
Application Note AC391

SmartFusion2 SoC FPGA - eNVM Initialization

Table of Contents

Purpose
This application note describes different methods to initialize the embedded nonvolatile memory (eNVM)
in SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) devices.

Introduction
SmartFusion®2 SoC FPGA devices have a maximum of two on chip 256 KB flash memories called
eNVM. The eNVM is used to store the application code image or used to store data which can be used
by the end application. The eNVM can be initialized by these different methods:

• Using the eNVM client of the eNVM configurator in the Libero® System-on-Chip (SoC) v11.3

• Writing into the eNVM using ARM® Cortex™-M3 processor

• In-application programming (IAP)

• Writing into the eNVM using custom logic in the FPGA fabric

This application note describes how to initialize the eNVM using the eNVM client in Libero and the
Cortex-M3 processor.

Refer to the "eNVM" chapter in SmartFusion2 Microcontroller Subsystem User Guide for detailed
description of eNVM.

Purpose . 1
Introduction . 1
Design Requirements . 2
Initializing eNVM using the Libero eNVM Client . 2
Initializing the eNVM Using the Cortex-M3 Processor . 4
Design Description . 5
Hardware Implementation . 5
Software Implementation . 7
Setting Up the Design . 9
Running the Design . 9
Conclusion . 12
Appendix A – Design Files . 12

Appendix B – eNVM Driver APIs . 13

List of Changes . 16

Sup
ers

ed
ed
May 2014 1

© 2014 Microsemi Corporation

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

Design Requirements
Design Requirements

Initializing eNVM using the Libero eNVM Client
The Libero eNVM client creates the necessary programming information that FlashPro uses to initialize
the eNVM during the programming. The following steps describe how to generate a programming file
with the eNVM client.

1. In SmartFusion2 SoC FPGA Libero project, double-click the microcontroller subsystem (MSS) in
the SmartDesign window to open the MSS configurator.

2. Double-click the eNVM Configurator to open the eNVM: Modify core - ENVM window.

Table 1 • Design Requirements

Design Requirements Description

Hardware Requirements

SmartFusion2 Development Kit

• 12 V adapter

• FlashPro4 programmer

• USB A to Mini-B cable

Rev C or later

Host PC or Laptop Windows 64-bit Operating System

Software Requirements

Libero SoC for viewing the design files

• FlashPro Programming Software v11.3

11.3

SoftConsole 3.4

Host PC Drivers USB to UART drivers

HyperTerminal/Tera Term/PuTTY

Sup
ers

ed
ed
2

http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

SmartFusion2 SoC FPGA - eNVM Initialization
3. Select Data Storage under Available client types and click Add to System, as shown in
Figure 1.

4. The Add Data Storage Client window is displayed, as shown in Figure 2 on page 4. It supports
four types of memory file formats:

– Intel-Hex

– Motorola-S

– Actel-Hex

– Actel-Binary

Create the memory file in any one of the above formats with your code or data. You can create the
memory file for your code using the SoftConsole 3.4 with the linker script
"production-execute-in-place.ld".

Figure 1 • Adding the Client Type

Sup
ers

ed
ed
3

Initializing the eNVM Using the Cortex-M3 Processor
5. Enter the Client name.

6. Browse to the created Memory file, and click OK to add the eNVM client.

7. The Modify core - ENVM window (displayed next) shows the client and its size. You can also add
more than one client with the different start address.

8. After adding the eNVM clients, click OK.

9. Save and generate the SmartDesign in Libero using the Generate Component.

10. Double-click the Program Device in the Libero Design Flow window to program the
SmartFusion2 SoC FPGA to initialize the eNVM with the memory file.

Initializing the eNVM Using the Cortex-M3 Processor
This application note describes how to initialize eNVM using Cortex-M3 processor with an example
design. The design describes how to write, read, and verify the data to or from different locations within
the eNVM using the Cortex-M3 processor. The design description and implementation details are
described in the following sections.

Figure 2 • Add Data Storage Client

Sup
ers

ed
ed
4

SmartFusion2 SoC FPGA - eNVM Initialization
Design Description
The design example included with this application note uses RC oscillator and Fabric CCC to generate
the base clock to MSS CCC. In the design example, the MSS CCC is configured to run the M3_CLK at
100 MHz which drives the clock to Cortex-M3 processor. The MMUART_0 is routed through FPGA fabric
for communicating with the serial terminal program. The design receives the user given commands for
read, write, and verify operations and corresponding address, length, and data through the serial terminal
program. After completing every operation, it displays the status (success/fail) of operation on the serial
terminal program.

Hardware Implementation
The hardware implementation involves configuring MSS, Fabric CCC and oscillator. Figure 3 shows the
top level hardware design in SmartDesign.

Figure 3 • Top Level SmartDesign

Sup
ers

ed
ed
5

Hardware Implementation
The MSS_CCC clock source is sourced from the FCCC via the CLK_BASE port. The FCCC is
configured to provide the 100 MHz clock using GL0. Figure 4 shows the system clocks configurations for
the M3_CLK and APB_0_CLK clock settings.

The MMUART_0 is used for reading and writing to the HyperTerminal window. On the SmartFusion2
Development board, the MMUART_0 TX and RX are connected to the mini-B USB through the fabric and
fabric I/Os. Figure 5 shows the MMUART_0 configuration.

Figure 4 • Clock Configurations

Figure 5 • MMUART_0 configuration

Sup
ers

ed
ed
6

SmartFusion2 SoC FPGA - eNVM Initialization
Software Implementation
The software design example performs the write, read, and verify tasks on receiving commands from
user through HyperTerminal.

The design uses following firmware drivers:

• SmartFusion2 MSS MMUART driver:

– To communicate with the Serial terminal program running on Host PC.

The design implements APIs to read, write, and, verify the data. The API implementation and usage is
described in the following sections. Refer to "Appendix B – eNVM Driver APIs" on page 13 for the API C
code.

Write Operation
The design uses the NVM_write() API to write or program the data to eNVM over any memory range
within the limits of 256 KB. This function supports programming data that spawns across multiple pages.
The function prototype is shown below.

nvm_status_t
NVM_write
(
 uint32_t start_addr,
 const uint8_t * pidata,
 uint32_t length,
 uint32_t lock_page
);

The data is written from the memory location specified by the first parameter start_addr. This address is
the relative address which is added to the eNVM base address 0x60000000. The pidata parameter is the
byte aligned starting address of the input data. The length parameter is the number of data bytes that are
to be programmed. On successful execution, this function returns SUCCESS, otherwise it returns
INVALID_PARAMETER.

Example:
uint8_t idata[815] = {"Z"};
nvm_status_t status = NVM_write((0x0, idata, sizeof(idata), NVM_DO_NOT_LOCK_PAGE);

The NVM_write() API calls the write_nvm() API to perform the page write into eNVM after aligning the
input data into pages. The write_nvm() API uses the eNVM controller's page-wise write command. It
uses the following sequence to write or program the eNVM page.

1. Request the access to eNVM by writing the 0x1 to the controller register REQ_ACCESS of
eNVM.

2. Poll to the REQ_ACCESS for 0x5 (Cortex-M3 processor access to eNVM is granted).

3. Fill the WDBUFFER with the data that needs to be written into eNVM.

4. To write the data to eNVM array, write the CMD control register with page program and the
address of the page.

5. Poll for eNVM busy bit in the STATUS control register of eNVM for '1'. The '0' for this bit indicates
that eNVM is busy in programming the data to eNVM array. On programming, the eNVM
controller makes busy bit to '0'.

6. Release the Cortex-M3 processor access to eNVM by writing 0x0 to the controller register
REQ_ACCESS of eNVM.

The page program command programs the entire page with the data in the WDBUFFER.

Read Operation
The design uses the MSS_NVM_read() API to read the data from eNVM over any memory range within
the limits of 256 KB. The function prototype is shown below.

nvm_status_t
MSS_NVM_read

Sup
ers

ed
ed
7

Software Implementation
(
uint8_t * addr,
uint8_t * podata,
uint32_t len

);

The data is read from the memory location specified by the first parameter addr. This address is the
relative address which is added to the eNVM base address 0x60000000. The addr parameter is the byte
aligned address of eNVM from which the data is to be read. The podata parameter is the byte aligned
address of the output buffer in which the read data is to be stored. The len parameter is the number of
data bytes that are to be read. On successful execution, this function returns SUCCESS, otherwise it
returns INVALID_PARAMETER.

Example:
uint8_t outbuf[815] = {0};
nvm_status_t status = MSS_NVM_read(0, outbuf, sizeof(outbuf));

The read API reads the data from eNVM similar to that of reading from any other memory location
because the eNVM controller supports RAM type of accessing for read operation. This API also checks
for the 2-bit error while reading eNVM.

Verify Operation
The design uses the NVM_verify API to verify the eNVM memory against the reference data provided.
This function supports verification that spawns across multiple pages. The function prototype is shown
below.

nvm_status_t
NVM_verify
(
 uint32_t addr,
 const uint8_t * pidata,
 uint32_t length
);

The data is verified from the memory location specified by the first parameter addr. This address is the
relative address which is added to the eNVM base address 0x60000000. The addr parameter is the byte
aligned address of eNVM from which the data is to be verified. The pidata parameter is the byte aligned
starting address of the reference input data against which the verification should be performed. The
length parameter is the number of data bytes that are to be verified. On successful execution, this
function returns SUCCESS, otherwise it returns INVALID_PARAMETER.

Example:
uint8_t idata[815] = {"Z"};
nvm_status_t status = NVM_write((0x0, idata, sizeof(idata), NVM_DO_NOT_LOCK_PAGE);
status = NVM_verify(0x0, idata, sizeof(idata));

The NVM_verify() API calls the verify_nvm() API to perform the page verify to eNVM after aligning the
input data into pages. The verify_nvm() API uses the eNVM controller's page-wise verify command. It
uses the following sequence to verify the data in the eNVM page.

1. Request the access to eNVM by writing the 0x1 to the controller register REQ_ACCESS of
eNVM.

2. Poll to the REQ_ACCESS for 0x5 (Cortex-M3 processor access to eNVM is granted).

3. Fill the WDBUFFER with the data to verify the data in the eNVM array.

4. To verify the data in the eNVM array, write the CMD control register verify page program and the
address of the page.

5. Poll for eNVM busy bit in the STATUS control register of eNVM for '1'. The '0' for this bit indicated
eNVM is busy in programming the data to eNVM array. On programming, the eNVM controller
makes busy bit to '0'.

Sup
ers

ed
ed
8

SmartFusion2 SoC FPGA - eNVM Initialization
6. Check the bit[1] of STATUS register for '0' which indicates verify success. It is 1 in case of verify
failure.

7. Release the Cortex-M3 processor access to eNVM by writing 0x0 to the controller register
REQ_ACCESS of eNVM.

Setting Up the Design
Connect the following jumpers on the SmartFusion2 SoC FPGA Development Kit, as described in
Table 2. While making the jumper connections, the power supply switch SW7 on the board should be in
OFF position.

Running the Design
The following steps describe how to run the design:

1. Connect the FlashPro4 programmer to the J59 connector of SmartFusion2 SoC FPGA
Development Kit.

2. Connect one end of the USB mini-B cable to the J24 connector provided on the SmartFusion2
SoC FPGA Development Kit. Connect the other end of the USB cable to the host PC. Make sure
that the USB to UART bridge drivers are automatically detected (can be verified in the Device
Manager), as shown in Figure 6.

Table 2 • SmartFusion2 SoC FPGA Development Kit Jumper Settings

Jumper Pin (From) Pin (To)

J70, J93, J94, J117, J123, J142, J157, J160, J167, J225, J226, J227 1 (default) 2

J2 1 (default) 3

J23 2 (default) 3

J129, J133 2 3

Sup
ers

ed
ed
9

Running the Design
Note: Copy the COM port number for serial port configuration. Ensure that the COM port location is
specified as "on USB Serial Converter D" as shown in Figure 6.

3. If USB to UART bridge drivers are not installed, download and install the drivers from
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip.

4. Connect the power supply to the J18 connector and change the power supply switch SW7 to ON.

5. Program the SmartFusion2 SoC FPGA Development Kit Board with the generated or provided
*.stp file (refer to "Appendix A – Design Files" on page 12) using FlashPro.

6. Invoke the SoftConsole3.4 Integrated Design Environment (IDE) by clicking the Write Application
code under Develop Firmware in Libero SoC v11.3 tool and launch the debugger.

7. Start a HyperTerminal with the baud rate set to 57600, 8 data bits, 1 stop bit, no parity, and no
flow control.

If your PC does not have a HyperTerminal program, use any free serial terminal emulation
program as PuTTY or Tera Term. Refer to the Configuring Serial Terminal Emulation Programs
Tutorial for configuring HyperTerminal, Tera Term, and PuTTY.

8. When you run the debugger in SoftConsole, HyperTerminal window shows a message to enter
your choice.

9. Enter the choice to write. It prompts for address, length, and data consequently. Enter the values,
as shown in Figure 7.

Figure 6 • USB to UART Bridge Drivers

Sup
ers

ed
ed
10

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

SmartFusion2 SoC FPGA - eNVM Initialization
10. On writing, it displays the message as "write operation successful".

11. Enter the choice to verify. It prompts for address, length, and data consequently. Enter the values,
as shown in Figure 8.

12. On writing, it displays the message as "verify operation successful".

Figure 7 • Write Operation

Figure 8 • Verify Operation

Sup
ers

ed
ed
11

Conclusion
13. Enter the choice to read. It prompts for address and length consequently. Enter the values as
shown in Figure 9.

14. On reading, it displays all the read values.

Conclusion
This application note describes how to initialize the eNVM using the eNVM client of the eNVM
configurator in the Libero SoC v11.3 and using the Cortex-M3 processor.

Appendix A – Design Files
You can download the design files from the Microsemi SoC Products Group website:
http://soc.microsemi.com/download/rsc/?f=M2S_AC391_DF

The design file consists of Libero Verilog, SoftConsole software project, programming files (*.stp) for
SmartFusion2 SoC FPGA Development Kit. Refer to the Readme.txt file included in the design file for the
directory structure and description.

Figure 9 • Read Operation

Sup
ers

ed
ed
12

http://soc.microsemi.com/download/rsc/?f=M2S_AC391_DF

SmartFusion2 SoC FPGA - eNVM Initialization
Appendix B – eNVM Driver APIs

write_nvm()
static uint32_t
write_nvm
(
 uint32_t addr,
 const uint8_t * pidata,
 uint32_t length,
 uint32_t lock_page,
 uint32_t * p_status
)
{
 uint32_t length_written;
 uint32_t offset;

 *p_status = 0u;

 offset = addr & NVM_OFFSET_SIGNIFICANT_BITS; /* Ignore remapping. */

 ASSERT(offset <= NVM1_TOP_OFFSET);

 /* Adjust length to fit within one page. */
 length_written = get_remaining_page_length(offset, length);

 if(offset <= NVM1_TOP_OFFSET)
 {
 uint32_t block;
 volatile uint32_t ctrl_status;
 uint32_t errors;

 if(offset < NVM1_BOTTOM_OFFSET)
 {
 block = NVM_BLOCK_0;
 }
 else
 {
 block = NVM_BLOCK_1;
 offset = offset - NVM1_BOTTOM_OFFSET;
 }

 fill_wd_buffer(pidata, length_written, block, offset);

 /* Set requested locking option. */
 g_nvm[block]->PAGE_LOCK = lock_page;

 /* Issue program command */
 g_nvm[block]->CMD = PROG_ADS | (offset & PAGE_ADDR_MASK);

 /* Wait for NVM to become ready. */
 ctrl_status = wait_nvm_ready(block);

 /* Check for errors. */
 errors = ctrl_status & WRITE_ERROR_MASK;
 if(errors)
 {
 /* Signal that an error occured by returning 0 a a number of bytes written. */
 length_written = 0u;
 *p_status = g_nvm[block]->STATUS;
 }
 else
 {

Sup
ers

ed
ed
13

Appendix B – eNVM Driver APIs
 /* Perform a verify. */
 g_nvm[block]->CMD = VERIFY_ADS | (offset & PAGE_ADDR_MASK);
 /* Wait for NVM to become ready. */
 ctrl_status = wait_nvm_ready(block);

 /* Check for errors. */
 errors = ctrl_status & WRITE_ERROR_MASK;
 if(errors)
 {
 /* Signal that an error occured by returning 0 a a number of bytes written. */
 length_written = 0u;
 *p_status = g_nvm[block]->STATUS;
 }
 }
 }

 return length_written;
}

MSS_NVM_read()
nvm_status_t
MSS_NVM_read
(
 uint8_t * addr,
 uint8_t * podata,
 uint32_t len
)
{
 nvm_status_t status = NVM_SUCCESS;
 uint8_t * nvmaddr = 0u;

 /* add read offset to read the data */
 nvmaddr = ((uint8_t *) (NVM_BASE_ADDRESS + addr));
 while((len > 0) && (NVM_SUCCESS == status))
 {
 len--;
 podata[len] = nvmaddr[len];
 if((g_nvm[NVM_BLOCK_0]->STATUS & MSS_NVM_ECC2))
 status = FAILED;
 }
 return status;
}

Sup
ers

ed
ed
14

SmartFusion2 SoC FPGA - eNVM Initialization
verify_nvm()
static uint32_t
verify_nvm
(
 uint32_t addr,
 const uint8_t * pidata,
 uint32_t length,
 uint32_t * p_status
)
{
 uint32_t length_verified;
 uint32_t offset;

 *p_status = 0u;

 offset = addr & NVM_OFFSET_SIGNIFICANT_BITS; /* Ignore remapping. */

 ASSERT(offset <= NVM1_TOP_OFFSET);

 /* Adjust length to fit within one page. */
 length_verified = get_remaining_page_length(offset, length);

 if(offset <= NVM1_TOP_OFFSET)
 {
 uint32_t block;
 volatile uint32_t ctrl_status;
 uint32_t errors;

 if(offset < NVM1_BOTTOM_OFFSET)
 {
 block = NVM_BLOCK_0;
 }
 else
 {
 block = NVM_BLOCK_1;
 offset = offset - NVM1_BOTTOM_OFFSET;
 }

 fill_wd_buffer(pidata, length_verified, block, offset);

 /* Perform a verify. */
 g_nvm[block]->CMD = VERIFY_ADS | (offset & PAGE_ADDR_MASK);
 /* Wait for NVM to become ready. */
 ctrl_status = wait_nvm_ready(block);

 /* Check for errors. */
 errors = ctrl_status & WRITE_ERROR_MASK;
 if(errors)
 {
 /* Signal that an error occured by returning 0 a a number of bytes written. */
 length_verified = 0u;
 *p_status = g_nvm[block]->STATUS;
 }
 }
 return length_verified;
}

Sup
ers

ed
ed
15

List of Changes
List of Changes
The following table lists critical changes that were made in each revision of the document.

Revision* Changes Page

Revision 5
(May 2014)

Updated the document for Libero SoC v11.3 software release (SAR 57098). NA

Revision 4
(November 2013)

Updated the document for Libero SoC v11.2 software release (SAR 52884). NA

Revision 3
(May 2013)

Updated the document for Libero SoC v11.0 software release (SAR 47576). NA

Revision 2
(March 2013)

Updated the document for Libero SoC v11.0 beta SP1 software release (SAR 44871). NA

Revision 1
(November 2012)

Updated the document for Libero SoC v11.0 beta SPA software release (SAR 42847). NA

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.

Sup
ers

ed
ed
16

51900259-5/05.14

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

Sup
ers

ed
ed

mailto:sales.support@microsemi.com
www.microsemi.com

	SmartFusion2 SoC FPGA - eNVM Initialization
	Purpose
	Introduction
	Design Requirements
	Initializing eNVM using the Libero eNVM Client
	Initializing the eNVM Using the Cortex-M3 Processor
	Design Description
	Hardware Implementation
	Software Implementation
	Write Operation
	Read Operation
	Verify Operation

	Setting Up the Design
	Running the Design
	Conclusion
	Appendix A – Design Files
	Appendix B – eNVM Driver APIs
	write_nvm()
	MSS_NVM_read()
	verify_nvm()

	List of Changes

