
Digital Signal Processing Reference
Guide

Reference Guide
December 2014

Digital Signal Processing Reference Guide Reference Guide
Revision History

Confidentiality Status
This is a non-confidential document.

Date Revision Change

16 December 2014 Revision 2 Second Release

05 June 2014 Revision 1 First Release

Digital Signal Processing Reference Guide

Revision 2 3

Table of Contents

DSP Reference Guide . 4
Introduction . 4

Advantages of using the SmartFusion2/IGLOO2 Devices for DSP Applications . 4

SmartFusion2/IGLOO2 Mathblock Architecture . 5
Key Features of Mathblock . 5
Mathblocks Resources . 5
Multiplier . 7
Adder/Subtractor . 9
I/O, Control Registers . 9

Design Methodologies . 12
RTL Based Design . 12
Model-Based Design (Synphony ME Compiler) . 18
C-Based Design . 19

DSP Applications . 19
Top-level Directory Structure of the Design Files . 20
Advanced Math Functions . 20
Filter Applications . 47
Transform Applications . 67

Appendix 1 – Design Files . 71
List of Changes . 72

Product Support . 73
Customer Service . 73

Customer Technical Support Center . 73

Technical Support . 73

Website . 73

Contacting the Customer Technical Support Center . 73
Email . 73
My Cases . 74
Outside the U.S. . 74

ITAR Technical Support . 74

DSP Reference Guide

Introduction
SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA)/IGLOO®2 FPGA devices
have unique architectural features to address various digital signal processing (DSP) based applications
for high performance systems. These features include the embedded mathblocks for high efficient
arithmetic computations, large static RAM (LSRAM) for bulk data storage, and micro SRAM (uSRAM) for
small data storage requirements such as coefficients. In addition to these features, flash based
technology and low power options built in the Microsemi® SoC FPGAs offer unique advantages in low
power DSP based systems.

The SmartFusion2/IGLOO2 mathblocks facilitate the following different signal processing applications:

• Finite Impulse Response (FIR) filters

• Infinite Impulse Response (IIR) filters

• Fast Fourier Transforms (FFT)

• Inverse Fast Fourier Transforms (IFFT)

• Discrete Cosine Transforms (DCT)

The SmartFusion2/IGLOO2 mathblocks have a built-in multipliers and adders that minimize the external
logic required to implement multiplication, multiply-add, and multiply-accumulate (MACC) functions
resulting in efficient resource usage and improved performance for DSP applications.

This reference guide describes the architectural features of the embedded mathblock, different DSP
design methodologies that are supported, and a few widely used DSP applications with performance
details.

Advantages of using the SmartFusion2/IGLOO2 Devices for DSP
Applications
This section describes the advantages of using SmartFusion2/IGLOO2 devices for DSP applications. It
has the following subsections:

• Fabric Performance

• Low Power FPGA

• Embedded Micro Controller

Fabric Performance
• SmartFusion2/IGLOO2 has double the fabric performance compared to the previous generation

of Microsemi FPGAs.

• Built-in mathblocks that support DSP applications at or up to 350 MHz

• Built-in fabric clock conditioning circuits (FCCC) that generate clock frequencies of up to 400
MHz.

• Fabric memories, LSRAM and uSRAM operating at 400 MHz

• 16x 5 Gbps serializer/deserializer (SERDES), PCIe, and XAUI/XGXS + Native SERDES

• Densities up to 150 K look-up table (LUT), 5 Mbit SRAM, and 4 Mbit eNVM

Low Power FPGA
• 10 mW static power during operation
Revision 2 4

Digital Signal Processing Reference Guide
Embedded Micro Controller
• SmarFusion2 SoC FPGA has a 166 MHz ARM® Cortex®-M3 processor with on-chip embedded

SRAM (eSRAM) and embedded nonvolatile memory (eNVM) for processor based DSP
applications.

• The microcontroller subsystem (MSS) includes peripherals for - Control area network (CAN),
Tri-Speed Ethernet, and universal serial bus (USB)

SmartFusion2/IGLOO2 Mathblock Architecture
The SmartFusion2/IGLOO2 mathblock architecture is optimized to implement various common DSP
functions with maximum performance and minimum logic resource utilization. The dedicated routing
region around the mathblock and the feedback paths provided in each mathblock maintain high
performance by eliminating routing congestion.

Key Features of Mathblock
• High-performance, power optimized multiplications operations

• Supports 18 × 18 signed multiplication natively

• Supports 17 × 17 unsigned multiplications

• Supports dot-product: The multiplier computes (A[8:0] × B[17:9] + A[17:9] × B[8:0]) × 29.

• Built-in addition, subtraction, and accumulation units to combine multiplication results efficiently

• Adder support: (A × B) + C or (A × B) + D or (A × B) + C + D

• Independent registered third input C with data width of 44 bits

• Supports both registered and unregistered inputs and outputs (I/Os)

• Supports signed and unsigned operations

• Internal cascade signals (44-bit cascade input (CDIN) and cascade output (CDOUT)) enable
cascading of the mathblocks to support larger accumulator/adder/subtractor without extra logic.

• Support loopback capability

• Supports up to 350 MHz operation

• Clock-gated input and output registers for power optimizations

• Capability to extend the width of adder/accumulator by implementing extra address in the FPGA
fabric or using mathblocks

Mathblocks Resources
Table 1 lists the number of mathblocks available in the SmartFusion2/IGLOO2 devices.

Table 1 • Mathblocks Resources

SmartFusion2 Device IGLOO2 Device Number of Mathblock
Rows

Number of Mathblocks
Per Row

Total Number of
Mathblocks

M2S005 M2GL005 1 11 11

M2S010 M2GL010 2 11 22

M2S025 M2GL025 2 17 34

M2S050 M2GL050 3 24 72

M2S090 M2GL090 3 28 84

M2S150 M2GL150 6 40 240
Revision 2 5

DSP Reference Guide
Figure 1 shows the functional diagram of the mathblock.

Mathblocks can be accessed through the FPGA routing architecture and cascaded in a chain, starting
from the left-most block to the right-most block.

Each mathblock consists of:

• Multiplier

• Adder/Subtractor

• I/O, Control Registers

Figure 1 • Functional Diagram of the SmartFusion2/IGLOO2 Mathblock
6 Revision 2

Digital Signal Processing Reference Guide
Multiplier
The SmartFusion2/IGLOO2 mathblock can be used as a multiplier, which accepts two 18-bit inputs (A
and B) and generates a 36-bit output. The mathblock multiplier can be configured in two different
operating modes:

• Normal Mode

• Dot Product (DOTP) Mode

Normal Mode
In Normal mode, the mathblock implements a single 18 ×18 signed multiplier. The mathblock accepts A
[17:0] and B [17:0]inputs and generates A*B with a 36-bit wide result. Figure 2 shows the functional block
diagram of the mathblock in Normal mode.

Dot Product (DOTP) Mode
DOTP mode has two independent 9-bit × 9-bit multipliers with adder and the product sum is stored in
upper 36 bits of 44-bit register. In Dot Product (DOTP) mode, the mathblock implements the following
equation:

DOTP result = (A [8:0] × B [17:9] + A[17:9] × B[8:0]) × 29

EQ 1

DOTP mode can be used to implement 9 × 9 complex multiplications.

Figure 2 • Functional Block Diagram of the Mathblock in Normal Mode

A[17:0]

B[17:0]

44

44

44D[43:0]

C[43:0]

CARRYIN

SUBNormal Mode

36

18

18

P[43:0]
Revision 2 7

DSP Reference Guide
Figure 3 shows the functional block diagram of the mathblock in DOTP mode.

Math Functions with DOTP
When DOTP is enabled, several mathematical functions can be implemented using a single mathblock.
Some of them are listed in Table 2

The 9-bit×9-bit multipliers are extensively used in low precision video processing applications such as
color space converters (YCbCr to RGB, YUV to RGB, etc), chroma resampler NTSC, PAL, etc,. In
image processing, the operations involving 8-bit RGB such as 3×3, 5×5, 7×7 matrix multiplications,
image enhancement techniques, scaling, resizing etc., 9-bit×9-bit multipliers are used. The
SmartFusion2/IGLOO2 devices address these applications by using the mathblock in DOTP mode.

DOTP Mode Usage Recommendations
When designing with DOTP multiplier, the following recommendations must be used to achieve better
performance:

• To perform Y = A×B + C×D equation, instantiate arithmetic IP from Libero catalog cores with
DOTP enabled for 9×9 multiplications. This avoids inferring two 18×18 multipliers.

• Register the I/Os, when using arithmetic IP cores (mathblock).

• The registered I/Os must use the same clock.

Use the cascaded feature to connect the multiple mathblocks. This is achieved by connecting the
CDOUT of one mathblock to the CDIN of another mathblock. Refer to "DSP Applications" section for
more information on design examples.

Figure 3 • Functional Block Diagram of the Mathblock in DOTP Mode

A[17:9]
B[8:0]

A[8:0]
B[17:9]

44

44

36

44D[43:0]

C[43:0]
CARRYIN

SUB

P[43:0]

DOT Product Mode

Table 2 • Math Functions with DOTP

S.No Conditions Implemented Equations

1 P = A[8:0] = B[17:9]; M = A[17:9]; N = B[8:0] Y = P² + M×N

2 P = A[8:0] = B[17:9]; Q = A[17:9] = B[8:0] Y = P² + Q²

3 A[8:0] = B[17:9] = 1; B = A[17:9]; Q = B[8:0] Y = 1 + Q²

4 A[8:0] = B[17:9] = 1; P = A[17:9]; Q = B[8:0] Y = 1 + P×Q

5 P = A[8:0] = A[17:9]; Q = B[17:9] = B[8:0] Y = P×Q + P×Q = 2×P×Q
8 Revision 2

Digital Signal Processing Reference Guide
Adder/Subtractor
The adder sums the output from the multiplier, C input, CARRYIN, or D input. The final output (P) of the
adder is ((A [17:0] × B [17:0]) + C [43:0] + D [43:0] + CARRYIN).

The mathblock can be configured as a 2-input or 3-input adder.

• As a 2-input adder, the mathblock computes A × B + C or A × B + D.

• As a 3-Input adder, the mathblock computes A × B + C + D.

If the adder is configured as a subtractor, the adder output is ((C [43:0] + D [43:0] + CARRYIN) – (A[17:0]
× B[17:0])).

I/O, Control Registers
Mathblocks have built-in registers on data inputs (A, B, C), data output (P), and control signals. If
required, these registers can be bypassed. All the registers in the mathblock have clock gating capability
to reduce the power consumption.

Mathblocks do not have a pipeline register at the cascade input (CDIN). So, pipeline registers can be
added from the fabric when multiple mathblocks are cascaded to implement higher bit-width
multiplications.

A Input Register, B Input Register, and C Output Register
A and B are the input registers with 18-bit data width and P is output register with 44-bit data width of the
mathblock.

C Input
The C input port allows the formation of many 3-input mathematical functions, such as 3-input addition or
2-input multiplication with an addition. The CARRYIN signal is the carry input of the adder or
accumulator. The C input can also be used as a dynamic input achieving the following functionalities:

• Wrapping-around the cascade chain of mathblocks from one row to the next row through the
fabric

• Rounding of multiplication outputs

• Trimming of lower order bits of the final sum or partial sum or the product

Rounding
Rounding can be computed by adding a fixed term and a variable term to the input value to be rounded
and then truncating. The fixed term can be fed from the C-Input of the mathblock and the value depends
on the number of decimal points required after rounding. The variable term is always a single bit in the
least-significant position whose value may be determined from the input value based on the type of
rounding.

Types of rounding are:

• Round to the adjacent even integer: The variable term is determined from the 20 bit of the input
value.

• Round towards zero: The variable term is determined from the sign bit of the input value. For
example, 1.5 rounds to 1 and -1.5 rounds to -1.

Table 3 provides examples for 6-bit values including three fraction bits 000.001.

Table 3 • Rounding Examples

Input Value
Fixed
Term

C-Input

Round To Even Round Toward Zero

Decimal Binary Variable
Term

Sum Truncated
Sum

Decimal Variable
Term

Sum Truncated
Sum

Decimal

2.5 010.100 0.011 000.000 010.111 010 2 000.000 010.111 010 2

1.5 001.100 0.011 000.001 010.000 010 2 000.000 001.111 001 1

-1.5 110.100 0.011 000.000 110.111 110 -2 000.001 111.000 111 -1

-2.5 101.100 0.011 000.001 110.000 110 -2 000.001 110.000 110 -2
Revision 2 9

DSP Reference Guide
Trimming
Trimming of the Final Sum: Applications like IIR and FFT often requires the rounding and trimming of
the final result (for example, last output of a cascade chain or the final value read from an accumulator).
The addition of the rounding terms can be done as shown in Figure 5 and final results can be trimmed in
the fabric.

Note: The Fixed Term is connected to Cin of first mathblock in a cascaded chain. The Variable Term is
connected to the multiplier input (A or B) of the last mathblock in a cascaded chain as shown in
Figure 5.

Trimming of Grouped Sums: When computing very large dot products (for example, a large,
fully-enumerated FIR) it is good to avoid overflow by breaking the sum into a few groups, trimming the
sum for each group, and only then combining the groups' sums into a final result. The rounding of each
group's sum can be done as shown in Figure 5. The trimming of each group's sum and summation of the
final result can be done in the fabric. Trimming can be done between the output of each cascade and the
final fabric adder.

Trimming of Products: Figure 6 shows the implementation of rounding all products towards zero and
then trimming the least significant m bits of the product. As long as there are no additive terms other than
the products, it is possible to equivalently trim the partial sums instead of the products. Round towards
zero can be done using sign bit of the product (A*B) from the sign bits of the incoming factors A and B
using an EXOR.

Figure 4 • Rounding using C-Input and CARRYIN

A[17:0]

B[17:0]

44

1

18

Variable Term

Fixed Term

18

18

P[43:0]

CARRYIN

C Input

Figure 5 • Rounding and Trimming of the Final Sum

Fixed Term
(Cin)

A B A B

Variable
Term

1

P

10 Revision 2

Digital Signal Processing Reference Guide
Cascaded Input, Output, and Selection
Higher level DSP functions are supported by cascading individual mathblocks in a row. The two data
signals, CDIN [43:0] and CDOUT [43:0], provide the cascading capability with a cascade select input
(CDSEL). Table 4 shows the selection of CDSEL for propagating CDIN to the D input of the adder. To
cascade mathblocks, the CDOUT of one block must feed the CDIN of another block. CDOUT to CDIN is
a hardwired connection between the blocks within a row.

Two different rows can be cascaded using the fabric routing between the two rows. Extra pipeline
registers may be needed to compensate for the extra delays added due to the fabric routing, which in
turn will increase the latency of the chain.

The ability to cascade mathblocks is useful in filter designs. For example, an finite impulse response
(FIR) filter design can use cascading inputs (CDINs) to arrange a series of input data samples and
cascading outputs (CDOUTs) to arrange a series of partial output results. The ability to cascade provides
a high-performance and low power implementation of DSP filter functions because the general routing in
the fabric is not used. For more details refer to "DSP Applications" section on page 19 section.

Overflow Output
Each mathblock has an overflow signal, OVFL_CARRYOUT. This signal indicates any overflow from the
additional operation performed by the adder. This signal is also used to extend the adder data widths
from the existing 44 bits using fabric. The overflow signal is also used for the implementation of
saturation capabilities. Saturation refers to catching an overflow condition and replacing the output with
either the maximum (most positive) or minimum (most negative) value that can be represented. In the
IGLOO2 mathblocks, this capability is implemented using the adder's output sign bit (MSB [43] bit of the
P output) and the overflow signal.

Shift Input
For multi-precision arithmetic, mathblocks provide a right-wire-shift by 17, which is controlled by the
ARSHFT17 input. Thus, a partial product from one mathblock can be shifted to the right and added to the
next partial product computed in an adjacent mathblock. Using this technique, mathblocks can be used
to build bigger multipliers.

Figure 6 • Rounding and Trimming of Products

C

A

B

P[43:m]

A

B

A[17]

B[17]

C[m-1]

C[m-1]

C[43:m] P
Revision 2 11

DSP Reference Guide
Feedback Select Input
For accumulation operations, the mathblock output needs to loopback to the D input of the adder block.
Selection of the D input is controlled by the feedback select (FDBKSEL) input. Table 4 shows the
selection of FDBKSEL for loopback.

Design Methodologies
Following are the different design methodologies for developing the DSP based applications using
Microsemi SoCs or FPGAs:

• RTL Based Design

• Model-Based Design (Synphony ME Compiler)

• C-Based Design

RTL Based Design
Register transfer level (RTL) based design is a conventional approach for developing the FPGA based
designs. In the DSP applications, mathblock can be used by inferring through an RTL coding style or by
the mathblock primitives available in the Libero® System-on-Chip (SoC) Smart cores. The Synplify Pro®

automatically infers mathblock, if the design contains multiply, multiply-accumulate, and
multiply-add/subtract operators.

The mathblock primitive available in the Libero SoC IP catalog is called MACC. The mathblock primitive
can be used in the designs by SmartDesign for schematic-based design entry or by directly instantiating
the mathblock wrapper in a hardware description language (HDL) file as a component.

For more information on VHDL/Verilog coding styles for inferring mathblocks, refer to the Inferring
Microsemi SmartFusion2 MACC Blocks.

Smart Cores for Mathblock Configuration
The SmartFuison2/IGLOO2 devices have embedded hard mathblocks for simple to complex arithmetic
functions used for the DSP applications. The Libero tool has Arithmetic Catalog which includes the
following cores to configure the embedded hard mathblock.

• Hard Multiplier Accumulator

• Hard Multiplier AddSub

• Hard Multiplier Signed

Hard Multiplier Accumulator
The hard multiplier accumulator for the SmartFusion2/IGLOO2 devices supports Normal (Figure 7 on
page 13) and Dot Product (Figure 8) mode multiplications. In Figure 7 on page 13, the control registers
are in blue color and the data registers are in brown color.

Table 4 • Truth Table for Propagating Operand D of the Adder/Accumulator

CDSEL FDBKSEL ARSHFT17 Operand D

0 0 0 0

0 0 1 0

1 X 0 CDIN[43:0]

1 X 1 {{17{CDIN[43]}}, CDIN[43:18]}

0 1 0 P[43:0]

0 1 1 {{17{P[43]}}, P[43:18]}
12 Revision 2

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965

Digital Signal Processing Reference Guide
Figure 7 • Hard Multiplier Accumulator - Normal Mode

Figure 8 • Hard Multiplier Accumulator - DOTP Mode
Revision 2 13

DSP Reference Guide
Smart Cores Key Features
The hard multiplier accumulator supports two operating modes: Normal and Dot Product.

• A structural netlist is generated in either Verilog or VHDL

• Individual inputs and outputs can be optionally registered with:

– A common rising-edge clock

– The independent active-low asynchronous and synchronous clear controls

– The independent active-high enable controls

• An additional cascade output CDOUT can be enabled. This is the sign-extended 44-bit copy of
output P

• An additional Carry In input can be enabled

• An additional Carry Out or Overflow output can be enabled

• Normal mode features:

– Configurable operand widths for A0 and B0 between 2 and 18

– Configurable operand width for C between 2 and 44

– Optional assignment of operand A0 to an 18-bit two's complement constant

– Optional assignment of operand C to a 44-bit two’s complement constant

– Option to select between multiplier followed by adder, subtractor, or dynamic addsub

– Optional Arithmetic Right Shift by 17 bits of the feedback input

• DOTP mode features:

– Configurable operand widths for A0, B0, A1, B1 between 2 and 9.

– Configurable operand width for C between 2 and 35.

– Optional assignment of operand A0 and A1 to a 9-bit two's complement constant

– Optional assignment of Operand C to a 35-bit two’s complement constant

For usage and configuration of Hard Multiplier Accumulator, refer to the IGLOO2/SmartFusion2 Hard
Multiplier Accumulator Configuration User Guide.
14 Revision 2

http://coredocs.s3.amazonaws.com/Libero/SgCore/HARD_MULT_ACC/sf2_hard_mult_acc_config_ug_1.pdf
http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#documents
http://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga#documents
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132066
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132066

Digital Signal Processing Reference Guide
Hard Multiplier AddSub
The hard multiplier addsub for the SmartFusion2/IGLOO2 devices support Normal (Figure 9) and Dot
Product (Figure 10 on page 16) mode multiplication. In Figure 9 and Figure 10 on page 16, the control
registers are in blue color and the data registers are in brown color.

Figure 9 • Hard Multiplier Addsub - Normal Mode
Revision 2 15

DSP Reference Guide
Smart Core Hard Multiplier AddSub Key Features
The hard multiplier addsub supports two operating modes: Normal and Dot Product.

• A structural netlist is generated in either Verilog or VHDL.

• Individual inputs and outputs can be optionally registered with:

– A common rising-edge clock

– Independent active-low asynchronous and synchronous clear controls

– Independent active-high enable controls

• An additional cascade output CDOUT can be enabled. This is the sign-extended 44-bit copy of
output P.

• An additional cascade input CDIN from previous mathblock can be enabled.

• An additional Carry In input can be enabled.

• An additional Carry Out or Overflow output can be enabled.

• Normal mode features:

– Configurable operand widths for A0 and B0 between 2 and 18

– Configurable operand width for C between 2 and 44

– Optional assignment of operand A0 to an 18-bit two's complement constant

– Optional assignment of operand C to a 44-bit two’s complement constant

– Option to select between multiplier followed by adder, subtractor or dynamic addsub

– Optional Arithmetic Right Shift by 17 bits of the Cascade input

• Dot Product mode features:

– Configurable operand widths for A0, B0, A1, B1 between 2 and 9

– Configurable operand width for C between 2 and 35

– Optional assignment of operand A0 and A1 to a 9-bit two's complement constant

– Optional assignment of operand C to a 35-bit two’s complement constant

Figure 10 • Hard Multiplier Addsub - DOTP Mode
16 Revision 2

Digital Signal Processing Reference Guide
For usage and configuration of hard multiplier accumulator, refer to the IGLOO2/SmartFusion2 Hard
Multiplier Accumulator Configuration User Guide.

Hard Multiplier Signed
The hard multiplier for the SmartFusion2/ IGLOO2 devices support two’s complement Normal (Figure 11)
and Dot Product (Figure 12) mode multiplication.

Smart Core Key Features
The hard multiplier supports two operating modes: Normal and Dot Product.

• A structural netlist is generated in either Verilog or VHDL.

• Individual inputs and outputs can be optionally registered with:

– A common rising edge clock

– Independent active-low asynchronous and synchronous clear controls

– Independent active-high enable controls

• Additional cascade output CDOUT can be enabled. This is the sign-extended 44-bit copy of
output P.

• Normal mode features:

– Configurable operand widths for A0 and B0 between 2 and 18

– Optional assignment of operand A0 to an 18-bit two's complement constant.

• Dot Product mode features:

• Configurable operand widths for A0, B0, A1, B1 between 2 and 9

• Optional assignment of operand A0 and A1 to a 9-bit two's complement constant

Figure 11 • Hard Multiplier Signed - Normal Mode

Figure 12 • Hard Multiplier Signed - DOTP Mode
Revision 2 17

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132066
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132066

DSP Reference Guide
For usage and configuration of hard multiplier accumulator, refer to the IGLOO2/SmartFusion2 Hard
Multiplier Accumulator Configuration User Guide.

Model-Based Design (Synphony ME Compiler)
Synphony ME compiler is a Synopsys Microsemi Edition DSP tool for FPGA-based designs in
math-works model-based design environment (Matlab-Simulink). This enables the DSP designer to
evaluate an algorithm at a higher level of abstraction using MATLAB and Simulink along with an
exhaustive set of DSP blockset and Microsemi IPs. Synphony Simulink blockset is a DSP library that
includes DSP functions and algorithms. These functions include the common DSP building blocks such
as adders, multipliers, and registers. A set of complex DSP building blocks such as forward error
correction blocks, FFTs, filters, and memories is also included. Designs are captured in the DSP
Simulink modeling environment using a Synphony ME compiler blockset. Synphony ME Compiler
automatically converts the high-level system DSP model to RTL. The RTL can be synthesized to
Microsemi FPGA/SoC using Synopsys high-level synthesis tool, Synplify Pro ME.

The Synphony ME model compiler provides a system integration platform for the DSP designs on
FPGAs that integrates the RTL, Simulink, MATLAB, and C/C++ components of a DSP system and it
provides a single simulation and implementation environment. The Synphony ME model compiler
supports a black box block that allows RTL to be imported into Simulink and co-simulated. Figure 13
shows the DSP design flow using the Synphony ME model compiler and the Libero design tools.

For more information on DSP design flow using Synphony Model compiler, refer to the
IGLOO2/SmartFusion2 DSP Flow Tutorial.

Figure 13 • DSP Design Flow using Synphony ME Model Compiler and Libero Tools
18 Revision 2

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132066
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132066
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131548

Digital Signal Processing Reference Guide
C-Based Design
The SmartFusion2 device has a built-in Cortex-M3 processor, which uses the cortex microcontroller
software interface standard (CMSIS)-DSP library to develop DSP based applications. The CMSIS-DSP
library includes vector operations, matrix computing, complex arithmetic, filter functions, control
functions, PID transforms, fourier transforms, and many other frequently used DSP algorithms. Most
algorithms are available in floating-point and various fixed-point formats and are optimized for the
Cortex-M series processors. For more information on CMSIS-DSP library and usage, visit ARM website
www.arm.com/cmsis.

DSP Applications
This section describes how to implement DSP applications and provide example applications that uses
SmartFusion2/IGLOO2 mathblocks. This sections has the following subsections:

• Advanced Math Functions

• Filter Applications

• Transform Applications

Notes:

1. The Resource Utilization and Timing Summary given are specific to the SmartFusion2 devices. These
reports apply for IGLOO2 devices also.

2. The VHDL design files are available as part of the document. The Verilog files will be provided on request.
Revision 2 19

http://arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php

DSP Reference Guide
Top-level Directory Structure of the Design Files
The design files are provided for example applications. Figure 14 shows the top-level structure of the
design files:

Advanced Math Functions
The SmartFusion2/IGLOO2 mathblock efficiently performs a wide range of math functions including
adder, subtractor, multiplier, divider, accumulator, multiply and accumulate (MAC), counters, and shifters
etc. The pipeline stages within the embedded mathblock ensure high performance arithmetic functions.
The cascaded feature of mathblock and associated routing provides fast routing between the
SmartFusion2/IGLOO2 mathblocks with less routing congestion to the FPGA fabric. This section
describes the realization of some of the math functions using the SmartFusion2/IGLOO2 mathblocks. It
has the following sub sections:

• Barrel Shift Register

• 18-Bit Shift Register

• Wide-Multiplier

• Extended Addition

• 44-Bit Counter

• 88-Bit Accumulator

Figure 14 • Top-level Directory Structure
20 Revision 2

Digital Signal Processing Reference Guide
Barrel Shift Register
The barrel shift register can be implemented using the SmartFusion2/IGLOO2 mathblocks and is useful
to shifting the data quickly. Data shifting is required in many operations like address generation and other
arithmetic functions. Using a barrel shifter, data can be shifted or rotated by any number of bits in a single
operation.

The barrel shifter shifts the 18-bit value to the left by the value K. The bits shifted out of the most
significant part reappear in the least significant bit (LSB) of the result, completing the circular shift.

Figure 15 shows the 18-bit barrel shifter using two SmartFusion2/IGLOO2 mathblocks.The 18-bit barrel
shifter (ROL) can be implemented using the following equation:

Result  A*2K + A*(2K-1 / 2^17)

 A*2K + (A/2)*(2K) / 2^17

 A*2K + {(A/2)*(2K)} >> 17

EQ 2

For example, Figure 15 shows that input A is left shift 3CCAD by 5 bits and input B is shifted value 2^5 to
first mathblock. The result achieved by 5 bits shifted output is stored in 195AF. Here, input A is an
unsigned number. Refer to "Example2: Arithmetic Shift Left/Arithmetic Shift Right" section for signed
number.

EQ 3

Design Files
For the implementation code, refer to the Barrelshifter_18bit.vhd design files. Download the design
files from:
<download_folder>\DSP_Reference_Guide_DF\BarrelShifter\hdl\BarrelShifter_18bit.vhd

Figure 15 • 18-Bit Barrel Shifter using Mathblock

A[17:0] = “111100110010101101”
 {3CCAD}

Mathblock

Mathblock

Result = “011001010110101111”
 {195AF}

25

A

B

25

‘’1’

A

B>>1

>>17

X

+

+
X

Revision 2 21

DSP Reference Guide
Resource Utilization and Timing Summary
Report 1 shows the resources utilized by the m2s050fbga896-1 device for the Barrelshifter_18bit imple-

mentation.

Report 1 • Resource Utilization for 18-bit Barrel Shifter

Table 5 shows the timing summary for the BarrelShifter_18bit implemented on the m2s050fbga896-1
device.

Type Used Total Percentage

COMB 73 56340 0.13

SEQ 90 56340 0.16

IO (W/ clocks) 38 375 10.13

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 2 72 2.78

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 5 • Timing Summary for 18-bit Barrel Shifter

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

CLK 4.094 244.260 5.000 200.000 1.356 0.814 5.210 9.064
22 Revision 2

Digital Signal Processing Reference Guide
18-Bit Shift Register
The SmartFusion2/IGLOO2 mathblock 18x18 multiplier can be used to perform the shift operations.

To shift left by K bits and shift right by (18-K) bits:

1. Input the value required for shifting in port A.

2. Input the 2K to port B, where K is the value required for left shift. K can be up to 17 bits.

3. The mathblock output is stored in the lower 36 bits of P[43:0], where the lower 18 bits are shifted
left by K bits (P[17:0]) and the higher 18 bits (P[35:18]) are shifted right by (18-K) bits and sign
extended.

Example1: Shift Left Logic/Shift Right Logic
Figure 16 shows that input A is left shifted by 5 bits and the result is stored in P[17:0]. P[35:18] shows
that the input A right shifted by 13 bits (18-K) with the most significant bits (MSBs) as zeros.

Design Files
For the implementation code, refer to the SLL_SRL.vhd design files. Download the design files from:
<download_folder>\DSP_Reference_Guide_DF\Shiftreg_SLL_SRL\hdl\SLL_SRL.vhd

Figure 16 • Logical Shift Left/Right using Mathblock

Mathblock
A

B

X

+

A[17:0] = “001100110010101101”
 {1CCAD}

P[35:18] = “000000000000000110” {Shift right by 13 bits (18-5)}
 P[17:0] = “011001010110100000” {Shift left by 5 bits}

B[17:0] = “000000000000010000”
 {25}
Revision 2 23

DSP Reference Guide
Synthesis and Place-and-Route Results
Report 2 shows the resources utilized by the m2s050fbga896-1 device for the Shift Left logic 18-bit

implementation.

Report 2 • Resource Utilization for Shift Left /Right Logic

Table 6 shows the timing summary for the Shift Left logic 18-bit implemented on the m2s050fbga896-1
device

Type Used Total Percentage

COMB 37 56340 0.07

SEQ 53 56340 0.09

IO (W/ clocks) 55 375 14.67

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 1 72 1.39

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 6 • Timing summary for Shift Left /Right Logic

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

CLK 2.189 456.830 5.000 200.000 0.721 0.808 5.091 9.026
24 Revision 2

Digital Signal Processing Reference Guide
Example2: Arithmetic Shift Left/Arithmetic Shift Right
Figure 17 shows that the input A is left shifted by 5 bits and the result is stored in P[17:0], whereas the
P[35:18] shows that the input A is right shifted by 13 bits (18-k) with sign bits extended.

Design Files
For the implementation code, refer to the ASLL_ASRL.vhd design files. Download the design files from:
<download_folder>\DSP_Reference_Guide_DF\ASLL_ASRL_18bit\hdl\ASLL_ASRL.vhd

Synthesis and P-and-Route Results
Report 3 shows the resources utilized by the m2s050fbga896-1 device for the Arithmetic Shift Left logic

18-bit implementation.

Report 3 • Resource Utilization for 18-bit Arithmetic Shift Left/Right Logic

Figure 17 • Arithmetic Shift Left/Right using Mathblock

Mathblock
A

B

X

+

A[17:0] = “111100110010101101”
 {3CCAD}

P[35:18] = “111111111111111110” {Shift right by 13 bits (18-5)}
 P[17:0] = “011001010110100000” {Shift left by 5 bits}

B[17:0] = “000000000000010000”
 {25}

Type Used Total Percentage

COMB 37 56340 0.07

SEQ 53 56340 0.09

IO (W/ clocks) 55 375 14.67

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 1 72 1.39

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00
Revision 2 25

DSP Reference Guide
Table 7 shows the timing summary for the Arithmetic Shift Left logic 18-bit implemented on the
m2s050fbga896-1 device.

Wide-Multiplier
Wide-multipliers are extensively used in high precision wireless and medical applications where more
than 18×18 bits are used. These applications require high precision at every stage when implementing
complex arithmetic functions used in the fast fourier transform (FFT), filters, and so on. Military and high-
performance computing also require performance and precision requirements, and sometimes require
single-precision and double-precision floating-point calculations for implementing complex matrix
operations and signal transforms.

Table 7 • Timing summary for 18-bit Arithmetic Shift Left/Right Logic

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

CLK 2.189 456.830 5.000 200.000 0.931 0.830 5.221 9.341
26 Revision 2

Digital Signal Processing Reference Guide
To implement the DSP functions that require high precision, the SmartFusion2/IGLOO2 device offers
implementing wide-multipliers (that is, operands width more than 18×18) with the SmartFusion2/IGLOO2
mathblock. The wide-multipliers are implemented by cascading multiple SmartFusion2/IGLOO2
mathblocks using CDOUT and CDIN to propagate the result and to achieve the best performance
results.

This section describes wide-multiplier guidelines and different implementation methods with design
examples to achieve the best performance results.

Guidelines
Following are some important recommendations for implementing a wide-multiplier to achieve the best
results:

• The I/Os are registered with the same clock

• Add pipeline stages in RTL, so that the synthesis tool can automatically infer registers of
mathblock or register the I/Os of mathblock, if arithmetic cores (mathblock) are used.

• CDOUT of one mathblock is connected to the CDIN of another mathblock.

Design Examples
This section explains the 32×32 multiplier implementation with multiple and single mathblock. It also
shows the performance results for both the implementations.

This section shows the extended addition using the following design examples:

• Example1: Multiplier 32×32 Implementation Using Multiple Mathblocks

• Example 2: 32×32 Multiplier Implementation Using Single Mathblock

Example1: Multiplier 32×32 Implementation Using Multiple Mathblocks
The following section explains the 32×32 multiplier implementation with multiple mathblocks and shows
the performance results.

The 32×32 multiplier is implemented using the following algorithm:

 A = (AH × 217) + AL;

 B = (BH × 217) + BL;

A×B = (AH × 217 + AL) × (BH × 217 + BL)

 = ((AH×BH) × 234) + ((AH×BL +AL×BH) × 217) + AL×BL
Revision 2 27

DSP Reference Guide
The 32×32 multiplier is implemented efficiently using four mathblocks without using fabric resources to
produce 64-bit result as shown in Figure 18 and Figure 19 on page 29. To achieve the best performance
results, use mathblock I/O registers.

Figure 18 • 32x32 Multiplication
28 Revision 2

Digital Signal Processing Reference Guide
When implementing using HDL, to infer mathblock I/O registers by synthesis tool, pipeline stages are
added at output and input to achieve maximum throughput. In this design, two pipeline stages are added
at input and output. Refer to design files for information on implementation of 32x32 multiplier.

Design Files

For the implementation code, refer to the Mult32×32_multipleMACC.vhd design files. Download the
design files from:
<download_folder>\DSP_Reference_Guide_DF\Mult32x32_multiplieMACC\hdl\Mult32x32_multipl
eMACC.vhd

Hardware Configuration

For 32×32 multiplier using a single mathblock, the mathblock is configured to function as: Normal
Multiplier Accumulator -> Pn = Pn-1 + CARRYIN + C +/- A0×B0

Normal Multiplier Addsub -> Pn = D + CARRYIN + C +/- A0×B0 (if ARSHFT is disabled)

 -> Pn = (D>>17) + CARRYIN + C +/- A0×B0 (if ARSHFT is enabled)

Normal Multiplier -> P = A0×B0

Figure 19 • Implementation of 32x32 Multiplier using Mathblock

SF2/IGL2 MACC

P[15:0]

Zero’s

BL AL

Multiplier 32x32

BH AL BL AH BH AH

+

SF2/IGL2 MACC

XX

+

SF2/IGL2 MACC

X

+
SF2/IGL2 MACC

X

+

>>17 >>17

P[33:17] P[63:34]
Revision 2 29

DSP Reference Guide
Resource Utilization and Timing Summary

Figure 4 shows the 32×32 multiplier resource utilization when using multiple mathblocks.

Report 4 shows the resources utilized by the m2s050fbga896std device for the Mult32x32_multiple-

MACC implementation.

Report 4 • Resource Utilization for Multiple Mathblocks

Table 8 shows the timing summary for the Mult32x32_multipleMACC implemented on the
m2s050fbga896std device.

Type Used Total Percentage

COMB 145 56340 0.26

SEQ 290 56340 0.51

IO (W/ clocks) 130 375 34.67

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 4 72 5.56

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

SERDESIF 0 2 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 8 • Timing Summary for 32×32 With Multiple Mathblock

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

clk 2.641 378.644 2.857 350.018 3.981 0.782 4.782 10.858
30 Revision 2

Digital Signal Processing Reference Guide
Example 2: 32×32 Multiplier Implementation Using Single Mathblock
This section explains the 32×32 multiplier implementation with single mathblocks and also shows the
performance results.

The 32×32 multiplier is implemented using the same algorithm

A×B = ((AH×BH) × 234) + ((AH×BL +AL×BH) × 217) + AL×BL

 = ((AH×BH) × 234) + (AH×BL × 217) + (AL×BH × 217) + AL×BL

In this implementation, the four multiplications are computed using a single mathblock sequentially. The
control finite-state machine (FSM) in the design provides inputs to the mathblock sequentially in four
consecutive states as shown in Figure 18 on page 28 and appropriately enables the shift operation in the
corresponding state. The mathblock used in this design is configured as a normal multiplier accumulator
available in the Arithmetic IP core. Refer to the Hard Multiplier accumulator User Guide for configuration.

The time taken to generate output = 4 clock cycles for providing inputs

+ 2 clock cycles as the inputs and output is registered

+ 2 clock cycles by mathblock at input and output

= 8 clock cycles.

Design Files

For the implementation code, refer to the Mult32x32_SingleMACC.vhd design files. Download the design
files from:
<download_folder>\DSP_Reference_Guide_DF\Mult32x32\hdl\Mult32x32_SingleMACC.vhd

Figure 20 • Multiplier 32×32 using Single Mathblock

Control FSM

D

C

P

SmartFusion2/IGLOO2 MACC Block
A L[17 :0] ,BL[17 :0]

Zeros

Curr_State

ARSHFT

A

B

reset_n
clk

mul_en

B [31 : 0]

A [31 : 0]

Result

mul_result_valid

AL [17 : 0], BH[17 : 0]

AH[17 : 0] , BL[17 : 0]

AH[17 :0] , BH[17 : 0]

Multiplier 32 x 32
Revision 2 31

http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ACC/sf2_hard_mult_acc_config_ug_1.pdf

DSP Reference Guide
Resource Utilization and Timing Summary

Report 5 shows the resources utilized by the m2s050fbga896std device for the Mult32x32_SingleMACC
implementation.

Report 5 • Resource Utilization for 32×32 Multiplier using Single Mathblock

Table 9 shows the timing summary for the Mult32x32_SingleMACC implemented on the
m2s050fbga896std device.

Type Used Total Percentage

COMB 84 56340 0.15

SEQ 141 56340 0.25

IO (W/ clocks) 132 375 35.20

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 1 72 1.39

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

SERDESIF 0 2 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 9 • Timing Summary for 32×32 Multiplier with Single Mathblock

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

clk 2.641 378.644 2.857 350.018 1.075 0.614 4.679 11.023
32 Revision 2

Digital Signal Processing Reference Guide
Extended Addition
Mathblock has a 3-input adder and supports accumulation of up to 44 bits. In some applications such as
floating point multiplication, complex-FFT and filters, high-precision data has to be maintained at every
stage. These DSP functions require more than 44-bit addition (extended addition) which can be realized
using the SmartFusion2/IGLOO2 mathblock (3-input adder) and fabric logic. The extended addition is
implemented by dividing the addition into two parts. The lower part (LSB) of addition is implemented
using the SmartFusion2/IGLOO2 mathblock and the upper part (MSB) of addition is implemented using
minimal fabric adder logic.

For a 2-input addition, the inputs can be chosen from the following:

• CDIN and C input or

• Multiplier output and CDIN or

• Multiplier output and C input or

For a 3-input addition, the inputs are from the multiplier output, CDIN, and C-input. To perform arithmetic
additions, the SmartFusion2/IGLOO2 mathblock provides Carryin signal and Carryout signal for
propagating the carry from one mathblock to another mathblock or from mathblock to fabric logic. the
mathblock is configured in Normal mode to function as a normal multiplier addsub.

Design Examples
This section shows the extended addition using the following design examples:

• Example 1: 2-Input Signed Extended Addition

• Example 2: 3-Input Signed Extended Addition

• Example 3: 4-Input 42-Bit Adder

• Example 4: 88-Bit Adder/Subtractor

Example 1: 2-Input Signed Extended Addition
This section describes a 2-input extended signed addition—if one operand is wider than 44 bits. It also
shows that the 2-input extended signed addition implementation logic with fabric resources is
implemented with the multiplier adder.

2-Input Addition

For computing 2-input extended signed addition Z = U + V, with one operand width more than the
mathblock output width 44, the logic as shown in Figure 22 should be implemented in fabric.

U denotes an m-bit value (where, m > 44) and V is a sign-extended n-bit value (where n < 44). The
2-input extended signed addition is divided in to two parts. The lower part (Sumlower) is computed in the
mathblock and the upper part (Sumupper) is computed in the fabric.

Z = (Sumupper, Sumlower)

EQ 4

The lower part of the sum, Z = U + V, is calculated by providing the U[(n-1): 0], V[(n-1): 0] inputs to
mathblock, where n = 44 which is the output width of the mathblock.

Sumlower = U[(n-1): 0] + V[(n-1): 0]

EQ 5

The upper part of sum, Z = U + V, is calculated as mentioned below:

 Sumupper = U[m: n] + V[m: n] (where U[m: n], V[m: n] are the MSB bits)

EQ 6

Figure 21 • 2-input Extended Signed Addition
Revision 2 33

DSP Reference Guide
V[m: n] = {S, S….S, X},

S = P[n-1] AND X

Where,
P[n-1] is MSB of Sumlower

X is the carryout of the Sumlower (from the mathblock)

S is the sign bit of the adder and (m-n-1) number of S's appended to MSB bits of the V[m:n].

Hardware Implementation

Figure 22 shows the operand width of C as 52 bits and explains the implementation for 2-input extended
signed addition. For 3-input addition, mathblock is configured as a multiplier addsub in Normal mode.
The upper part and lower part of the sum are mentioned as:

For 52-bit, 2-input extended signed addition,

Sumlower = C[43:0] + A[17:0]×B[17:0]

Sumupper = {C[51:44] + {S, S, S, CARRYOUT}}

Z [51:0] = {Sumupper, Sumlower}

Z [51:0] = {C[51:44] + {S, S, S, CARRYOUT}}, P[43:0]

Where,

S = P[43] AND CARRYOUT

Figure 22 • Fabric Logic for 2-input Extended Addition using Mathblock
34 Revision 2

Digital Signal Processing Reference Guide
Design Files

For the implementation code, refer to the Extended_adder_2_input.vhd design files. Download the
design files from:
download_folder>\DSP_Reference_Guide_DF\Extended_adder_2_input\hdl\Extended_adder_2_in
put.vhd

Resource Utilization and Timing Summary

Report 6 shows the resources utilized by the m2s050fbga896std device for the Extended_adder_2_input

implementation.

Report 6 • Resource Utilization for 2-input Extended Addition with Fabric Resources

Table 10 shows the timing summary for Extended_adder_2_input implemented on the m2s050fbga896std
device.

Type Used Total Percentage

COMB 45 56340 0.08

SEQ 88 56340 0.16

IO (W/ clocks) 142 375 37.87

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 1 72 1.39

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

SERDESIF 0 2 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 10 • Timing summary for 2-input Extended Addition with Fabric Resources

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

clk 2.641 378.644 3.333 300.030 2.567 0.595 5.017 10.947
Revision 2 35

DSP Reference Guide
Example 2: 3-Input Signed Extended Addition
This section explains the 3-input extended signed addition, if one or more operands have a width of more
than 44 bits. This section shows the 3-input extended signed addition implementation logic with fabric
resources.

3-Input Extended Addition

For performing 3-input extended addition, Z = T + U + V, with two operands having width more than the
mathblock input width of 44, the logic shown in Figure 24 should be implemented in fabric

T and U are m-bit values (where m > 44) and V is a sign-extended n-bit value (where n < 44). The 3-input
extended signed addition is divided in to two parts. The lower part (Sumlower) is computed in the
mathblock and the upper part (Sumupper) is computed in the fabric.

Z = {Sumupper, Sumlower}

EQ 7

The lower part of the sum, Z = T + U + V, is calculated by providing the
{'0', T[(n-2): 0]}, {'0', U [(n-2}: 0]}, V [(n-1): 0] inputs to the mathblock, where n = 44 that is output width of
the mathblock.

Sumlower = {'0', T[(n-2): 0]} + {'0', U[(n-2): 0]} + V[(n-1): 0]

EQ 8

The upper part of sum Z = T + U + V is calculated as shown below

Sumupper = T[m: n-1] + U[m: n-1] + V[m: n]

EQ 9

Where T[m: n], U[m: n], V[m: n] are the MSB bits

V [m: n] = {S, S….S, X, P [n-1]}

S = P[n-1] AND X

Where'

P [n-1] is the MSB bit of the Sumlower

X is the overflow of the Sumlower (from the mathblock),

(m-n-2) number of Ss should be appended in MSB bits of the V[m: n].

Hardware Implementation

Figure 24 shows the operand widths of C and D (52 bits) and explains implementation for 3-input
extended signed addition. For 3-input addition, mathblock is configured as multiplier addsub in Normal
mode. For 52-bit, 3-input extended signed addition, Sumlower, and Sumupper are calculated as shown
below:

Sumlower = P[43:0] = {'0', C[42:0]} + {'0', D [42:0]} + A[17:0]×B[17:0]

Sumupper = {C[51:44] + {S, S, S, CARRYOUT}}

Z [51:0] = {Sumupper, Sumlower}

Z [51:0] = {C[51:43] + D[51:43] + {S, S, S, S, S, S, S, CARRYOUT, P[43]}}, P[42:0]

Where S = P[43] AND CARRYOUT

Figure 23 • 3-input Extended Signed Addition
36 Revision 2

Digital Signal Processing Reference Guide
.

Design Files

For the implementation code, refer to the Extended_adder_3_input.vhd design files. Download the
design files from:
<download_folder>\DSP_Reference_Guide_DF\Extended_adder_3_input\hdl\Extended_adder_3_i
nput.vhd

Figure 24 • 3-input Extended Addition using Mathblock and Fabric Logic
Revision 2 37

DSP Reference Guide
Resource Utilization and Timing Summary

Report 7 shows the resources utilized by the m2s050fbga896std device for the Extended_adder_3_input

implementation

Report 7 • Resource Utilization for 3-input Extended Addition with Fabric Resources

COMB 92 56340 0.16

SEQ 120 56340 0.21

IO (W/ clocks) 194 375 51.73

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 2 72 2.78

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

SERDESIF 0 2 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00
38 Revision 2

Digital Signal Processing Reference Guide
Example 3: 4-Input 42-Bit Adder
Two SmartFusion2/IGLOO2 mathblocks can be used to build a 4-input adder as shown in Figure 25. First
mathblock adder acts as a 2-input adder (that is, 36-bit multiplier output and 44-bit C-input) and the result
of first adder output is connected to the CDIN of second mathblock. The second mathblock adder
functions as a 3–input adder (that is, 36-bit multiplier output, 44-bit CDIN, and 44-bit C-input). The sum
obtained is a 44-bit adder result. In this case, the CARRYOUT is unused.

For proper pipeline balancing at the inputs, external registers are added to the inputs of the second
mathblock. Figure 25 shows the 4-input 42-bit adder.

Design Files

For the implementation code, refer to the Fourinput_42bit_Adder.vhd design files. Download the
design files from:
<download_folder>\DSP_Reference_Guide_DF\Fourinput_42bit_Adder\hdl\Fourinput_42bit_Add
er.vhd

Figure 25 • 4-Input 42-Bit Adder using Mathblocks
Revision 2 39

DSP Reference Guide
Resource Utilization and Timing Summary

Report 8 shows the resources utilized by the m2s050fbga896std device for the Fourinput_42bit_Adder

implementation.

Report 8 • Resource utilization for 4-Input 42-Bit Adder

Table 11 shows the timing summary for Fourinput_42bit_Adder implemented on the m2s050fbga896-1
device.

COMB 73 56340 0.13

SEQ 152 56340 0.27

IO (W/ clocks) 251 375 66.93

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 2 72 2.78

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 11 • Timing summary for 4-Input 42-Bit Adder

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

CLK 2.294 435.920 5.000 200.000 1.974 0.777 5.269 10.102
40 Revision 2

Digital Signal Processing Reference Guide
Example 4: 88-Bit Adder/Subtractor
The SmartFusion2/IGLOO2 mathblocks can be cascaded together to implement a large add/subtract
function. Figure 26 shows the implementation of a 88-bit adder/subtractor or 88-bit extended addition
performed using two mathblocks. The MSB bits addition is performed using the MultAddSub0 mathblock
and LSB bits addition is performed using the MultAddSub1 mathblock. The CARRYOUT signal of the
MultAddSub0 mathblock is cascaded to CARRYIN of the MultAddSub1 mathblock.

Design Files

For the implementation code, refer to the Adder_Sub_88bit.vhd design files. Download the design files
from: <download_folder>\DSP_Reference_Guide_DF\Adder_Sub_88bit\hdl\Adder_Sub_88bit.vhd

Figure 26 • 88-Bit Adder/Subtractor using Mathblocks
Revision 2 41

DSP Reference Guide
Resource Utilization and Timing Summary

Report 9 shows the resources utilized by the m2s050fbga896-1 device for the Adder_Sub_88bit imple-

mentation.

Report 9 • Resource Utilization for 88-bit Adder/Subtractor

Table 12 shows the timing summary for Adder_Sub_88bit implemented on the m2s050fbga896-1 device.

Type Used Total Percentage

COMB 73 56340 0.13

SEQ 232 56340 0.41

IO (W/ clocks) 250 375 66.67

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 2 72 2.78

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 12 • Timing summary for 88-bit Adder/Subtractor

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

CLK 2.842 351.865 5.000 200.000 1.819 0.770 5.233 9.914
42 Revision 2

Digital Signal Processing Reference Guide
44-Bit Counter
The counter is one of the most widely used functions in digital applications. The SmartFusion2/IGLOO2
mathblock can be used as a high-speed counter, with the speed of up to 350 MHz. Figure 27 shows an
implementation of 44-bit binary counter using the mathblock. The up counter, down counter, and a
loadable counter can be implemented using SmartFusion2/IGLOO2 mathblock. Figure 28 shows the
implementation of a count by M, 44-bit counter using the mathblock.

Design Files
For the implementation code, refer to the Counter44_bit.vhd design files. Download the design files
from: <download_folder>\DSP_Reference_Guide_DF\Counter_44bit\hdl\Counter_44bit.vhd

Figure 27 • Binary Counter using Mathblock

Figure 28 • Count by M 44-Bit Counter using Mathblock
Revision 2 43

DSP Reference Guide
Synthesis and P-and-Route Results
Report 10 shows the resources utilized by the m2s050fbga896-1 device for the Counter_44bit implemen-

tation.

Report 10 • Resource Utilization for 88-bit Adder/Subtractor

Table 13 shows the timing summary for Counter_44bit implemented on the m2s050fbga896-1 device.

Type Used Total Percentage

COMB 83 56340 0.15

SEQ 89 56340 0.16

IO (W/ clocks) 93 375 24.80

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 1 72 1.39

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 13 • Timing summary for 44-bit Counter

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

CLK 3.030 330.033 5.000 200.000 1.804 0.690 5.119 9.160
44 Revision 2

Digital Signal Processing Reference Guide
88-Bit Accumulator
Two SmartFusion2/IGLOO2 mathblocks can be cascaded together to implement a 88-bit accumulator.
Here, the CARRYOUT signal is used to cascade the mathblocks. The MultACC0 provides a LSB 44 bits
result as output and the MultACC1 provides a MSB 44 bits result as output. The initial input value to the
accumulator is the C input of mathblock. Figure 29 shows the implementation of an 88-bit accumulator
function.

Algorithm:

Result [87:0] = Result [87:0] + C [87:0]

 = Result [87:43] * 243 + Result [43:0] + C [87:43] * 243 + C [43:0]

 = Result [87:43] * 243 + C [87:43] * 243 + C [43:0] + Result [43:0]

 = {(Result [87:43] + C [87:43]) * 243 + { C [43:0] + Result [43:0]}

{MultACC1} {MultACC0}

EQ 10

Design Files
For the implementation code, refer to the Accumulator_88bit.vhd design files. Download the design
files from:
<download_folder>\DSP_Reference_Guide_DF\Accumulator_88bit\hdl\Accumulator_88bit.vhd

Figure 29 • 88-Bit Accumulator using Mathblocks
Revision 2 45

DSP Reference Guide
Synthesis and P-and-Route Results
Report 11 shows the resources utilized by the m2s050fbga896-1 device for the Accumulator_88bit imple-

mentation.

Report 11 • Resource Utilization for 88-bit Accumulator

Table 14 shows the timing summary for Accumulator_88bit implemented on the m2s050fbga896-1 device.

Type Used Total Percentage

COMB 73 56340 0.13

SEQ 248 56340 0.44

IO (W/ clocks) 178 375 47.47

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 2 72 2.78

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 14 • Timing summary for 88-bit Accumulator

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

CLK 2.750 363.636 5.000 200.000 1.109 0.751 4.729 10.041
46 Revision 2

Digital Signal Processing Reference Guide
Filter Applications
A wide variety of filter architectures can be implemented using the Microsemi FPGAs. The
SmartFusion2/IGLOO2 mathblock architecture is simple to use, easy to adapt, and build finite impulse
response (FIR) filters depending on the requirement of the application.

A FIR filter is a convolution of an input signal and impulse response as shown in EQ 11.

N-1

Yn = Ʃ X (n-k) * h (k)

k=0

EQ 11

Where X (n-k) represents input signal
H (k) represents impulse response or coefficient

 N is the filter length or the filter order

In EQ 11, a set of N coefficients is multiplied by respective N data samples and the products are summed
together to form an individual result. The coefficients determine the characteristics of the filter (for
example, low-pass filter, band-pass filter, high-pass filter). The FIR equation can be implemented using
different architectures (sequential, parallel, and semi-parallel).

This section describes the architecture of the following FIR filters and their implementation using the
SmartFusion2/IGLOO2 mathblock:

• MAC FIR Filters

• Parallel FIR Filters

• Semi-Parallel FIR Filters

MAC FIR Filters
The MAC FIR is one of the DSP filter structures that uses a single multiplier with an accumulator to
implement a sequential FIR filter. The MAC FIR filter can be implemented using a single
SmartFusion2/IGLOO2 mathblock as multiplier-accumulator. This architecture is suitable for applications
with slow sample rates and many coefficients. Following are the two MAC FIR filter architectures and
their implementation using the SmartFusion2/IGLOO2 mathblock:

• Single MAC FIR Filter

• Symmetric MAC FIR Filter
Revision 2 47

DSP Reference Guide
Single MAC FIR Filter
The Single-MAC FIR filter is useful when the ratio of clock to sample rate is greater than or equal to the
filter order/filter length [(fclk/fsample)>=Filter order] .Figure 30 shows the general form of multiply–
accumulate (MAC) based FIR filter structure utilizing single MAC engine.

Figure 31 shows the implementation of N-Tap single MAC FIR filter using a mathblock and a uSRAM is
used for coefficient and input data storage. The control logic is used to generate the required control
signals to perform filter operations. Thus single-MAC FIR filter architecture saves the math resources by
a factor of the number of filter taps.

Figure 30 • N-Tap Single MAC FIR Structure

Figure 31 • N-Tap Single MAC FIR Filter using Mathblock
48 Revision 2

Digital Signal Processing Reference Guide
The number of clock cycles required to compute N-Tap single MAC FIR filter
(Or)

Maximum input sample rate = Clock speed / (N + 1)

For example, for a 100-Tap MAC FIR filter, maximum input sample rate = Clock speed / (100 + 1)
Therefore, a Single MAC FIR filter input sample rate is same as the number of coefficients in a filter.

Design Files

For the implementation code, refer to the MAC_FIR.vhd, design files.Download the design files from the
below location,

<download_folder>\DSP_Reference_Guide_DF\MAC FIR 16-tap\MAC_FIR\hdl\MAC_FIR.vhd

Resource Utilization and Timing Summary

Report 12 shows the resources utilized by the m2s050fbga896-1 device for the MAC_FIR implementa-

tion.

Report 12 • MAC FIR

Table 15 shows the timing summary for MAC_FIR implemented on the m2s050fbga896-1 device.

Type Used Total Percentage

COMB 362 56340 0.64

SEQ 396 56340 0.70

IO (W/ clocks) 67 375 17.87

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 4 72 5.56

RAM1K18 0 69 0.00

MACC 1 72 1.39

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 15 • MAC FIR Timing Summary

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

clk 4.000 250.000 5.000 200.000 1.569 0.879 4.633 8.240
Revision 2 49

DSP Reference Guide
Symmetric MAC FIR Filter
Figure 32 shows the general form of MAC based symmetric FIR filter structure utilizing a MAC engine.

For N-Tap symmetric FIR filter implementation, an extra adder is used for summing up the samples of
the symmetric coefficients and the remaining logic remains same as a single-MAC FIR filter as shown in
Figure 33. Moreover, only one uSRAM is required for coefficient memory instead of two as used in single

MAC FIR filter and thus saving the memory resources.

 Yn = (X0*C0) + (X1*C1) + ……+ (Xn-1*Cn-1) + (Xn*Cn)

For Symmetric filter, C0 = Cn, C1 = Cn-1, C2 = Cn-2 ….etc

 Yn = (X0 + Xn)*C0 + (X1+ Xn-1)*C1 + … (Xm + Xn-m)*Cm +...

Figure 32 • Symmetric MAC FIR Filter using Mathblock
50 Revision 2

Digital Signal Processing Reference Guide
The number of clock cycles required to compute N-Tap symmetric MAC FIR filter
(Or)

Maximum input sample rate = Clock speed / (N/2) + 1

For example:
For a 100-Tap symmetric MAC FIR filter, maximum input sample rate = Clock speed / 50 + 1
Therefore, input sample rate of symmetric MAC filter = 2 * input sample rate of single-MAC FIR filter.

Note: There is a limitation in using symmetric MAC FIR filter. Due to the 1-bit growth from the
pre-adder, the input data to the filter must be less than 18 bits to fit into a mathblock, that is,
maximum input data width is 17 bits for unsigned, and 16 bits for signed. The pre-adder can also
be implemented using another mathblock to save the fabric resources because the fabric adder
may limit maximum clock frequency.

Design Files

For the implementation code, refer to the Symmetric_MAC_FIR.vhd design files. Download the design
files from:
<download_folder>\DSP_Reference_Guide_DF\Symmetric_MAC_FIR_Filter\hdl\Symmetric_MAC_FI
R.vhd

Figure 33 • Symmetric MAC FIR using Mathblock
Revision 2 51

DSP Reference Guide
Resource Utilization and Timing Summary

Report 13 shows the resources utilized by the m2s050fbga896-1 device for the Symmetric_MAC_FIR

implementation.

Report 13 • Symmetric MAC FIR

Table 16 shows the timing summary for Symmetric_MAC_FIR implemented on the m2s050fbga896-1
device.

Type Used Total Percentage

COMB 424 56340 0.75

SEQ 373 56340 0.66

IO (W/ clocks) 67 375 17.87

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 3 72 4.17

RAM1K18 0 69 0.00

MACC 1 72 1.39

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 16 • Symmetric MAC FIR Timing Summary

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

clk 4.305 232.288 5.000 200.000 0.631 0.861 4.678 9.008
52 Revision 2

Digital Signal Processing Reference Guide
Parallel FIR Filters
The Parallel FIR filter uses N multipliers and N-1 adders as shown in Figure 34. The parallel FIR filter can
be realized using the SmartFusion2/IGLOO2 mathblocks and is well suited in applications for high
sample rate requirements.

The following Parallel FIR filter architectures and their implementation using the SmartFusion2/IGLOO2
mathblock are described in this section.

• Transpose - Non-symmetry

• Transpose - Symmetry

• Systolic - Non-Symmetry

• Systolic - Symmetry

Transpose - Non-symmetry
The transpose FIR architecture is used in high performance filter applications. This architecture is
realized from the Direct Form I structure as shown in Figure 35. In the Transpose architecture, the same
input is shared to all the multipliers, thus increasing the fan-out at the input.

For N-tap Transpose FIR filter, the total initial latency taken = (N – 1) clock cycles.

Figure 34 • Direct Form FIR Filter Structure

Figure 35 • N-Tap Non-Symmetric Transpose FIR Filter Structure
Revision 2 53

DSP Reference Guide
In transpose FIR filter, each multiplier-adder block is realized using one mathblock. Hence, the N-tap
transpose FIR filter utilizes only N mathblocks. Figure 36 shows implementation of the 16-tap Non-
Symmetric Transpose FIR filter using the SmartFusion2/IGLOO2 mathblocks.

Design Files

For the implementation code, refer to the Transpose_FIR.vhd design files. Download the design files
from:
<download_folder>\DSP_Reference_Guide_DF\Transpose_FIR_w_macc\hdl\Transpose_FIR.vhd

Figure 36 • 16-Tap Non-Symmetric Transpose FIR Filter using Mathblock
54 Revision 2

Digital Signal Processing Reference Guide
Resource Utilization and Timing Summary

Report 14 shows the resources utilized by the m2s050fbga896-1 device for the Transpose_FIR imple-

mentation.

Report 14 • Transpose FIR Filter

Table 17 shows the timing summary for Transpose_FIR implemented on the m2s050fbga896-1 device.

Transpose - Symmetry
The transpose symmetry architecture is same as the transpose architecture but the coefficients are
shared to the respective inputs of symmetric taps. Figure 37 on page 56 and Figure 38 on page 56 show
the Odd tap and even tap Symmetric Transpose FIR filter architectures.

Type Used Total Percentage

COMB 577 56340 1.02

SEQ 594 56340 1.05

IO (W/ clocks) 64 375 17.07

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 16 72 22.22

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 17 • Transpose FIR Filter Timing Summary

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

clk 3.635 275.103 4.000 250.000 0.066 0.829 4.652 8.236
Revision 2 55

DSP Reference Guide
Figure 37 • ODD TAP Symmetric Transpose FIR Filter Structure

Figure 38 • Even TAP Symmetric Transpose FIR Filter Structure
56 Revision 2

Digital Signal Processing Reference Guide
In symmetric transpose FIR filter, each multiplier-adder block is realized using one mathblock. Hence,
the N-tap transpose FIR filter utilizes only N mathblocks. Figure 39 shows implementation of a 16-tap
Symmetric Transpose FIR filter using the mathblocks.

Design Files

For the implementation code, refer to the Transpose_Sym_FIR.vhd design files. Download the design
files from:
<download_folder>\DSP_Reference_Guide_DF\Transpose_Sym_FIR\hdl\Transpose_Sym_FIR.vhd

Figure 39 • Symmetric Transpose FIR Filter using Mathblock
Revision 2 57

DSP Reference Guide
Resource Utilization and Timing Summary

Report 15 shows the resources utilized by the m2s050fbga896-1 device for the Transpose_Sym_FIR

implementation.

Report 15 • Symmetric Transpose FIR Filter

Table 18 shows the timing summary for Transpose_Sym_FIR implemented on the m2s050fbga896-1
device.

Type Used Total Percentage

COMB 577 56340 1.02

SEQ 594 56340 1.05

IO (W/ clocks) 64 375 17.07

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 16 72 22.22

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 18 • Symmetric Transpose FIR Filter Timing Summary

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

clk 3.635 275.103 4.000 250.000 0.066 0.829 4.652 8.236
58 Revision 2

Digital Signal Processing Reference Guide
Systolic - Non-Symmetry
The systolic FIR architecture is used in high performance filter applications. The systolic FIR structure is
realized from the Direct form structure by adding an extra pipeline register on each MAC stage (that is, a
register at input and a register at output). Hence, the maximum performance is achieved with this
architecture.

Figure 40 shows the Non-Symmetric Systolic FIR filter architecture. For tap Non-Symmetric Systolic FIR
filter, the total initial latency taken = 2*(N – 1) clock cycles.

In systolic FIR filter, each systolic block is realized using a mathblock and two fabric registers at the input
stage. Hence, the n-tap systolic FIR filter utilizes n mathblocks and minimum 2*(n-1) fabric registers.
Figure 41 shows implementation of 16-tap Non-Symmetric Systolic FIR filter using mathblocks.

Figure 40 • Non-Symmetric Systolic FIR Filter Structure

Figure 41 • 16-Tap Non-Symmetric Systolic Parallel FIR Filter using Mathblock
Revision 2 59

DSP Reference Guide
Design Files
For the implementation code, refer to the Systolic_FIR_Filter.vhd, design files. Download the design
files from:
<download_folder>\DSP_Reference_Guide_DF\SystolicFIR_Filter\Systolic_FIR_Filter\hdl\Sy
stolic_FIR_Filter.vhd

Resource Utilization and Timing Summary
Report 16 shows the resources utilized by the m2s050fbga896-1 device for the Systolic_FIR_Filter imple-

mentation.

Report 16 • Systolic FIR Filter

Table 19 shows the timing summary for Systolic_FIR_Filter implemented on the m2s050fbga896-1 device.

Type Used Total Percentage

COMB 577 56340 1.02

SEQ 1134 56340 2.01

IO (W/ clocks) 64 375 17.07

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 16 72 22.22

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 19 • Systolic FIR Filter Timing Summary

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

Clk 2.245 445.434 4.000 250.000 -0.024 0.970 5.292 9.414
60 Revision 2

Digital Signal Processing Reference Guide
Systolic - Symmetry
In the symmetric systolic architecture, each systolic can be realized using a fabric pre-adder and a
mathblock. A pre-adder is used to sum-up two inputs for symmetric coefficients (for example, C0=cn-1).
An n-tap symmetric FIR filter uses N/2 multipliers, N/2-1 adders, and N/2 pre-adders. Figure 42 and
Figure 43 show the even-tap and odd tap Symmetric Systolic FIR filter.

Figure 42 • Even-tap Symmetric Systolic FIR Filter Structure

Figure 43 • ODD-tap Symmetric Systolic FIR Filter Structure
Revision 2 61

DSP Reference Guide
In symmetric systolic FIR filter, each systolic block is realized using a mathblock, a fabric pre-adder and
two fabrics registers at the input stage. Hence, the N-tap systolic FIR filter utilizes N/2 mathblocks and
N/2 fabric pre-adders. Thus, this architecture utilizes half the mathblock resources when transposed with
symmetric architecture. Figure 44 and Figure 45 on page 63 show the implementation of 16-tap
Symmetric Systolic FIR filter using the SmartFusion2/IGLOO2 mathblocks.

Figure 44 • 16-Tap Even-Tap Symmetric Systolic FIR Filter using Mathblock
62 Revision 2

Digital Signal Processing Reference Guide
Design Files

For the implementation code, refer to the Systolic_Symmetric_FIR.vhd design files. Download the
design files from:
<download_folder>\DSP_Reference_Guide_DF\Systolic_Symmetric_FIR\hdl\Systolic_Symmetric
_FIR.vhd

Figure 45 • 16-Tap ODD-Tap Symmetric Systolic FIR Filter using Mathblock
Revision 2 63

DSP Reference Guide
Resource Utilization and Timing Summary

Report 17 shows the resources utilized by the m2s050fbga896-1 device for the Systolic_Symmetric_FIR

implementation.

Report 17 • 16-Tap Even-Tap Systolic FIR Filter

Table 20 shows the timing summary for Systolic_Symmetric_FIR implemented on the m2s050fbga896-1
device.

CoreFIR is available in Libero catalog which supports transpose and systolic architectures under fully
enumerated (Parallel FIR architectures). Refer to CoreFIR Handbook for more information on the usage
and configuration.

Type Used Total Percentage

COMB 433 56340 0.77

SEQ 722 56340 1.28

IO (W/ clocks) 64 375 17.07

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 0 72 0.00

RAM1K18 0 69 0.00

MACC 8 72 11.11

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 20 • 16-Tap Even-Tap Systolic FIR Filter Timing Summary

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

clk 2.729 366.435 4.000 250.000 0.940 0.818 4.927 8.506
64 Revision 2

http://www.actel.com/ipdocs/CoreFIR_HB.pdf

Digital Signal Processing Reference Guide
Semi-Parallel FIR Filters
The Semi-Parallel (folded) single rate FIR is a hybrid architecture and is commonly used to use the
mathblocks efficiently according to the design requirements. It utilizes minimal number of MAC blocks
that are sufficient to keep up with an average input sample rate. In semi-parallel FIR filter, the folding
factor decides the number of coefficients for each MAC.

For example, for a filter length, L and folding factor, m, the semi-parallel FIR architectures consume (L/m)
multipliers, (L/m) adders and 1 accumulator. Figure 46 shows the Semi-parallel FIR filter architecture.

In this design, each MACC is realized using mathblock and uses uSRAM for coefficients and input data
storage. Each coefficient from uSRAM and input from uSRAM is appropriately fed to each mathblocks
and intermediate sums are accumulated to generate final result. Figure 47 shows implementation of a
8-tap two Mathblock FIR filter.

Figure 46 • Semi-parallel FIR Filter Structure

Figure 47 • 8-Tap Semi-Parallel FIR Filter Structure using Mathblock
Revision 2 65

DSP Reference Guide
In a similar manner, a 16-tap four MACC FIR filter can be implemented as shown in Figure 48. In this
implementation, five mathblocks are required for computing the final result.

Design Files

For the implementation code, refer to the TwoMult_8_Tap_FIR.vhd design files. Download the design
files from:
<download_folder>\DSP_Reference_Guide_DF\TwoMultiplier8-Tap
FIR\TwoMult_8Tap_FIR\hdl\TwoMult_8_Tap_FIR.vhd

Figure 48 • 16-Tap Semi-Parallel FIR Filter using Mathblock
66 Revision 2

Digital Signal Processing Reference Guide
Resource Utilization and Timing Summary

Report 18 shows the resources utilized by the m2s050fbga896-1 device for the TwoMult_8_tap_FIR

implementation.

Report 18 • 8-Tap two Mult FIR Filter

Table 21 shows the timing summary for TwoMult_8_tap_FIR implemented on the m2s050fbga896-1
device.

Transform Applications

Fast Fourier Transform
Fast fourier transform (FFT) is used in DSP applications such as digital communication, video/audio
processing, industrial control and bio-medical processing. This transform can be designed in the
SmartFusion2/IGLOO2 devices using the inbuilt mathblock and memory blocks (LSRAM and uSRAM).
This section describes the basic theory on FFT transform and the FFT IP core available in the Libero
SoC software.

The Complex FFT transforms two N point time domain signals into two N point frequency domain
signals. The complex signal has two parts, real part and imaginary part.

Type Used Total Percentage

COMB 201 56340 0.36

SEQ 293 56340 0.52

IO (W/ clocks) 65 375 17.33

Differential IO 0 187 0.00

GLOBAL 2 16 12.50

RGB 2 1088 0.18

RAM64x18 2 72 2.78

RAM1K18 0 69 0.00

MACC 3 72 4.17

RCOSC_25_50MHZ 0 1 0.00

RCOSC_1MHZ 0 1 0.00

XTLOSC 0 1 0.00

CCC 0 6 0.00

MSS 0 1 0.00

FDDR 0 1 0.00

SYSCTRL 0 1 0.00

Table 21 • 8-Tap Two Mult FIR Filter Timing Summary

Clock
Domain

Period
(ns)

Frequency
(MHz)

Required
Period (ns)

Required
Frequency

(MHz)
External

Setup (ns)
External
Hold (ns)

Min Clock-
To-Out

(ns)
Max Clock-
To-Out (ns)

clk 4.000 250.000 4.000 250.000 0.882 0.887 4.646 8.176
Revision 2 67

DSP Reference Guide
The FFT of N complex data points x(n) is defined as:

EQ 12

Where,
k = 0, 1, 2 …
N-1 and WN = e-2π/N
WN is the twiddle factor or coefficient.
Radix-2 FFT is the widely used architecture in FFT implementation. Radix 2 FFT includes butterfly
structure that consists of complex adder, subtraction, and a multiplier for the twiddle factors. Figure 49
shows the simple radix2 butterfly structure and Figure 50 shows the Microsemi mathblock architecture
for complex multiplier used for butterfly computations.

X k  x n W
nk
N

n 0=

N 1–

=

Figure 49 • Radix-2 Butterfly Structure
68 Revision 2

Digital Signal Processing Reference Guide
Microsemi has the CoreFFT IP available in the Libero SoC IP catalog, which is highly parameterizable,
area efficient and high Performance MAC based FFT, optimized for SmartFusion2/IGLOO2 devices. The
CoreFFT has two implementations, Radix-2 decimation-in-time place architecture and radix-22

decimation in frequency streaming FFT. CoreFFT supports both the forward and inverse transforms with
a length of 2n, where 5 ≤ n ≤ 13. The main features of CoreFFT are shown in Table 21.

Figure 50 • Radix-2 Butterfly using Mathblock

Table 21 • Core FFT Features

Feature In-Place Streaming

Transform sizes 32-, 64-, 128-, 256-, 512-, 1024-, 2048-,
4096-, and 8192-point

16-, 32-, 64-, 128-, 256-, 512-, and 1024-
point

Forward and inverse FFT Yes Yes

Input data bit width 8 – 32 8 – 32

Twiddle factor bit width 8 – 32 8 – 32

Input/output data format Two’s complement Two’s complement

Natural output sample order Yes Optional
Revision 2 69

DSP Reference Guide
Resource Utilization and Timing Summary
For more information on CoreFFT refer to CoreFFT handbook.

Conditional block floating point
scaling

Yes No

Pre-defined scaling schedule No Yes

Optional minimal or buffered
memory configurations

Yes No

Embedded RAM-block based
twiddle look-up table (LUT)

Yes Yes

Support for refreshing twiddle
look-up tables

Yes Yes

Handshake signals to facilitate
easy interface to the user
circuitry

Yes Yes

Run-time forward/inverse
transform configuration

No Yes

Table 21 • Core FFT Features (continued)

Feature In-Place Streaming
70 Revision 2

Revision 2 71

Appendix 1 – Design Files

The design files (DF) can be downloaded from the Microsemi® SoC Products Group website:

www.microsemi.com/soc/download/rsc/?f=DSP_Reference_Guide_DF

The design file consists of example projects in vhdl. Refer to the readme.txt file that is included in the
design file for the directory structure.

http://soc.microsemi.com/download/rsc/?f=DSP_Reference_Guide_DF

Revision 3 72

List of Changes
The following table lists critical changes that were made in each revision of the reference guide.

Revision Changes Page

Revision 2
December 2014

Removed all instances of and references to M2S100 and
M2GL100 device from Table 1 (SAR 62858).

5

Revision 1
June 2014

First Release NA

Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the website.

Website
You can browse a variety of technical and non-technical information on the SoC home page, at
www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.

The technical support email address is soc_tech@microsemi.com.
Revision 2 73

http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

Product Support
My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms
Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select
Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR
web page.
74 Revision 2

http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/

semi

Microse
One Ente
Within th
Outside
Sales: +1
Fax: +1 (
E-mail: s

ctor
trial
nal

and
ice
ble
ign
has
© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Micro

mi Corporate Headquarters
rprise, Aliso Viejo CA 92656 USA

e USA: +1 (800) 713-4113
the USA: +1 (949) 380-6100
 (949) 380-6136

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semicondu
and system solutions for communications, defense and security, aerospace, and indus
markets. Products include high-performance and radiation-hardened analog mixed-sig
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing
synchronization devices and precise time solutions, setting the world's standard for time; vo
processing devices; RF solutions; discrete components; security technologies and scala
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom des
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and
approximately 3,400 employees globally. Learn more at www.microsemi.com.
50200442-2/12.14

Corporation. All other trademarks and service marks are the property of their respective owners.
949) 215-4996
ales.support@microsemi.com

mailto:sales.support@microsemi.com
www.microsemi.com

	Digital Signal Processing Reference Guide
	Table of Contents
	DSP Reference Guide
	Introduction
	Advantages of using the SmartFusion2/IGLOO2 Devices for DSP Applications
	Fabric Performance
	Low Power FPGA
	Embedded Micro Controller

	SmartFusion2/IGLOO2 Mathblock Architecture
	Key Features of Mathblock
	Mathblocks Resources
	Multiplier
	Normal Mode
	Dot Product (DOTP) Mode

	Adder/Subtractor
	I/O, Control Registers
	A Input Register, B Input Register, and C Output Register
	C Input
	Rounding
	Trimming
	Cascaded Input, Output, and Selection
	Overflow Output
	Shift Input
	Feedback Select Input

	Design Methodologies
	RTL Based Design
	Smart Cores for Mathblock Configuration

	Model-Based Design (Synphony ME Compiler)
	C-Based Design

	DSP Applications
	Top-level Directory Structure of the Design Files
	Advanced Math Functions
	Barrel Shift Register
	18-Bit Shift Register
	Wide-Multiplier
	Extended Addition
	44-Bit Counter
	88-Bit Accumulator

	Filter Applications
	MAC FIR Filters
	Parallel FIR Filters
	Semi-Parallel FIR Filters

	Transform Applications
	Fast Fourier Transform

	Appendix 1 – Design Files
	List of Changes

	Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

