRAM wrapper logic, IP cores (CoreSysServices, CoreAHBLite, CoreAHBToAPB3, and
CoreAPB3), FLASH_FREEZE macro, fabric AHB master, on-chip 1 MHz RC oscillator, FCCC, and
FF_BLKS as shown in Figure 3 on page 6. The IP cores along with the SRAM wrapper are used to
initialize the fabric SRAM (AHBMASTER_FIC_RAM) by moving data from the eNVM to the fabric SRAM
through FIC_0 AHB master and slave interfaces. A Data Storage client is defined in the eNVM with the
data to be written to the SRAM. This is used to demonstrate the state of the fabric SRAM content after
exiting from F*F.

Figure 2 • DIP Switches and the SW4 Connectivity in Top Level Design

Sup
ers

ed
ed
5

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.4
Figure 3 • Top-Level Hardware Design

Sup
ers

ed
ed
6

Hardware Implementation
The HPMS is configured, using the Device Features page in the System Builder, to use HPMS System
Services and HPMS on-chip Flash Memory (eNVM) as shown in Figure 4. The HPMS is also configured
to provide the clock and reset signals to all the blocks including the CoreSysServices IP and FF_BLKS.

The eNVM data storage client is defined using the Configure Flash Memory option under the
Memories page in the System Builder configurator. The .mem file used to define the data storage client
is located at <project location>\IGLOO2_FlashFreeze\constraint\ folder.

Figure 4 • System Builder Configurations for HPMS System Services and eNVM

Sup
ers

ed
ed
7

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.4
The HPMS_CCC clock source is sourced from the FPGA Fabric Input through the CLK_BASE port
where an FCCC is used. The FCCC is configured to provide the 50 MHz CLK_BASE clock using GL0
output. The reference clock for the FCCC is the on-chip 50 MHz RC oscillator. Figure 5 shows the
system clocks configurations for the HPMS_CLK and FIC_0_CLK clock settings. System Builder
automatically instantiates FCCC and RCOSC and configures them accordingly.

The standby clock source for the HPMS in F*F mode and the state of the SRAMs (uRAM and LSRAM)
during F*F mode are configured using the Flash*Freeze Hardware Settings dialog in the Libero SoC
software, as shown in Figure 6 on page 9. Following are the HPMS clock source options that are
available to be used during F*F mode:

• On-chip 1 MHz RC oscillator

• On-chip 50 MHz RC oscillator

• External 32 KHz crystal oscillator

Figure 5 • HPMS System Clocks Configurations

Sup
ers

ed
ed
8

Hardware Implementation
Following are the uRAM/LSRAM states options that are available to be used during F*F mode:

• Suspend

• Sleep

The I/Os F*F exit mechanism is specified using the Low Power Exit setting in the I/O Editor in the Libero
SoC, as shown in Figure 7.

Note:

• The I/O available in F*F option applies only to I/Os allocated to the HPMS peripherals.

• When I/Os are set to be available during F*F mode, the I/O state in F*F option does not apply.

• Only inputs or bidirectional I/Os participate in signature/activity F*F exit. This means that the Low
Power Exit options are available to be set on inputs and/or bidirectional I/Os only.

The F*F exit behavior of input I/Os (DIP1-4) and SW5 are configured using the I/O Editor in the Libero
SoC, as shown in Figure 7. The DIP switches-to-package pin assignments for the IGLOO2 Evaluation Kit
are shown in Table 3.

Figure 6 • Flash*Freeze Hardware Settings Dialog

Figure 7 • Specifying I/O State and Functionality Options Using I/O Editor

Table 3 • DIP Switches to Package Pins Assignments

Input DIP Switch Package Pin

DIP1 L19

DIP2 L18

DIP3 K21

DIP4 K20

SW4 J18

SW2 (ff_trig) K16

Sup
ers

ed
ed
9

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.4
Running the Design
The design example demonstrates the following options:

• Entering into F*F mode

• Exiting from F*F by the means of I/O activity, or I/Os signature.

• Checking the content of the SRAM post F*F based on whether the SRAM was put into Sleep or
Suspend modes

The design example is designed to run on the IGLOO2 Evaluation Kit board. Refer to
www.microsemi.com/index.php?option=com_content&id=2067&lang=en&view=article&tab=documentati
on for more detailed board information.

Steps to Run the Design

Programming
This step will run FlashPro in batch mode to program the IGLOO2 M2GL010 on the IGLOO2 Evaluation
Kit board.

1. Before programming and powering up the IGLOO2 board, confirm that the jumpers are positioned
as shown in Table 4.

2. Plug the FlashPro4 ribbon cable into connector J5 (JTAG Programming Header) on the IGLOO2
Evaluation Kit board.

3. Connect the power supply to the J6 connector and FlashPro Programmer.

4. Change the power supply SW7 switch to ON.

5. Expand Program Design in the Design Flow window. Double-click on Run PROGRAM Action
to begin programming as shown in Figure 8. A green check mark will appear next to the
Program Design in the Design Flow window to indicate programming is completed successfully.

Note: The IGLOO2 Evaluation Kit board can be programmed using the FlashPro standalone with the
provided *.stp file. Refer to "Appendix A - Design Files" on page 16 for more information.

Table 4 • Board Jumper Settings

Jumper Setting

J3 1-2 installed

J8 1-2 installed

Figure 8 • Program the Design

Sup
ers

ed
ed
10

http://www.microsemi.com/index.php?option=com_content&id=2067&lang=en&view=article&tab=documentation
http://www.microsemi.com/index.php?option=com_content&id=2067&lang=en&view=article&tab=documentation

Running the Design
Entering F*F Mode and Using External I/O Activity (Wake_On_Change) to
Exit F*F Mode

1. To enter into F*F mode, press and release the F*F entry (ff_trig) push button (SW2). This puts the
device state into F*F mode. Observe that the LEDs stop toggling indicating that the fabric entered
into the F*F mode.

2. To exit from F*F, press and release the push button switch 4 (SW4). SW4 is configured to wake
the device from F*F upon an I/O activity. The activity could be a change from 1-to-0 or a 0-to-1.
This is set on per I/O basis in the I/O Editor by setting the Wake_On_Change attribute. For the
purpose of this design, SW4 (package pin J18) is used. Observe that the LEDs start to toggle
again indicating that the device exited from the F*F mode.

Entering F*F Mode and Using External I/O Signature
(Wake_On_1/Wake_On_0) to Exit F*F Mode
The following steps demonstrate how to exit from F*F using signature I/O matching. One or more I/Os
can be configured to wake-up the device based on a change from 0-to-1 or 1-to-0 or a combination of
both.

When more than one I/O is configured to participate in the signature wake-up, it is a logical AND of all
I/Os. For the purpose of this demo, a set of DIP switches are used. Two DIP switches are configured as
Wake_On_1 and two are configured as Wake_On_0. All four switches must meet the criteria for the
device to exit F*F mode.

1. If the device is in F*F mode, wake up the device as indicated in the previous step.

2. To enter into F*F mode, press and release the F*F entry push button (SW2). This puts the device
state into F*F mode. Observe that the LEDs stop toggling, indicating that the fabric entered into
the F*F mode.

3. To wake-up the device from F*F mode, toggle DIP switches 1 and 2 to 1 position (OFF) AND
toggle DIP switches 2 and 3 to 0 position (ON) as shown in Figure 9. Upon this setting, the device
exits from F*F mode. Observe that the LEDs start to toggle again indicating that the device exited
from the F*F mode.

Figure 9 • Toggling DIP Switches

Sup
ers

ed
ed
11

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.4
Note: The DIP switches combination shown in Figure 9 on page 11 constantly keeps the device in active
mode, since that combination is configured to wake-up the device. Before proceeding to the next
step, ensure that the combination setting of the DIP switches is different than what is shown in
Figure 9 on page 11.

SRAM Content After Entering and Exiting from F*F Mode
This step demonstrates that the SRAM content is retained and not lost while the device is in F*F mode.
The SRAM is set to be in Suspend mode during F*F. Refer to "Hardware Implementation" on page 5 for
more information. To check the content of the SRAM after entering and exiting from F*F, SmartDebug is
used to read back the content of the SRAM from the device after exiting from the F*F mode.

1. Check the content of the SRAM before entering into the F*F mode. While the device is in Active
Mode (non F*F), double-click the SmartDebug Design entry from the Design Flow window as
shown in Figure 10.

The SmartDebug window opens.

Figure 10 • Launching SmartDebug Design Tools

Sup
ers

ed
ed
12

Running the Design
2. Click on Debug FPGA Array as shown in Figure 11.

a. Point to the debug file. The debug file is automatically generated into the Libero SoC project.
Click Browse and navigate to <Libero SoC project path>/designer/<top level design
name>/<design_name>_debug.txt as shown in Figure 12 and click Open.

Figure 11 • SmartDebug Window - Debug FPGA Array

Figure 12 • Selecting the Debug File
Sup

ers
ed

ed
13

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.4
b. Select the Memory Block tab in the Debug FPGA Array window and select Read Block as
shown in Figure 13. The SmartDebug tool reads the SRAM content from the device and shows
it in the Memory Block Data section as shown in Figure 13.

In the previous steps, the data shown is the content of the SRAM while the device is in Active mode. The
next steps demonstrate putting the device into F*F, exiting from it, and finally checking the content of the
SRAM after exiting from the F*F mode.

3. Enter into F*F mode. Press and release the F*F entry push button (SW2). This puts the device
state into F*F mode. Observe that the LEDs stop toggling, indicating that the fabric entered into
the F*F mode.

4. Exit from F*F. Press and release SW4.

Figure 13 • SRAM Read-back Content before F*F entry

Sup
ers

ed
ed
14

Conclusion
In this design, the SRAM is set for Suspend mode during F*F mode so the content of the SRAM is
retained. Thus, when reading through SmartDebug, the SRAM content after F*F exit is the same data
that is stored into the SRAM before entering into F*F mode, as shown in Figure 14.

The data read from the SRAM at a particular address is the same data that is written into the SRAM
before entering into F*F mode.

Conclusion
This application note describes how to put the IGLOO2 device into F*F mode using System Services and
demonstrates the different options that can be used to wake-up the IGLOO2 device from F*F mode. In
addition, it also shows how to set different hardware behavior during F*F at design time, and
demonstrates the effect of the F*F on the fabric SRAM content depending on the user-defined F*F
hardware settings in the Libero SoC.

Figure 14 • Reading SRAM Content After F*F Exit

Sup
ers

ed
ed
15

IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.4
Appendix A - Design Files
The design files can be downloaded from the Microsemi SoC Products Group website:
http://soc.microsemi.com/download/rsc/?f=M2GL_FlashFreeze_11p4_DF

The design file has Libero SoC Verilog project, the .mem file for the eNVM data storage client, and
programming files (*.stp) for IGLOO2 Evaluation Kit board. Refer to the Readme.txt file included in the
design file for the directory structure and description.

Sup
ers

ed
ed
16

http://soc.microsemi.com/download/rsc/?f=M2GL_FlashFreeze_11p4_DF

List of Changes
List of Changes
The following table lists critical changes that were made in each revision of the chapter in the demo
guide.

Date Changes Page

Revision 2
(August 2014)

Updated the document for Libero v11.4 software release (SAR 59065). NA

Revision 1
(January 2014)

Initial release. NA

Sup
ers

ed
ed
17

51900280-2/08-14

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

Sup
ers

ed
ed

mailto:sales.support@microsemi.com
www.microsemi.com

	IGLOO2 Flash*Freeze Entry and Exit - Libero SoC v11.4
	Purpose
	Introduction
	References
	Design Requirements
	Design Description
	Entering into F*F Mode
	Exiting from F*F Mode
	I/O Activity
	I/O Signature

	Hardware Implementation
	Running the Design
	Steps to Run the Design
	Programming
	Entering F*F Mode and Using External I/O Activity (Wake_On_Change) to Exit F*F Mode
	Entering F*F Mode and Using External I/O Signature (Wake_On_1/Wake_On_0) to Exit F*F Mode
	SRAM Content After Entering and Exiting from F*F Mode

	Conclusion
	Appendix A - Design Files
	List of Changes

