
SmartFusion2 and IGLOO2 SmartDebug
Hardware Design Debug Tools

Libero SoC Tutorial

Sup
ers

ed
ed



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 

Revision 3 2

Table of Contents

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Associated Project Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Design Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Programming the Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Programming the IGLOO2 Board  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Launching SmartDebug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
View Device Status  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
View Flash Memory (eNVM) Content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Debug FPGA Array  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1. Specifying Live Probe Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2. Active Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3. Fabric SRAM Memory Debug  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Forcing a Design Modification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
SERDES Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Far-End Loop Back Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Tcl Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Executing SERDES Debug from SmartDebug Tcl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TCL Script Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Example 1: Change M/N/F registers for Lane1 and Lane2 of SERDESIF_0 . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Example 2: Change RX LEQ registers Lane2 of SERDESIF_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Example 3: Change TX De-emphasis registers Lane2 of SERDESIF_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B List of Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

C Product Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Customer Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Customer Technical Support Center  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Technical Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Website  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Contacting the Customer Technical Support Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Email  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
My Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Outside the U.S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ITAR Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Sup
ers

ed
ed



Introduction

Design debug is a critical phase of the FPGA design flow. Microsemi's multiple design debug tools and
features compliment design simulations by allowing verification and troubleshooting at the hardware
level. Having successfully passed functional and post-layout simulations, Microsemi's design debug tools
can help provide the designer with a pre-system level implementation early warning of other design
issues. Microsemi's design debug tools can provide the peace of mind, that intended design goals and
functionality are maintained by performing various analysis in the actual programmed FPGA. Microsemi
design debug focuses the designer on analysis of the key elements of a flash design, such as the
embedded non-volatile memory (eNVM) data, SRAM data, and probes capabilities. Microsemi
SmartFusion®2 and IGLOO®2 field programmable gate array (FPGA) devices have built-in probe points
that greatly enhance the ability to debug logic elements within the device. The enhanced debug features
implemented into the SmartFusion2 and IGLOO2 devices give access to any logic element and enable
designers to check the state of inputs and outputs in real-time, without any re-layout of the design
through Live Probe and Active Probe features:

• With Live Probe, two dedicated probes can be configured to observe a probe point; which is any
output of a register. The probe data can then be sent to two dedicated pins (PROBE_A and
PROBE_B), then to an oscilloscope, or even redirected back to the FPGA fabric to drive a
software logic analyzer.

• Active Probe allows dynamic asynchronous read and write to a flip-flop or probe point. This will
enable a user to quickly observe the output of the logic internally, or to quickly experiment on how
the logic will be affected by writing to a probe point.

• SmartDebug includes SERDES control and test capabilities that can also access SRAM and
eNVM to assist with debugging high speed serial designs, with no extra steps. The SmartDebug 
JTAG interface extends access to configure, control, and observe SERDES operations and is 
accessible in every SERDES design. Users simply implement their design with the 
Libero® System Builder to incorporate the SERDESIF block enabling SERDES access from the 
SmartDebug toolset.

This quickly enables designers to explore configuration options without going through FPGA 
recompilation or making changes to the board. The SERDES Debug GUI displays real-time system and 
lane status information. SERDES configurations are supported with Tcl scripting, allowing access to the 
entire SERDES register map for real-time customized tuning.
Upon completing this tutorial you will be familiar with the following:

• Accessing SmartDebug from Libero SoC on a design
• Checking the device status
• Checking the flash memory (eNVM) content
• Debugging FPGA array (setting Live Probes, Active Probes, and reading/modifying fabric SRAM

content)
• Debugging SERDES designs

Table 1 • Reference Design Requirements and Details

Reference Design Requirements and Details Description

Hardware Requirements

SMA Male-to-SMA Male Precision Cables, such as Pasternack 
Industries part number PE39429-12 (or equivalent)

Optionally recommended for evaluation board 
SERDES testing.

IGLOO2 Evaluation Kit Rev C or later

Software Requirements

Libero® System-on-Chip (SoC) v11.3

FlashPro programming software v11.3

Host PC Drivers (provided along with the design files) -

Sup
ers

ed
ed
Revision 3 3

http://www.pasternack.com/sma-male-sma-male-pe-sr405flj-cable-assembly-pe39429-12-p.aspx
http://www.pasternack.com/sma-male-sma-male-pe-sr405flj-cable-assembly-pe39429-12-p.aspx
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo2/igloo2-evaluation-kit


Introduction
Associated Project Files
Extract the SmartDebug_Tutorial Libero SoC project along with the ReadMe and programming (.stp) file 
to a folder on the HDD of your PC (for example: C:\Microsemiprj). Confirm that a folder named 
SmartDebug_Tutorial containing the Libero SoC project was extracted. 
Note: Extract the design files to a root directory.

Sup
ers

ed
ed
4 Revision 3

http://soc.microsemi.com/download/rsc/?f=SmartDebug_Tutorial


1 – Design Overview

The design consists of two main blocks: the SERDES debug block (SERDES_Debug) and the fabric
debug block (Fabric_Debug), as shown in Figure 1-1. 
The SERDES_Debug block is used to demonstrate the SmartDebug capabilities that can be used to
perform SERDES real-time signal integrity testing and debugging. The design consists of a System
Builder block (SD_DEMO) and an instance of SERDES Interface block (SERDES_IF), as shown in
Figure 1-2 on page 6.
Within the System Builder, a Data Storage client is stored in the flash memory (eNVM). SmartDebug
provides the capabilities to view the eNVM content by reading the content real-time from the device.

The Fabric_Debug block demonstrates the way to use SmartDebug to do FPGA array debugging. To
demonstrate this, the Fabric_Debug uses a counter to load a counting pattern into the LSRAM instance
(DPSRAM). The data stored is the same as the address. On the read side of the LSRAM, there is a count
checker (count_chk) to ensure that the count is progressing as expected. If there is an error, the output
(error) is latched high, as shown in Figure 1-3 on page 6. This Fabric_Debug block design is used to
demonstrate the different silicon built-in capabilities, such as setting Live Probes to monitor in real-time
an internal user-selected point on the device. In addition, users can set Active Probes which provides the
capabilities for dynamic asynchronous read and write to a flip-flop or probe point. This will enable users
to quickly observe the output of the logic internally or to quickly experiment on how the logic will be
affected by writing to a probe point. Finally, the Fabric_Debug design block will be used to demonstrate
the SmartDebug capabilities where users can read and modify in real-time the fabric SRAM content.

Figure 1-1 • SmartDebug Top Level Blocks

Sup
ers

ed
ed
Revision 3 5



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
Figure 1-2 • SERDES_Debug Overall Design Blocks

Figure 1-3 • Fabric_Debug Overall Design Blocks Sup
ers

ed
ed
6 Revision 3



2 – Programming the Device

Programming the IGLOO2 Board
1. Connect the FlashPro4 programmer to the J5 connector on the IGLOO2 FPGA Evaluation Kit.
2. Connect the power supply to the J6 connector
3. Switch the power supply (SW7) to the ON position. Refer to the IGLOO2 FPGA Evaluation Kit

Board for more details.
4. Launch Libero SoC v11.3.
5. From the Project menu, select Open Project. Browse to the folder where the design files were

extracted. Refer to the "Associated Project Files" section on page 4. Select the Libero SoC
project inside the “SmartDebug_Tutorial" folder then select Open.

6. In the Design Flow window, select Run PROGRAM Action. This will program the design into the
device, as shown in Figure 2-1.

Figure 2-1 • Programming the Device

Sup
ers

ed
ed
Revision 3 7

http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo2/igloo2-evaluation-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo2/igloo2-evaluation-kit


SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
Launching SmartDebug
Launch SmartDebug by selecting the SmartDebug Design option from the Design Flow window, as
shown in Figure 2-2.

Figure 2-2 • Launching SmartDebug Design Tools

Sup
ers

ed
ed
8 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
This will open the SmartDebug window, as shown in Figure 2-3.

View Device Status
The View Device Status option provides the device status report. It is a summary of your device
information, programmer information, user information, factory serial number, and security information if
any are set. Figure 2-4 shows a sample of the device status information.

Figure 2-3 • SmartDebug Window Debug Options

Figure 2-4 • Device Status Report Sample

Sup
ers

ed
ed
Revision 3 9



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
View Flash Memory (eNVM) Content
The View Flash Memory Content can be accessed from the SmartDebug window, as previously shown
in Figure 2-3 on page 9. This option provides the capabilities to retrieve the eNVM content from the
device using the Memories pages of the System Builder under the SERDES_Debug block. To
demonstrate how to read back the content of the eNVM, the data to be programmed into the eNVM was
defined first. One way to do this is by defining an eNVM data storage client using the eNVM configurator.
The client can be stored into any page of the eNVM. Page 4 was used here for demonstration purposes.
Figure 2-5 shows an excerpt of the data storage client content that was defined in the eNVM.

The content of eNVM is retrieved from the device, displayed, and is equivalent to what is shown in
Figure 2-5.

Figure 2-5 • Memory File Content Saved into the eNVM

Sup
ers

ed
ed
10 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
The eNVM content can be read in real-time from the device as follows:
1. Using the SmartDebug window, select the View Flash Memory Content option. The Flash

Memory window opens, as shown in Figure 2-6.
2. Since the data storage client is stored into page four, specify the Start Page and End Page as

page number 4.

3. Select the Read from Device option.

Figure 2-6 • Flash Memory (eNVM) Content Read from the Device

Sup
ers

ed
ed
Revision 3 11



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
Debug FPGA Array
SmartFusion2 and IGLOO2 devices have built-in probe points that greatly enhance the ability to debug
logic elements within the device through the Live Probes and Active Probes features. The enhanced
debug features implemented into the devices give access to any logic element and enable users to
check the state of inputs and outputs in real-time, without re-layout of the design.
In addition to the ability to specify probe points, SmartDebug also provides the capability to read, modify,
and write into the fabric SRAM block. This step demonstrates the abilities of setting Live Probes, Active
Probes, and reading/writing from/to the fabric SRAM. 
The Debug FPGA Array can be accessed from the SmartDebug window, as previously shown in
Figure 2-3 on page 9. Selecting the Debug FPGA Array option opens the Debug FPGA Array window,
as shown below in Figure 2-7.

Libero SoC generates the Debug File, <projectName>_debug.txt, during Place and Route and stores the
file into the <project path>\designer folder. The Debug File contains information used by SmartDebug
mainly for mapping the user design names to their respective physical addresses on the device. It also
contains other information used during the debug process.
Before starting the FPGA Array Debug, the Debug File must be specified. 
Select the Browse button and then select the SmartDebug_top_debug.txt file: Debug File = <project
root>\designer\SmartDebug_top_debug.txt.

Figure 2-7 • Debug FPAG Array WindowSup
ers

ed
ed
12 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
Once the file has been selected, the window will populate the Live Probes tab with the available debug
points, as shown in Figure 2-8.

In the next few steps, this tutorial demonstrates how to use the Live Probes, Active Probes, and the
Memory Block debugging features.

Figure 2-8 • Specify Debug File Location

Sup
ers

ed
ed
Revision 3 13



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
1. Specifying Live Probe Points
With Live Probe, two dedicated probes can be configured to observe a probe point, which is any output
of a register. The probe data can then be sent to the two dedicated probe pins (PROBE_A and
PROBE_B), then to the oscilloscope or even redirected back to the FPGA fabric. The probe points
location can be changed without having to recompile or reprogram the design. The probes can capture
data at a speed of up to 100MHz. 
The PROBE_A and PROBE_B pins are dedicated dual-purpose pins. These pins are regular I/Os, if not
used by the Live Probes channels. The pins can be reserved for probing by selecting the option Reserve
Pins for Probes in the Project Settings window, as shown in Figure 2-9.

Furthermore, you can identify the probe pin on your package by looking at the pin description document
for that particular package. Another option is to check the Function column in the Package Viewer of the
I/O Editor in the Libero SoC software, as shown in Figure 2-10.
For the purpose of this tutorial, M2GL010T with 484 FBGA is used. As such, pin numbers Y10 and W10 
are the two dedicated pins that can be used for probing, as shown in Figure 2-10.

Figure 2-9 • Reserving Probe Pin for Probes

Figure 2-10 • Identifying Probe Pins using Package Viewer Inside I/O Editor

Note: The probe pins, PROBE_A/PROBE_B, are not exposed and not accessible on the IGLOO2 
 Evaluation Kit Rev C. These pins will be accessible on the next revision of the IGLOO2 board.

Sup
ers

ed
ed
14 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
The Live Probes tab (Figure 2-11) shows the probe point name and pin type (SRAM, Logic, or I/O). Once
a point is selected it can be assigned to either ChannelA or ChannelB as follows:

1. Select the point that you want to probe
2. Select the channel on which you want to probe the selected point
3. Select Set

Figure 2-11 shows an example of setting two probe points: A_DOUT[0] and A_DOUT[13] to be probed
on ChannelA and ChannelB respectively. 
A message will be printed in the Log window of the Libero SoC indicating which signals were assigned to
be probed—as follows:
Live probe has been set:
ChannelA:
Fabric_Debug_0/DPSRAM_0/Fabric_Debug_DPSRAM_0_DPSRAM_R0C0/INST_RAM1K18_IP:A_DO
UT[0] 
ChannelB:
Fabric_Debug_0/DPSRAM_0/Fabric_Debug_DPSRAM_0_DPSRAM_R0C0/INST_RAM1K18_IP:A_DO
UT[13].
After the channels have been set, SmartDebug configures the ChannelA and ChannelB I/Os to 
monitor the desired probe points. The maximum number of simultaneous probes is two internal 
signals. There is also a Filter box to filter through the Net Names. As you begin typing in the Filter box, 
the Net Name table only shows results for the queried names.
Note: The Active Probes WRITE will overwrite the settings of the Live Probe channels (if any).

Figure 2-11 • Live Probes Channels Assignments

Sup
ers

ed
ed
Revision 3 15



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
2. Active Probes
Active Probe allows dynamic asynchronous read and write to a flip-flop or probe point. This will enable a
user to quickly observe the output of the logic internally or to quickly experiment on how the logic will be
affected by writing to a probe point. The following steps will demonstrate how to select a specific set of
probe pins reading the current value and then writing different values.

Selecting Active Probes
1. Select the Active Probes tab from the Debug FPGA Array window.
2. Once inside the Active Probes tab, click on the Select Active Probes button to define the internal

points to monitor, as shown in Figure 2-12.

3. Select Active Probes opens a window that shows all the available probe points in the design. For
this tutorial we are going to monitor the following points:

• Three bits of the counter output CountA (countA[0], countA[1], and countA[2])
• The monitoring signal “error”
• An internal register “sync”
To find these points in the list of available probe points use the Filter control, as shown in Figure 2-13
on page 17.

Note: Since Active Probe only deals with individual signals, the cout[7:0] bus segment will be broken up
into three separate probe lines.

Figure 2-12 • Selecting Active Probes From the Design

Sup
ers

ed
ed
16 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
4. Select the desired points and click on Add to move to the Selected Probe Points window and
click OK, as shown in Figure 2-13.

Reading Active Probes
Once all of the probes points have been specified, select Read Active Probes to gather the current
values of the internal signals. Figure 2-14 shows the results similar to a first read of the design.

Note: To toggle the states between High and Low, press , and to reset the value, press .

Figure 2-13 • Selecting Desired Points to Read

Figure 2-14 • Active Probe Readings

Sup
ers

ed
ed
Revision 3 17



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
The cout[2:0] bus will be constantly counting therefore, the value may be different than what is seen on
the target platform. The value of sync should be High indicating that the checker on the read side of the
DPSRAM has latched onto the count pattern. 
Also, the error signal should be Low indicating that there have been no errors in the counting pattern.
When the design is held in reset the sync signal goes Low and waits for a specific pattern from the
DPSRAM to sync up the counters. To watch this happen, hold SW2 down and select Read Active
Probes. The sync signal will be Low as the design is now held in reset. Release SW2 and read again,
the sync is now High.

3. Fabric SRAM Memory Debug
To view the contents of the Large SRAM in this design select the Memory Blocks tab, as shown in
Figure 2-15.

This design contains a single Large SRAM, named DPSRAM_0, and it is the only one available in the
drop-down list. Select this block and select Read Block.

Figure 2-15 • Memory Blocks Tab

Sup
ers

ed
ed
18 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
The contents of the DPSRAM_0 will be displayed, as shown in Figure 2-16. See the counting pattern that
is loaded into the RAM.

Forcing a Design Modification
The design reads the contents of the DPSRAM and compares it to a synchronized counter in the checker
which is looking for errors. If the contents of the DPSRAM is modified it will break the count pattern and
cause an error in the checker. 
Modify the contents of the DPSRAM and force an error as follows:

1. Read the memory content, as shown in Figure 2-16
2. In the Active Probe tab, read the probes
3. Power cycle the board (turn off and on the board power)

Note: Since SmartDebug is accessing the SRAM at the same time the counter is writing to the SRAM
(due to a known issue) the error LED will go off. To work around this current issue, turn off and on
the board power before proceeding. There is no need to restart SmartDebug.

4. Once the board comes back up, read the active probe again. There will be an error, which can be
ignored.

5. Read the active probes the second time. On the second read there will be no errors and the LED
should come on indicating no errors.

6. Go to the Memory Blocks tab, select an entry and double-click. Each entry is 9-bits wide.

Figure 2-16 •  DPSRAM_0 Contents

Sup
ers

ed
ed
Revision 3 19



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
7. Modify the value from the current value to break the count pattern, as shown in Figure 2-17.
8. Select Write Block to write the modified value to the SRAM.
9. The error LED light should go off, indicating an error in the counting pattern.

Figure 2-17 • Modifying DPSRAM Contents

Sup
ers

ed
ed
20 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
In the Active Probes tab, perform a read and you can see that the error signal is now High, refer to
Figure 2-18.

SERDES Debug
This SmartDebug SERDES tutorial will assist FPGA and the board designers to perform SERDES real-
time signal integrity testing and tuning in a system including:

• Real-time access to SERDESIF Block control and status registers
• Provide testing functions with pseudo-random binary sequence (PRBS) or constant pattern

generators and checkers
• Run link tests with various loop back options
• Provide overview for tuning many combinations of physical medium attachment (PMA) analog

settings to find the optimal set for a particular SERDES channel

Figure 2-18 • High Error Signal after Forcing an Error

Sup
ers

ed
ed
Revision 3 21



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
1. Select Debug SERDES from the SmartDebug Graphical User Interface, as depicted in
Figure 2-19.

2. The Configuration tab will auto-identify and populate which SERDESIF is used in the design and
the lanes and how they are programmed and powered-up. The status of each lane is shown as
well as the programmed lane mode. This example demonstrates the use of SERDESIF_0 block,
as well as the lock status of the TXPLL and RXCDR. This window can be updated through the
Refresh Report button, refer to Figure 2-20.

Figure 2-19 • Debug SERDES Operation Selection

Figure 2-20 • SERDES Configuration Tab

Sup
ers

ed
ed
22 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
3. The PRBS Test tab provides several capabilities for each Lane of the SERDES Block. The
information is provided per-channel, based on the SERDES Lane selected within the GUI. For
example, select Lane 0, select the Near-end Serial Loopback test type, and select PRBS7
Pattern. This test will generate and check PRBS7 data without going off-chip, as shown in
Figure 2-21.

Figure 2-21 • SERDES Test Tab

Sup
ers

ed
ed
Revision 3 23



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
As shown in Figure 2-22, the Lane 0 status is indicated after Starting the test. The green LEDs indicate
the lock status of the TXPLL and RXCDR for the selected Lane. 
In this example setup, the datastream is expected to see zero errors as the datapath does not go off-chip
while using the Near-end Serial Loopback. The Error Count will increment up to 255. The Reset button
will clear the count and the counter will continue to count while the test continues to run.

Note: Lane 0 is the PCIe® lane. This Lane is connected to the PCIe edge fingers of the Evaluation Board.

Figure 2-22 • SERDES Link Status

Sup
ers

ed
ed
24 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
4. Stop the test and change the Test Type to Serial Data (Off-Die). Restart and observe the Lane 0 
error counter. This is due to the fact that the data is no longer looping between Tx and Rx. Lane 0 
is not looped together on the PCB. In this case, the error count will increment up to the maximum 
255, as shown in Figure 2-23.

Figure 2-23 • Sending Serial Tx Data Off-Die

Sup
ers

ed
ed
Revision 3 25



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
5. The Evaluation Kit board connects Lane 1 on the PCB to loop back Tx and Rx. This loopback
demonstrates a complete path with data being transmitted and received intact. The example
demonstrates this, select Lane 1, select the Serial Data test type, and select PRBS7 Pattern.
This test will generate and check PRBS7 data going off-chip and folded back on the PCB to the
receiver, refer to Figure 2-24.

Figure 2-24 • Lane 1 Transmitting Data Through On-Board Loopback

Sup
ers

ed
ed
26 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
6. The Tx and Rx channels of Lane 2 can be interconnected in a loop-back configuration using coax
cables. In this example, as shown in Figure 2-25 and Figure 2-26, after connecting a pair of high-
quality 50-Ohm SMA cables to the SMA connections on the Evaluation Kit board, the SERDES
debug can be used to send data off-board and check for errors. This requires selection of Lane 2
and Serial Data (Off-Die). A PRBS7 pattern is chosen in the example test.

Figure 2-25 • External Cable Loopback

Figure 2-26 • Evaluation Kit Board with External Coax Loopback Setup

Sup
ers

ed
ed
Revision 3 27



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 

 
, 
r 
 
 

7. The Lane 2 SMA test connections can be used for interconnecting with high-speed coax cables to
test equipment or other test fixtures like test backplanes. In the example shown in Figure 2-27
when the Lane 2 test is started without any means to connect the Tx and Rx together, the Erro
Count will increment; as the link is broken between the pattern generator and the checker. This
setup will send a data pattern of the board for analysis on the test equipment, such as a high speed
oscilloscope does

Note: SMA Male-to-SMA Male Precision Cables, such as Pasternack Industries part number PE39429-
12 (or equivalent), are recommended..

Figure 2-27 • Lane 2 Transmitting Data Off-Board

Sup
ers

ed
ed
28 Revision 3 

http://www.pasternack.com/sma-male-sma-male-pe-sr405flj-cable-assembly-pe39429-12-p.aspx
http://www.pasternack.com/sma-male-sma-male-pe-sr405flj-cable-assembly-pe39429-12-p.aspx


SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
Several test patterns are available from the test pattern generator. They include several PRBS and
constant patterns. Not all patterns are suited for all applications. For instance, all ones or all zeros will not
be useful with AC-coupled channels; as the DC-offset is removed producing a signal that is at-ground. If
using the generator to send data to the test equipment, some test equipment cannot tolerate the long
run-lengths of some of the PRBS patterns. PRBS7 is a very typical pattern for testing signal integrity in
communication applications.
Bit Error Rate (BER) is simply counting the number of errors over time to provide a level of confidence of
a high speed link. For a 2.5 Gbps test, it takes about three minutes with zero errors to achieve a BER of
10e-12. The SmartDebug SERDES GUI provides an error counter allowing the user to do any BER test.
An online calculator can determine how long to run a pattern test based on the target BER. 

Far-End Loop Back Support
Far-end loopback is supported from the Loopback Test tab. From this tab, users can receive data from a
far-end source and fold the received data (Rx) back out of the transmitter (Tx).
In the example below, Figure 2-29 on page and Figure 2-30 on page, by using the Evaluation Board 
traffic is received from a far-end transmit source, such as another device or test equipment. It is 
received into Lane 2 and looped back out the transmitter. 
This is accomplished by selecting SERDES Lane 2, selecting the PCS Far End PMS Rx to Tx Test Type,
and Start to complete the setup. 
Traffic entering the SMA connectors on Lane 2 of the Evaluation board will be observed coming off the
board on the Tx SMA connectors. 
Note: In this test, the IGLOO2 Evaluation board must use the same SERDES reference clock as the far-

end. The data path through the SERDEIF goes through the CDR and reclocks the data to the local
REFCLK. This requires 0ppm difference between the far-end clock source and the Eval-Kit clock
source. For this, use the SMA inputs [designators J17 & J21] of the board rather than the local on-
board oscillator, as the input of the SERDES REFCLK.

Figure 2-28 • Connecting Lane 2 to the Test Equipment

Sup
ers

ed
ed
Revision 3 29

http://www.jittertime.com/resources/bercalc.shtml


SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
Figure 2-29 • PCS Far-End Rx to Tx Loopback

Figure 2-30 • Far-End Loopback on the Evaluation Board

Sup
ers

ed
ed
30 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
Tcl Support
The SERDES Debug tool set permits execution of Tcl scripts. This scripting capability allows customized
writes and reads of the entire SERDES register base. Tcl can be used to update or check status of the
SERDES system, PCIe system, and SERDES lane registers. 
Tcl command syntax is:

read_register –addr <RegisterAddress > 
write_register –addr <RegisterAddress> -value <RegisterValue>

where RegisterAddress is 8 hex character (with optional 0x prefix) example: 0x4002200C

RegisterValue is 1-8 hex character (with optional 0x prefix) example: 0x1, 0x1F

Example:
read_register –addr 0x4002200C
write_register –addr 0x4002E008 –value 0x3

Address for the SERDES blocks are as follows:
SERDESIF_0  0x40028000 – 0x4002A3FF
SERDESIF_1  0x4002C000 – 0x4002E3FF
SERDESIF_2  0x40030000 – 0x400323FF
SERDESIF_3  0x40034000 – 0x400363FF

Within each SERDES block, the memory map is as follows:
Name – Offset from the base address (example, for SERDESIF_0 the base address will be 
0x40028000).
PCIe Core register map  0x0000 – 0x0FFF
Lane 0 registers 0x1000 – 0x13FF
Lane 1 registers 0x1400 – 0x17FF
Lane 2 registers 0x1800 – 0x1BFF
Lane 3 registers 0x1C00 – 0x1FFF
SERDESIF system register map  0x2000 – 0x23FF

Example Tcl applications:

1. To access the Tx Impedance Ratio register for lane 2 in SERDESIF_1, the address will be
0x4002C000 (SERDESIF_1 base) + 0x1800 (lane 2 offset) + 0x0C (register offset) = 
0x4002D80C

2. To access the PRBS Control register for lane 0 in SERDESIF_0, the address will be 0x40028000
(SERDESIF_0 base) + 0x1000 (lane 0 offset) + 0x190 (register offset) = 0x40029190

Reference the IGLOO2 High-Speed Serial Users Guide for register map details.
Attempt only to read the lanes which are programmed by the design. Also, read the PCIe registers only if 
any of the lanes have PCIe protocol.

Example:

The Tcl script below is used to alter the TX_PST (Transmit Post Emphasis) setting of Lane 0 of 
SERDESIF_0.     
# Serdes block 0
# Set the config_phy_mode_1 value by separately running the following tcl command "" in 
separate script and write the value without '0x' prefix
set config_phy_mode_1 80f
# set config_phy_mode_1 

scan $config_phy_mode_1 %x phyMode1Val

# set CONFIG_REG_LANE_SEL for this lane

Sup
ers

ed
ed
Revision 3 31

http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide


SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
set lane0PhyMode [expr { ($phyMode1Val & 255) | 256 }]
scan [format %x $lane0PhyMode] %s lane0PhyMode
write_register -addr 0x4002a028 -val $lane0PhyMode
puts "Serdes lane0 registers"

write_register -addr 0x40029028 -val 0x1a
puts "TX_PST_RATIO"
read_register -addr 0x40029028

#Reset the config_phy_mode_1 value to original value
write_register -addr 0x4002a028 -val $config_phy_mode_1

The value of the CONFIG_PHY_MODE_1 register must be known in the example shown above. This
register contains the value of the CONFIG_REG_LANE_SEL which defines which lanes are accessed in
the design. In this example, simply reading the CONFIG_PHY_MODE_1 register and passing its value
and the associated offset will target the correct lane.
Note: Some SERDES PMA register settings will only be updated after assertion of a PHY_RESET or 

writing to the UPDATE_SETTINGS register.
Tcl commands and syntax are found in the SmartFusion2 FPGAs and IGLOO2 FPGAs Tcl for SoC – Tcl 
Documentation.
From the Configuration Tab GUI, there is a dialogue box to import an executable Tcl script. The script will
contain commands to write/read registers in using a flattened top for most address mapping. Simply
browse to the Tcl script file and Execute, refer to Figure 2-31.

Figure 2-31 • TCL Script Execution User Interface

Sup
ers

ed
ed
32 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
Upon execution of the Tcl SERDES access, log of the access is displayed in the Libero SoC Console Log
pane, as shown in Figure 2-32.

Refer to the Appendix for more Tcl examples.

Executing SERDES Debug from SmartDebug Tcl

PRBS:
prbs_test [-deviceName <device_name>]  -start -serdes <num> -lane <num> [-near] -pattern 
<PatternType> [-value <PatternValue>]

prbs_test [-deviceName <device_name>]  -stop -serdes <num> -lane <num>

prbs_test [-deviceName <device_name>]  -reset_counter -serdes <num> -lane <num>

prbs_test [-deviceName <device_name>] -read_counter -serdes <num> -lane <num> 

User-level command: Used in PRBS test to start, stop, reset the error counter, and read the error counter 
value.

-deviceName <device_name>: Parameter is optional, if only one device is available in the current 
configuration or set for debug (see the SmartDebug User Guide for details).
-start: To start PRBS test.
-stop: To stop PRBS test.
-reset_counter: To reset the PRBS error count value to 0.
-read_counter: To read and print the error count value.
-serdes <num>: SERDES block number. Should be between 0 and 4 and varies between dies.
-lane <num>: SERDES lane number. Should be between 0 and 4.
-near: Corresponds to near-end (on-die) option for PRBS test. Not specifying implies off-die.

Figure 2-32 • SERDES Access Log

Sup
ers

ed
ed
Revision 3 33



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
-pattern <PatternType>: The pattern sequence to use for PRBS test. It can be one of the following:
1. prbs7 or prbs11 or prbs23 or prbs31

2. custom

3. user

-value <PatternValue>: Specifies the pattern type value for cases other than PRBS* sequences. It 
can be one of the following: 
1. If custom is selected above, then it should be one of all_zeros, all_ones, alternated, or

dual_alternated.
2. If user is selected above, then it should be 20 hexadecimal characters.

Example:

prbs_test -start -serdes 1 -lane 0 -near -pattern prbs11
prbs_test -start -serdes 2 -lane 2 -pattern custom -value all_zeros
prbs_test -start -serdes 0 -lane 1 -near -pattern user -value 0x0123456789ABCDEF0123

Loopback:
loopback_test [-deviceName <device_name>] -start -serdes <num> -lane <num> -type 
<LoopbackType>

loopback_test [-deviceName <device_name>] -stop -serdes <num> -lane <num>

User level command: Used to start and stop the loopback tests.
– deviceName <device_name>: Parameter is optional, if only one device is available in the

current configuration or set for debug (see the SmartDebug User Guide for details).
– start: To start loopback test.
– stop: To stop loopback test
– serdes <num>: SERDES block number. Should be between 0 and 4 and varies between dies.
– lane <num>: SERDES lane number. Should be between 0 and 4.
– type <LoopbackType>: Specifies the loopback test type. Should be one of the following:

1. plesio (PCS Far End PMA Rx to Tx Loopback)
2. parallel

3. meso (PCS Far End PMA Rx to Tx Loopback)

Example:

loopback_test –start –serdes 1 -lane 1 -type meso
loopback_test –start –serdes 0 -lane 0 -type plesio
loopback_test –start –serdes 1 -lane 2 -type parallel
loopback_test –stop –serdes 1 -lane 2

Tcl scripting for SERDES SmartDebug can be used in batch mode without launching SmartDebug from 
the GUI. Below is an example batch script:
open_project -project {D:/my_serdes_design/my_serdes.pro} 
set_debug_device -name {M2S/M2GL050(T|S|TS)} 
read_id_code 
set_programming_file -name {M2S/M2GL050(T|S|TS)} -file 
{./SERDES1_REFCLK1_EPCS_MODE_SF2_DEV_KIT/SERDES1_REFCLK1_EPCS_MODE/designer/SERDES_LOO
PBACK_top/export/SERDES_LOOPBACK_top.stp} 
run_selected_actions 
set_debug_device -name {M2S/M2GL050(T|S|TS)}
//Place serdes tcl commands after here

Sup
ers

ed
ed
34 Revision 3 



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
Conclusion
This tutorial demonstrated the capabilities of SmartDebug. SmartDebug provides the capabilities to
observe and analyze many embedded device features. LiveProbe gives real-time access to device test
points. While internal logic states can be easily accessed using ActiveProbes. 
The SmartDebug SERDES utility assists FPGA and board designers to validate signal integrity of high
speed serial links in a system and improve board bring-up time. This is completed in real-time without
any design modifications. Adjustments and tuning the PMA analog settings for optimal link performance
is easily accomplished to match the design to the system. Using the SmartDebug utility with the
Evaluation Kit board provides designers a good understanding of its features and capabilities.

Sup
ers

ed
ed
Revision 3 35



Sup
ers

ed
ed



A – Appendix 

TCL Script Examples

Example 1: Change M/N/F registers for Lane1 and Lane2 of 
SERDESIF_0

# set CONFIG_REG_LANE_SEL
write_register -addr 0x4002a028 -val 20F
read_register -addr 0x4002a028

write_register -addr  0x40029410 -val 0x0  
puts "PLL_F_PCLK_RATIO_Lane1"

write_register -addr  0x40029414 -val 0x13
puts "PLL_M_N_Lane1"

 write_register -addr 0x40029600 -val 0x1
puts "UPDATE_SETTINGS_Lane1"

puts "Serdes lane1 registers"

# set CONFIG_REG_LANE_SEL
write_register -addr 0x4002a028 -val 40F

 write_register -addr 0x40029810 -val 0x0
puts "PLL_F_PCLK_RATIO_Lane2"
write_register -addr 0x40029814 -val 0x13
puts "PLL_M_N_Lane2"

write_register -addr 0x40029a00 -val 0x1
puts "UPDATE_SETTINGS_Lane2"

puts "Serdes lane2 registers"

Example 2: Change RX LEQ registers Lane2 of SERDESIF_0

# set CONFIG_REG_LANE_SEL
     write_register -addr 0x4002a028 -val 40F

     write_register -addr 0x4002981c -val 0x00
puts "RE_AMP_RATIO_Lane2"

write_register -addr 0x40029820 -val 0x00
puts "RE_CUT_RATIO_Lane2"

write_register -addr 0x40029a00 -val 0x1
puts "UPDATE_SETTINGS_Lane2"

Sup
ers

ed
ed
Revision 3 37



SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
Example 3: Change TX De-emphasis registers Lane2 of 
SERDESIF_0

# set CONFIG_REG_LANE_SEL
write_register -addr 0x4002a028 -val 40F

write_register -addr 0x40029828 -val 0xa
puts "TX_PST_RATIO_Lane2"

write_register -addr 0x4002982c -val 0x0
puts "TX_PRE_RATIO_Lane2"

write_register -addr 0x40029a00 -val 0x1
puts "UPDATE_SETTINGS_Lane2"

Sup
ers

ed
ed
38 Revision 3



B – List of Changes

Date Version Changes

March 2014 2 Updated the software version from 11.2SP1 to 11.3 (SAR 56012).

Updated design files using the latest 11.3 SERDES core (SAR 56012).

January 2014 1 Initial release.

Added  Note in "1. Specifying Live Probe Points" section (SAR 56593).3April 2014

Sup
ers

ed
ed
Revision 3 39



Sup
ers

ed
ed



C – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
Visit the Customer Support website for more information and support. Many answers available on the 
searchable web resource include diagrams, illustrations, and links to other resources on the website. 

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC home page.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request:
Technical support email address: soc_tech@microsemi.com

Sup
ers

ed
ed
Revision 3 41

(www.microsemi.com/soc/support/search/default.aspx) 
www.microsemi.com/soc
mailto:soc_tech@microsemi.com


SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 
My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My 
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
at: soc_tech@microsemi.com or contact a local Sales office listing at Sales.Support@Microsemi.com.

ITAR Technical Support 
Contact technical support at: soc_tech_itar@microsemi.com for RH and RT FPGAs that are regulated by 
International Traffic in Arms Regulations (ITAR). Alternatively, within My Cases, select Yes in the ITAR 
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

Sup
ers

ed
ed
42 Revision 3

soc_tech@microsemi.com
soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
soc_tech_itar@microsemi.com
mailto:tech@microsemi.com
mailto:tech@microsemi.com
www.microsemi.com/soc/company/contact/default.aspx.
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/
redir.aspx?C=OjTQfdQ6KEmPVW2fNOkwWdOTXVCj9dAIw7gPiiohnPg2AVrLN1lT9u8_IH-NpsHvjzB9CtkpMZ8.&URL=mailto%3aSales.Support%40Microsemi.com


Sup
ers

ed
ed



50200530-3/04.14

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world’s standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

Microsemi Corporate Headquarters One 
One Enterprise, Aliso Viejo CA 92656 USA 
Within the USA: +1 (800) 713-4113 
Outside the USA: +1 (949) 380-6100 
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com

Sup
ers

ed
ed

http://www.microsemi.com
mailto:%20sales.support@microsemi.com

	Introduction
	Associated Project Files

	1 – Design Overview
	2 – Programming the Device
	Programming the IGLOO2 Board
	Launching SmartDebug
	View Device Status
	View Flash Memory (eNVM) Content
	Debug FPGA Array
	1. Specifying Live Probe Points
	2. Active Probes
	3. Fabric SRAM Memory Debug

	Forcing a Design Modification
	SERDES Debug
	Far-End Loop Back Support
	Tcl Support
	Executing SERDES Debug from SmartDebug Tcl

	Conclusion

	A – Appendix
	TCL Script Examples
	Example 1: Change M/N/F registers for Lane1 and Lane2 of SERDESIF_0
	Example 2: Change RX LEQ registers Lane2 of SERDESIF_0
	Example 3: Change TX De-emphasis registers Lane2 of SERDESIF_0


	B – List of Changes
	C – Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support




