PCN: 2012-006 Page 1 of 4



# **Process / Product Change Notification**

PCN No: Date: Subject: 2012-006 6<sup>th</sup> June 2012 PCN announces change of die source and device assembly of the M Series of , SM|BG part family and its derivatives.

#### **Description of Change:**

This correspondence is official notification of the change of die source and assembly process for the Microsemi SMBG part family. These parts now have the same die source and assembly process as the range of devices listed in PCN 2011-005. The part specifications are available on the Microsemi website at www.microsemi.com

Qualification and Reliability data is enclosed in the Appendix section. Further technical information is available from your local Sales office or Felim Downey at felim.downey@microsemi.com

#### **Open Orders:**

All currently scheduled orders shall be delivered per the dates reflected in the Order Acknowledgement from Microsemi.

**Part Numbers Affected:** All M/MA/MXL/MX level parts in the following Transient Voltage Suppressor series:

SMBG5.0A to SMBG170A SMBG5.0CA to SMBG170CA

# Date Code Implementation of SMBG families: 1223

#### Microsemi Contacts:

For further Sales information, please contact:

<u>Americas</u> Microsemi Lawrence 6 Lake Street Lawrence, MA 01841 USA Tel: (978)620-2600 Email: sales.LAW@microsemi.com International Microsemi Ireland Gort Road Business Park Ennis, Co. Clare Ireland Tel: +353 65 68 40044 Email: sales.IRE@microsemi.com

# For all other queries concerning this notification please contact

<u>Technical</u> Felim Downey Applications Support Engineer Microsemi Ireland Tel: +353 65 6840044 ext 2126 Email: felim.downey@microsemi.com <u>PCN Originator</u> Ciara O'Callaghan, Plastic Line Business Manager, Microsemi Ireland. Tel: +353 65 6840044 ext 2140 Email: cocallaghan@microsemi.com

PCN: 2012-006 Page 2 of 4

#### Please acknowledge or approve as applicable and return to:

Document Control Microsemi Ireland Gort Road Business Park Ennis, Co. Clare Ireland TEL: +353 65 68 40044 FAX: +353 65 68 22298 EMAIL: mdaly@microsemi.com

#### To be completed by the customer:

Please indicate your acknowledgement and approval or approval with comments by signing below and add any comments you may want Microsemi to consider.

Remarks:

Name

Title Date

This PCN is intended to communicate Microsemi's intention to implement the change described above. Approval is requested within 30 days. The absence of a response is considered by Microsemi as approval. Should you wish you comments to be considered please ensure response is received and acknowledged within the allowed 30 days.

# Appendix I

# **Qualification Data Summary**

Table 1 details the qualification tests performed on the device range

| Qualification Data Summary |                                    |                                 |                     |                             |                           |                |          |
|----------------------------|------------------------------------|---------------------------------|---------------------|-----------------------------|---------------------------|----------------|----------|
| Screening<br>Level         | Test<br>Performed                  | Condition                       | Duratio<br>n or Qty | Standard /<br>Reference     | Sample<br>size per<br>Lot | No. of<br>Lots | Failures |
| М                          | Temperature<br>Cycle               | -55 °C to<br>+150 °C            | 1000<br>cycles      | MIL-STD-750E<br>Method 1051 | 77                        | 3              | 0        |
| М                          | HTRB                               | 125 °C                          | 1000<br>hours       | MIL-STD-750E<br>Method 1038 | 77                        | 3              | 0        |
| М                          | Autoclave                          | 121 °C,<br>100 % RH,<br>15 psig | 96 hours            | JESD22-A102                 | 77                        | 5              | 0        |
| MX                         | Visual and<br>Mechanical<br>Review |                                 |                     | MIL-STD-750E<br>Method 2071 | 45                        | 2              | 0        |
| MX                         | Solderability                      |                                 |                     | MIL-STD-750E<br>Method 2026 | 4                         | 4              | 0        |
| MX                         | Surge Tests                        | 100 % I <sub>PP</sub>           | 100<br>times        | 10/1000 μS<br>waveform      | 22                        | 2              | 0        |
| MX                         | HTRB                               | 125 °C                          | 1000<br>hours       | MIL-STD-750E<br>Method 1038 | 22                        | 2              | 0        |
| MX                         | Physical<br>Dimensions             |                                 |                     | MIL-STD-750E<br>Method 2066 | 15                        | 5              | 0        |
| MX                         | Terminal<br>Strength               |                                 |                     | MIL-STD-750E<br>Method 2036 | 22                        | 5              | 0        |
| MX                         | Moisture<br>Resistance             |                                 |                     | MIL-STD-750E<br>Method 1021 | 22                        | 4              | 0        |

**Table 1: Qualification Data** 

# **Reliability Data**

The results in Table 2 below have been accumulated from High Temperature Reverse Bias (HTRB) testing performed on the M level devices.

| Reliability Data        |               |  |  |  |
|-------------------------|---------------|--|--|--|
| Term                    | M Level       |  |  |  |
| Cumulative Device Hours | > 350,000     |  |  |  |
| Equivalent Device Hours | >29.5 million |  |  |  |
| # of Failures           | 0             |  |  |  |
| Failure Rate            | 3.09E-08      |  |  |  |
| FIT (per billion hours) | 31            |  |  |  |
| MTTF (in years)         | 3,690         |  |  |  |

#### **Table 2: Reliability Results**

NOTE: There have been zero failures to date. The reliability data will be updated as more data is accumulated.

# Definitions

| Cumulative device hours:        | Number of devices tested (n) * test hours per device |
|---------------------------------|------------------------------------------------------|
| Equivalent devices hours (EDH): | Acceleration factor (Af) * cumulative device hours   |

where the acceleration factor (Af) using the Arrhenius model is expressed as:

 $A_F = e^{-Ea/k(1/T_{TEST} - 1/T_{USE})}$  where:

$$\begin{split} &Ea = thermal \ activation \ energy \ (eV) \ which, \ for \ semiconductors \ is \ typically \ 0.7eV \\ &k = Boltzmann's \ constant \ = \ 8.617 \ x10-5 \ eV/^{\circ}K \\ &T_{TEST} = Test \ junction \ temperature \ of \ 125^{\circ}C \ (398 \ ^{\circ}K) \\ &T_{USE} = Typical \ usage \ junction \ temperature \ of \ 55^{\circ}C \ (328 \ ^{\circ}K) \end{split}$$

| Failure Rate: | Number of failures / hour @ 60% confidence level |
|---------------|--------------------------------------------------|
| FIT:          | Failure rate x $10^9$ hours (Failures in time)   |
| MTTF:         | 1 / failure rate (Mean time to failure)          |