

IGLOO2 FPGA SRAM Initialization from eNVM
Tools Required
Table 1 lists the Reference Design Requirements and Details.

Table 1 • Reference Design Requirements and Details

Embedded SRAM Blocks in IGLOO2 FPGAs
This section describes the different fabric SRAM blocks that are available in various IGLOO2 devices
and clarifies their differences.

Table 2 lists the different types of fabric SRAM blocks available in various IGLOO2 FPGA devices:

LSRAM blocks, as known as large SRAMs, can be configured as a dual-port SRAM or two-port SRAM.
The LSRAM that is configured as the dual-port SRAM provides two independent access ports: Port A
and Port B. In dual-port SRAM mode, data can be written to either or both the ports; also can be read
from either or both the ports. Each port has its own address, data in, data out, clock, clock enable, and
write enable. The LSRAM configured as two-port SRAM has Port A dedicated for read operations, and
Port B dedicated for write operations. The read and write operations in LSRAM are performed in the
Synchronous mode and require a clock edge.

uSRAM has two read ports (Port A and Port B) and one write port (Port C). The read operation can be
performed in both synchronous and asynchronous modes. The write operation can be done only in
synchronous mode. Refer to IGLOO2 FPGA Fabric User's Guide for more information.

The SRAM blocks support rich variations in size and features of memory blocks for IGLOO2 FPGA
devices; however, these variations require changes when initializing the SRAM blocks for a specific
implementation; these changes do not affect the fundamentals of the reference design. Therefore, the
reference design in this application note uses the LSRAM block configured as two-port memory.
Customizing the reference design for different feature and size of SRAM is discussed in the "Customizing
the Wrapper Interface" section.

Reference Design Requirements and Details Description

Hardware Requirements

IGLOO2 Evaluation Kit
• 12V Wall-Mounted Power Supply (provided along with

the kit)

• FlashPro4 programmer (provided along with the kit)

• Device used > M2GL010TS-1FGG484

Rev C or later

Host PC or Laptop Any 64-bit Windows Operating System

Software Requirements

Libero® System-on-Chip (SoC) 11.3

Table 2 • SRAM Blocks in Various IGLOO2 FPGA Devices

Features M2GL005 M2GL010 M2GL025 M2GL050 M2GL090 M2GL100 M2GL150

LSRAM
18K Blocks

10 21 31 69 109 160 236

uSRAM 1K
Blocks

11 22 34 72 112 160 240

Total RAM
(KBits)

191 400 592 1314 2074 3040 4488

Sup
ers

ed
ed
2 Revision 1

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008

IGLOO2 FPGA eNVM Controller for Data Storage
IGLOO2 FPGA eNVM Controller for Data Storage
The design example uses the eNVM array in HPMS as the source of SRAM initialization. The flash
memory block in the eNVM is used to store the SRAM initialization data, and the data is loaded to SRAM
after powering-up the device. The eNVM Controller is an advanced high-performance bus (AHB) slave
that provides access to eNVM. It converts the logical AHB addresses to physical eNVM addresses and
allows commanding the eNVM to perform specific tasks such as read, write, and delete operations. Refer
to "Embedded eNVM Controller” section in the IGLOO2 FPGA High Performance Memory Subsystem
User’s Guide for more information.

In the design examples, a data storage client is created to load the SRAM initialization, which is
configured to be 64x8. Figure 1-1 shows the eNVM Configurator and the data storage client graphical
user interface (GUI) in Libero SoC. To allow the eNVM data storage client for simulation, select the Use
Content for Simulation check box.

Figure 1-1 • eNVM Configurator GUISup
ers

ed
ed
Revision 1 3

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009

IGLOO2 FPGA SRAM Initialization from eNVM
SRAM Initialization Reference Design
The reference design is described and analyzed in the following sections:

• Fabric Master Design Example—discusses the functionality, architecture, and operation of the
design.

• Hardware Implementation—discusses the hardware implementations, and demonstrates the
functionality of the code by running SmartDebug and looking at the SRAM content on IGLOO2
Evaluation Kit board.

• Customizing the Wrapper Interface—provides guidelines on how to instantiate, and how to use
the reference design in the user design.

Fabric Master Design Example
This section describes the functionality, architecture, and operation of the fabric master design example.
The fabric master acts as an advanced peripheral bus v3 (APB3) master to read data from eNVM after
power-up and load the fabric SRAM block. Figure 1-2 shows a top-level block diagram of the fabric
master design example.

Figure 1-2 • Top Level Block Diagram

Sup
ers

ed
ed
4 Revision 1

Fabric Master Design Example
After the fabric master finishes the SRAM initialization, the APB3 wrapper interface asserts a section
signal (SEL) to the muxing arbiter and switch the SRAM ports as user ports. And it also allows the user to
read and write permissions to the SRAM blocks. The INIT_DONE output of the reference design
indicates the sequence of initialization done.

The SRAM block is configured as two-port memory with a depth of 64 and width of 8. This design
implements an advanced peripheral bus 3 (APB3) slave wrapper interface on port A and port B of the
SRAM block, and the APB3 wrapper is connected to HPMS. The user can also implement the AHB-lite
wrapper instead of APB3 wrapper on the SRAM block and connect to HPMS. However, the APB3
interface is much simpler than the AHB-lite interface, and it is easy to create the design interface in the
SRAM ports. The APB3 slave wrapper interface is connected to the HPMS through the CoreAPB3,
CoreAHBLITETOAPB3, and CoreAHBLite and fabric interface controller (FIC_0) interface as shown in
Figure 1-2. FIC_0 enables the connectivity between the fabric and HPMS, which is a part of HPMS. It
performs a bridging functionality between the HPMS and FPGA fabric. It can either be configured in the
AHB-lite mode or in the APB3 mode. In this design example, the FIC_0 is configured in the AHB-lite
mode so that the other AHB-lite blocks in the fabric can be connected to the HPMS through this FIC_0 in
real application.

Sup
ers

ed
ed
Revision 1 5

IGLOO2 FPGA SRAM Initialization from eNVM
Fabric Master Block
The Fabric Master block acts as an AHB-lite master logic to read data from eNVM and write to SRAM.
The AHB-lite master drives the address and controls the signals onto the bus after raising the edge of
HCLK. If HREADY is in the low state, the AHB-lite master does not move to the next state. If HREADY is
in the high state, the AHB-lite master goes to the data phase to perform the read or write operation.
During data phase, if HREADY is low (AHB-lite slave wants to extend the data phase), the AHB-lite
master must hold the data throughout extended cycles. The AHB-lite master reads or writes the data only
after HREADY is in the high state.

Figure 1-3 shows the simplified state diagram of the fabric master.

Figure 1-3 • Fabric Master State DiagramSup
ers

ed
ed
6 Revision 1

Fabric Master Design Example
SRAM to APB3 Wrapper
The SRAM to APB3 slave wrapper block allows connecting the SRAM block to the advanced
microcontroller bus architecture (AMBA) APB3 bus system, shown in Figure 1-4.

Following are the three states that explain the APB3 specifications:

• IDLE—default state for the peripheral bus.

• SETUP—when a transfer is required, the bus moves to this state where the appropriate select
signal PSELx is asserted. The bus remains in this state for a complete clock cycle and always
moves to the ACCESS state on the next rising edge of the clock.

• ACCESS—asserts the PENABLE signal. The address, write, and select signals should be
stabled during the transition from the SETUP to ACCESS state. The transition from the ACCESS
state is controlled by the PREADY signal from the slave.

– If PREADY is held low by the slave, the peripheral bus remains in the ACCESS state.

– If PREADY is held high by the slave, no more transitions are required from the ACCESS state
to the IDLE state. Alternatively, if another transition follows, and the bus moves directly to the
SETUP state.

In the above design example, the wrapper logic generates the read and write operations enabled for
SRAM using the PSEL, PWRITE, and PENABLE signals. The PREADY signal is used to insert wait
state.

Figure 1-4 • APB3 State Diagram

Sup
ers

ed
ed
Revision 1 7

IGLOO2 FPGA SRAM Initialization from eNVM
Status Output
The ram_init_done output of the reference design indicates the sequence of initialization done. At power-
up, the ram_init_done is asserted as low to indicate the start of initialization process. It remains low until
the fabric master finishes reading the data from eNVM and writing to SRAM. The high ram_init_done
output indicates the end of initialization process. Port A and Port B of the SRAM interface are available to
the user for read and write operations.

Interface Description for Fabric Master Design
Table 3 shows the top-level interface signal descriptions.

Hardware Implementation
The SRAM block is configured as two ports memory with a depth of 64 and a width of 8 in both the design
examples. In addition, the design example uses a 50 Mhz RC OSC as a reference clock for the fabric
phase-locked loop (PLL). The fabric PLL then generates a 100 Mhz clock that is used as the main
system clock. Refer to "Appendix A - Design and Programming Files" section to download the design
examples.

Table 3 • Top-Level Interface Signal Descriptions

Signal Direction Description

raddr_user[4:0] Input User read address

rclk_user Input User read clock

rd_enable_user Input User read enable

rdata_user[7:0] Output User read data

waddr_user Input User write address

rdata_user[7:0] Output User read data

wclk_user Input User write clock

wdata_user[4:0] Input User write data

wr_enable_user Input User write enable

RESP_err[1:0] Output Ahb error response

ram_init_done Output Initialization complete

DEVRST_N Input Active Low reset

SEL Output Selection for RAM muxing logic (for debug only)

INT_OUT Output Interrupt for APB transaction (for debug only)

ahb_busy Output Fabric master status

Sup
ers

ed
ed
8 Revision 1

Hardware Implementation
Simulating Reference Design
The design file includes the test bench files to run simulation in the Libero SoC. Figure 1-5 shows the
simulation waveform.

The simulation waveform has the following sequence:

1. Writing to eNVM Control Register to get access.

2. Checking the eNVM status register for “NVM ready/busy” bit.

3. Reading the eNVM data client.

4. Writing the data to SRAM.

Figure 1-5 • Fabric Master Design Example Waveform

Sup
er

se
de

d

Revision 1 9

