& Microsemi

Application Note AC427

Loading and Debugging Core8051s Application
From External Flash Memory

Table of Contents

Purpose 1
Introduction L e 1
References e 1
Design Requirements L e 2
Design Overview L e 2
Design Description L e 3
Running the Design Example e 13
Conclusion L e 22
Appendix A — Design and Programming Files oL 22
Listof Changes e 23
Purpose

This application note describes how to load and debug application code from external flash memory
available on the Microsemi® Cortex-M1-enabled ProASIC3L Development Kit.

Introduction

A Core8051s based microcontroller system is implemented on the Microsemi M1 enabled ProASIC3L
field programmable gate array (FPGA). The external flash memory is interfaced to the Core8051s
microcontroller system to load and debug the application code.

References

The following references are used in this document:
* Core8051s Based Hardware Tutorial
* Core8051s Based Software User Guide

July 2014

© 2014 Microsemi Corporation

http://www.microsemi.com/document-portal/doc_download/131526-core8051s-embedded-processor-hardware-development-tutorial
http://www.microsemi.com/document-portal/doc_download/130792-developing-an-application-on-core8051s-ip-based-embedded-processor-system-using-firmware-catalog-drivers-user

& Microsemi

Loading and Debugging Core8051s Application From External Flash Memory

Design Requirements

Table 1+ Design Requirements

Design Requirements Description

Hardware Requirements

Cortex-M1-enabled ProASIC3L Development Kit -

Host PC or Laptop Any 64-bit Windows Operating System
Software Requirements

Libero® System-on-Chip (SoC) v11.3

SoftConsole v3.4

One of the following serial terminal emulation programs: -
* HyperTerminal
* TeraTerm

« PUuTTY

Design Overview

A Core8051s IP based microcontroller system is developed with peripheral IPs such as CoreGPIO,
CoreUARTapb, CoreWatchdog, CoreTimer, and CoreAPB3 that are implemented on the Microsemi
Cortex-M1-enabled ProASIC3L Development Kit. An external Micron JS28F640J3D-75 flash memory is
interfaced to the Core8051s microcontroller system. A simple application is loaded into the external
Micron JS28F640J3D-75 flash memory to blink the on-board LEDs. Figure 1 shows the Core8051s
microcontroller system.

External Flash Memory

A

M1A3P1000L FPGA 4
W ‘ Internal Memory
PLL Core8051s (SRAM)
A
4
CoreAPB3
[[A A
Y Y 4 4
CoreGPIO CoreWatchDog CoreUARTapb CoreTimer

Figure 1 » Core8051s Microcontroller System

http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/proasic3/cortex-m1-enabled-proasic3l-development-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/proasic3/cortex-m1-enabled-proasic3l-development-kit
http://www.micron.com/parts/nor-flash/parallel-nor-flash/js28f640j3d75a?pc=%7b9A9BFAD5-DEE0-49F7-ACE8-ED039D2582D6%7d

& Microsemi

Design Description

Design Description

This design example has the following IPs that are available in Libero SoC catalog:
+ Core8051s: an 8-bit microcontroller IP core
* CoreGPIO: provides up to 32-bit inputs and 32-bit outputs for general purpose
* CoreUARTapb: a serial communication interface
+ CoreWatchdog: provides a means of recovering from software crashes
* CoreTimer: for interrupt-generation and programmable counter

+ CoreAPB3: a bus component that provides advanced microcontroller bus architecture (AMBA3)
advanced peripheral bus (APB3) fabric supporting up to 16 APB slaves

The following sections provide a brief description of each IP and its configuration:
+ Core8051s Description
» Difference Between Core8051s and Core8051
* CoreAPB3 Description
» External Flash Memory Description
+ CoreTimer Description
+ CoreWatchdog Description
+ CoreUARTapb Description
+ CoreGPIO Description
+ Description of Core8051s based Microcontroller System
* Memory Map
+ Software Development Description

Core8051s Description

The Core8051s is a high-performance, 8-bit microcontroller IP core. It is an 8-bit embedded controller
that executes all ASM51 instructions and has the same instruction set as 80C31. It provides software and
hardware interrupts. It eliminates redundant bus states and implements parallel execution of fetch and
execution phases. The Core8051s uses one clock per cycle, and most of the one byte instructions are
performed in a single clock cycle. Figure 2 shows the Core8051s architecture.

8051s CORE LOGIC

Fetch aFetch] ~afetch
. - -
Arl::-hm_etlc metr | RAM_SFR mstr| Control mste | Memory
ogic =4 control | ™ Unit ‘ Control
Unit Cycle Cycle «Syle]

A

< A

Figure 2 » Core8051s Architecture

Y APBBus \J .

Difference Between Core8051s and Core8051

The Core8051s is smaller and more flexible than the Core8051.The microcontroller-specific features
such as SFR-mapped peripherals, power management circuitry, serial channel, I/O ports and timers of
the original 8051 are not present in Core8051s. The Core8051s contains the main 8051 core logic, but it
does not have peripheral logic. The Core8051s has an advanced peripheral bus interface that can be
used like the SFR (special function register) bus to easily expand the functionality of the core by
connecting it to the existing advanced peripheral bus IPs. The Core8051s allows to configure the core

& Microsemi

Loading and Debugging Core8051s Application From External Flash Memory

with the peripheral functions (timers, UARTs, I/O ports, etc.) that are required for the application.
Configure the Core8051s Configurator GUI as shown in Figure 3.

[EL, Configuring CORES051S_0 (COREB051S - 2.4.101) =NACN X

Configuration

Debug Configuration

Indude trace RAM: =

Number of hardware triggers breakpoints:
{l Optional Registers and Instructions
i Indude second data pointer:

Incude MUL, DIV and DA instructions:

Program Memory Access

MEMPSACKI-controlled Program Memory: [
Program Memory Wait Cydes:

External Data Memory Access

MEMACKI-controlled External Data Memory: [

External Data Memory Stretch Cycles:
Other Options
APB data width: [32bit -]
Internal RAM (256x8) Implementation: [Instanﬁahe RAM block -]
License:
@ Obfuscated & RTL
o] [Ccanm]

h

Figure 3 » Core8051s Configurator GUI

Refer to the Core8051s Handbook for more details.

CoreAPB3 Description

The CoreAPB3 is a bus component that provides advanced microcontroller bus architecture (AMBA3)
advanced peripheral bus (APB3) fabric supporting up to 16 APB slaves, and a single APB master. The
CoreAPB3 can be used with an APB3 master that does not have a built-in APB address decoding, such
as Core8051s. A single APB3 master is connected to CoreAPB3. The master's PSEL and PADDR
signals are used within the CoreAPB3 to decode the appropriate PSELS slave select signals, and only
one signal can be active at a time. This address decoding depends on the RANGESIZE hardware
parameter/generic. Refer to the CoreAPB3 Handbook for more information.

http://www.microsemi.com/soc/ipdocs/Core8051s_HB.pdf
http://www.actel.com/ipdocs/CoreAPB3_HB.pdf

& Microsemi

Design Description

Configure the CoreAPB3 Configurator GUI as shown in Figure 4.

I ~
[EL Configuring CoreAPB3 0 (CoreAPB3 - 2.0.103) = |] e
Configuration
APB Master Configuration
Direct or Indirect Addressing: |Direct Addressing (legacy) ~]
APB Master Data Bus Width
@ 32-bit) 16-hit) 8-bit
Enabled APE Slave Slots
Slot 0: Slot 1: Slot 2: Slot 3:
Slot 4: Slot 5 Slot &: Slot 7:
Slot &: Slot 9: Slot 10: Slot 11
Slot 12: Slot 13: Slot 14: Slot 15:
APB Slot Size
APB Slot Size | 256 locations
Testbench: [User -
License:
() Obfuscated @ RTL
o) (o

(S

Figure 4 » CoreAPB3 Configurator GUI

External Flash Memory Description

Part Number:
* Micron JS28F640J3D-75
Architecture:
* 64 Mbit (64 blocks)
Performance:
* 75 ns Initial Access Speed, 25 ns 8-word and 4-word Asynchronous page-mode reads
» 32-Byte Write buffer (4 ps per Byte Effective programming time)
System voltage:
+ VCC=27Vto36VandVCCQ=27Vto3.6V
Enhanced security options for code protection:

+ 128-bit Protection Register (64-bits unique device identifier bits, 64-bits user-programmable OTP
(one time programmable) bits)

* Absolute protection with VPEN = GND
* Individual block locking
+ Block erase/program lockout during power transitions

http://www.micron.com/parts/nor-flash/parallel-nor-flash/js28f640j3d75a?pc=%7b9A9BFAD5-DEE0-49F7-ACE8-ED039D2582D6%7d

& Microsemi

Loading and Debugging Core8051s Application From External Flash Memory

Software:
* Program and erase suspend support
* Flash data integrator (FDI)
+ Common flash interface (CFl) compatible

The external flash memory device can be accessed as 8- or 16-bit words. A command user interface
(CUI) serves as the interface between the system processor and the internal operation of the device. A
valid command sequence written to the CUI that initiates the device automation. An internal write state
machine (WSM) automatically executes the algorithms and timings necessary for block erase, program,
and lock-bit configuration operations.

Flash operations are command-based, where command codes are first issued to the flash memory, then
the flash memory performs the required operation. Refer to the flash memory Micron JS28F640J3D-75
datasheet for a list of command codes and flowcharts. Flash memory has a read-only 8-bit status register
that indicates the flash memory status and operational errors. Four types of data can be read from the
flash memory: array data, device information, CFl data, and device status.

The flash memory is set to Read Array mode by default after power-up or reset. Executing the Read
Array command sets the flash memory to Read Array mode and reads the output array data. The flash
memory remains in Read Array mode until a different read command is executed. To change the flash
memory to Read Array mode while it is programming or erasing, first issue the suspend command. After
suspending the operation, run the Read Array command to set to Read Array mode. When the program
or erase operation is subsequently resumed, the flash memory automatically sets to Read Status mode.

Issuing the Read Device Information command places the flash memory in Read Device Information
mode and reads the output of the device information. The flash memory remains in Read Device
Information mode until a different read command is issued. Also, performing a program, erase, or block-
lock operation changes the flash memory to Read Status Register mode.

Array programming is performed by first issuing the single-word/byte program command. This is followed
by writing the desired data at the desired array address. The read mode of the device is automatically
changed to Read Status Register mode, which remains in effect until another read-mode command is
issued.

Erasing a block changes zeros to ones. To change ones to zeros, a program operation must be
performed. Erasing is performed on a block basis - an entire block is erased each time when an erase
command sequence is issued. Once a block is fully erased, all addressable locations within that block
read as logical ones (FFFFh). Only one block-erase operation can occur at a time, and it is not allowed
during a program suspend. To perform a block-erase operation, issue the block erase command
sequence at the required block address. An erase or programming operation can be suspended to
perform other operations, and then subsequently resumed. To suspend an on-going erase or a program
operation, issue the suspend command to any address.

All blocks are unlocked at the factory. Blocks can be locked individually by issuing the set block lock bit
command sequence to any address within a block. Once locked, blocks remain locked when power cable
is unplugged or when the device is reset. All locked blocks are unlocked simultaneously by issuing the
clear block lock bits command sequence to any device address. The locked blocks cannot be erased or
programmed.

The sequence of the commands that must be given to the flash memory are written in an XML file. The
XML files are provided with the SoftConsole software for the JS28F640J3D-75 flash memory located at:
C:\Program Files (x86)\Microsemi\SoftConsole v3.4\Sourcery-G++\share\sprite\flash.

http://www.micron.com/parts/nor-flash/parallel-nor-flash/js28f640j3d75a?pc=%7b9A9BFAD5-DEE0-49F7-ACE8-ED039D2582D6%7d
http://www.micron.com/parts/nor-flash/parallel-nor-flash/js28f640j3d75a?pc=%7b9A9BFAD5-DEE0-49F7-ACE8-ED039D2582D6%7d

& Microsemi

Design Description

CoreTimer Description

The CoreTimer is an APB slave that provides a functionality for the interrupt generations, and a
programmable decrementing counter. It is configurable and programmable, and can be used in either
continuous or one-shot modes. It is an essential element in many designs because it supports accurate
generation of timing for precise application control. Refer to the CoreTimer Handbook for more
information. Configure the CoreTimer Configurator GUI as shown in Figure 5.

-
@ Configuring CoreTimer_0 (CereTimer... E@ﬂ—h]

Configuration

Width:

) 16 bit @ 32bit

Interrupt active level:

) Low @ High

License:

@ Obfuscated ") RTL

o] (e

(S

Figure 5 » CoreTimer Configurator GUI

CoreWatchdog Description

The CoreWatchdog is an APB slave that provides a means of recovering from software crashes. When
the CoreWatchdog is enabled, the core generates a soft reset if the microprocessor fails to refresh it on a
regular basis. The CoreWatchdog can be configured based on a decrementing counter, which asserts a
reset signal if it is allowed to time out. The width of the decrementing counter can be configured as either
16 or 32-bits. The processor-accessible registers in CoreWatchdog provide a means to control and
monitor the operation of the core. Refer to the CoreWatchdog Handbook for more information.

Configure the CoreWatchdog Configurator GUI as shown in Figure 6.

7
[, Configuring CoreWatchdog_0 (Core... EIEI-E—hJ
Configuration
Width:
16 bit @ 32bit
License:
@ Obfuscated P RTL
o] oo

Figure 6 « CoreWatchdog Configurator GUI

http://www.microsemi.com/document-portal/doc_download/130683-coretimer-datasheet
http://www.actel.com/documents/CoreWatchdog_DS.pdf

& Microsemi

Loading and Debugging Core8051s Application From External Flash Memory

CoreUARTapb Description

The CoreUARTapb is a serial communications interface that is primarily used in the embedded systems.
The controller can operate in either an asynchronous (UART) or a synchronous mode. In asynchronous
mode, the CoreUARTapb can be used to interface directly to industry standard UARTs. The
CoreUARTapb has an APB-wrapper that adds an APB interface allowing the core to be connected to the
APB bus and controlled by an APB bus master. Unlike a standard 8051 UART, the CoreUARTapb
includes a baud rate generator and so does not need a separate timer for the baud rate. Refer to the
CoreUARTapb Handbook for more information.

Configure the CoreUARTapb Configurator GUI as shown in Figure 7.

p \
B, Configuring CoreUARTapb_0 (CoreUARTapb - 522) Loculo (- [imesu

Configuration

Core Configuration

e,
Configuration:
Baud Value: 1
Character Size: 7 bits
Parity: Parity Disabled
RX Legacy Mode:

1 I
FIFO Implementation:

Baud Value Predsion

Enable Extra Precision:]

Fractional Part of Baud Value: | +0.0

Tesoench .
License: H
@ Obfuscated © RTL Il
L
o) [oo

h ——— 4

Figure 7 » CoreUARTapb Configurator GUI

http://www.microsemi.com/document-portal/doc_download/130958-coreuartapb-handbook

& Microsemi

Design Description

CoreGPIO Description

The CoreGPIO is an APB bus peripheral that provides up to 32-bit inputs and 32-bit outputs for general
purpose. Refer to the CoreGPIO Handbook for more information.

Configure the CoreGPIO Configurator GUI as shown in Figure 8.

r ~
@) Configuring CoreGPIO_0 (CoreGPIO - 3.0.120) [= éj
Configuration -
Global Configuration
APE Data Width: 32 - Number of I/Os:
Single-bit interrupt port: Output enable:
1/Obit0 1
Quput on Reset: Fixed Config: [] IfO Type: |OQutput Interrupt Type: |Disabled
1/0 bit 1
QOuput on Reset: Fixed Config: [~ IjO Type: |Output Interrupt Type: |Disabled b
1O bit2
QOuput on Reset: Fixed Config: [] I/O Type: |Output Interrupt Type: |Disabled
1/O bit 3
Quput on Reset: Fixed Config: [] IjO Type: |Output Interrupt Type: |Disabled
l
1/0 bit 4
Quput on Reset: Fixed Config: [] IjO Type: |Output Interrupt Type: |Disabled
1O bit 5
QOuput on Reset: Fixed Config: [] IjO Type: |Output Interrupt Type: |Disabled
1f0 bit6
Quput on Reset: Fixed Config: [] I/O Type: |Output Interrupt Type: |Disabled
10 bit 7 I
Quput on Reset: Fixed Config: [] IJO Type: |Output Interrupt Type: |Disabled
10 bit 8
Quput on Reset: Fixed Config: [] IjO Type: |Output Interrupt Type: |Disabled
4 | 11 | »
o] [cance
h

Figure 8 » CoreGPIO Configurator GUI

http://www.actel.com/ipdocs/CoreGPIO_HB.pdf

& Microsemi

Loading and Debugging Core8051s Application From External Flash Memory

Description of Core8051s based Microcontroller System

All the peripherals are interfaced to the Core8051s as shown in Figure 9.

(@ Libero - C:\Core8051s_ExtFlashintSRAM_DF\Core8051s “ore8051s_E

Project File Edit View Design Tools SmartDesign Help
- o
NEedeseold

B2 Top_Level* & X

BeoErar M B0t AAGRX E AN\ DO

SRAM1Kx8_0 m1
e ~ z
= MEM_INPUT_MUX_0 +
RESET. Sen Fesur 0| +
Naskse) Bt
[i $aEais g
ETERED
BT
INV_0 e
X
face 3 CORESOS1S_0
TS Bx
e xranent
L sl
i
=
H
H
£
CorWatehdog_0
sax
e
o,
s (oo

Figure 9 » SmartDesign Top-Level Block Diagram

Refer to the Core8051s Based Hardware Tutorial for more information.

10

http://www.microsemi.com/document-portal/doc_download/131526-core8051s-embedded-processor-hardware-development-tutorial

& Microsemi

Design Description

Instantiate a two port RAM on the SmartDesign top-level and configure it as shown in Figure 10.

RAM : Modify Core - SRAMLkx@ i . (-
Optimize for:
(T High Speed @
Write
—] WD [7:0]
: 1024
bzl — WADDR [3:0]
RS WEN
Width: 3 x
-
Single dock
RWCLE =
| L3 m - [7:0] RD -
Read
| = REN [Pipeline
I Depth: 1024 =
o RADDR [9:0]
|
Width: 3
—po =l RESET
— | LP =
e FF [l
[tnitialize RAM for simulation
Cu Content for Simulation

Figure 10 - SRAM Configuration

External memory buffer and multiplexer are configured as shown in Figure 11 and Figure 12.

1/O : Modify Core - Ext_mem_buffer

LX)

| InputBuffers] Output Buffers Bi-directional Butfers | TriState Buffers] DDR]

Yariations -
width 16 =

Enable Polarity
) Active Low

@) Active High

Generate...
Cloze

Figure 11 « External Memory Buffer Configuration

1"

& Microsemi

Loading and Debugging Core8051s Application From External Flash Memory

Multiplexor : Modify Core - MEM_INPUT_MUX - 9 (-S|
s

Output Bus Width B : Mumber of Input Buses 2 =

Figure 12 « Multiplexer Configuration

Memory Map
Right-click the Modify Memory Map to see the memory map as shown in Figure 13.

£3 Modify Memory Map &J

Select Bus to View or
Assign Peripheral(s)

CoreAPBE3 0 Address

Assign peripherals to addresses on bus:

Peripheral

m| »

000000000 CoreTimer_0:4PBslave
000000100 CoreWatchdog_0:APBslave
0x00000200 CoreUARTapb_0:APB_bif
0x00000300 CoreGPIO_0:APB_bif

Ok][Cancel]

%

Figure 13 « Memory Map

Software Development Description

The drivers are generated from firmware catalog for CoreTimer, CoreGPIO, CoreWatchdog, CoreTimer,
and hardware abstraction layer (HAL). The HAL is used by drivers to access the hardware and also
allows the control of interrupts.Refer to the Core8051s Based Software User Guide for more information.

The Core8051s hardware design provides access to the external flash memory and internal SRAM. The
Core8051s flash programming flow for Core8051s program memory is similar to the existing
programming flow for Cortex-M1 flash program memory. The principal difference is, instead of specifying
the location, size and the type of the program memory in a linker script, the program memory details are
given in a text file (@ memory-region-file) which uses the same syntax as the memory command section
of a GCC linker script. The SoftConsole project configuration must be modified to specify the memory-
region-file as an argument to the actel-map.exe helper program. Application code is written in main.c of
the SoftConsole project to blink the on-board LED's.

12

http://www.microsemi.com/document-portal/doc_download/130792-developing-an-application-on-core8051s-ip-based-embedded-processor-system-using-firmware-catalog-drivers-user

& Microsemi

Running the Design Example

Running the Design Example

To run the design example,
1. Download the design example at,
http://soc.microsemi.com/download/rsc/?f=Core8051s_ExtFlashintSRAM_DF

2. Double-click the Program Device under Program Design to program the Cortex-M1-enabled
ProASIC3L Development Kit in the Design Flow window, as shown in Figure 14.

Design Flow 5 X

Top_Level E ° @'

Tool i

-

> i b Create Design
Constrain Design
"E Import I/0 Constraints
(b Import Timing Constraints
Implement Design
S Synthesize
4 [Constraints
a synthesis\Top_Level_sdc.sdc
4 p Verify Post-Synthesis Implementation
. Simulate
v 4 iy Compile
4 [Constraints
a8 constraint\top.pdc
a synthesis\Top_Level_sdc.sdc
» Constrain Place and Route

4

-

[N
-

<

m

v 9,3 Place and Route

v 4 p Verify Post Layout Implementation
. Simulate

v (@ Verify Timing
Ih Werify Power

v

(), Identify Debug Design

Figure 14 « Program Device

13

http://soc.microsemi.com/download/rsc/?f=Core8051s_ExtFlashIntSRAM_DF

& Microsemi

Loading and Debugging Core8051s Application From External Flash Memory

3. Open the SoftConsole project after successfully programming the device, as shown in Figure 15.

File Edit Source Refactor MNavigate Search Project Run Window Help

n-Eal6 9 s @ E-G KB B0 Q- &P oE
] - 5 - % =T =R
r[\“_'uplojcctEuploler k) = <§> ¥ =0 Welcome &2 =08 EE Qutli 2 Mak} =08
< . . . -
4= C:raSUSl;_ExtFIa;hIntSRAM Microsemi SoftConsole 1DE v3.4 An outline is not available.
©» ¥, Binaries
& [l Includes SoftConsole is a free software development environment o
& (= Debug enabling the rapid production of C and C++ executables for processors
- available for use in Microsemi devices. Creating a project inside SoftConsole
[[drivers gaproj
» & hal lets you write software that is immediately compiled into a usable binary.
& g main.c
& [Top_Level_hw_platform.h

'—:" Start a Project
To begin your work, click File > New » C Project
Give your project a name, and select a toolchain if you are going to
be compiling for a target other than the default choice of the Microsemi Cortex-M3,
Then click Finish.

intel-28f540-1x8- code-memory.xt

m

Add an initial source file with File > New > Source File

Add codetoit, and click the Build All icon.

(= Existing Code
You can also import an existing source tree using
File = Import...
and click
General > File System

EA Problems @2 Z, Tasks] (= Console] = Properties] ¥ =08
0 items

i Description ’ Resource Path Location Type

|

U 0 items selected

Figure 15 * SoftConsole Project Window

14

& Microsemi

Running the Design Example

4. Right-click the Core8051s_ExtFlashintSRAM on the left pane and click Properties, as shown in
Figure 16. The Properties window is displayed as shown in Figure 16.

SC C/C++ - Welcome to Microsemi SoftConscle IDE v34 - Micmsemim\ﬁ.-
File Edit Source Refactor Mavigate Search Project Run Window Help

o | 2 & @-~8~-E~@~ KRB~ -
[Project Explorer i3 == Eq[Welcome &2
4 [[=5 Corefi051s_ExtFlashIntSRARN l IC
. #% Binaries New P —
> [wl Includes Go Into deve
Debu of C
: g drivergs Open in New Window devi
mm
> = hal E Copy Ctrl+C
> [8) main.c Paste Ctrl+V
> b Top_Level_hw_platform) :
intel-28f640-1:8-code-r 9% Delete Delete |
Move... and
Rename... F2 ther
g2y Import..
A | Beport... ith |
Build Project =B
Clean Project
& | Refresh F5
Close Project sting

Close Unrelated Projects

Exclude from build...

Build Configurations 3
Make Targets 3

3
Index dow
Convert To.. brod
Run As 3
Debug As 3
Profile As 2
Team 2
Compare With »

Restore from Local History..

Properties Alt+Enter

Figure 16 * Project Properties

5. Double-click Settings under C/C++ Build on the left pane of Properties window.

15

& Microsemi

Loading and Debugging Core8051s Application From External Flash Memory

6. Click Tools Settings tab on the right pane and select the Memory map generator, as shown in

Figure 17.
SC Properties for Core8051s_ExtFlashImtSRAM = . o
type filker text Settings P - -
Resource
Builders

C/C++ Build Configuration: [Debug [Active] '] [Manage Configurations...
Build Vanables

Discovery Options

“ B Tool Settings | # Build Steps | Build Artifact | Binary Parsers | @ Error Parsers

Tool Chain Editor 4 % SDCC Compiler ommand:
CfC++ General (# Processor All options: =
Project References (2 Preprocessor
Refactering History (# Symbols
Run/Debug Settings @ Directories i
@ Debugging
@ Warnings
@ Miscellaneous Expert settings:

5 ;
(£ Memory Options Command e o0 1 AND) -0 S{OUTPUT} SUNPUTS} S{FLAGS}
a B SDCC Linker line pattern:

@ General
@ Libraries
@ Miscellanecus
@ Shared Library Settings
@ Memery Options
3 CodeSourcery OMF2ELF Converter
4 £33 GNU5-Hecord Generator
@ General
4 B8 GMU Listing Generator
@ General
a4 53 SDCC Assembler

@ General

actel-map -M ../intel-28{640-1x8-code-memory.bt I

[Restore Qefaults] [Apply]

)

[OK] [Cancel]

Figure 17 « Memory Map Generator

7. Enter actel-map -M../intel-28f640-1x8-code-memory.txt text in the Command field.

Note: The “intel-28f640-1x8” XML file, which is at C:\Program Files (x86)\Microsemi\SoftConsole

v3.4\Sourcery-G++\share\sprite\flash is used for loading and debugging the JS28F640J3D-75
flash memory.

16

http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/proasic3/cortex-m1-enabled-proasic3l-development-kit

& Microsemi

Running the Design Example

8. Right-click Core8051s_ExtFlashintSRAM on the left pane and click Debug As > Debug
Configurations..., as shown in Figure 18. The Debug Configurations window is displayed.

§C C/C++ - Welcome to Microsemi SoftConsale IDE v3.4 - Microsemi SoftConsole IDE vZ AT “

File Edit Source Refactor Mavigate Search Project Run Window Help
i~ & 2 & g~~~ |/-®~

H-0-Q- &~

[Project Explorer 2

=l Q:b = Eq(Welcome 22

4 |[=% Corefid51s_ExtFlashIntSRA™

> f,-? Binaries

> [l Includes

> = Debug

> = drivers

s hal =

> % main.c =

> [H Top_Level_hw_platfor

intel-28f640-1:@-code 2%

[T
(X2

69

Mew 3

Go Into
Open in New Window

Ctrl+C
Ctrl+V

Copy
Paste

Delete
Move...

Delete

Rename... F2

Import...
Export...

Build Project

Clean Project

Refresh F5
Close Project

Close Unrelated Projects

Exclude from build...
Build Configurations 3
Make Targets 3

Index 3

Convert Tou.
Run As >

e IDEv3.4

e development environment

n of Cand C++ executables for processors

ni devices. Creating a project inside 5oftConsole
s immediately compiled into a usable binary.

k File = New > C Project
e, and select a toolchain if you are going to
t other than the default choice of the Microsemi Cor

with File = New > Source File

the Build All icon.

existing source tree using

n/download/software/softconsole

n/products/software/softconsolefdocs

———
I Debug As 3

Debug Configurations...

_J

Team b

Figure 18 » Debug Configurations

17

& Microsemi

Loading and Debugging Core8051s Application From External Flash Memory

9. Right-click Microsemi Core8051s Target and click New to create a new debug configuration, as
shown in Figure 19.

SC Debug Configurations -

Create. manage. and run configurations

L ! |
L= | H 5~ Configure launch settings from this dialog:
type filter text [- Press the 'New' button to create a configuration of the selected type.
iR ehRaman —— |i5] - Press the 'Duplicate’ button to copy the selected configuration.
i SC Microsemi Coref051s Targ " |
crosemi tore arget | || New e 'Delete’ button to remove the selected configuration.
SC Microsemi Cortex-M1 Targe Duplicate e 'Filter' button to configure filkering options.
SC Microsemi Cortex-M3 Targe Delete
iew an existing configuration by selecting it.

Configure launch perspective settings from the Perspectives preference page.

Filter matched 5 of & items

Figure 19 » New Debug Configuration
10. Click Debug.

B¢ Detug Configurstion: -

Crvate, mansge, and run configuretions ﬁx

Hene ConBl3ls Eaflesim3FAM Debug

— || Main %5 Debugger| Bl Commands | % Source| [Commen
= Launch Greup

2 BE Metteiann ConiB0ils Taiget Prepoet [optesnall

Condd031s_ExtFlashint5PAM =
G- Mpplaation
Do’ Coreldfl i _ExtFlaghintSRAkLol Somsh P _ B =

Appitan tonupie

Filter matched b ol 9 #emd

= ==

Figure 20 * Debug Configurations

18

& Microsemi

Running the Design Example

After launching the debug session, the flash programming operation starts. The erase and write
operations are shown in Figure 21.

SC Debug - Core8051s_ExtFlashintSRAM/main.c - Microsemi SoftConsole DEv3.4 T -
File Edit Source Refactor Mavigate Search Project Run Window Help
ri~ |& $-0-Q- =&~ R R SR % (35 Debug |
45 Debug 52 %ot e 1 @ EN i3 | @ ¥ = O [69= Variables 5% .9 Breakpoints| i} Registers | =i Modules 5B & % %
9 il P g ?

SC Core8051s_ExtFlashintSRAM Debug [Microsemi Core8051s Target] Name Value
&9 Embedded GDB (4/17/14 1550 PM) (Suspended)
i Thread [0] (Suspended)
= 1 main{) C:A\CoreB051s_ExtFlashintSRAM\Softconsole WS\CoreB051s_ExtFlashIntSRAM\main.c:56 0x0(
5 C:\Program Files (x86)\Microsemi\SoftConsole v3.4\Sourcery-G+ +\bin\ c8051-¢lf-gdb.exe (/17714 1:55 PM)

= greeting_msg
#® linefeed
(= LED_scanning_msg

< mn (S
Welcome €] main.c &2 = O[5 Outline 52 1% W s e ¥
27 - 21 core_gpioh
define LED D4 GPIC_4 (| = core_uart_apb.h
- =l core_watchdog.h
< .] 3 21 halh

E] Console &3 .E.Ta;k;] B Pmblamﬂ (7] Eaacutableﬂ i Memorﬂ
Core8051s_ExtFlashIntSRAM Debug [Microsemi CoreB051s Target] C:\Program Files (<86)\Microsemi\SeftCensele v34\Sourcery- G+ + \bin\c8051-elf-gdb.exe (4/17/14 1:55 PM)
- T rroas oo u =

FEEE R

c8051-elf-=:
c3051-elf-s;

Program 0x300000 sector [0x5200,+0x100) erase write
Program 0x300000 sector [0x5300,+0x100) erase write
Program 0x200000 sector [0x5400,
Program 0x800000 sector [0x5500,+0x100) erase write
Program 0x300000 sector [0x5600,+0:
Program 0x300000 ssctor [0x5700,+0x100) erase write
c8051-elf-sprite: Program 0x300000 sector [0x5800,+0x100) erase write
c8051-elf-sprite: Program 0x300000 sector [0x5300,+0x100) erase write
c8051-elf-sprite: Program 0x800000 sector [0x5a00,+0x100) erase write
c8051-elf-sprite: Program 0x300000 sector [0x5b00,+0x100) erase write
c8051-elf-sprite: Program 0x300000 sector [0x5c00,+0x100) erase write
c8051-elf-aprite: Program 0x300000 sector [0xS5d400,+0x100) erase write
c8051-elf-sprite: Program 0x300000 sector [0x5e00,+0x100) erase write
c8051-slf-= Program 0x300000 sector [0xS£00,+0x100) erase write [0x0,+0x20)
c8051-elf-sprite: End of programming

Start address 0x800000, load size 24345

Transfer rate: 27 bytes/sec, 127 bytes/write.

tb main

[Breakpoint 1 at OxB00062: file main.c, line 56.

cont

0x100) ezase write

00) erase write

Note: automatically using hardware breakpoints for read-only addresses.
main () at main.c:56
13 const uint® t greeting msg[] = "\n\r******* Running Core805ls Application from External Flash Memory *******\n\r";

Figure 21 » Flash Programming

19

&\ " -
"~ Microsemi
Loading and Debugging Core8051s Application From External Flash Memory

11. Start PUTTY (with settings 57600 baud rate, 8 data bits, and No parity), and choose Resume
from the Run menu. The LEDs are scanned on the Cortex-M1-enabled ProASIC3L Development
Kit in the forward and reverse direction. The messages are displayed as shown in Figure 22.

COM3 - PuTTY ESIER

Figure 22 - Application Running From External Flash Memory

12. Terminate and relaunch the debug session.
13. Set break points at 60, 115 and 149 lines of main.c.
14. Choose Resume from the Run menu.

15. Choose Step Over from the Run menu until it reaches the 115 line of main.c. The “Running
Core8051s Application from External Flash Memory” message is displayed as shown in
Figure 23.

"B coMs - puTTY EERECRX

Figure 23 » Debug Code

20

& Microsemi

Running the Design Example

16. Choose Step Over from the Run menu. While stepping over the code, the LEDs blinks on the
Microsemi Cortex-M1-enabled ProASIC3L Development Kit. The message is displayed as shown

in Figure 24.

%

Figure 24 + Step Over

21

http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/proasic3/cortex-m1-enabled-proasic3l-development-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/proasic3/cortex-m1-enabled-proasic3l-development-kit

& Microsemi

Loading and Debugging Core8051s Application From External Flash Memory

17. Right-click Core8051s_ExtFlashIntSRAM Debug [Microsemi Core8051 Target] and click
Terminate and Remove the debug session as shown in Figure 25.

File Ebdit Source Hetactor Mawigate Search Hroject Kun Window Help

i~ |0-To FrP-L @ - - =1 -
3 Debug 2 | | = _'TSN @ ¥ = O|[6= variables &2 %
a |SC CoreB051s_ExtFlashIntSRAM Debug [Microsemi CoreB05ls Tarnst]
4 &2 Embedded GDB (4/17/14 3:08 PM) (Suspended) :=| Copy Stack Ctrl+C
a4 Thread [0] (Suspended) Find... Ctrl+F

= 1 main() C:\Softconsole_ W5\ Core80515_ExtF
p! C\Program Files (B8] MicrosemitSoftConsole v3.4 Drop To Frame

a = Restart
Step Into F5
[€] main.c &2 [£] core_gpic.c G ~
wait (LED scanning delay): Sy dnE &
Step Return F7

GPIO set output(&g gpio, LEQ
-~ - Instruction Stepping Mode

GPIC set_output(&g _gpio, LEI_‘T;? Use Step Filters

]

2

1 o B W R O W

2 wait (LED_scanning_ delay); Resume Without Signal

2 Resume F8
4: GPIC_set_output(&g_gpio, LEQ Suspend

N Terminate Ctrl+F2

%]

wait (LED scanning delay):

v E

Terminate and Relaunch

]

5]
O

Disconnect

Remove All Terminated
Relaunch
SC Edit CoreB051s_ExtFlashIntSRAM Debug...

£, Edit Source Lookup...
I E'“ Terminate and Remove I
i Terminate/Disconnect All
int i:
Properties
240 for (i=0; i « time in ms*10000:; 1

Figure 25 Terminate and Remove Debug Session

18. Choose Exit from the File menu to close the SoftConsole project.

19. Unplug the USB cables and power supply cable and plug-in the power supply cable. The same
LED scanning application runs from the non-volatile external flash memory.

Conclusion

This application note describes how to load and debug the Core8051s application from the external flash
memory using SoftConsole. The example design serves as a starting point to other Core8051s designs.
It includes a Core8051s based system, firmware drivers, and a sample LED scanning application that
runs from the external flash memory.

Appendix A — Design and Programming Files

You can download the design files from the Microsemi SoC Products Group website:
http://soc.microsemi.com/download/rsc/?f=Core8051s_ExtFlashintSRAM_DF

The design file consists of Libero project and programming file. Refer to the Readme.txt file included in
the design file for directory structure and description.

22

http://soc.microsemi.com/download/rsc/?f=Core8051s_ExtFlashIntSRAM_DF

List of Changes

The following table lists the critical changes that were made in the current version of the application note.

& Microsemi

List of Changes

Date Changes Page
Revision 1 "
(July 2014) Initial Release. NA

23

Microsemi.

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

51900295-1/7.14

mailto:sales.support@microsemi.com
www.microsemi.com

	Purpose
	Introduction
	References
	Design Requirements
	Design Overview
	Design Description
	Core8051s Description
	Difference Between Core8051s and Core8051
	CoreAPB3 Description
	External Flash Memory Description
	CoreTimer Description
	CoreWatchdog Description
	CoreUARTapb Description
	CoreGPIO Description
	Description of Core8051s based Microcontroller System
	Memory Map
	Software Development Description

	Running the Design Example
	Conclusion
	Appendix A – Design and Programming Files
	List of Changes

