Accessing Serial Flash Memory Using SPI Interface - Libero SoC v11.7 and Keil uVision Flow for SmartFusion2

TU0548 Tutorial
Contents

1 Preface ... 5
 1.1 Purpose .. 5
 1.2 Intended Audience .. 5
 1.3 References ... 5

2 Accessing Serial Flash Memory using SPI Interface - Libero SoC v11.7 and Keil uVision Flow for SmartFusion2 ... 6
 2.1 Introduction ... 6
 2.2 Design Requirements .. 7
 2.2.1 Project Files ... 7
 2.3 Design Overview .. 8
 2.4 Step 1: Creating a Libero SoC Project 9
 2.4.1 Launching Libero SoC 9
 2.4.2 Connecting Components in SPI_Flash_0 SmartDesign .. 16
 2.5 Step 2: Generating the Program File 17
 2.6 Step 3: Programming the SmartFusion2 Security Evaluation Board Using FlashPro 18
 2.7 Step 4: Configuring and Generating Firmware 19
 2.8 Step 5: Building the Software Application Using Keil uVision 5 IDE 21
 2.9 Step 6: Configuring Serial Terminal Emulation Program 35
 2.10 Step 7: Connecting the ULINK-ME to the Board and PC 36
 2.11 Step 8: Debugging the Application Project using Keil uVision 5 38
 2.12 Conclusion ... 45

3 Appendix: Board Setup for Debugging from Keil uVision 46

4 Appendix: Board Setup for Programming the Tutorial 47

5 Appendix: SmartFusion2 Security Evaluation Kit Board Jumper Locations 48

6 Revision History .. 49

7 Product Support ... 50
 7.1 Customer Service .. 50
 7.2 Customer Technical Support Center 50
 7.3 Technical Support .. 50
 7.4 Website ... 50
 7.5 Contacting the Customer Technical Support Center 50
 7.5.1 Email ... 50
 7.5.2 My Cases .. 50
 7.5.3 Outside the U.S. ... 51
 7.6 ITAR Technical Support ... 51
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPI Flash Interfacing Block Diagram</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Libero SoC Project Manager</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Project Details Page</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Device Selection Page</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Device Settings Page</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Design Template Window</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>System Builder Window</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>System Builder – Device Features Page</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>System Builder – Peripherals Page</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>System Builder – Clocks Page</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>SPI Flash SmartDesign</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>SPI Flash SmartDesign</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>Generate Component</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>Log Window</td>
<td>17</td>
</tr>
<tr>
<td>15</td>
<td>Generate Bitstream</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>Run Program Action</td>
<td>18</td>
</tr>
<tr>
<td>17</td>
<td>Configuring Firmware</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>Export Firmware Dialog Box</td>
<td>19</td>
</tr>
<tr>
<td>19</td>
<td>Keil Homepage</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>uVision Workspace</td>
<td>21</td>
</tr>
<tr>
<td>21</td>
<td>uVision Workspace main.c file</td>
<td>22</td>
</tr>
<tr>
<td>22</td>
<td>uVision Workspace - Add winbondflash SPI Driver Files</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>Cortex-M3_SRAM Settings</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>Target Options</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>Target Options - Adding Symbols</td>
<td>26</td>
</tr>
<tr>
<td>26</td>
<td>Build HW Platform Window</td>
<td>27</td>
</tr>
<tr>
<td>27</td>
<td>Set as Active Project</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>Cortex-M3_SRAM Settings</td>
<td>29</td>
</tr>
<tr>
<td>29</td>
<td>Target Options</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>Target Options - Scatter File</td>
<td>31</td>
</tr>
<tr>
<td>31</td>
<td>Target Options - Utilities Settings</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>Build Application Window</td>
<td>33</td>
</tr>
<tr>
<td>33</td>
<td>Build Output</td>
<td>33</td>
</tr>
<tr>
<td>34</td>
<td>Device Manager Window</td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td>ULINK-ME Connections</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td>ULINK-ME Debugger</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>Selecting Start/Stop Debug Session</td>
<td>37</td>
</tr>
<tr>
<td>38</td>
<td>Debug Menu</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>Selecting Run from the Debug Menu</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>HyperTerminal Window</td>
<td>39</td>
</tr>
<tr>
<td>41</td>
<td>HyperTerminal Window - Option 1</td>
<td>40</td>
</tr>
<tr>
<td>42</td>
<td>HyperTerminal Window - Option 2</td>
<td>40</td>
</tr>
<tr>
<td>43</td>
<td>Disassembly Window</td>
<td>41</td>
</tr>
<tr>
<td>44</td>
<td>Values of the Cortex-M3 Internal Registers</td>
<td>42</td>
</tr>
<tr>
<td>45</td>
<td>Keil uVision Workbench - Stop Debug Option</td>
<td>43</td>
</tr>
<tr>
<td>46</td>
<td>Keil uVision Workbench - Step Level Debugging</td>
<td>44</td>
</tr>
<tr>
<td>47</td>
<td>SmartFusion2 Security Evaluation Kit in Debug Mode using Keil uVision</td>
<td>45</td>
</tr>
<tr>
<td>48</td>
<td>SmartFusion2 Security Evaluation Kit in Programming Mode</td>
<td>46</td>
</tr>
<tr>
<td>49</td>
<td>SmartFusion2 Security Evaluation Kit Board Jumper Locations</td>
<td>47</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Design Requirements</td>
<td>7</td>
</tr>
<tr>
<td>Table 2</td>
<td>SmartFusion2 Security Evaluation Kit Jumper Settings</td>
<td>17</td>
</tr>
</tbody>
</table>
1 Preface

1.1 Purpose

This tutorial provides steps to create a Libero® system-on-chip (SoC) software design using the System Builder. It describes how to build, debug, and run Keil uVision application. It also provides a simple design to access the SPI flash.

1.2 Intended Audience

This tutorial is intended for:

• FPGA designers
• Embedded designers
• System-level designers

1.3 References

The following documents are referred in this user tutorial:

• TU0546: SoftConsole v4.0 and Libero SoC v11.7 Tutorial
• TU0547: Accessing Serial Flash Memory Using SPI Interface - Libero SoC and IAR Embedded Workbench Flow Tutorial for SmartFusion2
2 Accessing Serial Flash Memory using SPI Interface - Libero SoC v11.7 and Keil uVision Flow for SmartFusion2

2.1 Introduction

The Libero SoC software generates firmware projects using Keil, SoftConsole, and IAR tools. This tutorial describes the process to build a Keil uVision application that can be implemented and validated using the SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) Security Evaluation Kit.

The same firmware project can be built using the IAR and softconsole tools as well. Following are the respective references:

• TU0546: SoftConsole v4.0 and Libero SoC v11.7 Tutorial
• TU0547: Accessing Serial Flash Memory Using SPI Interface - Libero SoC and IAR Embedded Workbench Flow Tutorial for SmartFusion2

This tutorial describes the following:

• Step 1: Creating a Libero SoC Project
• Step 2: Generating the Program File
• Step 3: Programming the SmartFusion2 Security Evaluation Board Using FlashPro
• Step 4: Configuring and Generating Firmware
• Step 5: Building the Software Application Using Keil uVision 5 IDE
• Step 6: Configuring Serial Terminal Emulation Program
• Step 7: Connecting the ULINK-ME to the Board and PC
• Step 8: Debugging the Application Project using Keil uVision 5
2.2 Design Requirements

Table 1 lists the design requirements of Keil uVision flow.

<table>
<thead>
<tr>
<th>Design Requirements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Requirements</td>
<td></td>
</tr>
<tr>
<td>SmartFusion2 Security Evaluation Kit:</td>
<td>Rev D or later</td>
</tr>
<tr>
<td>• FlashPro4 programmer</td>
<td></td>
</tr>
<tr>
<td>• USB A to Mini-B cable</td>
<td></td>
</tr>
<tr>
<td>• 12 V Adapter</td>
<td></td>
</tr>
<tr>
<td>Keil debugger</td>
<td></td>
</tr>
<tr>
<td>Host PC or Laptop</td>
<td>Any 64-bit Windows Operating System</td>
</tr>
<tr>
<td>Software Requirements</td>
<td></td>
</tr>
<tr>
<td>Libero SoC</td>
<td>v11.7</td>
</tr>
<tr>
<td>Keil uVision</td>
<td>v5</td>
</tr>
<tr>
<td>FlashPro programming software</td>
<td>v11.7</td>
</tr>
<tr>
<td>Host PC Drivers</td>
<td>USB to UART drivers</td>
</tr>
</tbody>
</table>

2.2.1 Project Files

The design files for this tutorial can be downloaded from the Microsemi website: http://soc.microsemi.com/download/rsc/?f=m2s_tu0548_liberov11p7_df

The design files include:

• LiberoProject
• Programmingfile
• Source Files
• SPI_Flash_Drivers
• Readme file

Figure 1 shows the top-level structure of the design files. For further details, refer to the Readme.txt file.

Figure 1 • Design Files Top-Level Structure

```
m2s_tu0548_liberov11p7_df
    SF2_SPI_Flash_Keil_Tutorial_DF
    • SPI_Flash_Drivers
    • Libero_project
    • Programmingfile
    • Source Files
    • Readme file
```
2.3 Design Overview

This design example demonstrates the execution of basic read and write operations on the SPI flash present on the SmartFusion2 Security Evaluation Kit board. This kit has a built-in winbond SPI flash memory W25Q64FVSSIG, which is connected to the SmartFusion2 microcontroller subsystem (MSS) through the dedicated MSS SPI_0 interface.

Read and write data information is displayed using HyperTerminal, which communicates to the SmartFusion2 MSS using the MMUART_1 interface.

Refer to the UG0331: SmartFusion2 Microcontroller Subsystem User Guide for more information on SPI.

Figure 2 shows interfacing the external SPI flash to MSS SPI_0.

Figure 2 • SPI Flash Interfacing Block Diagram
2.4 **Step 1: Creating a Libero SoC Project**

This section describes how to create a Libero SoC project.

2.4.1 **Launching Libero SoC**

The following steps describe how to launch Libero SoC:

1. Choose **Start > Programs > Microsemi Libero SoC v11.7 > Libero SoC v11.7**, or double-click the shortcut on desktop to open the Libero SoC v11.7 Project Manager.

2. Create a new project using one of the following options:
 - Select **New** on the **Start Page** tab, as shown in Figure 3.
 - Click **Project > New Project** from the Libero SoC menu.

Figure 3 • **Libero SoC Project Manager**
3. Enter the following information in the **Project Details** page, as shown in Figure 4.
 - **Project Name**: SPI_Flash
 - **Project Location**: Select an appropriate location (For example, `D:/Microsemi_prj`)
 - **Preferred HDL Type**: Verilog
 - **Enable Block Creation**: Unchecked

 ![Figure 4 • Project Details Page](image)

4. Click **Next**. The **Device Selection** page is displayed, as shown in Figure 5 on page 11. Select the following values from the drop-down list:
 - **Family**: SmartFusion2
 - **Die**: M2S090TS
 - **Package**: 484FBGA
 - **Speed**: -1
 - **Core Voltage**: 1.2
 - **Range**: COM
5. Click **Next**. The **Device Settings** page is displayed.
6. Select **PLL supply voltage (V)** as **3.3**, as shown in **Figure 6** and click **Next**.

Figure 5 • Device Selection Page

Figure 6 • Device Settings Page
7. Click **Next**. The **Design Template** page is displayed, as shown in **Figure 7**. Under **Design Template and Creators**, click **Create a system builder based design**.

Figure 7 • **Design Template Window**

8. Click **Finish**. This displays the **New Project Information** window. Select **Use Enhanced Constraint Flow**, as shown in **Figure 8**.

Figure 8 • **New Project Information**
9. The **System Builder** window is displayed. Enter a name for your system as **SPI_Flash** and click **OK**, as shown in Figure 9.

Note: System Builder is a graphical design wizard. It creates a design based on high-level design specifications by taking the user through a set of high-level questions to create the intended system.

Figure 9 • System Builder Window

*Figure 10 shows the **System Builder – Device Features** page.*

Figure 10 • System Builder – Device Features Page
10. Click Next. The **System Builder - Peripherals** page is displayed, as shown in Figure 11.

11. Under the **MSS Peripherals** section, clear all the check boxes except **MM_UART_1** and **MSS_SPI_0**, as shown in Figure 11.

Figure 11 • System Builder – Peripherals Page
12. Click Next. The System Builder - Clocks page is displayed, as shown in Figure 12.
13. In the System Builder - Clocks page (refer Figure 12):
 • Select System Clock frequency as 50 MHz and clock source as On-chip 25/50 MHz RC Oscillator
 • Select M3_CLK as 100 MHz
 • Select APB_0_CLK and APB_1_CLK frequency as M3_CLK/1

Figure 12 • System Builder – Clocks Page

14. Click Next. The System Builder - Microcontroller page is displayed. Do not change the default selections.
15. Click Next. The System Builder - SECDED page is displayed. Do not change the default selections.
16. Click Next. The System Builder - Security page is displayed. Do not change the default selections.
17. Click Next. The System Builder - Interrupts page is displayed. Do not change the default selections.
18. Click Next. The System Builder - Memory Map page is displayed. Do not change the default selections.
19. Click Finish.
20. Select File > Save to save SPI_Flash. Select the SPI_Flash tab on the Smart Design canvas, as shown in Figure 13.

Figure 13 • SPI_Flash SmartDesign

2.4.2 Connecting Components in SPI_Flash_0 SmartDesign

The following steps describe how to connect the components in the SPI_Flash SmartDesign:

1. Right-click **POWER_ON_RESET_N** and select **Mark Unused**.
2. Right-click **MSS_READY** and select **Mark Unused**.
3. Expand **INIT_PINS**, right-click **INIT_DONE** and select **Mark Unused**.
4. Expand **FAB_CCC_PINS**, right-click **FAB_CCC_GL0** and select **Mark Unused**.
5. Right-click **FAB_CCC_LOCK** and select **Mark Unused**.
6. Right-click **FAB_RESET_N** and select **Tie High**.
7. Click File > Save.

The SPI_Flash design is displayed, as shown in Figure 14.

Figure 14 • SPI_Flash SmartDesign

8. Generate the SPI_Flash SmartDesign by clicking SmartDesign > Generate Component or by clicking Generate Component on the SmartDesign toolbar, as shown in Figure 15.

Figure 15 • Generate Component
After successful generation of all the components, the following message is displayed on the log window, as shown in Figure 16.

Info: 'SPI_Flash' was successfully generated.

Figure 16 • Log Window

2.5 Step 2: Generating the Program File

The following step describe how to generate the program file:

1. Double-click Manage Constraints and click Derive Constraints option under Timing tab to generate SDC file for root module. Click Yes to associate SDC file to synthesis, place and route and timing verification stages, as shown in the Figure 17, Figure 18 on page 18, and Figure 19 on page 18.

Figure 17 • Manage Constraints
2.6 Step 3: Programming the SmartFusion2 Security Evaluation Board Using FlashPro

The following steps describe how to program the SmartFusion2 Security Evaluation Kit board using FlashPro:

1. Connect the FlashPro4 programmer to the J5 connector of the SmartFusion2 Security Evaluation Kit board.
2. Connect the jumpers on the SmartFusion2 Security Evaluation Kit board, as listed in Table 2. For more information on jumper locations, refer to the "Appendix: SmartFusion2 Security Evaluation Kit Board Jumper Locations" on page 48.

CAUTION: Ensure that the power supply switch, SW7 is switched OFF while connecting the jumpers on the SmartFusion2 Security Evaluation Kit.

Table 2 • SmartFusion2 Security Evaluation Kit Jumper Settings

<table>
<thead>
<tr>
<th>Jumper Number</th>
<th>Pin (From)</th>
<th>Pin (To)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>J22, J23, J24, J8, J3</td>
<td>1</td>
<td>2</td>
<td>These are the default jumper settings of the SmartFusion2 Security Evaluation Kit board. Ensure that these jumpers are set accordingly.</td>
</tr>
</tbody>
</table>

3. Connect the power supply to the J6 connector.
 Switch ON the power supply switch, SW7. Refer to "Appendix: Board Setup for Programming the Tutorial" on page 47 for information on the board setup for running the tutorial.
4. To program the SmartFusion2 device, double-click **Run PROGRAM Action** in the **Design Flow** tab, as shown in **Figure 21**.

Figure 21 • Run Program Action

2.7 **Step 4: Configuring and Generating Firmware**

The Design Firmware window displays compatible firmware drivers based on peripherals configured in the design. Following drivers are used in this tutorial:

- CMSIS
- MMUART
- SPI

To generate the required drivers:

1. Double-click on **Configure Firmware Cores** in **Handoff design for Firmware Development** in **Design Flow** window.
2. Clear all the drivers check boxes, except **SmartFusion2_CMSIS_0**, **SmartFusion2_MSS_MMUART_Driver_0**, and **SmartFusion2_MSS_SPI_Driver_0**, as shown in **Figure 22**.

Note: Select the latest version of the drivers.

Figure 22 • Configuring Firmware
3. Double-click on Export Firmware in Handoff design for Firmware Development in Design Flow window. Export Firmware dialog box is displayed, as shown in Figure 23.

Figure 23 • Export Firmware Dialog Box

4. In the Export Firmware dialog box:
 - Select Create firmware project for.
 - Select Keil from the drop-down list.

5. Click OK. The successful firmware generation window is displayed.

The SmartFusion2 Security Evaluation Kit is ready for running and debugging the Keil application through ULINK-ME Debugger.
2.8 Step 5: Building the Software Application Using Keil uVision 5 IDE

The following steps describe how to build a software application using Keil uVision 5 IDE:

1. Launch the Keil IDE. Open the Keil project by double-clicking SPI_Flash_sb_MSS_CM3 Keil project, as shown in Figure 24.

Figure 24 • Keil Homepage
The Keil workspace is displayed, as shown in Figure 25.

Figure 25 • uVision Workspace

2. Browse to the `main.c` file, location in the design files folder: `<download_folder>/SF2_SPI_Flash_Keil_Tutorial_DF\SourceFiles`.

3. Copy the `main.c` file and replace the existing `main.c` file under SPI_Flash_sb_MSS_CM3_app project in the uVision workspace.
The uVision window displays the `main.c` file, as shown in Figure 26.

Figure 26 • uVision Workspace main.c file

4. winbondflash drivers are not included in the Libero generated uVision workspace. To include the drivers in the uVision workspace, browse to the location of the winbondflash drivers in the design files folder:
 `<download_folder>`\SF2_SPI_Flash_Keil_Tutorial_DF\SPI_Flash_Drivers.
5. Copy the `winbond flash` folder to the drivers folder of SPI_Flash_sb_MSS_CM3_hw_platform project in the uVision workspace.
6. Right-click and add the driver file (`winbondflash.c`) to `SPI_Flash_sb_MSS_CM3_hw_platform` project in the Keil uVision workspace, as shown in Figure 27.

Figure 27 • uVision Workspace Window - Add winbondflash SPI Driver Files
7. Change `SPI_Flash_sb_MSS_CM3_hw_platform` debug mode to **Cortex-M3_SRAM** by selecting **Cortex-M3_SRAM** from the drop-down list, as shown in Figure 28.

Figure 28 • Cortex-M3_SRAM Settings

This tutorial uses `printf` statements to display memory read data. Redirection of the output of `printf()` to a UART is enabled by adding the `MICROSEMI_STDIO_THRU_UART` symbol.
Follow the steps to add the MICROSEMI_STDIO_THRU_UART symbol:

a. Right-click Cortex - M3 SRAM under SPI_Flash_sb_MSS_CM3_hw_platform and click Options for SPI_Flash_sb_MSS_CM3_hw_platform - Target Cortex - M3 SRAM.
b. Go to C/C++ tab and enter **MICROSEMI_STDIO_THRU_UART** at **Define** under Preprocessor Symbols, as shown in **Figure 30**.

Figure 30 • Target Options-Adding Symbols

![Target Options-Adding Symbols](image)

c. Click **OK**.
8. Right-click Cortex-CM3 SRAM under SPI_Flash_sb_MSS_CM3_hw_platform and select **Build SPI_Flash_sb_MSS_CM3_hw_platform (Cortex-CM3 SRAM)**, as shown in Figure 31.

Figure 31 • Build HW Platform Window
9. Right-click SPI_Flash_sb_MSS_CM3_app and select Set as Active Project.

Figure 32 • Set as Active Project
10. Change **SPI_Flash_sb_MSS_CM3_app** debug mode to **Cortex-M3 SRAM** by selecting **Cortex-M3 SRAM** from the drop-down list, as shown in Figure 33.

Figure 33 • Cortex-M3 SRAM Settings
11. Right-click **Cortex-M3 SRAM** under **SPI_Flash_sb_MSS_CM3_app** and click **Options for project**.

Figure 34 • Target Options
12. Click the **Linker** tab and navigate to the `SF2_SPI_Flash_Keil_Tutorial_DFI\LiberoProject\Keil\CMSIS\startup_arm` folder to select the **Scatter File** as `smartfusion2_esram_debug.sct`, as shown in Figure 35.

Figure 35 • Target Options - Scatter File

13. Click the **Utilities** tab and clear **Use Debug Driver** and **Update Target before Debugging** check boxes.
14. Select **ULINK2/ME Cortex Debugger** from the drop-down list and click **OK**, as shown in Figure 36.

Figure 36 • Target Options - Utilities Settings
15. Right-click Cortex-M3 SRAM under SPI_Flash_sb_MSS_CM3_app and select Build SPI_Flash_sb_MSS_CM3_app (Cortex-M3 SRAM), as shown in Figure 37. It compiles all of the source files and links the object files into an AXF file to debug. Ensure that there are no errors. Correct syntax errors, if any and rebuild if necessary.

Figure 37 • Build Application Window

Figure 38 displays the messages in the console after the build.

Figure 38 • Build Output
2.9 Step 6: Configuring Serial Terminal Emulation Program

The following steps describe how to configure serial terminal emulation program:

1. Install the USB driver. For serial terminal communication through the FTDI mini USB cable, install the FTDI D2XX driver. Download the drivers and the installation guide from: www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

2. Connect the host PC to the J18 connector using the USB Mini-B cable. The USB to UART bridge drivers are automatically detected. Of the four COM ports, select the one with Location as on USB Serial Converter D. Figure 39 shows an example Device Manager window.

3. Start the HyperTerminal session. If the HyperTerminal program is not available in the computer, any free serial terminal emulation program such as PuTTY or TeraTerm can be used. Refer to the Configuring Serial Terminal Emulation Programs Tutorial for configuring the HyperTerminal, TeraTerm, or PuTTY.

The HyperTerminal settings are as follows:

- 115200 baud rate
- 8 data bits
- 1 stop bit
- No parity
- No flow control
2.10 Step 7: Connecting the ULINK-ME to the Board and PC

The following steps describe the connection between the SmartFusion2 Security Evaluation Kit board, ULINK-ME, and host PC. Use the appropriate settings for the board that is in use.

2. Connect the USB A-Mini B cable between the host PC and the SmartFusion2 Security Evaluation Kit board. This is used to display the HyperTerminal communications.
3. Verify that the ULINK-ME debugger is connected to the SmartFusion2 Security Evaluation Kit board RVI Header, as shown in Figure 40 and also to the host PC through a USB A-Mini B cable. The ULINK-ME adapter has one LED that indicates connection status in the following ways:
 - Blinking slowly indicates that ULINK-ME is ready to communicate with the debugger.
 - Blinking speedily indicates that the target board is executing the program under debugger control.
 - Remaining ON during debugging indicates that the debugger has halted the target board.
 - Remaining ON during download indicates that target download and verification is in progress.
4. Switch ON the power supply switch, SW7.

Figure 40 • ULINK-ME Connections
Refer to "Appendix: Board Setup for Debugging from Keil uVision" on page 46 for information on the board setup for running the tutorial.

Figure 41 • ULINK-ME Debugger
2.11 Step 8: Debugging the Application Project using Keil uVision 5

The following steps describe how to debug the application project using Keil uVision:

1. Select **Start/Stop Debug Session** from the **Debug** menu in the uVision window to run it through the debug hardware, as shown in Figure 42. The processor code is downloaded to the SmartFusion2 eSRAM.

Figure 42 • Selecting Start/Stop Debug Session
The code automatically runs in the `main.c` file, as shown in Figure 43.

Figure 43 • Debug Menu
2. Click Run from the Debug menu, as shown in Figure 44.

Figure 44 • Selecting Run from the Debug Menu

On successful operation, the HyperTerminal window displays a message, as shown in Figure 45.

Figure 45 • HyperTerminal Window
3. Select option 1 and enter values to write to the SPI Flash Memory, as shown in Figure 46.

Figure 46 • HyperTerminal Window - Option 1

![HyperTerminal Window - Option 1](image1)

4. Select option 2 to read data from SPI Flash Memory, as shown in Figure 47.

Figure 47 • HyperTerminal Window - Option 2

![HyperTerminal Window - Option 2](image2)
The Disassembly window is displayed in the middle of the Debug section, as shown in Figure 48. If not, click the Disassembly icon to display the Disassembly section.

Figure 48 • Disassembly Window
5. Click **Registers Window** to view the values of the ARM® Cortex®-M3 processor internal registers, as shown in **Figure 49**.

Figure 49 • Values of the Cortex-M3 Internal Registers
6. When the debug process is finished, terminate execution of the code by choosing **Debug > Start/Stop Debug Session**, as shown in **Figure 50**.

Figure 50 • Keil uVision Workbench - Stop Debug Option
7. The Step Level Debugging can be performed before running the application using Run. These can be accessed from the Debug menu or on the Keil uVision workbench, as shown in Figure 51.

Figure 51 • Keil uVision Workbench - Step Level Debugging

- Source code can be single-stepped by selecting from the Debug menu **Debug > Step**, **Debug > Step Over**, **Debug > Step Out** or by selecting the respective options from the Keil uVision workbench, as shown in Figure 51. Observe the changes in the source code window and disassembly section. Performing a step over provides an option for stepping over functions. The entire function is run, but there is no need to single-step through each instruction contained in the function.
- Select **Debug > Step Out** to exit the instruction in stepping mode.

8. Add breakpoints from the **Debug** menu in workbench to force the code to halt, start Debug session, and then single-step and observe the instruction sequence.

9. Close uVision using **File > Exit**.

10. Close the HyperTerminal using **File > Exit**.

2.12 Conclusion

This tutorial provides steps to create a Libero SoC software design using the System Builder. It describes how to build, debug, and run Keil uVision application. It also provides a simple design to access the SPI flash.
3 Appendix: Board Setup for Debugging from Keil uVision

Figure 52 shows the board setup for debugging the Keil uVision on the SmartFusion2 Security Evaluation Kit board.

Figure 52 • SmartFusion2 Security Evaluation Kit in Debug Mode using Keil uVision
Figure 53 shows the board setup for running the tutorial on the SmartFusion2 Security Evaluation Kit board.

Figure 53 • SmartFusion2 Security Evaluation Kit in Programming Mode
Appendix: SmartFusion2 Security Evaluation Kit Board Jumper Locations

Figure 54 shows the jumper locations on the SmartFusion2 Security Evaluation Kit board.

Notes:

- Jumpers highlighted in red (J22, J23, J24, J3, J8) are set by default.
- The location of the jumpers in Figure 1 are searchable.
Revision History

The following table shows the important changes made in this document for each revision.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision 5</td>
<td>Updated the document for Libero SoC v11.7 software release changes (SAR 77347).</td>
</tr>
<tr>
<td>(March 2016)</td>
<td></td>
</tr>
<tr>
<td>Revision 4</td>
<td>Updated the document for Libero SoC v11.6 software release changes (SAR 72567).</td>
</tr>
<tr>
<td>(October 2015)</td>
<td></td>
</tr>
<tr>
<td>Revision 3</td>
<td>Updated the document for Libero SoC v11.5 software release (SAR 64189).</td>
</tr>
<tr>
<td>(March 2015)</td>
<td></td>
</tr>
<tr>
<td>Revision 2</td>
<td>Updated the document for Libero SoC v11.4 software release (SAR 61938).</td>
</tr>
<tr>
<td>(November 2014)</td>
<td></td>
</tr>
<tr>
<td>Revision 1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>(April 2014)</td>
<td></td>
</tr>
</tbody>
</table>
7 Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains information about contacting Microsemi SoC Products Group and using these support services.

7.1 Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

7.2 Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical Support Center spends a great deal of time creating application notes, answers to common design cycle questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

7.3 Technical Support

7.4 Website

7.5 Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email or through the Microsemi SoC Products Group website.

7.5.1 Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

7.5.2 My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.
7.5.3 **Outside the U.S.**

Customers needing assistance outside the US time zones can either contact technical support via email (soc_tech@microsemi.com) or contact a local sales office. Visit About Us for sales office listings and corporate contacts.

7.6 **ITAR Technical Support**

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR), contact us via soc_tech@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.