Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>Design Block Diagram</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Libero SoC Project Manager</td>
<td>8</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>New Project - Project Details</td>
<td>9</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>New Project - Device Selection</td>
<td>9</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>New Project - Device Settings</td>
<td>10</td>
</tr>
<tr>
<td>Figure 6.</td>
<td>New Project Information Window</td>
<td>11</td>
</tr>
<tr>
<td>Figure 7.</td>
<td>Creating SmartDesign</td>
<td>11</td>
</tr>
<tr>
<td>Figure 8.</td>
<td>Entering SmartDesign Name</td>
<td>12</td>
</tr>
<tr>
<td>Figure 9.</td>
<td>Clock & Management Category of Libero SoC IP Catalog</td>
<td>12</td>
</tr>
<tr>
<td>Figure 10.</td>
<td>Configuring Fabric CCC</td>
<td>13</td>
</tr>
<tr>
<td>Figure 11.</td>
<td>Configuring PLL Feedback Source</td>
<td>14</td>
</tr>
<tr>
<td>Figure 12.</td>
<td>Configuring PLL Power-down Signal</td>
<td>15</td>
</tr>
<tr>
<td>Figure 13.</td>
<td>Configuring Chip Oscillators</td>
<td>16</td>
</tr>
<tr>
<td>Figure 14.</td>
<td>Importing HDL Source Files</td>
<td>16</td>
</tr>
<tr>
<td>Figure 15.</td>
<td>Design Hierarchy Tab with Imported Files</td>
<td>17</td>
</tr>
<tr>
<td>Figure 16.</td>
<td>SmartDesign Canvas after Adding Components</td>
<td>18</td>
</tr>
<tr>
<td>Figure 17.</td>
<td>SmartDesign Canvas after Connections</td>
<td>19</td>
</tr>
<tr>
<td>Figure 18.</td>
<td>Importing I/O PDC Constraint File</td>
<td>20</td>
</tr>
<tr>
<td>Figure 19.</td>
<td>Information Dialog Box after Importing PDC Constraint File</td>
<td>20</td>
</tr>
<tr>
<td>Figure 20.</td>
<td>I/O PDC Constraint File in Libero SoC Project</td>
<td>21</td>
</tr>
<tr>
<td>Figure 21.</td>
<td>Selecting I/O PDC Constraint File in Design Flow Tab</td>
<td>22</td>
</tr>
<tr>
<td>Figure 22.</td>
<td>Place and Route Button</td>
<td>22</td>
</tr>
<tr>
<td>Figure 23.</td>
<td>Successful Design Implementation</td>
<td>23</td>
</tr>
<tr>
<td>Figure 24.</td>
<td>Generating Post Layout Power Report</td>
<td>24</td>
</tr>
<tr>
<td>Figure 25.</td>
<td>Reports Tab after Implementing Design</td>
<td>25</td>
</tr>
<tr>
<td>Figure 26.</td>
<td>Power Report</td>
<td>26</td>
</tr>
<tr>
<td>Figure 27.</td>
<td>SmartFusion2 Security Evaluation Kit</td>
<td>27</td>
</tr>
<tr>
<td>Figure 28.</td>
<td>Launching Programming Software from Design Flow Tab</td>
<td>28</td>
</tr>
<tr>
<td>Figure 29.</td>
<td>Programming Messages in Libero SoC Log Window</td>
<td>29</td>
</tr>
<tr>
<td>Figure 30.</td>
<td>Design Flow Tab after Programming</td>
<td>29</td>
</tr>
<tr>
<td>Figure 31.</td>
<td>Settings Section in the Device Settings and Summary Worksheet</td>
<td>31</td>
</tr>
<tr>
<td>Figure 32.</td>
<td>Initialize Power Estimator</td>
<td>31</td>
</tr>
<tr>
<td>Figure 33.</td>
<td>Initialize Power Estimator Wizard</td>
<td>32</td>
</tr>
<tr>
<td>Figure 34.</td>
<td>FAB_CCC and Oscillator Work Sheet</td>
<td>32</td>
</tr>
<tr>
<td>Figure 35.</td>
<td>Power Summary</td>
<td>33</td>
</tr>
<tr>
<td>Figure 36.</td>
<td>Modes and Scenarios</td>
<td>33</td>
</tr>
</tbody>
</table>
Tables

Table 1.	LEDs Pattern	6
Table 2.	Design Requirements	6
Table 3.	Connections in Canvas	18
Table 4.	Promote to Top Level	19
Table 5.	Jumper Settings	27
1 Preface

1.1 Purpose
This demo is for the SmartFusion®2 system-on-chip (SoC) FPGAs. It provides instructions on how to use the reference design.

1.2 Intended Audience
This demo guide is intended for:
- FPGA designers
- System-level designers

1.3 References
- SmartFusion2 and IGLOO2 Power Estimator User Guide
- UG0444: SmartFusion2 SoC and IGLOO2 FPGA Low Power Design User Guide
- UG0445: SmartFusion2 Soc and IGLOO2 FPGA Fabric User Guide
2 SmartFusion2 SoC FPGA Low Standby Power - Libero SoC v11.7

2.1 Introduction

Microsemi® SmartFusion2 SoC FPGAs are designed to meet the demand of low power FPGAs. The SmartFusion2 devices exhibit lower power consumption in static and dynamic modes. This demo guide demonstrates how to implement the standby power mode on the SmartFusion2 devices using SmartDesign and measure the standby power. The design drives the light emitting diodes (LEDs) on the SmartFusion2 Security Evaluation Kit with a pattern based on the state of the switches SW1 and SW3, as shown in Table 1.

This demo guide describes the following:

- Creating a Libero® System-on-Chip (SoC) project
- Implementing the standby power mode on the SmartFusion2 devices using SmartDesign
- Importing a PDC file, running layout, and programming the SmartFusion2 silicon
- Measuring the standby power using a standard digital voltmeter (DVM) / multimeter

2.2 Design Requirements

Table 2 lists the design requirements.

<table>
<thead>
<tr>
<th>Design Requirements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Requirements</td>
<td></td>
</tr>
<tr>
<td>SmartFusion2 Security Evaluation Kit: Rev D or later</td>
<td></td>
</tr>
<tr>
<td>12 V adapter</td>
<td></td>
</tr>
<tr>
<td>FlashPro4 programmer</td>
<td></td>
</tr>
<tr>
<td>Desktop or Laptop</td>
<td>Any Windows 64-bit Operating System</td>
</tr>
<tr>
<td>Software Requirements</td>
<td></td>
</tr>
<tr>
<td>Libero SoC v11.7</td>
<td></td>
</tr>
<tr>
<td>FlashPro Programming Software v11.7</td>
<td></td>
</tr>
</tbody>
</table>
2.3 Demo Design

2.3.1 Introduction

The demo design files are available for download from the following path in the Microsemi website:

http://soc.microsemi.com/download/rsc/?f=m2s_dg0565_liberov11p7_df

The demo design files include:

- Libero SoC project
- Constraint file
- Programming file
- Source files
- Readme file

Refer to the Readme.txt file provided in the design files for the complete directory structure.

The design consists of a 32 kHz external main crystal oscillator, fabric CCC (FCCC), standby power control logic, and fabric logic block. Figure 1 shows the block diagram of the design.

The FCCC is configured to provide a 100 MHz clock to the fabric logic. It is also configured with phase-locked loop (PLL) power-down enabled. The 32 kHz external main crystal oscillator is the reference clock source for FCCC. The lock signal is used as the reset signal to the fabric logic. The standby power control logic consists of a clocked S-R latch, which powers down the PLL of FCCC. The fabric logic consists 4202 stages of 8-bit loadable up-counters, 252 stages of 16-bit shift registers, 55 LSRAM blocks, 56 µSRAM blocks, and 42 math blocks. It also consists an LED driver block, which is connected to a set of light-emitting diodes (LEDs) to monitor the state of the fabric while entering and exiting the standby power mode.

![Figure 1 • Design Block Diagram](image)

2.3.2 Extracting the Source Files

Extract the required files to the `<C:\ or D:\>Microsemi_prj` folder on PC. Confirm that a folder named `SF2_Standby_tutorial` containing sub-folders named `Source_files` and `Constraints` are extracted.
2.4 Creating the Design

This section describes how to create the standby power mode enabled design using SmartDesign. Some source files are provided in the *Source_files* folder.

2.4.1 Launching Libero SoC

The following steps describe how to launch Libero SoC:

1. Go to **Start > Programs > Microsemi > Libero SoC v11.7 > Libero SoC v11.7**, or double-click the shortcut icon on the PC. This opens the **Libero SoC Project Manager** window, as shown in Figure 2.

Figure 2 • Libero SoC Project Manager

2. Create a new project using one of the following options:
 - Select **New** on the **Start Page** tab, as shown in Figure 2.
 - In the Libero SoC menu, go to **Project > New Project**.

 This opens the **New Project** window, as shown in Figure 3 on page 9.

3. Enter the following information in the **New Project - Project Details** window, as shown in Figure 3 on page 9:
 - **Project Name**: SF2_Standby
 - **Project Location**: \<C:\>Microsemi_prj\SF2_Standby_tutorial
 - **Preferred HDL type**: VHDL
 - **Enable Block Creation**: Not selected
4. Click Next. This opens **New Project - Device Selection** window, as shown in **Figure 4**.

5. Select the following values from the drop-down list, highlighted in **Figure 4:**
 - **Family**: SmartFusion2
 - **Die**: M2S090TS
 - **Package**: 484 FBGA
 - **Speed**: -1
 - **Core Voltage**: 1.2
 - **Range**: COM

6. Select the filtered device **M2S090TS-1FG484**, as shown in **Figure 4**.

Figure 3 • New Project - Project Details

Figure 4 • New Project - Device Selection
7. Click Next. This opens **New Project - Device Settings** window, as shown in Figure 5.
8. Select the following values in the **Power supplies** section from the drop-down list, highlighted in Figure 5:
 - **PLL Supply Voltage (V):** 3.3 V
 - **Power on Reset Delay:** 100 ms

 The PLL analog supply voltage can be either 2.5 V or 3.3 V. The voltage setting in the **New Project - Device Settings** window must match the PLL analog supply voltage on the board to ensure that the PLL works properly. The PLL analog supply voltage is connected to 3.3 V on the SmartFusion2 Security Evaluation Kit.

9. Do not change the default selections. Click Finish.

Figure 5 • New Project - Device Settings

New Project Information window opens as shown in Figure 6 on page 11.

10. Click **Use Classic Constraint Flow**.
11. In the **Design Flow** window, expand **Create Design**, as shown in **Figure 7**.
12. Right-click **Create SmartDesign** and click **Run**.

Figure 7 • Creating SmartDesign

13. In the **Create New SmartDesign** dialog box enter the **Name** as SF2_Standby and click **OK**. A new SmartDesign canvas opens.
This design uses a fabric CCC to generate a 100 MHz internal clock. The CCC reference clock is the 32 kHz external main crystal oscillator.

14. In the IP catalog, expand **Clock & Management**.

Figure 9 • Clock & Management Category of Libero SoC IP Catalog

15. Drag an instance of the clock conditioning circuitry (CCC) v2.0.200 component into the SmartDesign canvas.

16. Double-click the FCCC_0 component in the SmartDesign canvas and open the FAB CCC Configurator window, as shown in **Figure 10 on page 13**.

17. Click the **Basic** tab in the **FAB CCC Configurator** window, as shown in **Figure 10 on page 13** and enter the following information:
 - **Reference Clock Frequency**: 0.032 MHz
 - **Reference Clock**: Select **Oscillators > Crystal Oscillator** from the drop-down list
 - **GL0**: Checked; **Frequency**: 100 MHz
18. Click the Advanced tab in the FAB CCC Configurator window and select Internal > PLL Internal from the drop-down list as PLL feedback source, as shown in Figure 11 on page 14.
19. Click the PLL Options tab in the FAB CCC Configurator window and select the Expose PLL_ARST_N and PLL_POWERDOWN_N signals checkbox, as shown in Figure 12 on page 15.
20. Click **OK**.

21. Drag an instance of the Chip Oscillators v2.0.101 component from the IP catalog into the SmartDesign canvas.

22. Double-click the OSC_0 component in the SmartDesign canvas and open the **Chip Oscillators Configurator** window, as shown in Figure 13 on page 16.

23. Configure the external main crystal oscillator to drive the FCCC and the fabric logic by entering the following information, as shown in Figure 13 on page 16:
 - **External Main Crystal Oscillator**: Selected
 - **Source**: Select **Crystal (32 KHz - 20 MHz)** from the drop-down list
 - **Frequency**: 0.032 MHz
 - **Drives Fabric CCC(s)**: Selected
 - **Drives Fabric Logic**: Selected
24. Click **OK**.
25. Import the VHDL source files into the project by selecting **Create HDL** under **Create Design** in the **Design Flow** tab. Right-click and select **Import Files...**, as shown in **Figure 14**.

Figure 13 • Configuring Chip Oscillators

![Chip Oscillators Configuration](image1)

Figure 14 • Importing HDL Source Files

![Design Flow](image2)
26. Browse to <C:\ or D:\>Microsemi_prj\SF2_Standby_tutorial\Source_files select all .vhd, .v, and .h files, and click Open. The files are visible in the Design Hierarchy tab.

Figure 15 • Design Hierarchy Tab with Imported Files

27. Drag the Standby_Control and Fabric_Logic components into the SmartDesign canvas. The SmartDesign resembles *Figure 16 on page 18.*

28. Align the components to improve the appearance of the canvas. Expand the canvas area by selecting View > Maximize Work Area, or click the icon on the toolbar.
2.4.2 Connecting Components in the Canvas

SmartDesign in Libero SoC has a connection mode that supports click, drag, and release to connect the components.

Connect the components in the SmartDesign canvas using the following procedure:

1. Select **SmartDesign > Connection Mode** from the Libero SoC menu.

2. Connect the XTLOSC_CCC_OUT port of OSC_0 component to the XTLOSC_CCC_IN port of the FCCC_0 component as follows:
 a. Click and hold the XTLOSC_CCC_OUT port of the OSC_0 component.
 b. Drag the XTLOSC_CCC_IN port of the FCCC_0 component and release the mouse button to connect.

 Note: You can also connect the ports by selecting them using **CTRL** (Ctrl + Click to select a port), right-clicking any of the selected ports, and selecting **Connect**.

3. Connect the other components in the SmartDesign canvas as per Table 3 on page 18.

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSC_0: XTLOSC_O2F</td>
<td>Standby_Control_0: CLK</td>
</tr>
<tr>
<td>Standby_Control_0: PLL_PowerDown</td>
<td>FCCC_0: PLL_ARST_N</td>
</tr>
<tr>
<td>FCCC_0: GL0</td>
<td>Fabric.Logic_0: CLK</td>
</tr>
<tr>
<td>FCCC_0: LOCK</td>
<td>Fabric.Logic_0: RST</td>
</tr>
</tbody>
</table>

4. Select **SmartDesign > Connection Mode** from the Libero SoC menu to exit the connection mode.
5. Promote the ports shown in Table 4 on page 19 to the top level. Right-click the port and select **Promote to Top Level**.

Table 4 • Promote to Top Level

<table>
<thead>
<tr>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby_Control_0: Standby_Entry</td>
</tr>
<tr>
<td>Standby_Control_0: Standby.Exit</td>
</tr>
<tr>
<td>Fabric_Logic_0: LD</td>
</tr>
<tr>
<td>Fabric_Logic_0: DIN[15:0]</td>
</tr>
<tr>
<td>Fabric_Logic_0: DOUT[15:0]</td>
</tr>
<tr>
<td>Fabric_Logic_0: LED_1</td>
</tr>
<tr>
<td>Fabric_Logic_0: LED_2</td>
</tr>
<tr>
<td>Fabric_Logic_0: LED_3</td>
</tr>
<tr>
<td>Fabric_Logic_0: LED_4</td>
</tr>
</tbody>
</table>

The SmartDesign canvas appears, as shown in Figure 17 on page 19. Arrange the components by dragging or use the SmartDesign Auto Arrange feature to improve the appearance of the canvas.

Figure 17 • SmartDesign Canvas after Connections

6. Go to **File > Save SF2_Standby** to save the design.
7. Generate the design by selecting **SmartDesign > Generate Component**, or by clicking the **Generate Component** icon on the SmartDesign toolbar (highlighted in Figure 17 on page 19).
8. Go to **View > Restore Work Area** to restore the work area, if you expanded the work area earlier.
9. Confirm that the message **SF2_Standby was generated** appears in the Libero Log window.
10. Go to **File > Close SF2_Standby** to close the design.
2.5 Importing Physical Constraint files

This section describes how to import a physical design constraint (PDC) file to make I/O attribute and pin assignments for the layout.

The following steps describe how to make I/O assignments:

1. Expand Create Constraints in the Design Flow tab.
2. Right-click I/O Constraints and select Import Files....

3. Browse to `<C:\ or D:\>Microsemi_prj\SF2_Standby_tutorial\Constraints`, select the `SF2_Standby.pdc` file, and click Open.
4. Click No in the Information dialog box.

The file is visible in the Libero SoC Files tab under constraint > io.
A description of the designer PDC constraints is available in the Libero Help (Go to Help > Help Topics > Implement Design > Constrain Place and Route > Assigning Design Constraints > Design Constraints Guide > Reference > Constraints by File Format > PDC Command Reference).

2.6 Synthesis and Layout

Use the push-button flow to synthesize the design with Synplify Pro, run layout and generate the programming file as mentioned below:

2. Right-click and select Use for Compile, as shown in Figure 21 on page 22. A green tick mark appears on the constraint file indicating that the file will be used.
3. On the **Design Flow** tab click **Place and Route** (see Figure 22) or select **Design > Place and Route** to synthesize the design, and run the layout using the I/O constraints that are created.

Figure 21 • Selecting I/O PDC Constraint File in Design Flow Tab

Figure 22 • Place and Route Button

Note: It may take 30 minutes to complete the flow.

The design implementation tools run in batch mode. Successful completion of a design step is indicated by a green tick mark next to **Implement Design** in the **Design Flow** tab, as shown in **Figure 23 on page 23**.
5. The Reports tab displays reports for the tools used to implement the design. Select SF2_Standy_power_report.xml under Verify Power in the Reports tab to view the power consumption.
The Reports tab displays the power report, as shown in Figure 26 on page 26.
Figure 26 • Power Report
2.7 Programming

The following steps describe how to run FlashPro in batch mode and program SmartFusion2 M2S090TS on the SmartFusion2 Security Evaluation Kit board:

1. Prior to programming and powering up the SmartFusion2 Security Evaluation Kit board, ensure that the jumpers are positioned as shown in Table 5.

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Location</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>J3</td>
<td>Above the ON/OFF switch in Figure 27</td>
<td>1-2 installed</td>
</tr>
<tr>
<td>J8</td>
<td>Below the JTAG programming header (J5) in Figure 27</td>
<td>1-2 installed</td>
</tr>
</tbody>
</table>

2. Plug the FlashPro4 ribbon cable into connector J5 (JTAG programming header) on the SmartFusion2 Security Evaluation Kit board.
3. Connect FlashPro4 to the USB port of the PC using the mini USB cable.
4. Install the FlashPro4 drivers if prompted. The drivers are located at: \FlashPro Installation Directory\Drivers.
5. Power on the board by plugging in the power cable and switching on the power switch. Three green LEDs on the top left of the board are powered on.
FlashPro runs in the batch mode and programs the device. Programming messages are visible in the Libero SoC log window. Programmer number differs.

Note: Do not interrupt the programming sequence. It may damage the device or programmer.

The following message is visible in the Reports view under Program Device when the device is programmed successfully, as shown in Figure 29 on page 29. Programmer number differs:

```
programmer '92327' : device 'M2S090TS' : Executing action PROGRAM PASSED.
```
A green tick mark appears next to **Program Design** in the **Design Flow** tab indicating that programming is completed successfully.

Figure 30 • Design Flow Tab after Programming

7. Go to **Project > Exit** to close Libero SoC. Select **Yes**, if prompted for saving the changes.
2.8 Running the Demo Design

2.8.1 Power Measurement (Normal Operation and Standby)

The SmartFusion2 Security Evaluation Kit board has a voltage measuring circuit that measures the voltage across the VDD (1.2 V) current sense resistor.

The core power can be calculated using following equations:

\[\text{Core Power (mW)} = 1.2 \times \text{Core Current (mA)} \]

\[\text{Core Current (mA)} = \frac{\text{Measured Voltage (mV)}}{5 \times \text{(Scaling Factor)}} \]

Connect the positive terminal of a standard digital voltmeter (DVM)/Multimeter to TP14 and negative terminal to TP7.

Note the digital voltmeter/Multimeter reading and calculate the power using above equations.

2.8.2 Precise Standby Power Measurement

Precise and accurate power measurements can be obtained by measuring voltage across the 1.2 V, 0.05 \(\Omega \) sense resistor. Test points TP16 and TP17 can be used to directly measure voltage across the 1.2 V sense resistor. Since the current drawn by the device in standby mode is expected to be around or less than 10 mA, the voltage measured across the 0.05 \(\Omega \) sense resistor is expected to be less than 0.5 mV. A precise digital voltmeter such as Fluke-287 that can measure sub-millivolt readings must be used to read voltage measured across the sense resistor.

Convert the voltage measured across sense resistor to power using the following equation:

\[\text{Power (mW)} = \frac{\text{Voltage(mV)}}{0.05} \times 1.2 \]

2.8.3 Total Power (Dynamic and Static)

The following steps describe how to calculate total power:

1. Reset the board by pressing and releasing the Reset button (SW6 DEVRST).
2. Observe the pattern of the LEDs E1, F4, F3, and G7 after resetting the board.
3. Measure the power

Note: If the LEDs are not toggling after reset, the device is in the Standby mode. Press and release the standby exit push button (SW3) and observe the LEDs lighting pattern. When the LEDs start toggling, measure the power.

2.8.4 Standby Power

The following steps describe how to calculate standby power:

1. Press and release the standby entry push button (SW1) and observe the LEDs lighting pattern. The LEDs stop toggling.
2. Measure the power.
3. Press and release the standby exit push button (SW3).
4. When finished, remove power from the board.
3 Appendix: Power Estimator

3.1 Power Estimator

The following steps describe how to use Power Estimator and calculate the total power:

1. Download the Power Estimator, *SmartFusion2 and IGLOO2 Power Calculator*.
2. Double-click and invoke the power estimator spreadsheet.
3. Click on the Summary worksheet. The Summary worksheet provides the device settings and the power summary.
4. Change the device settings by selecting the following from the drop-down list:
 • **Family**: Select *SmartFusion2*
 • **Device**: Select *M2S090TS*
 • **Package**: Select *484 FBGA*

![Settings Section in the Device Settings and Summary Worksheet]

The summary worksheet has an integrated initialize power estimator wizard. This wizard provides an option to select design specific information. Upon running the wizard, it populates the power estimator spreadsheet with information about the design and performs power estimation for the design.

5. Click **Initialize Power Estimator** as shown in Figure 32. The **Initialize power estimator** dialog box opens as shown in Figure 33.

![Initialize Power Estimator]

6. Enter the following information in the **Initialize Power Estimator** dialog box:
 • **Set all FPGA fabric resources to**: 50%
 • **IO**:
 • **Technology**: LVCMOS25
 • **#Inputs**: 19
 • **#Outputs**: 20
 • **Default RAM Enable Rate**: 100%
7. Click **OK**. Click **Yes** in the **Reset and set to the values specified** dialog box.
8. Click on the **CCC & Oscillator** worksheet.
9. Enter the following information in the **Oscillator Power** table for the external main crystal oscillator:
 - **Used**: Select **Yes** from the drop-down list
 - **Frequency (MHz)**: 0.032
10. Scroll down to the **FAB_CCC Power** section and enter the following information in the **FAB_CCC Power** table:
 - **Name**: FCCC_0
 - **Reference clock frequency (MHz)**: 0.032
 - **PLL output frequency (MHz)**: 500 MHz
 - **Output1 frequency (MHz)**: 100 MHz

Figure 34 • FAB_CCC and Oscillator Work Sheet

11. Click the **Summary** worksheet to get the total power. The Power Summary section is populated with the Total Active mode power.
The Modes and Scenarios section is populated with the total power in the Active, Standby, and Flash*Freeze modes.

The following table shows important changes made in this document for each revision.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision 4</td>
<td>Updated the document for Libero SoC v11.7 (SAR 76538).</td>
</tr>
<tr>
<td>(March 2016)</td>
<td></td>
</tr>
<tr>
<td>Revision 3</td>
<td>Updated the document for Libero SoC v11.6 (SAR 71490).</td>
</tr>
<tr>
<td>(October 2015)</td>
<td></td>
</tr>
<tr>
<td>Revision 2</td>
<td>Updated the document for Libero SoC v11.5 (SAR 64705).</td>
</tr>
<tr>
<td>(February 2015)</td>
<td></td>
</tr>
<tr>
<td>Revision 1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>(September 2014)</td>
<td></td>
</tr>
</tbody>
</table>
5 Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains information about contacting Microsemi SoC Products Group and using these support services.

5.1 Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

5.2 Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical Support Center spends a great deal of time creating application notes, answers to common design cycle questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

5.3 Technical Support

5.4 Website

5.5 Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email or through the Microsemi SoC Products Group website.

5.5.1 Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

5.5.2 My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.
5.5.3 Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email (soc_tech@microsemi.com) or contact a local sales office. Visit About Us for sales office listings and corporate contacts.

5.6 ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR), contact us via soc_tech@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; Enterprise Storage and Communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.