DG0534
Demo Guide
Interfacing SmartFusion2 SOC and IGLOO2 FPGA with External LPDDR Memory through MDDR Controller
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world’s standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.
Contents

1 Revision History 1
 1.1 Revision 9.0 1
 1.2 Revision 8.0 1
 1.3 Revision 7.0 1
 1.4 Revision 6.0 1
 1.5 Revision 5.0 1
 1.6 Revision 4.0 1
 1.7 Revision 3.0 1
 1.8 Revision 2.0 1
 1.9 Revision 1.0 1

2 Preface ... 2
 2.1 Purpose ... 2
 2.2 Intended Audience 2
 2.3 References 2

3 Interfacing SmartFusion2 SOC and IGLOO2 FPGA with External LPDDR Memory through MDDR Controller ... 3
 3.1 Introduction 3
 3.2 Design Requirements 3
 3.3 Prerequisites 4
 3.4 Demo Design 4
 3.4.1 Features 7
 3.4.2 Description 8
 3.5 Running Simulation 11
 3.5.1 Simulation Setup 13
 3.5.2 Running the Simulation 16
 3.6 Setting Up the Hardware Demo 18
 3.7 Setting Up the Device 21
 3.8 Running the Hardware Demo 21
 3.9 Steps to Run GUI 21
 3.10 Performing a Single Data Transfer 22
 3.11 Performing Burst Data Transfer 23
 3.12 Conclusion 24

4 Appendix 1: Programming the Device Using FlashPro Express 25

5 Appendix 2: Configuring MDDR Controller 28
 5.1 MDDR Configuration Tab 29
 5.1.1 General 29
 5.1.2 Memory Initialization 30
 5.1.3 Memory Timing 31

6 Appendix 3: Finding Correct COM Port Number when Using USB 3.0 32

7 Appendix 4: Performing Write/Read Operation when Non 64-bit Aligned Address is Provided 34
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IGLOO2 Demo Design Files - Top-Level Structure</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>SmartFusion2 Demo Design Files - Top-Level Structure</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>MDDR Demo Design Block Diagram - IGLOO2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>MDDR Demo Design Block Diagram - SmartFusion2</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>IGL2_MDDR_Demo SmartDesign</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>SF2_MDDR_Demo SmartDesign</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>MDDR_Demo_0 SmartDesign Component - IGLOO2</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>MDDR_Demo_top_0 SmartDesign Component - SmartFusion2</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>UART_IF_0 SmartDesign Component - IGLOO2</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>UART_IF_0 SmartDesign Component - SmartFusion2</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>AXI_LPDDR_Simulation SmartDesign Testbench - IGLOO2</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>AXI_LPDDR_Simulation SmartDesign Testbench - SmartFusion2</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>DO File Settings</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>Waveforms Settings</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>Invoking Organize Stimulus Files Window</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>Organize Stimulus Files Window - IGLOO2</td>
<td>14</td>
</tr>
<tr>
<td>17</td>
<td>Organize Stimulus Files Window SmartFusion2</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>Transcript Window</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>Single Write and Read Operation</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>16-Beat AXI Burst Write and Read</td>
<td>17</td>
</tr>
<tr>
<td>21</td>
<td>IGLOO2 Evaluation Kit Board</td>
<td>18</td>
</tr>
<tr>
<td>22</td>
<td>SmartFusion2 Security Evaluation Kit</td>
<td>19</td>
</tr>
<tr>
<td>23</td>
<td>USB Serial 2.0 Port Properties - IGLOO2</td>
<td>20</td>
</tr>
<tr>
<td>24</td>
<td>USB Serial 2.0 Port Properties - SmartFusion2</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>MDDR_Demo Utility SmartFusion2 and IGLOO2</td>
<td>21</td>
</tr>
<tr>
<td>26</td>
<td>MDDR_Demo_Connection Status SmartFusion2 and IGLOO2</td>
<td>22</td>
</tr>
<tr>
<td>27</td>
<td>Single Write Operation - SmartFusion2 and IGLOO2</td>
<td>22</td>
</tr>
<tr>
<td>28</td>
<td>Clear Data Field - SmartFusion2 and IGLOO2</td>
<td>23</td>
</tr>
<tr>
<td>29</td>
<td>Single Read Operation - SmartFusion2 and IGLOO2</td>
<td>23</td>
</tr>
<tr>
<td>30</td>
<td>Burst Write Operation - SmartFusion2 and IGLOO2</td>
<td>23</td>
</tr>
<tr>
<td>31</td>
<td>Burst Read Operation - SmartFusion2 and IGLOO2</td>
<td>24</td>
</tr>
<tr>
<td>32</td>
<td>FlashPro Express Job Project</td>
<td>25</td>
</tr>
<tr>
<td>33</td>
<td>New Job Project from FlashPro Express Job</td>
<td>26</td>
</tr>
<tr>
<td>34</td>
<td>Programming the Device</td>
<td>26</td>
</tr>
<tr>
<td>35</td>
<td>FlashPro Express—RUN PASSED</td>
<td>27</td>
</tr>
<tr>
<td>36</td>
<td>System Builder - Memories - MDDR Tab</td>
<td>28</td>
</tr>
<tr>
<td>37</td>
<td>System Builder MDDR Configuration – General Tab</td>
<td>29</td>
</tr>
<tr>
<td>38</td>
<td>System Builder MDDR Configuration – Memory Timing Tab</td>
<td>31</td>
</tr>
<tr>
<td>39</td>
<td>System Builder MDDR Configuration – Memory Initialization Tab</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>USB 3.0 Serial Port Properties - IGLOO2</td>
<td>32</td>
</tr>
<tr>
<td>41</td>
<td>USB 3.0 Serial Port Properties - SmartFusion2</td>
<td>33</td>
</tr>
<tr>
<td>42</td>
<td>Read Error Message - SmartFusion2/IGLOO2</td>
<td>33</td>
</tr>
<tr>
<td>43</td>
<td>Non 64-bit Aligned Address - SmartFusion2/IGLOO2</td>
<td>34</td>
</tr>
<tr>
<td>44</td>
<td>Converted 64-bit Aligned Address - SmartFusion2/IGLOO2</td>
<td>34</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design Requirements</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>SmartFusion2 Security and IGLOO2 FPGA Evaluation Kit Jumper Settings</td>
<td>18</td>
</tr>
</tbody>
</table>
The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 9.0
The following is a summary of the changes made in this revision.
• Updated the document for Libero SoC v12.5.
• Removed the references to Libero version numbers.

1.2 Revision 8.0
Merged SmartFusion2 related content and updated the document for Libero SoC v12.2 software release.

1.3 Revision 7.0
Updated the document for Libero v11.8 SP2 software release.

1.4 Revision 6.0
Updated the document for Libero v11.7 software release changes (SAR 76992).

1.5 Revision 5.0
Changed MDDR_CLK: DDR_FIC_CLK ratio to 1:1 and updated Figure 6 on page 13, Figure 12 on page 17, and Figure 13 on page 17 (SAR 73229).

1.6 Revision 4.0
Updated the document for Libero v11.6 software release changes (SAR 72065).

1.7 Revision 3.0
Updated the document for Libero SoC v11.5 (SAR 65209).

1.8 Revision 2.0
Updated the document for Libero SoC v11.4.

1.9 Revision 1.0
Initial release.
2 Preface

2.1 Purpose
This demo guide describes the SmartFusion² SoC and IGLOO² FPGA devices. It provides instructions on how to use the corresponding reference design.

2.2 Intended Audience
This demo guide is intended for:
- FPGA designers
- System-level designers

2.3 References
The following documents are referred in this demo guide:
- UG0446: SmartFusion2 and IGLOO2 FPGA High Speed DDR Interfaces User Guide
- UG0448: IGLOO2 FPGA High Performance Memory Subsystem User Guide
- IGLOO2 System Builder User Guide
- UG0478: IGLOO2 Evaluation Kit User Guide
- CoreUART Handbook

For updates and additional information about the device information, visit https://www.microsemi.com/product-directory/fpga-soc/1638-fpgas
3 Interfacing SmartFusion2 SOC and IGLOO2 FPGA with External LPDDR Memory through MDDR Controller

3.1 Introduction

This demo shows that the high-performance memory subsystem (HPMS) and the microcontroller subsystem (MSS) double data rate (DDR) controller accessing the external DDR synchronous dynamic random access memory (SDRAM) memories in the IGLOO2 and SmartFusion2 devices.

This demo design has two parts:
- Using the simulation
- Using the SmartFusion2 Security or IGLOO2 Evaluation Kit

In the demo design, the Advanced eXtensible Interface (AXI) master in the FPGA fabric accesses the Low Power DDR (LPDDR) memory present in the SmartFusion2 Security and IGLOO2 Evaluation Kit board, using the Microcontroller/Memory subsystem Double Data Rate (MDDR) controller. A utility, IGL2_MDDR_Demo and SF2_MDDR_Demo is provided with the demo deliverables. Using the utility, you can drive the AXI master logic. The AXI master converts the commands from the utility to AXI transactions for the MDDR controller to perform the read/write operations on the LPDDR memory.

3.2 Design Requirements

The following table lists the resources required to run the demo:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Windows 7, 8.1, or 10</td>
</tr>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>SmartFusion2 Security or IGLOO2 Evaluation Kit:</td>
<td>IGLOO2: Rev C or later</td>
</tr>
<tr>
<td>• FlashPro4 programmer</td>
<td>SmartFusion2: Rev E or later</td>
</tr>
<tr>
<td>• 12 V adapter</td>
<td></td>
</tr>
<tr>
<td>• USB A to Mini-B cable</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td></td>
</tr>
<tr>
<td>FlashPro Express</td>
<td>Note: Refer to the readme.txt file provided in the design files for the software versions used with this reference design.</td>
</tr>
<tr>
<td>Libero SoC</td>
<td>USB to UART drivers</td>
</tr>
<tr>
<td>ModelSim ME Pro</td>
<td></td>
</tr>
<tr>
<td>SynplifyPro</td>
<td></td>
</tr>
<tr>
<td>Host PC Drivers USB to UART drivers</td>
<td></td>
</tr>
</tbody>
</table>

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only. Open the Libero design to see the latest updates.
3.3 Prerequisites

Before you begin:

1. Download and install Libero SoC (as indicated in the website for this design) on the host PC from the following location.
 https://www.microsemi.com/product-directory/design-resources/1750-libero-soc
 The latest versions of ModelSim, Synplify Pro, and FTDI drivers are included in the Libero SoC installation package.

2. For demo design files download link:
 http://soc.microsemi.com/download/rsc/?f=m2gl_dg0534_df

3.4 Demo Design

Design files include:

- Demo_Utility
- Libero_project includes:
 - IGLOO2: IGL2_MDDR_Demo
 - SmartFusion2: SF2_MDDR_Demo
- Programming_Job
- Source_files
- readme.txt

The top-level structure of the design files are shown in Figure 1 for IGLOO2 and Figure 2 for SmartFusion2. For more information, refer to the readme.txt file.
In the demo design, AXI master implemented in the FPGA fabric accesses the LPDDR memory present in the IGLOO2 and SmartFusion2 Security Evaluation Kit board using the MDDR controller. The AXI master logic communicates to the MDDR controller via CoreAXI interface and the DDR_FIC interface. The read/write operations initiated by the IGL2_MDDR_Demo and SF2_MDDR_Demo utility are sent to the UART_IF block using the UART protocol. AXI master receives the address and data from the UART_IF block.

During a write operation, the UART_IF block sends the address and data to the AXI master logic. During a read operation, the UART_IF block sends the address to the AXI master and stores the read data in TPSRAM. When the read operation is complete, the read data is sent to the host PC via UART.

The MDDR demo design block diagram is shown in Figure 3 for IGLOO2 and Figure 4 for SmartFusion2.
In this demo design, the following blocks are configured:

- MDDR controller is configured for LPDDR memory available in the IGLOO2 Evaluation Kit board. The LPDDR memory is a Micron® DRAM (Part Number: MT46H32M16LF).
- DDR_FIC is configured for the AXI bus interface.
- Both AXI clock and LPDDR clock are configured for 160 MHz. IGLOO2 CoreUART IP has the following configuration:
 - **Baud Rate**: 115200
 - **Data Bits**: 8
 - **Parity**: None
- TPSRAM IP has the following configuration:
 - **Write port depth**: 256
 - **Write port width**: 64
 - **Read port depth**: 2048
 - **Read port width**: 8

Note: In the demo design, all configuration blocks are same, except CoreUART IP configuration for IGLOO2.
In this demo design, different blocks are configured as shown below:

- MDDR controller is configured for LPDDR memory available in the SmartFusion2 Security Evaluation Kit board. The LPDDR memory is a Micron DRAM (Part Number: MT46H32M16LF)
- DDR_FIC is configured for AXI bus interface.
- Both AXI clock and LPDDR clock are configured for 160 MHz.
- TPSRAM IP has the following configuration:
 - Write port depth: 256
 - Write port width: 64
 - Read port depth: 2048
 - Read port width: 8

For more information on how to configure the DDR controller, refer to the Appendix 2: Configuring MDDR Controller, page 28.

Features

The SmartFusion2 and IGLOO2 MDDR demo design has the following features:

- Single AXI read/write transactions
- 16-beat burst AXI read/write transactions
- LPDDR memory model simulation using SmartDesign testbench
- Design validation using the IGLOO2 Evaluation Kit board and SmartFusion2 Security Evaluation Kit board that has the LPDDR memory
- Initiation of the read/write transactions using `IGL2_MDDR_Demo` utility for IGLOO2 and
 `SF2_MDDR_Demo` utility for SmartFusion2
3.4.2 Description

The demo design consists of the following SmartDesign components:

- **MDDR_Demo_0**: IGLOO2 SmartDesign handles the data transactions between the MDDR controller and LPDDR SDRAM.
- **MDDR_Demo_top_0**: SmartFusion2 SmartDesign handles the data transactions between the MDDR controller and LPDDR SDRAM.
- **UART_IF_0**: This SmartDesign handles the communication between the host PC and the SmartFusion2 Security and IGLOO2 Evaluation Kit board.

Figure 5 shows the MDDR_Demo_0 and UART_IF_0 connections for IGLOO2 and Figure 6 shows the MDDR_Demo_top_0 and UART_IF_0 connections for SmartFusion2.
3.4.2.1 MDDR_Demo_0 for IGLOO2

MDDR_Demo_0 consists of the MDDR_Demo_sb_0 subsystem generated using the system builder and the AXI_IF_0 master logic. The AXI_IF_0 master logic is an RTL code that implements the AXI read and write transactions. It receives the read/write operations, burst length (RLEN and WLEN), address, and data as inputs. Based on inputs received, it communicates with the LPDDR memory through the MDDR controller.

Figure 7 shows the MDDR_Demo_0 SmartDesign component for IGLOO2.

3.4.2.2 MDDR_Demo_top_0 for SmartFusion2

MDDR_Demo_top_0 consists of the MDDR_Demo_0 subsystem generated using the system builder and the AXI_IF_0 master logic. The AXI_IF_0 master logic is an RTL code that implements the AXI read and write transactions. It receives the read or write operations, burst length (RLEN and WLEN), address, and data as inputs. Based on inputs received, it communicates with the LPDDR memory through the MDDR controller.
3.4.2.3 UART_IF_0

For IGLOO2, the UART_IF_0 SmartDesign component handles the UART communication between the host PC demo utility and the AXI master logic. The COREUART_0 IP receives the UART signals from the host PC user interface. The UART_IF_FSM_0 is a wrapper for COREUART_0, collects the data from COREUART_0 IP and converts the data to the relevant AXI_IF_0 master signals.

For a single write operation, the UART_IF_FSM_0 wrapper receives the address and data from the demo utility. For a burst write operation, the address and data are received from the demo utility and the subsequent incremental data are provided by the UART_IF_FSM_0 wrapper.

For a burst read operation, UART_IF_FSM_0 collects the address from the demo utility and sends that to the AXI_IF_0 master logic. It then receives the read data from the AXI_IF_0 master logic and stores it in the TPSRAM_0. After completion of the read burst transactions, the UART_IF_FSM_0 wrapper fetches the stored data from the TPSRAM_0 and sends it to the COREUART IP.

For SmartFusion2, the UART_IF_0 SmartDesign component handles the UART communication between the host PC demo utility and the AXI Master logic. The MMUART_1 block present in the MSS receives the UART signals from the host PC user interface, the ARM Cortex-M3 processor sends this user data to the DATAHANDLE_FSM block present in the FPGA fabric using the FIC_0 advanced peripheral bus (APB) slave interface. DATAHANDLE_FSM is an APB slave wrapper, which sends the received data to the UART_IF_FSM_0 block.

For a single write operation, the UART_IF_FSM_0 wrapper receives the address and data from the demo utility. For a burst write operation, the address and data are received from the demo utility and the subsequent incremental data are provided by the UART_IF_FSM_0 wrapper.

For a burst read operation, UART_IF_FSM_0 collects the address from the demo utility and sends that to the AXI_IF_0 master logic. It then receives the read data from the AXI_IF_0 master logic and stores it in the TPSRAM_0. After completion of the read burst transactions, the Cortex-M3 processor reads the TPSRAM_0 buffer through DATAHANDLE_FSM (APB wrapper) block. The received data is sent to the host PC using the MMUART_1 block.
3.5 Running Simulation

The demo design can be simulated using SmartDesign testbench and the LPDDR memory model (MT46H32M16LF with 512 Mb density).

The simulation run the following operations:

- Single AXI write and read operation
- 16-bit AXI burst write and read operation

The AXI_LPDDR_Simulation SmartDesign testbench is shown in Figure 11 for IGLOO2 and Figure 12 for SmartFusion2. The AXI_testbench provides the read/write operations, burst length, address, and data to the MDDR_Demo_0 SmartDesign component for IGLOO2 and the MDDR_Demo_top_0 SmartDesign component for SmartFusion2.
Interfacing SmartFusion2 SOC and IGLOO2 FPGA with External LPDDR Memory through MDDR Controller

Figure 11 • AXI_LPDDR_Simulation SmartDesign Testbench - IGLOO2

Figure 12 • AXI_LPDDR_Simulation SmartDesign Testbench - SmartFusion2
To run the simulation, ensure that the following files are present in the Libero SoC project:

- dram.v
- dram_parameters.vh
- AXI_testbench.v

The default location of the files are:

- IGLOO2:
 `<Download folder>\IGLOO2_MDDR_Demo\Libero_project\IGL2_MDDR_Demo\stimulus`

- SmartFusion2:
 `<Download folder>\SF2_MDDR_Demo\Libero_project\SF2_MDDR_Demo\stimulus`

3.5.1 Simulation Setup

The following are the steps to setup the Simulation set up configuration:

1. Launch the Libero SoC software.
2. Browse the `IGL2_MDDR_Demo` for IGLOO or `SF2_MDDR_Demo` for the SmartFusion2 project provided in the design file.
3. Go to Project > Project Settings > Simulation Options.
4. Ensure that the DO File tab has the configuration, as shown in Figure 13.

Figure 13 • DO File Settings

5. Ensure that the Waveforms tab has the configuration, as shown in Figure 14.

Figure 14 • Waveforms Settings

6. Go to Design Flow tab.
7. Right-click Simulate under Verify Pre-Synthesized Design and select Organize Input Files > Organize Stimulus Files..., as shown in Figure 15.
8. Ensure that the **Organize Stimulus files** window has the configuration, as shown in **Figure 16** for IGLOO2 and **Figure 17** for SmartFusion2.

Figure 15 • Invoking Organize Stimulus Files Window

Figure 16 • Organize Stimulus Files Window - IGLOO2
Figure 17 • Organize Stimulus Files Window SmartFusion2
3.5.2 Running the Simulation

The following steps describe how to run the simulation:

1. Right-click Simulate under Verify Pre-Synthesized Design.
2. Click Open Interactively.
3. The simulation run time is 900 µs, as shown in Figure 13.

Figure 18 shows the transcript window of the simulation.

Figure 18 • Transcript Window
Figure 19 shows the single AXI write and AXI read operation.

Figure 19 • Single Write and Read Operation

Figure 20 shows the 16-beat AXI burst write and read operation.

Figure 20 • 16-Beat AXI Burst Write and Read
3.6 Setting Up the Hardware Demo

The following steps describe how to setup the hardware demo:

1. Connect the jumpers on the SmartFusion Security and IGLOO2 Evaluation Kit, as shown in Table 2, page 18.

 Table 2 • SmartFusion2 Security and IGLOO2 FPGA Evaluation Kit Jumper Settings

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Pin (From)</th>
<th>Pin (To)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>J22</td>
<td>1</td>
<td>2</td>
<td>Default</td>
</tr>
<tr>
<td>J23</td>
<td>1</td>
<td>2</td>
<td>Default</td>
</tr>
<tr>
<td>J24</td>
<td>1</td>
<td>2</td>
<td>Default</td>
</tr>
<tr>
<td>J8</td>
<td>1</td>
<td>2</td>
<td>Default</td>
</tr>
<tr>
<td>J3</td>
<td>1</td>
<td>2</td>
<td>Default</td>
</tr>
</tbody>
</table>

 CAUTION: Ensure that the power supply switch SW7 is switched OFF while connecting the jumpers.

2. Connect the Power supply to the J6 connector, switch ON the power supply switch, SW7.
3. Connect the FlashPro4 programmer to the J5 connector of the SmartFusion2 Security and IGLOO2 Evaluation Kit board.
4. Connect the Host PC USB port to the SmartFusion2 Security and IGLOO2 Evaluation Kit board J18 USB connector using the USB mini-B cable.

Figure 21 shows the board setup for running the SmartFusion2 and IGLOO2 MDDR demo on the SmartFusion2 Security and IGLOO2 Evaluation Kit.
5. Ensure that the USB to UART bridge drivers are automatically detected. This can be verified in the Device Manager of the host PC. The FTDI USB to UART converter enumerates four COM ports. For USB 2.0, note down the USB Serial Converter D COM port number to use it in the GUI. The following figures show the USB 2.0 Serial port properties. For IGLOO2, COM10 is connected to USB Serial Converter D as shown in Figure 23. For SmartFusion2, COM7 is connected to USB Serial Converter D as shown in Figure 24. For more information about how to find the correct COM Port number in USB 3.0, refer to the Appendix 3: Finding Correct COM Port Number when Using USB 3.0, page 32.
Interfacing SmartFusion2 SOC and IGLOO2 FPGA with External LPDDR Memory through MDDR Controller

Figure 23 • USB Serial 2.0 Port Properties - IGLOO2

Figure 24 • USB Serial 2.0 Port Properties - SmartFusion2
As shown in Figure 23 and Figure 24 the port properties of COM10 and COM7 show that it is connected to USB Serial Converter D. Hence, COM10 and COM7 is selected in this example. The COM port number is system specific.

6. If the USB to UART bridge drivers are not installed, download and install the drivers from www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip.

3.7 Setting Up the Device
Program the SmartFusion2 Security and IGLOO2 Evaluation Kit board with the job file provided as part of the design files using FlashPro Express software. See Appendix 1: Programming the Device Using FlashPro Express, page 25.

3.8 Running the Hardware Demo
The SmartFusion2 and IGLOO2 MDDR demo comes with a utility, IGL2_MDDR_Demo for IGLOO2 and SF2_MDDR_Demo for SmartFusion2, that runs on the host PC to communicate with the SmartFusion2 Security and IGLOO2 Evaluation Kit. The UART protocol is used as the underlying communication protocol between the host PC and the SmartFusion2 Security and IGLOO2 Evaluation Kit.

The initial screen of the IGL2_MDDR_Demo utility is shown in Figure 25.

Figure 25 • MDDR_Demo Utility SmartFusion2 and IGLOO2

The SF2_MDDR_Demo utility and IGL2_MDDR_Demo utility consists of the following sections:
- **Serial Port Configuration**: Displays the serial port. Baud rate is fixed at 115200
- **Data Transfer Type**: Single or Burst
- **LPDDR SDRAM**: Provides Address and Data
- **LPDDR Burst Read**: Displays the Burst Read Values for the corresponding address
- **C**: Clears the existing data

3.9 Steps to Run GUI
The following steps describe how to run the IGLOO2 GUI:
1. Launch the utility. The default location is:
 - IGLOO2: `<download_folder>\IGLOO2_MDDR_Demo\Demo_Utility\IGL2_MDDR_Demo.exe`
 - SmartFusion2: `<download_folder>\SF2_MDDR_Demo\Demo_Utility\SF2_MDDR_Demo.exe`
2. Select the appropriate COM port from drop down menu. It is COM 10 for IGLOO2 and COM 7 for SmartFusion2.
3. Click **Connect**. The connection status along with the COM Port and Baud rate is shown in the left bottom corner of the screen.

The connection status of the utility is shown in Figure 26.
3.10 Performing a Single Data Transfer

For a single write or read operation, the AXI master logic is configured to transfer a burst length of 1 (that is, 8 bytes). For a write operation, the utility sends a 32-bit address and 64-bit (8 bytes) data. The data is then written to the LPDDR SDRAM. For a read operation, the utility sends a 32-bit address and receives 64-bit data from LPDDR and is displayed in the utility.

The following steps describe how to perform a single data transfer:

1. Select **Single (8-bytes)** as **Data Transfer Type**.
2. A 64-bit aligned address is required in the address field. Enter a 32-bit HEX Address in the range 0x00000000 - 0x03FFFFF8. When a non 64-bit aligned address is provided, the GUI converts it to 64-bit aligned address and performs the write/read. Refer to Appendix 4: Performing Write/Read Operation when Non 64-bit Aligned Address is Provided, page 34 to perform write/read when non 64-bit aligned address is provided.
3. In the **Data** field, enter a 64-bit data in HEX format.
4. Click **Write**. The entered data is written to the LPDDR memory.

The **Address** and **Data** values entered for a Single Write operation is shown in Figure 27.

5. To verify the write operation, perform a read operation to the same address where the data is written.
6. Press **C** to clear the data present in the **Data** field, as shown in Figure 28.
7. Click Read to read the data from the LPDDR SDRAM, as shown in Figure 29.

8. Compare the read and write data. The write and read data being same establishes that the write and read operations to the LPDDR SDRAM were successful.

3.11 Performing Burst Data Transfer

For a burst write or read operation, the AXI master logic is configured to transfer a burst length of 16 (that is, 128 bytes). In this demo, 16 transfers of 16-byte burst operations are implemented (16 transfers × 16-byte burst data = 2048 bytes data). For a write operation, the utility sends a 32-bit initial address and 64-bit (8 bytes) initial data. After the initial write operation, incremental data is written. For a read operation, the utility sends a 32-bit address and receives 2048 bytes of data from the LPDDR SDRAM and the data is displayed in the utility.

The following steps describe how to perform a burst data transfer:

1. Select Burst (2048-bytes) as Data Transfer Type.
2. A 64-bit aligned address is required in the address field. Enter a 32-bit HEX Address in the range 0x00000000 - 0x03FFFFF8. When a non 64-bit aligned address is provided, the GUI converts it into 64-bit aligned address and performs the write/read operation. Refer to Appendix 4: Performing Write/Read Operation when Non 64-bit Aligned Address is Provided, page 34 to perform write/read when non 64-bit aligned address is provided.
3. In the Data field, enter a 64-bit data in HEX format.
4. Click Write. The entered data is written to the Address location specified in the Address filed and then the data is incremented by 1 and written to the next address location. This is repeated 256 times to write all the 2048 bytes of data.
The **Address** and **Data** values entered for a Burst Write operation is shown in Figure 30.

Figure 30 • Burst Write Operation - SmartFusion2 and IGLOO2

5. To verify the write operation, perform a read operation to the same address where the data is written.
6. Click **Read**. All the 2048 bytes of data written to the LPDDR is read, and the read data is displayed on the **LPDDR Burst Read** panel.

The burst read data is shown in Figure 31.

Figure 31 • Burst Read Operation - SmartFusion2 and IGLOO2

7. Click **Exit** to exit the utility.

3.12 Conclusion

This demo shows how to perform read/write operations to LPDDR SDRAM using the SmartFusion2 and IGLOO2 MDDR controller. Options are provided to simulate the design using a SmartDesign testbench and validate the design on the SmartFusion2 Security and IGLOO2 Evaluation Kit using a GUI interface.
Appendix 1: Programming the Device Using FlashPro Express

This section describes how to program the SmartFusion2 and IGLOO2 devices with the programming job file using FlashPro Express.

To program the device, perform the following steps:

1. Ensure that the jumper settings on the board are the same as those listed in Table 2. **Note:** The power supply switch must be switched off while making the jumper connections.

2. Connect the power supply cable to the J6 connector on the board.

3. Power ON the power supply switch SW7.

4. On the host PC, launch the FlashPro Express software.

5. Click New or select New Job Project from FlashPro Express Job from Project menu to create a new job project, as shown in the following figure.

![FlashPro Express Job Project](image)

6. Enter the following in the New Job Project from FlashPro Express Job dialog box:
 - **Programming job file:** Click Browse, and navigate to the location where the .job file is located and select the file. The default location is: `<download_folder>\m2gl_dg0534_df\Programming_Job`
 - **FlashPro Express job project name:** Click Browse and navigate to the location where you want to save the project.
Figure 33 • New Job Project from FlashPro Express Job

7. Click OK. The required programming file is selected and ready to be programmed in the device.
8. The FlashPro Express window appears as shown in the following figure. Confirm that a programmer number appears in the Programmer field. If it does not, confirm the board connections and click Refresh/Rescan Programmers.

Figure 34 • Programming the Device

9. Click RUN. When the device is programmed successfully, a RUN PASSED status is displayed as shown in the following figure.
10. Close **FlashPro Express** or in the Project tab, click **Exit**.
Appendix 2: Configuring MDDR Controller

This section describes how to configure the MDDR controller registers using Libero SoC. The configuration options for MDDR are available at the MDDR tab of the Memories tab in the system builder. Figure 36, page 28 shows the MDDR tab.

The SmartFusion2 Security and IGLOO2 Evaluation Kit has the LPDDR memory from Micron. All values provided here are from the Micron datasheet; part number, MT46H32M16LF.

Note: The Automotive Mobile Low-Power DDR SDRAM Datasheet is available to download it from Micron website.

Figure 36 • System Builder - Memories - MDDR Tab
5.1 MDDR Configuration Tab

When using an external memory, the memory controller must wait for the memory to initialize (settling time) before accessing it. The SmartFusion2 Security and IGLOO2 Evaluation Kit uses the LPDDR memory. Therefore, the DDR controller has to wait at least 200 us. Provide 200 as the value for the field, DDR memory settling time (us).

Note: All the values provided here are from the Micron datasheet. The parameters can be configured according to the user’s requirements.

5.1.1 General

This section shows the configurations of the General tab:

- Memory Type: LPDDR
- Data Width: 16
- Address Width (bits):
 - Row: 16
 - Bank: 2
 - Column: 10

Figure 37, page 29 shows the General tab after configuration parameters are set.

![System Builder MDDR Configuration – General Tab](image)
5.1.2 Memory Initialization

This section shows the configurations of the Memory Initialization tab:

- Burst length: 8
- Burst Order: Sequential
- Timing Mode: 1T
- CAS Latency: 3
- Self Refresh Enabled: NO
- Auto Refresh Burst Count: Single
- Powerdown Enabled: YES
- Stop the Clock: NO
- Deep Powerdown enabled: NO
- Powerdown Entry Time: 320

Figure 38, page 30 shows the Memory Initialization tab after configuration parameters are set.

Figure 38 • System Builder MDDR Configuration – Memory Initialization Tab
5.1.3 Memory Timing

This section shows the configurations of the Memory Timing tab:

- Time To Hold Reset before INIT: 0
- MRD: 4
- RAS (Min): 8
- RAS (Max): 8192
- RCD: 6
- RP: 7
- REFI: 3104
- RC: 12
- XP: 3
- CKE: 3
- RFC: 79
- FAW: 0

Figure 39, page 31 shows the Memory Timing tab after configuration parameters are set.

Figure 39 • System Builder MDDR Configuration – Memory Timing Tab
Appendix 3: Finding Correct COM Port Number when Using USB 3.0

FTDI USB to UART converter enumerates the four COM ports. In USB 3.0, the four available COM ports are in **Location 0**.

The USB 3.0 Serial port properties are shown in Figure 40, page 32 for IGLOO2 and Figure 41, page 33 for SmartFusion2.

Figure 40 • USB 3.0 Serial Port Properties - IGLOO2
To find out the correct COM port, program the SmartFusion2 Security and IGLOO2 Evaluation Kit board with the provided programming file. Connect each available COM port and click **Write**. If a wrong COM port is selected, the GUI displays the read error. Try with all four available COM ports until the read error message disappears.

The **Read Error** message is shown in **Figure 42**, page 33.
Appendix 4: Performing Write/Read Operation when Non 64-bit Aligned Address is Provided

When a non 64-bit aligned address is provided in the GUI, the GUI converts it into the 64-bit aligned address (0x0, 0x8, 0x10, 0x18, 0x20, 0x28, 0x30, 0x38 …) and performs the write/read operation.

1. Enter the non 64-bit aligned 32-bit address in HEX format.
2. Enter the 64-bit data in HEX format.

The non 64-bit aligned address entered in the GUI is shown in Figure 43.

Figure 43 • Non 64-bit Aligned Address - SmartFusion2/IGLOO2

3. Click **Write** to perform the write operation. GUI converts the address into a 64-bit aligned address and performs the write operation.

The GUI pop-up information message and converted 64-bit aligned address is shown in Figure 44.

Figure 44 • Converted 64-bit Aligned Address - SmartFusion2/IGLOO2