

 July 2014

Libero SoC Simulation Library Setup Instructions

Libero SoC Simulation Library Setup Instructions

Introduction

Download Libero SoC Simulation Library

Libero SoC Integration

Third Party Tool Profile Setup through Libero
Libero SoC Tcl file generation
Click here for Compiling SmartFusion Library for ModelSim Full Version (PE/SE/DE) Simulation

Aldec Setup for Active-HDL and Riviera-Pro

Libero SoC and Aldec simulation
Known Issues
Sample TCL and shell scripts

Cadence Incisive Setup

Libero SoC and NCSim
Sample TCL and shell scripts
Automation

Mentor Graphics QuestaSim Setup

Sample TCL and shell scripts

Synopsys VCS Setup

Libero SoC and VCS simulation
Limitations/Exceptions
Sample TCL and shell scripts
Automation

ModelSim (PE/SE/DE) Set up (KI8797) for Smartfusion

Compiling SmartFusion Library for ModelSim Full Version (PE/SE/DE) Simulation
Steps for Compiling the Libraries:

Introduction
This document describes the procedure to set up the simulation environment using a Libero SoC project as the input.
This documentation corresponds to the pre-compiled libraries provided for use with Libero SoC v11.0 and newer software releases. The
libraries provided are compiled for Verilog. VHDL users will require a license allowing mixed-mode simulation.

Libraries are provided for the following simulation tools:

Aldec Active-HDL
Aldec Riviera-PRO

http://www.microsemi.com/document-portal/doc_download/132400-aldec-active-hdl-v9-2-sp1-libraries-for-smartfusion2-and-igloo2-for-use-with-libero-soc-v11-1-sp1

 Libero SoC Simulation Library Setup Instructions

 July 2014

Cadence Incisive Enterprise
Mentor QuestaSim
Synopsys VCS

To request a library for a different simulator, contact soc_tech@microsemi.com.

Download Libero SoC Simulation Library

Libero SoC Integration
Libero SoC supports simulation using ModelSim ME by generating a run.do Tcl file. This file used by ModelSim ME to set up and run
the simulation. To use other simulation tools you must modify the run.do Tcl script to commands compatible with your simulator.

Third Party Tool Profile Setup through Libero

Libero provides support to add tool profiles for Aldec and Questa simulators similar to what we currently have for ModelSim. Libero

automatically creates the run.do file required for running the simulations (when the tool is invoked from the design flow window).

The tool profiles can be added from Project -> Tool Profiles -> Simulation in the Libero GUI.

Refer to the screenshot of the GUI Tool Profile below.

The following screenshot shows Riviera-PRO (2013.10) added as a Tool Profile in Libero.

mailto:soc_tech@microsemi.com

 Libero SoC Simulation Library Setup Instructions

Libero SoC Tcl file generation

After creating and generating your design in Libero SoC, you must start a ModelSim ME simulation under all design phases (presynth,
postsynth, and postlayout). The purpose of this step is to force Libero SoC to generate the run.do Tcl file for ModelSim ME for each
design phase. After starting each simulation run, you must rename the auto-generated run.do file under the simulation directory to
prevent Libero SoC from overwriting that file. For example, the files can be renamed presynth_run.do, postsynth_run.do, and
postlayout_run.do.

Click here for Compiling SmartFusion Library for ModelSim Full Version (PE/SE/DE) Simulation

Aldec Setup for Active-HDL and Riviera-Pro
OS PLATFORM: Windows

The setup for Aldec simulators is similar to ModelSim. The run.do Tcl files used by ModelSim can be modified and used for simulation
using Aldec simulators. Below is a script that converts the ModelSim run.do files to be compatible with Aldec simulators.

Set your environment variable to your license file location:

LM_LICENSE_FILE: must include a pointer to the license server.

Libero SoC and Aldec simulation

The following lists the Aldec-equivalent commands to modify in the ModelSim run.do Tcl file:

ModelSim Active-HDL

Vlog alog

Vcom acom

Vlib alib

Vsim asim

Vmap amap

1. Set the location of the current working directory.

set dsn <simulation directory>

2. Set a working library name and map its location. Also, map the location of Microsemi FPGA family precompiled libraries (for
example, SmartFusion2) on which you are running your design.

alib presynth

amap presynth presynth

http://soc.microsemi.com/kb/article.aspx?id=KI8797

 Libero SoC Simulation Library Setup Instructions

 July 2014

amap SmartFusion2 <location of the precompiled libraries>

3. Compile all the necessary HDL files used in the design with the required library.

alog –work presynth temp.v (for Verilog)

alog –work presynth testbench.v

acom –work presynth temp.vhd (for Vhdl)

acom –work presynth testbench.vhd

4. After compiling, simulate the design.

asim –L SmartFusion2 –L presynth –t 1ps presynth.testbench

run 10us

Known Issues

 Libraries compiled using Riviera-PRO are platform specific (i.e. 64-bit libraries cannot be run on 32-bit platform and vice
versa).

 While running postsynth simulations of designs containing MSS block, or postlayout simulations of designs using SERDES,
the BFM simulations do not work if the –PL option is not specified with the asim command for smartfusion2 library. This is
because during simulation, MSS is resolved from the work library (because of the default binding and the worklib being
postsynth/postlayout) where it is just a black box. The –PL option indicates library precedence (i.e the libraries specified with
this option are searched before the libraries specified with the –L option).

 For designs containing SERDES/MDDR/FDDR, use the following option in your run.do Tcl files while running simulations after
compiling their designs:

o Active-HDL: asim –o2
o Riviera-PRO: asim –O2 (for presynth and postlayout simulations) and asim –O5 (for postsynth simulations)

Pending SARs. Contact Microsemi SoC Technical Support for more information:

SAR 49892 – Crash in Active-HDL while running MDDR BFM simulations
SAR 49908 – Active-HDL: VHDL Error for Math block simulations
SAR 50627 – Riviera-PRO 2013.02: Simulation errors for SERDES designs
SAR 50461 – Riviera-PRO: asim -O2/-O5 option in simulations

Sample TCL and shell scripts

The scripts below convert ModelSim run.do files into Aldec simulator compatible run.do files. (This script is not required if Active-HDL is
added as an active tool profile in Libero tool profiles. Libero will automatically generate the run.do file required for simulation.)

Script Usage for Active-HDL

Place this script in the Libero SoC simulation folder and execute it from there.

Active-HDL:

perl active_hdl_parser.pl presynth_run.do postsynth_run.do

postlayout_run.do Microsemi_Family

Location_of_ActiveHDL_Precompiled_libraries

Active_hdl_parser_pl.txt

#!/usr/bin/perl -w

#Usage: perl active_hdl_parser.pl presynth_run.do postsynth_run.do postlayout_run.do Microsemi_Family

Precompiled_Libraries_location#

 Libero SoC Simulation Library Setup Instructions

use POSIX;

use strict;

my ($presynth, $postsynth, $postlayout, $family, $lib_location) = @ARGV;

&active_hdl_parser($presynth, $family, $lib_location);

&active_hdl_parser($postsynth, $family, $lib_location);

&active_hdl_parser($postlayout, $family, $lib_location);

sub active_hdl_parser {

my $ModelSim_run_do = $_[0];

my $actel_family = $_[1];

my $lib_location = $_[2];

my $state;

open (INFILE,"$ModelSim_run_do");

my @ModelSim_run_do = <INFILE>;

my $line;

if ($ModelSim_run_do =~ m/(presynth)/)

{

open (OUTFILE,">presynth_Aldec.do");

$state = $1;

} elsif ($ModelSim_run_do =~ m/(postsynth)/)

{

open (OUTFILE,">postsynth_Aldec.do");

$state = $1;

} elsif ($ModelSim_run_do =~ m/(postlayout)/)

{

open (OUTFILE,">postlayout_Aldec.do");

$state = $1;

} else

{

print "Wrong Inputs given to the file\n";

print "#Usage: perl active_hdl_parser.pl presynth_run.do postsynth_run.do postlayout_run.do

\"Libraries_location\"\n";

}

foreach $line (@ModelSim_run_do)

{

General Operations ###

$line =~ s/quietly set PROJECT_DIR/set dsn/g;

$line =~ s/\$\{PROJECT_DIR\}/\$dsn/g;

$line =~ s/vlib/alib/;

$line =~ s/vmap/amap/;

$line =~ s/vcom/acom/;

$line =~ s/^vlog/alog/;

$line =~ s/vsim/asim/g;

$line =~ s/exit/endsim/g;

 if ($line =~ m/(set\s+dsn.*)/)

 Libero SoC Simulation Library Setup Instructions

 July 2014

 {

 print OUTFILE "$1 \n";

 } elsif ($line =~ m/^source/)

 {

 print OUTFILE "$line ";

 } elsif ($line =~ m/alib\s+.*($state)/)

 {

 print OUTFILE "alib $1_Aldec \n";

 } elsif ($line =~ m/^amap/)

 {

 if ($line =~ m/amap\s+(.*._LIB)\s+.*/)

 {

 print $1."\n";

 print OUTFILE "alib $1 \n";

 print OUTFILE "$line \n";

 } elsif ($line =~ m/amap\s+.*($state)/)

 {

 $line =~ s/$state/$state_Aldec/g;

 print OUTFILE "$line \n";

 } elsif ($line =~ m/amap\s+.*($actel_family)/)

 {

 print OUTFILE "alib $1 \n";

 print OUTFILE "amap $1 \"$lib_location\"\n\n";

 }

 } elsif ($line =~ m/(alog\s+.*?._LIB).*.(refresh)/ || $line =~ m/(acom\s+.*?._LIB).*.(refresh)/)

 {

 print "\$1 = $1; \$2 = $2; \n";

 $line = $1;

 $line =~ s/\-\w+/-refresh/;

 print OUTFILE "$line \n";

 } elsif ($line =~ m/^alog/ || $line =~ m/^acom/)

 {

 $line =~ s/$state/$state_Aldec/g;

 print OUTFILE "$line \n";

 } elsif ($line =~ m/^asim/)

 {

 $line =~ s/$state/$state_Aldec/g;

 print OUTFILE "$line \n";

 } elsif ($line =~ m/(run.*)/)

 {

 print OUTFILE "$1 \n";

 } elsif ($line =~ m/endsim/)

 {

 print OUTFILE "$line \n";

 }

}

close(INFILE);

close(OUTFILE);

}

 Libero SoC Simulation Library Setup Instructions

Script Usage for Riviera-PRO

Place this script in the Libero SoC simulation folder and execute it from there. (This script is not required if RivieraPRO is added as an
active tool profile in Libero tool profiles. Libero will automatically generate the run.do file required for simulation.)

Riviera-PRO:

perl rivierapro_parser.pl presynth_run.do postsynth_run.do

postlayout_run.do Microsemi_Family

Location_of_RivieraPRO_Precompiled_libraries

Rivierapro_parser_pl.txt

#!/usr/bin/perl -w

#Usage: perl active_hdl_parser.pl presynth_run.do postsynth_run.do postlayout_run.do Microsemi_Family

Precompiled_Libraries_location#

use POSIX;

use strict;

my ($presynth, $postsynth, $postlayout, $family, $lib_location, $folder_name) = @ARGV;

&active_hdl_parser($presynth, $family, $lib_location, $folder_name);

&active_hdl_parser($postsynth, $family, $lib_location, $folder_name);

&active_hdl_parser($postlayout, $family, $lib_location, $folder_name);

sub active_hdl_parser {

my $ModelSim_run_do = $_[0];

my $actel_family = $_[1];

my $lib_location = $_[2];

my $folder = $_[3];

my $state;

if (-e "$ModelSim_run_do")

{

 open (INFILE,"$ModelSim_run_do");

 my @ModelSim_run_do = <INFILE>;

 my $line;

 if ($ModelSim_run_do =~ m/(presynth)/)

 {

 `mkdir ALDEC_PRESYNTH`;

 open (OUTFILE,">ALDEC_PRESYNTH/presynth_Aldec.do");

 $state = $1;

 } elsif ($ModelSim_run_do =~ m/(postsynth)/)

 {

 `mkdir ALDEC_POSTSYNTH`;

 open (OUTFILE,">ALDEC_POSTSYNTH/postsynth_Aldec.do");

 $state = $1;

 } elsif ($ModelSim_run_do =~ m/(postlayout)/)

 {

 `mkdir ALDEC_POSTLAYOUT`;

 Libero SoC Simulation Library Setup Instructions

 July 2014

 open (OUTFILE,">ALDEC_POSTLAYOUT/postlayout_Aldec.do");

 $state = $1;

 } else

 {

 print "Wrong Inputs given to the file\n";

 print "#Usage: perl active_hdl_parser.pl presynth_run.do postsynth_run.do postlayout_run.do

\"Libraries_location\"\n";

 }

 foreach $line (@ModelSim_run_do)

 {

 ### General Operations ###

 $line =~ s/quietly set PROJECT_DIR/set dsn/g;

 $line =~ s/\$\{PROJECT_DIR\}/\$dsn/g;

 $line =~ s/vlib/alib/;

 $line =~ s/vmap/amap/;

 $line =~ s/vcom/acom/;

 $line =~ s/^vlog/alog/;

 $line =~ s/vsim/asim/g;

 $line =~ s/exit/endsim/g;

 if ($line =~ m/(set\s+dsn.*)/)

 {

 print OUTFILE "$1 \n";

 # } elsif ($line =~ m/^source/)

 # {

 # print OUTFILE "$line ";

 } elsif ($line =~ m/alib\s+.*($state)/)

 {

 print OUTFILE "alib $1_Aldec \n";

 } elsif ($line =~ m/alib\s+ddr/)

 {

 print OUTFILE "alib ddr \n";

 print OUTFILE "amap ddr \"E\:\/WORK\/libs\/ddr\" \n";

 } elsif ($line =~ m/^amap/)

 {

 if ($line =~ m/amap\s+(.*._LIB)\s+.*/)

 {

 print $1."\n";

 print OUTFILE "alib $1 \n";

 $line =~ s/..\/component/..\/..\/component/g;

 print OUTFILE "$line \n";

 } elsif ($line =~ m/amap\s+.*($state)/)

 {

 $line =~ s/$state/$state_Aldec/g;

 print OUTFILE "$line \n";

 } elsif ($line =~ m/amap\s+.*($actel_family)/)

 {

 print OUTFILE "alib $1 \n";

 print OUTFILE "amap $1 \"$lib_location\"\n\n";

 Libero SoC Simulation Library Setup Instructions

 #print OUTFILE "alog -work $state_Aldec \"\$dsn\/simulation\/smartfusion2.v\" ";

 }

 } elsif ($line =~ m/(alog\s+.*?._LIB).*.(refresh)/ || $line =~ m/(acom\s+.*?._LIB).*.(refresh)/

)

 {

 print "\$1 = $1; \$2 = $2; \n";

 $line = $1;

 $line =~ s/\-\w+/-refresh/;

 print OUTFILE "$line \n";

 } elsif ($line =~ m/^alog/ || $line =~ m/^acom/)

 {

 $line =~ s/$state/$state_Aldec/g;

 print OUTFILE "$line \n";

 } elsif ($line =~ m/^asim/ && $state eq "postsynth" && ($folder =~ m/DDR/ || $folder =~

m/SERDES/ || $folder =~ m/PI_Sim/ || $folder =~ m/ENVM/))

 {

 $line =~ s/$state/$state_Aldec/g;

 $line =~ s/asim.*wlf\"/asim /g;

 $line =~ s/asim/asim -O5/g;

 print OUTFILE "$line \n";

 } elsif ($line =~ m/^asim/ && $state ne "postsynth" && ($folder =~ m/DDR/ || $folder =~

m/SERDES/ || $folder =~ m/PI_Sim/ || $folder =~ m/ENVM/))

 {

 $line =~ s/$state/$state_Aldec/g;

 $line =~ s/asim.*wlf\"/asim /g;

 $line =~ s/asim/asim -O2/g;

 print OUTFILE "$line \n";

 } elsif ($line =~ m/^asim/)

 {

 $line =~ s/$state/$state_Aldec/g;

 $line =~ s/asim.*wlf\"/asim /g;

 #$line =~ s/asim/asim/g;

 print OUTFILE "$line \n";

 } elsif ($line =~ m/(run.*)/)

 {

 print OUTFILE "$1 \n";

 } elsif ($line =~ m/endsim/)

 {

 print OUTFILE "$line \n";

 }

 }

 close(INFILE);

 close(OUTFILE);

}

}

 Libero SoC Simulation Library Setup Instructions

 July 2014

Cadence Incisive Setup
OS PLATFORM: LINUX only

Required environment variables:

1. LM_LICENSE_FILE: must include a pointer to the license file.
2. CDS_ROOT: must point to the home directory location of Cadence Incisive Installation.
3. PATH: must point to the bin location under the tools directory pointed by CDS_ROOT (i.e., $CDS_ROOT/tools/bin/64bit for a

64-bit machine and $cds_root/tools/bin for a 32-bit machine).

There are three ways of setting up the simulation environment in case of a switch between 64-bit and 32-bit operating systems:

Case1: PATH Variable

set path = (install_dir/tools/bin/64bit $path) for 64-bit machines and

set path = (install_dir/tools/bin $path) for 32-bit machines

Case2: Using the -64bit Command-line Option

In the command line specify -64bit option in order to invoke the 64-bit executable.

Case3: Setting the INCA_64BIT or CDS_AUTO_64BIT Environment Variable

The INCA_64BIT variable is treated as boolean. You can set this variable to any value or to a null string.
setenv INCA_64BIT

Note: The INCA_64BIT environment variable does not affect other Cadence tools, such as IC tools. However, for Incisive tools, the

INCA_64BIT variable overrides the setting for the CDS_AUTO_64BIT environment variable. If the INCA_64BIT environment variable is
set, all Incisive tools will be run in 64-bit mode.

setenv CDS_AUTO_64BIT INCLUDE:INCA

Note: The string INCA must be in uppercase. Because all executables must be run in either 32-bit mode or in 64-bit mode, do not set

the variable to include one executable, as in the following:
setenv CDS_AUTO_64BIT INCLUDE:ncelab

Other Cadence tools, such as IC tools, also use the CDS_AUTO_64BIT environment variable to control the selection of 32-bit or 64-bit
executables. The following table shows how you can set the CDS_AUTO_64BIT variable to run the Incisive tools and IC tools in all
modes.

CDS_AUTO_64BIT Variable Incisive Tools IC Tools

setenv CDS_AUTO_64BIT ALL 64-bit 64-bit

setenv CDS_AUTO_64BIT NONE 32-bit 32-bit

setenv CDS_AUTO_64BIT EXCLUDE:ic_binary 64-bit 32-bit

setenv CDS_AUTO_64BIT EXCLUDE:INCA 32-bit 64-bit

Because all Incisive tools must be run in either 32-bit mode or in 64-bit mode, do not use EXCLUDE to exclude a specific executable,
as in the following:

setenv CDS_AUTO_64BIT EXCLUDE:ncelab

Note: If you set the CDS_AUTO_64BIT variable to exclude the Incisive tools (setenv CDS_AUTO_64BIT EXCLUDE:INCA), all Incisive

tools are run in 32-bit mode. However, the -64bit command-line option overrides the environment variable.

The following configuration files help you manage your data and control the operation of the simulation tools and utilities:

 Libero SoC Simulation Library Setup Instructions

 Library mapping file (cds.lib)—Defines a logical name for the libraries used in the design and associates the logical libraries
with physical directory names.

 Variables file (hdl.var)—Defines variables that affect the behavior of simulation tools and utilities.

Libero SoC and NCSim

After creating a copy of the run.do Tcl files, do the following steps to run your simulation using NCSim.

1. Create a cds.lib file that defines which libraries are accessible and where they are located. The file contains statements that map

library logical names to their physical directory paths. For example, if you are running presynth simulation, the cds.lib file can be
written as:

DEFINE presynth ./presynth
DEFINE COREAHBLITE_LIB ./COREAHBLITE_LIB
DEFINE smartfusion2 <location of Smartfusion2 precompiled libraries on disk>

2. Create a hdl.var file, which is an optional configuration file containing configuration variables that determine how your design

environment is configured.
These include:

 Variables used to specify the work library where the compiler stores compiled objects and other derived data.

 For Verilog, variables (LIB_MAP, VIEW_MAP, WORK) that are used to specify the libraries and views to search
when the elaborator resolves instances.

 Variables that allow you to define compiler, elaborator, and simulator command-line options and arguments.
In the the presynth simulation example shown above, suppose we have 3 RTL files (a.v, b.v, testbench.v) that need to be
compiled into presynth, COREAHBLITE_LIB, and presynth libraries, respectively. The hdl.var file can be written as:

DEFINE WORK presynth
DEFINE PROJECT_DIR <location of the files>

DEFINE LIB_MAP ($LIB_MAP, ${PROJECT_DIR}/a.v => presynth)
DEFINE LIB_MAP ($LIB_MAP, ${PROJECT_DIR}/b.v => COREAHBLITE_LIB)
DEFINE LIB_MAP ($LIB_MAP, ${PROJECT_DIR}/testbench.v => presynth)
DEFINE LIB_MAP ($LIB_MAP, + => presynth)

3. Compile the design files using ncvlog option.

ncvlog +incdir+<testbench directory> –cdslib ./cds.lib –hdlvar ./hdl.var –logfile ncvlog.log –update –linedebug a.v b.v
testbench.v

4. Elaborate the design using ncelab: The elaborator constructs a design hierarchy based on the instantiation and configuration

information in the design, establishes signal connectivity, and computes initial values for all objects in the design. The elaborated
design hierarchy is stored in a simulation snapshot, which is the representation of your design that the simulator uses to run the
simulation.

ncelab –Message –cdslib ./cds.lib –hdlvar ./hdl.var –logfile ncelab.log –errormax 15 –access +rwc –status worklib.<name
of testbench module>:module

Elaboration during postlayout simulation
In postlayout simulations, first compile the SDF file before elaboration using the ncsdfc command.

ncsdfc <filename>.sdf –output <filename>.sdf.X

During elaboration, use the compiled SDF output with the –autosdf option, as follows:

ncelab -autosdf –Message –cdslib ./cds.lib –hdlvar ./hdl.var –logfile ncelab.log –errormax 15 –access +rwc –status
worklib.<name of testbench module>:module –sdf_cmd_file ./sdf_cmd_file

 Libero SoC Simulation Library Setup Instructions

 July 2014

The sdf_cmd_file should be as follows:

COMPILED_SDF_FILE = “<location of compiled SDF file>” ,
SCOPE = <testbench_module_name>.< name_of_top_level_module_instantiated_in_testbench>;

5. Simulating using ncsim: After elaboration, a simulation snapshot is created and is loaded by ncsim for simulation. This can be

run in batch mode or GUI mode.

ncsim –Message –batch/-gui –cdslib ./cds.lib –hdlvar ./hdl.var –logfile ncsim.log –errormax 15 –status worklib.<testbench
module name>:module

6. Using ncverilog or irun: All the above three steps of compiling, elaborating and simulating can be put into a shell script and

sourced from the command line. Instead of using these three steps, the design can be simulated in one step using the ncverilog or
irun option as follows:

ncverilog +incdir+<testbench location> -cdslib ./cds.lib –hdlvar ./hdl.var <all RTL files used in the design>
irun +incdir+<testbench location> -cdslib ./cds.lib –hdlvar ./hdl.var <all RTL files used in the design>

Known Issues

Testbench Workaround:

Using the following statement for specifying the clock frequency in the testbench generated by user or the default
testbench generated by Libero SoC does not work with NCSim.

always @(SYSCLK)
 #(SYSCLK_PERIOD / 2.0) SYSCLK <= !SYSCLK;

Modify the clock generator statement as follows to run simulation:

always #(SYSCLK_PERIOD / 2.0) SYSCLK = ~SYSCLK;

Compiled libraries for NCSim are platform specific (i.e., 64-bit libraries are not compatible on a 32-bit platform and vice versa).

Postsynth and Postlayout Simulations using MSS and SERDES(Verilog only):

While running postsynth simulations of Verilog designs containing MSS block, or postlayout simulations of Verilog designs using
SERDES, the BFM simulations do not work if the –libmap option is not specified during elaboration. This is because during elaboration,
MSS is resolved from the work library (because of the default binding and the worklib being postsynth/postlayout) where it is just a
black box.

The ncelab command should be written as follows to resolve the MSS block from smartfusion2 precompiled library.

ncelab -libmap lib.map -libverbose -Message -access +rwc cfg1

and the lib.map file should be as follows:

config cfg1;
 design <testbench_module_name>;
 default liblist smartfusion2 <worklib>;
endconfig

This will resolve any cell in the smartfusion2 library before looking in the work library (i.e., postsynth/postlayout).

The –libmap option can be used by default during elaboration for every simulation (presynth, postsynth and postlayout). This will avoid
simulation issues that are caused due to resolution of instances from libraries.

 Libero SoC Simulation Library Setup Instructions

VHDL Designs elaboration using NCSim:

For VHDL designs use the –lib_binding option during elaboration to resolve the instances from the respective libraries specified in
cds.lib.

ncelab: *F,INTERR: INTERNAL EXCEPTION:

This ncelab tool exception is a caveat for designs containing FDDR in Smartfusion2 and IGLOO2 during postsynth and postlayout
simulations using the –libmap option. This issue has been reported to the Cadence support team (SAR 52113).
The crash is seen in Incisive 11.10 and 12.10 versions.

DDR Verification IP testbench workaround for VHDL designs:

NCSim crashes for VHDL testbenches containing DDR Verification IP (SimDRAM) which are either generated through Smartdesign
testbench or which use component instantiation of the SimDRAM component available in the smartfusion2 library. As a workaround,
use entity instantiation of the SimDRAM component for VHDL testbenches using DDR Verification IP (seen as part of simulation cores
in catalog).

Example:

entity testbench is
.
.
SimDRAM_0 : entity smartfusion2.SimDRAM
 generic map(
 AL => (0),
 BL_BITS => (8),
 CL => (6),
.
.
port map(
 DRAM_CAS_N => I1_top_0_FDDR_CAS_N,
 DRAM_CKE => I1_top_0_FDDR_CKE,
.
.
end behavioural;

Postlayout Simulations for IGLOO2 designs(VHDL only, SAR 59447):

Postlayout simulations of IGLOO2 VHDL designs containing MDDR, FDDR, and SERDES which use peripheral initialization solution fail
when simulated using NCSim. The eNVM reads result in X’s.

NVM_0: User Read Data: 32'hxxxxxxxx : Mem Address: 800 : Time: 10180 ns
NVM_0: User Read Data: 32'hxxxxxxxx : Mem Address: 804 : Time: 10280 ns
NVM_0: User Read Data: 32'hxxxxxxxx : Mem Address: 808 : Time: 10460 ns

Sample TCL and shell scripts

The files below are the configuration files needed for setting up the design and shell script file for running NCSim commands.

Cds.lib

DEFINE smartfusion2 /scratch/krydor/tmpspace/users/me/nc-vlog64/SmartFusion2

DEFINE COREAHBLITE_LIB ./COREAHBLITE_LIB

DEFINE presynth ./presynth

Hdl.var

DEFINE WORK presynth

http://bugzilla/show_bug.cgi?id=52113
http://bugzilla/show_bug.cgi?id=59447

 Libero SoC Simulation Library Setup Instructions

 July 2014

DEFINE PROJECT_DIR

/scratch/krydor/tmpspace/sqausers/me/3rd_party_simulators/Cadence/IGLOO2/ENVM/M2GL050/envm_fic1_ser1_v/eNVM_fab_

master

DEFINE LIB_MAP ($LIB_MAP,

${PROJECT_DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite_addrdec.v =>

COREAHBLITE_LIB)

DEFINE LIB_MAP ($LIB_MAP,

${PROJECT_DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite_defaultslavesm.v =>

COREAHBLITE_LIB)

DEFINE LIB_MAP ($LIB_MAP,

${PROJECT_DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite_masterstage.v =>

COREAHBLITE_LIB)

DEFINE LIB_MAP ($LIB_MAP,

${PROJECT_DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite_slavearbiter.v =>

COREAHBLITE_LIB)

DEFINE LIB_MAP ($LIB_MAP,

${PROJECT_DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite_slavestage.v =>

COREAHBLITE_LIB)

DEFINE LIB_MAP ($LIB_MAP,

${PROJECT_DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite_matrix2x16.v =>

COREAHBLITE_LIB)

DEFINE LIB_MAP ($LIB_MAP,

${PROJECT_DIR}/component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite.v => COREAHBLITE_LIB)

DEFINE LIB_MAP ($LIB_MAP, ${PROJECT_DIR}/component/work/SB/CCC_0/SB_CCC_0_FCCC.v => presynth)

DEFINE LIB_MAP ($LIB_MAP,

${PROJECT_DIR}/component/Actel/DirectCore/CoreConfigMaster/2.0.101/rtl/vlog/core/coreconfigmaster.v => presynth

)

DEFINE LIB_MAP ($LIB_MAP,

${PROJECT_DIR}/component/Actel/DirectCore/CoreConfigP/4.0.100/rtl/vlog/core/coreconfigp.v => presynth)

DEFINE LIB_MAP ($LIB_MAP,

${PROJECT_DIR}/component/Actel/DirectCore/CoreResetP/5.0.103/rtl/vlog/core/coreresetp_pcie_hotreset.v =>

presynth)

DEFINE LIB_MAP ($LIB_MAP,

${PROJECT_DIR}/component/Actel/DirectCore/CoreResetP/5.0.103/rtl/vlog/core/coreresetp.v => presynth)

DEFINE LIB_MAP ($LIB_MAP, ${PROJECT_DIR}/component/work/SB/FABOSC_0/SB_FABOSC_0_OSC.v => presynth)

DEFINE LIB_MAP ($LIB_MAP, ${PROJECT_DIR}/component/work/SB_HPMS/SB_HPMS.v => presynth)

DEFINE LIB_MAP ($LIB_MAP, ${PROJECT_DIR}/component/work/SB/SB.v => presynth)

DEFINE LIB_MAP ($LIB_MAP, ${PROJECT_DIR}/component/work/SB_top/SERDES_IF_0/SB_top_SERDES_IF_0_SERDES_IF.v =>

presynth)

DEFINE LIB_MAP ($LIB_MAP, ${PROJECT_DIR}/component/work/SB_top/SB_top.v => presynth)

DEFINE LIB_MAP ($LIB_MAP, ${PROJECT_DIR}/component/work/SB_top/testbench.v => presynth)

DEFINE LIB_MAP ($LIB_MAP, + => presynth)

Commands.csh

ncvlog +incdir+../../component/work/SB_top -cdslib ./cds.lib -hdlvar ./hdl.var -logfile ncvlog.log -errormax 15

-update -linedebug ../../component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite_addrdec.v

../../component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite_defaultslavesm.v

../../component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite_masterstage.v

../../component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite_slavearbiter.v

../../component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite_slavestage.v

../../component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite_matrix2x16.v

../../component/Actel/DirectCore/CoreAHBLite/4.0.100/rtl/vlog/core/coreahblite.v

../../component/work/SB/CCC_0/SB_CCC_0_FCCC.v

../../component/Actel/DirectCore/CoreConfigMaster/2.0.101/rtl/vlog/core/coreconfigmaster.v

../../component/Actel/DirectCore/CoreConfigP/4.0.100/rtl/vlog/core/coreconfigp.v

../../component/Actel/DirectCore/CoreResetP/5.0.103/rtl/vlog/core/coreresetp_pcie_hotreset.v

../../component/Actel/DirectCore/CoreResetP/5.0.103/rtl/vlog/core/coreresetp.v

../../component/work/SB/FABOSC_0/SB_FABOSC_0_OSC.v ../../component/work/SB_HPMS/SB_HPMS.v

 Libero SoC Simulation Library Setup Instructions

../../component/work/SB/SB.v ../../component/work/SB_top/SERDES_IF_0/SB_top_SERDES_IF_0_SERDES_IF.v

../../component/work/SB_top/SB_top.v ../../component/work/SB_top/testbench.v

ncelab -Message -cdslib ./cds.lib -hdlvar ./hdl.var -work presynth -logfile ncelab.log -errormax 15 -access +rwc

-status presynth.testbench:module

ncsim -Message -batch -cdslib ./cds.lib -hdlvar ./hdl.var -logfile ncsim.log -errormax 15 -status

presynth.testbench:module

Automation

The script below converts ModelSim run.do files into configuration files needed to run simulations using NCSim.

Script Usage
perl cadence_parser.pl presynth_run.do postsynth_run.do postlayout_run.do Microsemi_Family

Location_of_Cadence_Precompiled_libraries

Cadence_parser.pl

#!/usr/bin/perl –w

#Usage: perl cadence_parser.pl presynth_run.do postsynth_run.do postlayout_run.do Microsemi_Family

Precompiled_Libraries_location #

use POSIX;

use strict;

my ($presynth, $postsynth, $postlayout, $family, $lib_location) = @ARGV;

&cadence_parser($presynth, $family, $lib_location);

&cadence_parser($postsynth, $family, $lib_location);

&cadence_parser($postlayout, $family, $lib_location);

sub cadence_parser {

my $modelsim_run_do = $_[0];

my $actel_family = $_[1];

my $lib_location = $_[2];

my $state;

my %lib_hash = ();

my $stimulus;

my $tb_module_name;

my $lib;

my $hdl;

my $sdf;

my $hdl_type;

my $elaboration_component;

my @vhdl;

if (-e "$modelsim_run_do")

{

 open (INFILE,"$modelsim_run_do");

 my @modelsim_run_do = <INFILE>;

 my $line;

 Libero SoC Simulation Library Setup Instructions

 July 2014

 if ($modelsim_run_do =~ m/(presynth)/)

 {

 `mkdir CADENCE_PRESYNTH`;

 $state = $1;

 chdir("CADENCE_PRESYNTH");

 } elsif ($modelsim_run_do =~ m/(postsynth)/)

 {

 `mkdir CADENCE_POSTSYNTH`;

 $state = $1;

 chdir("CADENCE_POSTSYNTH");

 } elsif ($modelsim_run_do =~ m/(postlayout)/)

 {

 `mkdir CADENCE_POSTLAYOUT`;

 $state = $1;

 chdir("CADENCE_POSTLAYOUT");

 } else

 {

 print "Wrong Inputs given to the file\n";

 print "#Usage: perl cadence_parser.pl presynth_run.do postsynth_run.do postlayout_run.do

\"Libraries_location\"\n";

 }

 # Creates cds.lib file

 open (CDSLIB,">./cds.lib");

 # Creates hdl.var file

 open (HDLVAR,">./hdl.var");

 # Creates commands file

 open (COMMANDS,">./commands");

 print CDSLIB 'softinclude $CDS_ROOT/tools.lnx86/inca/files/cds.lib\n';

 print CDSLIB "DEFINE $actel_family $lib_location\n";

 print HDLVAR 'include $CDS_ROOT/tools.lnx86/inca/files/hdl.var\n';

 print HDLVAR "DEFINE WORK $state\n";

@vhdl = `grep ".vhd" ../$modelsim_run_do`;

if (exists $vhdl[0]) {

$hdl_type = "vhdl";

$elaboration_component = "entity";

} else {

$hdl_type = "verilog";

$elaboration_component = "module";

}

if ($hdl_type eq "verilog") {

 foreach $line (@modelsim_run_do)

 {

 if ($line =~ m/quietly set PROJECT_DIR\s+\"(.*?)\"/)

 {

 print HDLVAR "DEFINE PROJECT_DIR $1\n\n";

 }

 Libero SoC Simulation Library Setup Instructions

 elsif ($line =~ m/^vlog\s+-work\s+(.*?)\s+\"(.*?)\"\s+.*/)

 {

 print "Library is $1 and hdlfile is $2 \n";

 push @{ $lib_hash{"$1"} }, $2;

 }

 elsif ($line =~ m/^vlog\s+\"(.*incdir.*?)\"\s+-work.*/)

 {

 $stimulus = $1;

 print "stimulus = $stimulus\n";

 if ($line =~ m/^vlog\s+\".*incdir.*?\"\s+-work\s+(.*?)\s+\"(.*?)\"\s+.*/)

 {

 push @{ $lib_hash{"$1"} }, $2;

 $tb_module_name = $2;

 $tb_module_name =~ s/\$\{PROJECT_DIR\}/..\/../g;

 $tb_module_name = `grep "module.*.;" $tb_module_name`;

 $tb_module_name =~ m/module\s+(\w*).*\;/;

 $tb_module_name = $1;

 print "tb_module_name = $tb_module_name \n";

 }

 }

 if ($line =~ m/^vsim.*.\-sdf.*\s+.*?\=(.*\.sdf)/)

 {

 print "sdf = $1\n";

 $sdf = $1;

 $sdf =~ s/\$\{PROJECT_DIR\}/..\/../g;

 }

 }

 $stimulus =~ s/\$\{PROJECT_DIR\}/..\/../g;

 print COMMANDS "ncvlog $stimulus -cdslib ./cds.lib -hdlvar ./hdl.var -logfile ncvlog.log -errormax 15 -

update -linedebug ";

} elsif ($hdl_type eq "vhdl") {

 foreach $line (@modelsim_run_do)

 {

 if ($line =~ m/quietly set PROJECT_DIR\s+\"(.*?)\"/)

 {

 print HDLVAR "DEFINE PROJECT_DIR $1\n\n";

 }

 elsif ($line =~ m/^vcom.*.-work\s+(.*?)\s+\"(.*?)\"\s+.*/)

 {

 print "Library is $1 and hdlfile is $2 \n";

 push @{ $lib_hash{"$1"} }, $2;

 }

 $tb_module_name = "testbench";

 if ($line =~ m/^vsim.*.\-sdf.*\s+.*?\=(.*\.sdf)/)

 {

 print "sdf = $1\n";

 $sdf = $1;

 $sdf =~ s/\$\{PROJECT_DIR\}/..\/../g;

 }

 }

 Libero SoC Simulation Library Setup Instructions

 July 2014

 print COMMANDS "ncvhdl -cdslib ./cds.lib -hdlvar ./hdl.var -logfile ncvlog.log -errormax 15 -update -v93

-linedebug ";

}

 foreach $lib (keys %lib_hash)

 {

 `mkdir $lib`;

 print CDSLIB "DEFINE $lib \.\/$lib \n";

 foreach $hdl (@{ $lib_hash{$lib} })

 {

 print HDLVAR "DEFINE LIB_MAP \(\$LIB_MAP, ".$hdl." \=\> ".$lib." \) \n";

 $hdl =~ s/\$\{PROJECT_DIR\}/..\/../g;

 print COMMANDS $hdl." ";

 }

 }

 print HDLVAR "DEFINE LIB_MAP \(\$LIB_MAP, \+ \=\> ".$state." \)\n";

 print COMMANDS "\n\n";

 if ($state eq "presynth")

 {

 print COMMANDS "ncelab -Message -cdslib ./cds.lib -hdlvar ./hdl.var -work $state -logfile

ncelab.log -errormax 15 -access +rwc -status $state.$tb_module_name:$elaboration_component\n";

 print COMMANDS "\n\n";

 }

 elsif ($state eq "postsynth")

 {

 print COMMANDS "ncelab -libmap ./lib.map -libverbose -Message -cdslib ./cds.lib -hdlvar ./hdl.var

-work $state -logfile ncelab.log -errormax 15 -access +rwc cfg1\n";

 open(cfg_file,">./lib.map");

 print cfg_file "config cfg1;\n";

 print cfg_file "design $tb_module_name;\n";

 print cfg_file "default liblist $actel_family $state;\n";

 print cfg_file "endconfig\n";

 close(cfg_file);

 }

 else

 {

 print COMMANDS "ncsdfc $sdf -output $sdf\.X \n";

 print COMMANDS "ncelab -autosdf -Message -cdslib ./cds.lib -hdlvar ./hdl.var -libmap ./lib.map -

work $state -logfile ncelab.log -errormax 15 -access +rwc -status $state.$tb_module_name:$elaboration_component

-sdf_cmd_file ./sdf_cmd_file\n";

 print COMMANDS "\n\n";

 open(cfg_file,">./lib.map");

 print cfg_file "config cfg1;\n";

 print cfg_file "design $tb_module_name;\n";

 print cfg_file "default liblist $actel_family $state;\n";

 print cfg_file "endconfig\n";

 close(cfg_file);

 open (sdf_compile,">./sdf_cmd_file");

 print sdf_compile 'COMPILED_SDF_FILE = "'.$sdf.'.X"'."\n";

 Libero SoC Simulation Library Setup Instructions

 close(sdf_compile);

 }

 print COMMANDS "ncsim -Message -batch -cdslib ./cds.lib -hdlvar ./hdl.var -logfile ncsim.log -errormax

15 -status $state.$tb_module_name:$elaboration_component"."\n";

 close(COMMANDS);

 close(HDLVAR);

 close(CDSLIB);

 close(INFILE);

 chdir("..");

}

}

Mentor Graphics QuestaSim Setup
OS PLATFORM: WINDOWS and LINUX

Required environment variables:

LM_LICENSE_FILE: must include the path to the license file
MODEL_TECH: must identify the path to the home directory location of the QuestaSim installation
PATH: must point to the executable location pointed to by MODEL_TECH

The run.do Tcl files generated by Libero SoC for simulations using ModelSim Microsemi Editions can be used for simulations using
QuestaSim with a single change. In the ModelSim ME run.do Tcl file, the precompiled libraries location needs to be modified.

Note:
All the designs which are simulated using QuestaSim must include the -novopt option along with the vsim command in the run.do TCL
scripts.

Sample TCL and shell scripts

The following scripts convert the ModelSim ME run.do files into QuestaSim compatible run.do files. (This script is not required if
Questasim is added as an active tool profile in Libero tool profiles. Libero will automatically generate the run.do file required for
simulation.)

Script Usage
perl questa_parser.pl presynth_run.do postsynth_run.do postlayout_run.do Microsemi_Family

Location_of_Questasim_Precompiled_libraries

Questa_parser_pl.txt

#!/usr/bin/perl -w

#Usage: perl questa_parser.pl presynth_run.do postsynth_run.do postlayout_run.do Microsemi_Family

Precompiled_Libraries_location#

use POSIX;

use strict;

my ($presynth, $postsynth, $postlayout, $family, $lib_location) = @ARGV;

&questa_parser($presynth, $family, $lib_location);

&questa_parser($postsynth, $family, $lib_location);

 Libero SoC Simulation Library Setup Instructions

 July 2014

&questa_parser($postlayout, $family, $lib_location);

sub questa_parser {

my $ModelSim_run_do = $_[0];

my $actel_family = $_[1];

my $lib_location = $_[2];

my $state;

if (-e "$ModelSim_run_do")

{

open (INFILE,"$ModelSim_run_do");

my @ModelSim_run_do = <INFILE>;

my $line;

if ($ModelSim_run_do =~ m/(presynth)/)

{

`mkdir QUESTA_PRESYNTH`;

open (OUTFILE,">QUESTA_PRESYNTH/presynth_questa.do");

$state = $1;

} elsif ($ModelSim_run_do =~ m/(postsynth)/)

{

`mkdir QUESTA_POSTSYNTH`;

open (OUTFILE,">QUESTA_POSTSYNTH/postsynth_questa.do");

$state = $1;

} elsif ($ModelSim_run_do =~ m/(postlayout)/)

{

`mkdir QUESTA_POSTLAYOUT`;

open (OUTFILE,">QUESTA_POSTLAYOUT/postlayout_questa.do");

$state = $1;

} else

{

print "Wrong Inputs given to the file\n";

print "#Usage: perl questa_parser.pl presynth_run.do postsynth_run.do postlayout_run.do

\"Libraries_location\"\n";

}

foreach $line (@ModelSim_run_do)

{

 #General Operations

 $line =~ s/..\/designer.*simulation\///g;

 $line =~ s/$state/$state_questa/g;

 #print OUTFILE "$line \n";

 if ($line =~ m/vmap\s+.*($actel_family)/)

 {

 print OUTFILE "vmap $actel_family \"$lib_location\"\n";

 } elsif ($line =~ m/vmap\s+(.*._LIB)/)

 {

 $line =~ s/..\/component/..\/..\/component/g;

 print OUTFILE "$line \n";

 } elsif ($line =~ m/vsim/)

 Libero SoC Simulation Library Setup Instructions

 {

 $line =~ s/vsim/vsim -novopt/g;

 print OUTFILE "$line \n";

 } else

 {

 print OUTFILE "$line \n";

 }

}

close(INFILE);

close(OUTFILE);

} else {

print "$ModelSim_run_do does not exist. Rerun simulation again \n";

}

}

Synopsys VCS Setup
OS PLATFORM: LINUX only

The flow recommended by Microsemi relies on the Elaborate and Compile flow in VCS. This document includes a script that uses the
run.do Tcl scripts generated by Libero SoC and generates the setup files needed for VCS simulation. The script uses the run.do Tcl file
to:

1. Create a library mapping file, which is done using the synopsys_sim.setup file located in the same directory where the

VCS simulation is running.

2. Create a shell script file to elaborate and compile your design using VCS.

Set the appropriate environment variables for VCS based on your setup. The environment variables needed as per the VCS
documentation are:

LM_LICENSE_FILE: must include a pointer to the license server.
VCS_HOME: must point to the home directory location of the VCS installation.
PATH: must include a pointer to the bin directory below the VCS_HOME directory.

Libero SoC and VCS simulation

After setting up VCS and generating the design and the different run.do Tcl files from Libero SoC you must:

1. Create the library mapping file synopsys_sim.setup; this file contains pointers to the location of all the libraries to be used by the
design. The file name must not change and it must be located in the same directory where the simulation is running. Here is an
example for such a file for pre-synthesis simulation:

WORK > DEFAULT

SmartFusion2 : <location of the SmartFusion2 pre-compiled libraries>

presynth : ./presynth

DEFAULT : ./work

2. Elaborate the different design files, including the testbench, using the vlogan command in VCS. These commands may be included
in a shell script. Here is an example of the commands needed to elaborate a design defined in rtl.v with its testbench defined in
testbench.v:

vlogan +v2k -work presynth rtl.v

vlogan +v2k -work presynth testbench.v

3. You can then compile the design in VCS using the following command:

vcs –sim_res=1fs presynth.testbench

 Libero SoC Simulation Library Setup Instructions

 July 2014

 \The timing resolution of the simulation must be set to 1fs for correct functional simulation.

4. Once the design is compiled, you can start the simulation using the command:

./simv

5. For back-annotated simulation, the VCS command must be as follows:

vcs postlayout.testbench –sim_res=1fs –sdf max:<testbench_module_name>.<DUT instance name>:<sdf file path> –gui

–l postlayout.log

Limitations/Exceptions

1. VCS simulations can be run only for Verilog projects of Libero SoC. The VCS simulator has strict VHDL language requirements
that are not met by the Libero SoC auto-generated VHDL files.

2. You must include a $finish statement in the Verilog testbench to stop the simulation. When running simulations in GUI mode, run
time can be specified in the GUI.

Sample TCL and shell scripts

The Perl script below automates the generation of the synopsys_sim.setup file as well as the corresponding shell scripts needed to
elaborate, compile, and simulate the design.

If the design uses an MSS, you must copy the test.vec file located in the simulation folder of the Libero SoC project into the VCS
simulation folder.

Some sample run.do Tcl files generated by Libero SoC are shown below, including the corresponding library mapping and shell scripts
needed for VCS simulation.

Pre-synthesis

Presynth_run.do

quietly set ACTELLIBNAME SmartFusion2

quietly set PROJECT_DIR "/sqa/users/me/VCS_Tests/Test_DFF"

if {[file exists presynth/_info]} {

 echo "INFO: Simulation library presynth already exists"

} else {

 vlib presynth

}

vmap presynth presynth

vmap SmartFusion2 "/captures/lin/11_0_0_23_11prod/lib/ModelSim/precompiled/vlog/smartfusion2"

vlog -work presynth "${PROJECT_DIR}/component/work/SD1/SD1.v"

vlog "+incdir+${PROJECT_DIR}/stimulus" -work presynth "${PROJECT_DIR}/stimulus/SD1_TB1.v"

vsim -L SmartFusion2 -L presynth -t 1fs presynth.SD1_TB1

add wave /SD1_TB1/*

add log -r /*

run 1000ns

presynth_main.csh.txt

#!/bin/csh -f

set PROJECT_DIR = "/sqa/users/Me/VCS_Tests/Test_DFF"

 Libero SoC Simulation Library Setup Instructions

/cad_design/tools/vcs.dir/E-2011.03/bin/vlogan +v2k -work presynth "${PROJECT_DIR}/component/work/SD1/SD1.v"

/cad_design/tools/vcs.dir/E-2011.03/bin/vlogan +v2k "+incdir+${PROJECT_DIR}/stimulus" -work presynth

"${PROJECT_DIR}/stimulus/SD1_TB1.v"

/cad_design/tools/vcs.dir/E-2011.03/bin/vcs -sim_res=1fs presynth.SD1_TB1 -l compile.log

./simv -l run.log

Synopsys_sim.setup

WORK > DEFAULT

SmartFusion2 : /VCS/SmartFusion2

presynth : ./presynth

DEFAULT : ./work

Post-synthesis

postsynth_run.do

quietly set ACTELLIBNAME SmartFusion2

quietly set PROJECT_DIR "/sqa/users/Me/VCS_Tests/Test_DFF"

if {[file exists postsynth/_info]} {

 echo "INFO: Simulation library postsynth already exists"

} else {

 vlib postsynth

}

vmap postsynth postsynth

vmap SmartFusion2 "//idm/captures/pc/11_0_1_12_g4x/Designer/lib/ModelSim/precompiled/vlog/SmartFusion2"

vlog -work postsynth "${PROJECT_DIR}/synthesis/SD1.v"

vlog "+incdir+${PROJECT_DIR}/stimulus" -work postsynth "${PROJECT_DIR}/stimulus/SD1_TB1.v"

vsim -L SmartFusion2 -L postsynth -t 1fs postsynth.SD1_TB1

add wave /SD1_TB1/*

add log -r /*

run 1000ns

log SD1_TB1/*

exit

Postsynth_main_ch.txt

#!/bin/csh -f

set PROJECT_DIR = "/sqa/users/Me/VCS_Tests/Test_DFF"

/cad_design/tools/vcs.dir/E-2011.03/bin/vlogan +v2k -work postsynth "${PROJECT_DIR}/synthesis/SD1.v"

/cad_design/tools/vcs.dir/E-2011.03/bin/vlogan +v2k "+incdir+${PROJECT_DIR}/stimulus" -work postsynth

"${PROJECT_DIR}/stimulus/SD1_TB1.v"

/cad_design/tools/vcs.dir/E-2011.03/bin/vcs -sim_res=1fs postsynth.SD1_TB1 -l compile.log

./simv -l run.log

Synopsys_sim.setup

 Libero SoC Simulation Library Setup Instructions

 July 2014

WORK > DEFAULT

SmartFusion2 : /VCS/SmartFusion2

postsynth : ./postsynth

DEFAULT : ./work

Post-layout

postlayout_run.do

quietly set ACTELLIBNAME SmartFusion2

quietly set PROJECT_DIR "E:/ModelSim_Work/Test_DFF"

if {[file exists ../designer/SD1/simulation/postlayout/_info]} {

 echo "INFO: Simulation library ../designer/SD1/simulation/postlayout already exists"

} else {

 vlib ../designer/SD1/simulation/postlayout

}

vmap postlayout ../designer/SD1/simulation/postlayout

vmap SmartFusion2 "//idm/captures/pc/11_0_1_12_g4x/Designer/lib/ModelSim/precompiled/vlog/SmartFusion2"

vlog -work postlayout "${PROJECT_DIR}/designer/SD1/SD1_ba.v"

vlog "+incdir+${PROJECT_DIR}/stimulus" -work postlayout "${PROJECT_DIR}/stimulus/SD1_TB1.v"

vsim -L SmartFusion2 -L postlayout -t 1fs -sdfmax /SD1_0=${PROJECT_DIR}/designer/SD1/SD1_ba.sdf

postlayout.SD1_TB1

add wave /SD1_TB1/*

add log -r /*

run 1000ns

Postlayout_main_csh.txt

#!/bin/csh -f

set PROJECT_DIR = "/VCS_Tests/Test_DFF"

/cad_design/tools/vcs.dir/E-2011.03/bin/vlogan +v2k -work postlayout "${PROJECT_DIR}/designer/SD1/SD1_ba.v"

/cad_design/tools/vcs.dir/E-2011.03/bin/vlogan +v2k "+incdir+${PROJECT_DIR}/stimulus" -work postlayout

"${PROJECT_DIR}/stimulus/SD1_TB1.v"

/cad_design/tools/vcs.dir/E-2011.03/bin/vcs -sim_res=1fs postlayout.SD1_TB1 -sdf

max:SD1_TB1.SD1_0:${PROJECT_DIR}/designer/SD1/SD1_ba.sdf -l compile.log

./simv -l run.log

Synopsys_sim.setup

WORK > DEFAULT

SmartFusion2 : /VCS/SmartFusion2

postlayout : ./postlayout

DEFAULT : ./work

Automation

The flow can be automated using the Perl script below to convert the ModelSim run.do Tcl files into VCS compatible shell scripts,
create proper directories inside the Libero SoC simulation directory, and then run simulations.

 Libero SoC Simulation Library Setup Instructions

Run this script using the following syntax:

perl vcs_parse.pl presynth_run.do postsynth_run.do postlayout_run.do

Vcs_parse_pl.txt

#!/usr/bin/perl -w

#Usage: perl vcs_parse.pl presynth_run.do postsynth_run.do postlayout_run.do

my ($presynth, $postsynth, $postlayout) = @ARGV;

if(system("mkdir VCS_Presynth")) {print "mkdir failed:\n";}

if(system("mkdir VCS_Postsynth")) {print "mkdir failed:\n";}

if(system("mkdir VCS_Postlayout")) {print "mkdir failed:\n";}

chdir(VCS_Presynth);

`cp ../$ARGV[0] .` ;

&parse_do($presynth,"presynth");

chdir ("../");

chdir(VCS_Postsynth);

`cp ../$ARGV[1] .` ;

&parse_do($postsynth,"postsynth");

chdir ("../");

chdir(VCS_Postlayout);

`cp ../$ARGV[2] .` ;

&parse_do($postlayout,"postlayout");

chdir ("../");

sub parse_do {

 my $vlog = "/cad_design/tools/vcs.dir/E-2011.03/bin/vlogan +v2k" ;

 my %LIB = ();

 my $file = $_[0] ;

 my $state = $_[1];

 open(INFILE,"$file") || die "Can’t open File Reason might be:$!";

 if ($state eq "presynth")

 {

 open(OUT1,">presynth_main.csh") || die "Can’t create Command File Reason might be:$!";

 }

 elsif ($state eq "postsynth")

 {

 Libero SoC Simulation Library Setup Instructions

 July 2014

 open(OUT1,">postsynth_main.csh") || die "Can’t create Command File Reason might be:$!";

 }

 elsif ($state eq "postlayout")

 {

 open(OUT1,">postlayout_main.csh") || die "Can’t create Command File Reason might be:$!";

 }

 else

 {

 print "Simulation State is missing \n" ;

 }

 open(OUT2,">synopsys_sim.setup") || die "Can’t create Command File Reason might be:$!";

 # .csh file

 print OUT1 "#!/bin/csh -f\n\n\n" ;

 #SET UP FILE

 print OUT2 "WORK > DEFAULT\n" ;

 print OUT2 "SmartFusion2 : /sqa/users/Aditya/VCS/SmartFusion2\n" ;

 while ($line = <INFILE>)

 {

 if ($line =~ m/quietly set PROJECT_DIR\s+\"(.*?)\"/)

 {

 print OUT1 "set PROJECT_DIR = \"$1\"\n\n\n" ;

 }

 elsif ($line =~ m/vlog.*\.v\"/)

 {

 if ($line =~ m/\s+(\w*?)_LIB/)

 {

 #print "\$1 =$1 \n" ;

 $temp = "$1"."_LIB";

 #print "Temp = $temp \n" ;

 $LIB{$temp}++;

 }

 chomp($line);

 $line =~ s/^vlog/$vlog/ ;

 $line =~ s/

//g;

 print OUT1 "$line\n";

 }

 elsif (($line =~ m/vsim.*presynth\.(.*)/) || ($line =~ m/vsim.*postsynth\.(.*)/) ||

($line =~ m/vsim.*postlayout\.(.*)/))

 {

 $tb = $1 ;

 Libero SoC Simulation Library Setup Instructions

 $tb =~ s/

//g;

 chomp($tb);

 #print "TB Name : $tb \n";

 if ($line =~ m/sdf(.*)\.sdf/)

 {

 chomp($line);

 $line = $1 ;

 #print "LINE : $line \n" ;

 if ($line =~ m/max/)

 {

 $line =~ s/max \/// ;

 $line =~ s/=/:/;

 print OUT1 "\n\n/cad_design/tools/vcs.dir/E-2011.03/bin/vcs -

sim_res=1fs postlayout.$tb -sdf max:$tb.$line.sdf -l compile.log\n" ;

 }

 elsif ($line =~ m/min/)

 {

 $line =~ s/min \/// ;

 $line =~ s/=/:/;

 print OUT1 "\n\n/cad_design/tools/vcs.dir/E-2011.03/bin/vcs -

sim_res=1fs postlayout.$tb -sdf min:$tb.$line.sdf -l compile.log\n" ;

 }

 elsif ($line =~ m/typ/)

 {

 $line =~ s/typ \/// ;

 $line =~ s/=/:/;

 print OUT1 "\n\n/cad_design/tools/vcs.dir/E-2011.03/bin/vcs -

sim_res=1fs postlayout.$tb -sdf typ:$tb.$line.sdf -l compile.log\n" ;

 }

 #-sdfmax /M3_FIC32_0=${PROJECT_DIR}/designer/M3_FIC32/M3_FIC32_ba.sdf

-- ModelSim SDF format

 #$sdf = "-sdf

max:testbench.M3_FIC32_0:${PROJECT_DIR}/designer/M3_FIC32/M3_FIC32_ba.sdf"; --VCS SDF format

 }

 }

 }

 print OUT1 "\n\n" ;

 if ($state eq "presynth")

 {

 print OUT2 "presynth : ./presynth\n" ;

 print OUT1 "/cad_design/tools/vcs.dir/E-2011.03/bin/vcs -sim_res=1fs presynth.$tb -l

compile.log\n" ;

 }

 elsif ($state eq "postsynth")

 {

 print OUT2 "postsynth : ./postsynth\n" ;

 print OUT1 "/cad_design/tools/vcs.dir/E-2011.03/bin/vcs -sim_res=1fs postsynth.$tb -l

compile.log\n" ;

 }

 elsif ($state eq "postlayout")

 Libero SoC Simulation Library Setup Instructions

 July 2014

 {

 print OUT2 "postlayout : ./postlayout\n" ;

 }

 else

 {

 print "Simulation State is missing \n" ;

 }

 foreach $i (keys %LIB)

 {

 #print "Key : $i Value : $LIB{$i} \n" ;

 print OUT2 "$i : ./$i\n" ;

 }

 print OUT1 "\n\n" ;

 print OUT1 "./simv -l run.log\n" ;

 print OUT2 "DEFAULT : ./work\n" ;

 close INFILE;

 close OUT1;

 close OUT2;

}

ModelSim (PE/SE/DE) Setup (KI8797) for Smartfusion

Compiling the SmartFusion Simulation Library for ModelSim Full Version (PE/SE/DE)
Simulation

SmartFusion simulation with the ModelSim AE precompiled libraries errors out complaining about obsolete library format.

In most cases, the precompiled library that comes with the Libero IDE installation should work fine with ModelSim PE/SE/DE. However,
there may be cases where simulation fails. One failure occurs when the standalone ModelSim version differs from the ModelSim AE
version used to create the precompiled library. In such cases, the user needs to compile the SmartFusion Simulation library from
scratch using the source files.

For SmartFusion, there is only one source file, which is smartfusion.v. There is no vhdl library. The Neutral Marking feature from

ModelSim is used to generate the precompiled libraries (enabling it to work in both vhdl and verilog flows). If you want to compile the
library yourself, for SE, PE or DE (which allow mixed language simulation), you must use the source files found in the precompiled
libraries directory in the Libero installation path shown below:

<Libero_Installation>\Designer\lib\modelsim\precompiled\vlog\src

Steps for Compiling the Libraries

In total, 4 library files from the Libero Installation folder must be compiled, including the 1 macro cell library (Smartfusion.v) and 3
package files which are needed for VHDL simulation.

Smartfusion.v - The macro cell library which is common for Vhdl and Verilog.

fixed_float_types_c.vhdl

fixed_pkg_c.vhdl

 Libero SoC Simulation Library Setup Instructions

float_pkg_c.vhdl

The ModelSim Commands Used to Compile the Library are shown below:

Create a new directory tree called /Actel in the ModelSim Standalone directory (such as the path <ModelSim_Install_Path>/Actel).

Invoke the ModelSim PE/SE/DE HDL Simulator.

Type the following at the ModelSim Command Prompt:

cd <ModelSim_Install_Path>/Actel (To change the working directory)

vlib smartfusion (To create the smartfusion library at <ModelSim_Install_Path>/Actel/smartfusion)

vmap smartfusion <ModelSim_Install_Path>/Actel/smartfusion

vlog -work smartfusion "<Libero_Installation>/Designer/lib/modelsim/precompiled/vlog/src/smartfusion.v”

vcom -work smartfusion "<Libero_Installation>/Designer/lib/modelsim/precompiled/vlog/src/fixed_float_types_c.vhdl"

vcom -work smartfusion "<Libero_Installation>/Designer/lib/modelsim/precompiled/vlog/src/fixed_pkg_c.vhdl"

vcom -work smartfusion "<Libero_Installation>/Designer/lib/modelsim/precompiled/vlog/src/float_pkg_c.vhdl"

This command sequence will compile all four library files into the compiled library smartfusion.

The smartfusion library can now be used for Simulation with the Standalone Full Version of ModelSim PE/SE/DE.

P.S: The above steps are applicable only for the Smartfusion (G3) family, not for any other families.

 Libero SoC Simulation Library Setup Instructions

 July 2014

 Libero SoC Simulation Library Setup Instructions

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at

www.microsemi.com.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

http://www.microsemi.com/

