
Application Note AC390

SmartFusion2 SoC FPGA – Remapping eNVM,
eSRAM, and DDR/SDR SDRAM Memories

Table of Contents

Purpose
This application note describes the remapping of the following memories to the ARM® Cortex™-M3
processor code region and explains how to execute the program code built with absolute addresses
without remapping.

• Embedded nonvolatile memory (eNVM)

• Embedded random access memory (eSRAM)

• Double data rate (DDR)/single data rate (SDR) synchronous dynamic random access memory
(SDRAM)

Introduction
SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) devices integrate an
Cortex-M3 processor, up to 512 KB of eNVM, 64 KB of eSRAM, and memory interfaces for DDR/SDR
SDRAM for program code, and data.

The Cortex-M3 processor has a predefined memory map for code space, data space, and system space
with dedicated bus interfaces. The desired memory regions of the SmartFusion2 SoC FPGA can be
mapped to the Cortex-M3 processor code space for the application program execution.

This application note explains how to remap the eNVM, eSRAM, and DDR/SDR SDRAM memories to
the Cortex-M3 processor code region. This also explains how to execute the program code built with
absolute addresses without remapping.

SmartFusion2 SoC FPGA Booting and Address Space Overview
This application note describes the SmartFusion2 SoC FPGA boot sequence, and how to remap the
various memory regions to the Cortex-M3 processor code region, and to an optional softcore processor
located in the FPGA fabric.

The Cortex-M3 processor is based on ARM architecture v-7M that includes a nested vectored interrupt
controller (NVIC) for handling the interrupts, and includes a non-maskable interrupt. The NVIC contains
the addresses of the initial stack pointer, exception handlers, and interrupt service routines (ISRs). The
first entry in the NVIC should be the initial stack pointer and the second entry should be the address of

Purpose . 1
Introduction . 1
Design Requirements . 3
Design Description . 4
Hardware Implementation . 4

Software Implementation . 9

Running the Design . 18
Conclusion . 21
List of Changes . 21
Appendix A – Design Files . 21

Sup
ers

ed
ed
May 2014 1

© 2014 Microsemi Corporation

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
the reset exception handler. The Cortex-M3 processor eliminates the need for setting up the initial C
runtime environment using assembly code. Developers can code entirely in the C language.
The Cortex-M3 processor upon reset reads two words from memory:

• At the address location 0x00000000 for the initial stack pointer

• At the address location 0x00000004 for the address of the reset handler exception

The reset handler performs the basic initialization and execution control which is given to the main
application code. This execution flow is explained in Figure 1.

Figure 1 • The Cortex-M3 Processor Execution Flow from the Reset

Reset

Space for Stack and Heap

Space for Global Data

Reset Handler

Application Code and
Constant Data

64 KBOther Vectors

ROM (Code Space)

RAM

Fetch Initial
SP Value

Address =
0X00000000

Address =
0X00000004

0X000BFFFF

0X2000FFFF

0X00000100

0X000001000X00000004

0X00000000

Address =
Reset Vector

Fetch Reset
Vector

Instruction
Fetch

Time

0X20000000

N
V

IC

H
E

A
P

S
TA

C
K

0x2000FFFF

Sup
ers

ed
ed
2

Design Requirements
SmartFusion2 SoC FPGA: The Cortex-M3 Processor Code Space
Details
The address range from the 0x00000000 to 0x1FFFFFFF (0.5-GB space) is code space for the
Cortex-M3 processor. Following are the SmartFusion2 SoC FPGA memory maps for the code/data
space:

• On-chip eNVM (from 0x60000000 to 0x6007FFFF) of 256 KB for code and constant data regions

• On-chip eSRAM (from 0x20000000 to 0x2000FFFF) of 64 KB with SECDED for both code and
data regions

• On-chip FPGA fabric RAM (FPGA Fabric FIC Region 0). This can be mapped via fabric interface
controllers (FIC): FIC 0 or FIC 1. This region can be accessed by system bus for Instructions and
data.

• External RAM memory interfaced through DDR or SDR interfaces (from 0xA0000000 to
0xDFFFFFFF) of 1 GB for both code and data regions

Any of the above memory regions with any offset from its base address, can be mapped to the
Cortex-M3 processor code region space. On power-on, the eNVM region 0x60000000 is automatically
remapped to the Cortex-M3 processor executable region start address (0x00000000). Hence, for every
power-on reset the Cortex-M3 processor fetches the initial stack pointer from 0x00000000 (eNVM
address 0x60000000) and address of the reset handler from 0x00000004 (eNVM address 0x60000004).
Once the execution control goes to the default reset handler, the boot up sequence executes and
execution control jumps to the user boot code.

The user boot code can be at the following locations based on the execution environment:

• In Release mode: It should be in read-only memory (ROM) region. The SmartFusion2 SoC
FPGA after reset is initialized and remaps the eNVM address 0x60000000 to 0x00000000 of the
Cortex-M3 processor address space.

• In Debug mode: It can either be in ROM or RAM. Choices/options are in the debugger command
window to choose from where to debug (remap to 0x00000000) and in case of Debug mode, the
SmartFusion2 SoC FPGA after reset is initialized through the flash bits and remaps the user boot
code as follows:

– eNVM address 0x60000000 to 0x00000000 of the Cortex-M3 processor address space, or

– eSRAM address 0x20000000 to 0x00000000 of the Cortex-M3 processor address space

From the user boot code there can be multiple independent executable images in various parts of
memories. The eNVM address locations can be remapped with any offset, eSRAM address locations
with any offset, FPGA fabric RAM, or memory through DDR/SDRAM interface with any offset to the
based address 0x00000000 of the Cortex-M3 processor code region.

Design Requirements
Table 1 lists the design requirements.

Table 1 • Design Requirements

Design Requirements Description

Hardware Requirements

SmartFusion2 Development Kit

• FlashPro4 programmer

• USB A to Mini-B cable

• 12 V Adapter

Rev C or later

Host PC or Laptop Any 64-bit Windows Operating System

Software Requirements

Libero® System-on-Chip (SoC) 11.3

Sup
ers

ed
ed
3

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
Design Description
The design examples in this application note use MMUART_0, GPIO, eSRAM, DDR and eNVM memory
controllers. In the design examples, the System Builder Clock section is configured as shown in Figure 6
to run the M3_CLK at 111 MHz which drives the clock to Cortex-M3 processor.The independent
executable images are created with required memory map. These executable images can be remapped
to the starting address of the Cortex-M3 processor code space, or can be made executable for the
Cortex-M3 processor.The implementation details are explained in hardware and software implementation
sections.

Hardware Implementation
The hardware implementation involves configuring MSS, Fabric, clocks and oscillator using System
Builder. Figure 2 shows the top-level SmartDesign of the application.

SoftConsole 3.4

USB to UART drivers -

One of the following serial terminal emulation programs:

• HyperTerminal

• TeraTerm

• PuTTY

-

Table 1 • Design Requirements (continued)

Figure 2 • Top-Level SmartDesign

Sup
ers

ed
ed
4

Hardware Implementation
 The MDDR is configured for DDR3 at 333 MHz speed. Figure 3 and Figure 4 show the MSS MDDR
configuration settings. Refer to "Appendix A – Design Files" on page 21 for DDR configuration file.

Figure 3 • Select MDDR

Sup
ers

ed
ed
5

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
Figure 4 • MDDR Configurator

Sup
ers

ed
ed
6

Hardware Implementation
Add the eNVM user clients in ENVM configurator as shown in Figure 5.

The MMUART_0 is routed through FPGA fabric to communicate with the serial terminal program. The
MSS_CCC clock is sourced from the FCCC via the CLK_BASE port. The FCCC is configured to provide
the 100 MHz clock using GL0. Figure 6 shows the system clocks configurations for the M3_CLK,
MDDR_CLK, and APB_0_CLK/APB_1_CLK.

Figure 5 • Memory Device Configuration

Sup
ers

ed
ed
7

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
Figure 6 • Clock Configurations

Sup
ers

ed
ed
8

Software Implementation
Software Implementation
The following sections of the application note describe how to remap the various memory regions of the
SmartFusion2 SoC FPGA to the Cortex-M3 processor code space. Figure 7 describes the memory map
for the Cortex-M3 processor.

Figure 7 • The Cortex-M3 Processor Memory Map in SmartFusion2 SoC FPGA

Memory Map of
Cortex-M3

Memory Map of System
Controller, FPGA Fabric Master, Ethernet

MAC, Peripheral DMA

 FPGA Fabric FIC Region5 FPGA Fabric FIC Region5 0xF0000000 - 0xFFFFFFFF
 0xE0000000 - 0xEFFFFFFF
 DDR_0 Space 3 DDR_0 Space 3 0xD0000000 - 0xDFFFFFFF
 DDR_0 Space 2 DDR_0 Space 2 0xC0000000 - 0xCFFFFFFF
 DDR_0 Space 1 DDR_0 Space 1 0xB0000000 - 0xBFFFFFFF
 DDR_0 Space 0 DDR_0 Space 0 0xA0000000 - 0xAFFFFFFF
 FPGA Fabric FIC Region4 FPGA Fabric FIC Region4 0x90000000 - 0x9FFFFFFF
 FPGA Fabric FIC Region3 FPGA Fabric FIC Region3 0x80000000 - 0x8FFFFFFF
 FPGA Fabric FIC Region2 FPGA Fabric FIC Region2 0x70000000 - 0x7FFFFFFF
 0x60100000 - 0x6FFFFFFF
 AHB-to-eNVM_1 Registers AHB-to-eNVM_1 Registers 0x600C0000 - 0x600FFFFF
 AHB-to-eNVM_0 Registers AHB-to-eNVM_0 Registers 0x60080000 - 0x600BFFFF
 eNVM_1 eNVM_1 0x60040000 - 0x6007FFFF
 eNVM_0 eNVM_0 0x60000000 - 0x6003FFFF
 FPGA Fabric FIC Region1 FPGA Fabric FIC Region1 0x50000000 - 0x5FFFFFFF

Peripheral Bit-band
alias region of

Cortex-M3

 0x44000000 - 0x4FFFFFFF
Peripherals(BB View) 0x42000000 - 0x43FFFFFF

 0x40410000 - 0x41FFFFFF
 Cache Back door 0x40400000 - 0x4040FFFF
 0x40044000 - 0x403FFFFF
 USB USB 0x40043000 - 0x40043FFF
 0x40042000 - 0x40042FFF
 Ethernet MAC Control Ethernet MAC Control 0x40041000 - 0x40041FFF
 0x40039000 - 0x40040FFF
 SYSREG SYSREG 0x40038000 - 0x40038FFF
 0x40030000 - 0x40037FFF
 Config DDR_1, PCIe_0, PCIe_1 etc Config DDR_1, PCIe_0, PCIe_1 etc 0x40020400 - 0x4002FFFF (63K space alloca�on for

devices outside MSS) Config DDR_0 Config DDR_0 0x40020000 - 0x400203FF
 0x40018000 - 0x4001FFFF
 RTC RTC 0x40017000 - 0x40017FFF
 COMBLK COMBLK 0x40016000 - 0x40016FFF
 CAN CAN 0x40015000 - 0x40015FFF
 High Performance DMA High Performance DMA 0x40014000 - 0x40014FFF
 MSS GPIO MSS GPIO 0x40013000 - 0x40013FFF
 I2C_1 I2C_1 0x40012000 - 0x40012FFF
 SPI_1 SPI_1 0x40011000 - 0x40011FFF
 UART_1 UART_1 0x40010000 - 0x40010FFF
 0x40007000 - 0x4000FFFF
 Fabric Interface Interrupt Controller Fabric Interface Interrupt Controller 0x40006000 - 0x40006FFF
 Watchdog Watchdog 0x40005000 - 0x40005FFF
 Timer Timer 0x40004000 - 0x40004FFF
 Peripheral DMA Control Peripheral DMA Control 0x40003000 - 0x40003FFF
 I2C_0 I2C_0 0x40002000 - 0x40002FFF
 SPI_0 SPI_0 0x40001000 - 0x40001FFF
 UART_0 UART_0 0x40000000 - 0x40000FFF
 FPGA Fabric FIC Region0 FPGA Fabric FIC Region0 0x30000000 - 0x3FFFFFFF
SRAM Bit-band alias
region of Cortex-M3

 0x24000000 - 0x2FFFFFFF
eSRAM_0/eSRAM_1(BB View) 0x22000000 - 0x23FFFFFF

 0x20014000 - 0x21FFFFFF
 ECC eSRAM_1 ECC eSRAM_1 0x20012000 - 0x20013FFF
 ECC eSRAM_0 ECC eSRAM_0 0x20010000 - 0x20011FFF

Cortex M3 Processor
System Region

eSRAM_1 eSRAM_1 0x20008000 - 0x2000FFFF
eSRAM_0 eSRAM_0 0x20000000 - 0x20007FFF

 0x00080000 - 0x1FFFFFFF

Cortex M3 Processor
Code Region

eNVM (Cortex-M3)
Virtual View

eNVM (Fabric)
Virtual View

0x0007FFFF Visible only to FPGA
Fabric Master 0x00000000

Processor

Processor

Processor

Sup
ers

ed
ed
9

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
Remapping eNVM Address Space to the Cortex-M3 Processor Code
Space
Figure 8 shows an example scenario with multiple executable images in the eNVM regions.

In the example scenario (as shown in Figure 8), there are three images, which can be remapped to the
starting address of the Cortex-M3 processor code space, or can be made executable for the Cortex-M3
processor. To create the independent executable images with the required memory map, it is required to
create the linker scripts with the required memory map. The linker scripts are provided in the "Appendix A
– Design Files" section.Once the executable images are created for the required memory map in
Production mode, these images are added in the programming file using the eNVM clients in the Libero®

System-on-Chip (SoC) hardware (HW) creation flow.

If the executable images are built with an absolute address, it is required to allow the execution control
without using the remapping to the starting address of the code space (0x00000000). In such cases
without remapping approach has to be used as explained below.

Figure 8 • Example Scenario of Multiple Executable Images in eNVM

Space for Data, stack, and heap

0x60000000

0x60010000

64KB

0x20000000

0x2000 FFFF

0x20008000Space for Image1

0x60020000

eNVM
0x6004 FFFF

64KB

128KB

Space for Image2

Space for Image3

Space for Data, stack, and heap

eSRAM

32KB

32KB

Sup
ers

ed
ed
10

Software Implementation
The execution control should be allowed to the desired image by using the following two approaches:

• Without remapping: By default, the eNVM base address 0x60000000 is remapped to the
starting address of the code space of the Cortex-M3 processor. The vector table address of the
desired image can be set by using the vector table offset register in the system registers, and
pointing the stack pointer (SP) and program counter to the reset handler address of the desired
image. This allows the Cortex-M3 processor to execute the new image. The eNVM offset address
should be used in the linker script generation for the executable images in this approach. This
approach is explained in the flow chart shown in Figure 9.

For example, for the memory map of the different images explained in the Figure 8, the images are built
with the base address as shown in Figure 8. If you need to run the Image 2 while Image 1 is running, use
the following steps (explained in Figure 9):

1. Set the vector table offset address register is set to 0x60010000

2. Initialize the stack pointer with the content of 0x60010000

3. Change the program counter to the reset handler of Image 2 that is, PC=(0x60010004 -1)

With the all above 3 steps Image 2 starts executing from 0x60010000.

Figure 9 • Logic for Moving the Execution Control to New Image in eNVM without Remapping

Start

Stop

1. Set the Vector Table Offset address
to desired Image start address

2. Initialize the stack pointer with the
desired Image start address

3. Set the Program Counter (address
of reset handler -1) Start

Stop

New Image starts executing from its
original address

Power Off

Sup
ers

ed
ed
11

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
• With remapping: In this approach, the new image address can be remapped to the starting
address of the code region of the Cortex-M3 processor by using the ENVM_CR,
ENVM_REMAPSIZE, and ENVM_REMAP_BASR_CR registers. As the new image address is
remapped to the bottom (0x0000_0000) of the Cortex-M3 processor code region, the linker
scripts take care of building the images from the bottom (0x0000_0000) code region. The eNVM
offset address should not be used in this approach. This approach is explained in the flow chart
shown Figure 10.

For example, for the memory map of the different images explained in the Figure 8, the images are built
with 0x00000000 as base address.If you need to run the Image 2 while Image 1 is running, use the
following steps (explained in Figure 10):

1. Set the ENVM_CR register to 64KB as remap image size

2. Set the ENVM_REMAP_BASE_CR register with 0x00010000

3. Set the Stack Pointer to 0x00000000

4. Set the PC to 0x00000004 - 1

With all the above steps the new Image 2 starts executing from 0x00000000 which is mapped to
0x60010000.

Reference design is provided with this application note with remapping and without remapping. Refer to
"Appendix A – Design Files" section for design files and follow the steps explained in "Running the
Design" section for executing the reference design.

Figure 10 • Logic for Moving the Execution Control to New Image in eNVM with Remapping

Start

Stop

1. ENVM_CR register is set with
remap size field for 16/32/64/128/256/
512 KB sizes

2. ENVM_REMAP_BASE_CR register
is set with offset address and remap
enable bit set

3. Stack pointer and vector table offset
registers are set to 0x00000000

4. Program Counter is set to
(0x00000004 -1)

Start

Stop

New Image starts executing from its
remapped address 0x00000000

Power Off

Sup
ers

ed
ed
12

Software Implementation
Table 2 describes the registers which are required to be set for the eNVM remapping to the bottom
(0x0000_0000) of the Cortex-M3 processor. The SYSREG block is located at address 0x40038000 in the
Cortex-M3 processor address space.

Remapping eNVM to Soft Core Processor Memory Map
Soft core processor implemented in SmartFusion2 SoC FPGA fabric can access the eNVM for the code
execution purposes. For this use case the fabric interface controller (FIC _0 or FIC_ 1) and the eNVM
AHB controller need to be set properly. The eNVM partitioning between the Cortex M3 and SoftCore
processor needs to be taken care in such a way that these two partitions are mutually exclusive. The
remapping of the eNVM offset address to the soft core processor bottom (0x0000_0000) address map is
very similar to the remapping of the eNVM address to the Cortex-M3 processor.
ENVM_REMAP_FAB_CR register has to be used instead of ENVM_REMAP_BASE_CR register. The
SYSREG block is located at address 0x40038000 in the Cortex-M3 processor address space.

Table 3 describes the eNVM remap register to fabric SoftCore processor address space.

Remapping eSRAM to the Cortex-M3 Processor Code Space
Figure 11 shows the example scenario of the executable images in eSRAM regions.

Table 2 • eNVM Remap Registers

Register Name
Address
Offset

Register
Type

Flash
Write

Protect
Reset

Source Description

ENVM_CR 0XC RW-P Register sysreset_n eNVM Configuration register

ENVM_REMAP_BASE_CR 0x10 RW-P Register sysreset_n
eNVM remap configuration
register for the Cortex-M3
processor.

Table 3 • eNVM Remap Register to Fabric SoftCore Processor Address Space

Register Name
Address
Offset

Register
Type

Flash
Write

Protect
Reset

Source Description

ENVM_REMAP_FAB_CR 0X14 RW-P Register sysreset_n
NVM remap configuration register
for the soft processor in the FPGA

Figure 11 • Example Scenario of Multiple Executable Images in eSRAM

IMAGE2: Space for Code Data, stack, and
heap

0x20000000

0x2000FFFF

0x20008000

IMAGE1: Space for Code, Data, stack, and
heap

eSRAM

32 KB

32 KB

Sup
ers

ed
ed
13

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
The above scenario, shown in Figure 11, describes two images which can be remapped to the bottom
(0x0000_0000) of the Cortex-M3 processor or can be made executable for the Cortex-M3 processor. To
create the independent executable images with required memory map, the linker scripts need to be
created with required memory map. The linker scripts are provided in the "Appendix A – Design Files"
section. Once the images are created for the required memory map in Production mode, these images
are to be copied to an external memory like SPI Flash/eNVM, and are code shadowed by the bootloader
to the eSRAM whenever it is required to execute the new images.

Once the images are copied to eSRAM by bootloader, the execution control can be allowed to the
desired image by using any of the following two approaches:

If the executable images are built with an absolute address, the execution control needs to be allowed
without using the remapping to starting address of the code space (0x00000000). In such cases, without
remapping approach explained below (Point 1) has to be used.

If the executable images are built with the address 0x00000000, the execution control needs to be
allowed by using remapping to starting address of the code space (0x00000000). In such cases,
remapping approach explained below (Point 2) has to be used.

1. Without remapping: Using the vector table offset register in the system registers, the vector
table address of the desired image can be set for execution, and point the stack pointer (SP) and
the program counter to the reset handler of the desired image. This allows the Cortex-M3
processor to execute the new image. The eSRAM address should be used in the linker script
generation for the executable images in this approach. This approach is explained in the flow
chart shown in Figure 12.

Figure 12 • Logic for Moving the Execution Control to New Image in eSRAM without Remapping

Start

Stop

1. Bootloader copies or loads the
Image from external SPI Flash/
eNVM to eSRAM

2. Vector Table Offset address is set
to new Image start address

3 Initialize the stack pointer with the
content of Image start address

4. Program Counter is set to
(address -1) of reset handler

Start

Stop

New Image starts executing from its
original address

Power Off

Sup
ers

ed
ed
14

Software Implementation
• With Remapping: In this approach, the new image address can be remapped to the bottom
(0x0000_0000) of the Cortex-M3 processor by using the ESRAM_CR registers. As the new
image address is remapped to bottom (0x0000_0000) of the Cortex-M3 processor code region
the linker scripts take care of building the images from the bottom (0x0000_0000) code region.
The eSRAM address should not be used instead offset address from zero has to be used in the
linker scripts for this approach. This approach is explained in the flow chart shown in Figure 13.

For example, for the memory map of the different images explained in the Figure 11, the images are built
with 0x00000000 as base address. If it is required to jump from the Image 2 to Image 1 then use the
following steps (as explained in the Figure 13).

1. Copy the image1 from Flash to eSRAM starting address 0x20008000

2. Set the ESRAM_CR register to enable the eSRAM remapping to 0x00000000

3. Set the Stack Pointer to 0x00008000 and Vector Table offset register to 0x00008000

4. Set the PC to 0x00008004 -1

With all the above steps the new Image1 starts executing from 0x00008000 which is the mapped to
address 0x20008000.

Reference design is provided with this application note with remapping and without remapping. Refer to
the "Appendix A – Design Files" section for the design files and follow the steps explained in "Running
the Design" section for executing the reference design.

Figure 13 • Logic for Moving the Execution Control to New Image in eSRAM with Remapping

Start

Stop

Start

Stop

Power Off

1. Bootloader copies or loads the
 Image from external SPI Flash
 to eSRAM
2. ESRAM_CR register is set for the
 enabling the eSRAM remap
3. Stack pointer and vector table offset
 registers are set to 0x00000000
4. Program Counter is set to
 (0x00000004 -1)

New Image starts executing from its
remapped address 0x00000000

Sup
ers

ed
ed
15

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
Table 4 explains the registers that are required to be set for the eSRAM remapping. The SYSREG block
is located at address 0x40038000 in the Cortex-M3 processor address space.

Remapping External RAM (DDR/SDR SDRAM Interface) to the
Cortex-M3 Processor Code Space
Figure 14 shows the scenario of the multiple executable images in DDR/SDRAM interface memory
regions.

In this scenario there are two images which can be remapped to the bottom (0x0000_0000) of the
Cortex-M3 processor, or can be made executable for the Cortex-M3 processor.

To create the independent executable images with required memory map, the linker scripts need to be
created with the required memory map. The links scripts are provided in "Appendix A – Design Files"
section. Once the images are created for the required memory map in Production mode, these images
are to be copied to an external memory like SPI Flash, and code shadowed by the bootloader to DDR
memory or SDRAM whenever the execution of the new images is required.

Once the image is copied to the DDR memory and SDRAM by the bootloader, the execution control can
be allowed to the desired image by using the following approach.

The new image address can be remapped by using the DDR_CR register to the bottom (0x0000_0000)
of the Cortex-M3 processor code region. As the new image start address is re-mapped to the Cortex-M3
processor code region 0x0000_0000, the linker scripts take care of building the images from the code
region 0x0000_0000. The DDR memory or SDRAM addresses (0xA000_0000) should not be used.
Instead, the offset address from zero has to be used in the linker scripts for this approach.

Table 4 • Registers Required to eSRAM Remapping

Register Name
Address
Offset

Register
Type

Flash
Write

Protect
Reset

Source Description

ESRAM_CR 0x0 RW-P Register sysreset_n
Controls address mapping of the
eSRAMs

Figure 14 • Example Scenario of Multiple Executable Images in DDR/SDR SDRAM

IMAGE2: Space for Code Data, stack, and
heap

0xA 0000000

0xBFFFFFFF

0xB 0000000

IMAGE1: Space for Code, Data, stack, and
heap

DDR Memory /
SDRAM

512MB

512MB

Sup
ers

ed
ed
16

Software Implementation
As the DDR memory or SDRAM memory address range cannot be used in the Vector table offset
register, so it is required to remap these memories to start address of the Cortex-M3 processor code
space for the execution from these memories. This approach is explained in the flow chart shown in
Figure 15.

Reference design is provided with this application note with remapping. Refer to the "Appendix A –
Design Files" section for the design files and follow the steps explained in "Running the Design" section
for executing the reference design.

Figure 5 shows the registers required to be set for the DDR/SDR SDRAM remapping. The SYSREG
block is located at address 0x40038000 in the Cortex-M3 processor address space.

Figure 15 • Logic for Moving the Execution Control to New Image in DDR/SDR SDRAM with Remapping

Start

Stop

Start

Stop

Power Off

New Image starts executing from its
remapped address 0x00000000

1. In Case of DDR memory configure
 the DDR memory
2. Boot loader loads the new Image
 from SPI Flash/ eNVM device to DDR/
 SDRAM memory
3. DDR_CR register is set for the
 enabling the DDR memory address
 remap to Cortex M3 bottom address space
4. Stack pointer and vector table offset
 registers are set to 0x00000000
5. Program Counter is set to
 (0x00000004 -1)

Table 5 • Registers Required to DDR/SDR SDRAM Remapping

Register Name
Address
Offset

Register
Type

Flash
Write

Protect
Reset

Source Description

DDR_CR 0x8 RW-P Register sysreset_n DDR control Register. Configures DDR Space.

Sup
ers

ed
ed
17

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
Firmware Drivers
The following firmware drivers are used in this application.

• MSS MMUART driver

– To communicate with serial terminal program on the Host PC

• MSS GPIO driver

– To drive onboard LED's.

Running the Design
This application note provides the design files for all the scenarios and describes the hardware and
software requirements, board settings and steps to run the design:

Board Settings
Connect the following jumpers on the SmartFusion2 SoC FPGA Development Kit, as described in
Table 6. While making the jumper connections, the power supply switch SW7 on the board should be in
OFF position.

Table 6 • SmartFusion2 SoC FPGA Development Kit Jumper Settings

Jumper Pin (From) Pin (To)

J70, J93, J94, J117, J123, J142, J157, J160, J167, J225, J226, J227 1 (default) 2

J2 1 (default) 3

J23 2 (default) 3

J129, J133 2 3

Sup
ers

ed
ed
18

Running the Design
Steps to Run the Design
The following steps describe how to run the design:

1. Connect the FlashPro4 programmer to the J59 connector of the SmartFusion2 SoC FPGA
Development Kit.

2. Connect one end of the USB mini-B cable to the J24 connector provided on the SmartFusion2
SoC FPGA Development Kit. Connect the other end of the USB cable to the host PC. Make sure
that the USB to UART bridge drivers are automatically detected (can be verified in the Device
Manager), as shown in Figure 16.

Note: Copy the COM port number for serial port configuration. Ensure that the COM port location is
specified as "on USB Serial Converter D", as shown in Figure 16.

3. If USB to UART bridge drivers are not installed, download and install the drivers from
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip.

4. Connect the power supply to the J18 connector and change the power supply switch SW7 to ON.
Start HyperTerminal program with a baud rate of 57600, 8 data bits, 1 stop bit, no parity, and no
flow control. If your computer does not have HyperTerminal program, use any free serial terminal
emulation program such as PuTTY or Tera Term. Refer to the Configuring Serial Terminal
Emulation Programs tutorial for configuring the HyperTerminal, Tera Term, and PuTTY.

5. Program the SmarFusion2 device with the programming file provided in the design files
(\Programming Files\Remapping_Appnote.stp) using FlashPro design software.

6. Press SW9 switch to reset the board after successful programming.

Figure 16 • USB to UART Bridge Drivers

Sup
ers

ed
ed
19

http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip
http://www.microsemi.com/soc/documents/Configuring_Serial_Terminal_Emulation_Programs.pdf
http://www.microsemi.com/soc/documents/Configuring_Serial_Terminal_Emulation_Programs.pdf

SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
7. Figure 17 shows the serial Terminal:

8. Based on the selection made, the pre-built image stored in eNVM is copied to the appropriate
locations (DDR, eSRAM0, or eSRAM1) and re-mapping is applied.

9. Once the re-mapping is completed, the new Image starts booting and the following messages are
shown on the serial terminal and LED starts blinking on the SF2 Development Kit.

Note: Reset the SmartFusion2 Development Kit board to switch among the application images.

Figure 17 • Main Menu of the Re-Mapping Application Note

Figure 18 • Re-mapped Image is Running

Sup
ers

ed
ed
20

Conclusion
For booting multiple images without remapping, refer to the SmartFusion SoC: Basic Bootloader and
Field Upgrade eNVM Through IAP Interface application note.

Conclusion
This application note explains the remapping of the eNVM, eSRAM, and DDR/SDR SDRAM memories to
the Cortex-M3 processor code region. It also explains how to execute the program code which is built
with absolute addresses without remapping in case of eNVM and eSRAM.

List of Changes
The following table lists critical changes that were made in the current version of the chapter.

Appendix A – Design Files
The design files (DF), programming files (PF), and linker scripts (LD) can be downloaded from the
Microsemi® SoC Products Group website:

www.microsemi.com/soc/download/rsc/?f=M2S_AC390_DF

www.microsemi.com/soc/download/rsc/?f=M2S_AC390_PF

www.microsemi.com/soc/download/rsc/?f=M2S_AC390_LD

The design file consists of Libero Verilog, SoftConsole software project, programming files (*.stp) for the
SmartFusion2 SoC FPGA Development Kit. Refer to the Readme.txt file that is included in the design file
for the directory structure and description.

Date Changes Page

Revision 5
(May 2014)

Figure 2 is changed (SAR 57912). 4

Added Figure 3 (SAR 57912). 5

Added Figure 4 (SAR 57912). 6

Added Figure 5 (SAR 57912). 7

Updated the document for Libero SoC v11.3 software release (SAR 57912). NA

Revision 4
(January 2014)

Figure 6 is changed. 8

Figure 3 is changed. 5

Table 6 is updated 18

Revision 3
(May 2013)

Updated the document for Libero SoC v11.0 software release (SAR 47617). NA

Revision 2
(March 2013)

Updated the document for Libero SoC v11.0 beta SP1 software release (SAR 45398) NA

Revision 1
(November 2012)

Updated "Remapping eNVM Address Space to the Cortex-M3 Processor Code Space"
section. (SAR 42911).

10

Updated "Remapping eSRAM to the Cortex-M3 Processor Code Space" section
(SAR 42911). 13

Updated "Remapping External RAM (DDR/SDR SDRAM Interface) to the Cortex-M3
Processor Code Space" section (SAR 42911).

16

Updated "Running the Design" section (SAR 42911). 18

Updated "Appendix A – Design Files" section (SAR 42911). 21

Sup
ers

ed
ed
21

http://www.microsemi.com/soc/download/rsc/?f=M2S_AC390_DF
http://www.microsemi.com/soc/download/rsc/?f=M2S_AC390_PF
http://www.actel.com/documents/A2F_AC372_AN.pdf
http://www.actel.com/documents/A2F_AC372_AN.pdf
http://soc.microsemi.com/download/rsc/?f=M2S_AC390_LD

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

51900258-5/05.14

Sup
ers

ed
ed

mailto:sales.support@microsemi.com
www.microsemi.com

	SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
	Purpose
	Introduction
	SmartFusion2 SoC FPGA Booting and Address Space Overview
	SmartFusion2 SoC FPGA: The Cortex-M3 Processor Code Space Details

	Design Requirements
	Design Description
	Hardware Implementation
	Software Implementation
	Remapping eNVM Address Space to the Cortex-M3 Processor Code Space
	Remapping eNVM to Soft Core Processor Memory Map
	Remapping eSRAM to the Cortex-M3 Processor Code Space
	Remapping External RAM (DDR/SDR SDRAM Interface) to the Cortex-M3 Processor Code Space

	Running the Design
	Board Settings
	Steps to Run the Design

	Conclusion
	List of Changes
	Appendix A – Design Files

