

Migrating Designs Between SmartFusion2 M2S025 and M2S050 in the FCS325 Package

Table of Contents

Introduction
Design Migration
Design and Device Evaluation
I/O Banks and Standards
Pin Migration and Compatibility
Power Supply and Board-Level Considerations
Software Flow
Conclusion

Introduction

This document describes how to migrate designs within the SmartFusion[®]2 System-On-Chip (SoC) field programmable gate array (FPGA) device family between the M2S025 and M2S050 devices within the FCS325 package. It addresses restrictions and specifications that need to be considered when moving a design between these devices. This includes pin compatibility between the devices, design and device resources evaluation, I/O banks, standards, and so on. This document also describes the software flow behavior during the migration.

Design Migration

SmartFusion2 SoC FPGA family devices are architecturally compatible with each other. However, attention must be paid to some key areas while migrating a design from one device to another. Following are the specific topics that are discussed in this document:

- Design and Device Evaluation
- I/O Banks and Standards
- Pin Migration and Compatibility
- Power Supply and Board-Level Considerations
- Software Flow

Design and Device Evaluation

One of the initial and main tasks while migrating a design should be to compare the available resources between the two devices. The device resources can be grouped into three different categories:

- Microcontroller Subsystem
- Fabric Resources
- On-Chip Oscillators

In addition, necessary design timing analysis and simulations should be performed while migrating designs from one device to another. Each of the following sections focuses on the different aspects of the design and device evaluation categories.

Microcontroller Subsystem

Table 1 provides a high-level summary of the differences between the M2S025 and M2S050 MSS blocks. Based on the different MSS resources and features, migration from one device to another can be planned to avoid any resource conflicts or issues.

Table 1 • MSS Features Per Package or Device

	FCS325 Package			
Feature	M2S025 and M2S025T	M2S050 and M2S050T		
ARM [®] Cortex [™] -M3 processor + instruction cache	Yes	Yes		
Fabric interfaces (FIC)	1 (FIC_0)	2 (FIC_0 and FIC_1)		
MSS DDR (MDDR)	x18 ¹	x18 ²		
eNVM (kbytes)	256	256		
eSRAM (kbytes)	64	64		
eSRAM (non-SECDED) (kbytes)	80	80		
CAN, 10/100/1000 Ethernet	1	1		
High-speed USB	1 (UTMI or ULPI)	_		
Multi-Mode UART, SPI, I ² C, Timer	2	2		
SDRAM through SMC_FIC	Yes (AHBLite interface only)	Yes (AXI or AHBLite interfaces)		

Notes:

- 1. DDR supports x18, x16, and x8 modes
- 2. DDR supports x18 and x16 modes

Soft Memory Controller (SMC) Fabric Interface (SMC_FIC)

The MSS, as a master, through the SMC_FIC and an SMC in the FPGA fabric can access external bulk memories other than the DDR, such as SDRAM. Instantiate a soft AMBA high-performance bus (AHB) or advanced extensible interface (AXI) SDRAM memory controller in the FPGA fabric and connect I/O ports to 3.3 V MSIO.

The SMC_FIC can be configured using the MDDR configurator part of the MSS to use either an AXI 64-bit bus interface or a single 32-bit AHB-Lite (AHBL) bus interface. The M2S025 device only supports the AHBLite interface; it does not support the SMC_FIC AXI interface. For vertical migration between the M2S025 and M2S050 devices, design using the common AHBL SMC_FIC interface configuration to avoid any conflicts or issues while migrating from one device to another.

USB Controller

The USB is not supported on the M2S050 devices.

The USB controller provides two types of interfaces: UTMI and ULPI. The USB ULPI interface is connected to four separate groups of MSIO pads on the device. Depending on the size of the device, the group is labeled as ULPI (I/Os) A, ULPI (I/Os) B, ULPI (I/Os) C, and ULPI (I/Os) D interfaces. The set of signals available in each of the four alternative I/O sets are the same. The USB I/Os are overlaid and common with other MSS peripherals. The different sets of I/Os groups are provided to maximize the flexibility of having the USB operational in the system, regardless of the other MSS peripherals.

Table 2 shows a summary of the different supported interfaces between the M2S025 and M2S050 devices in the FCS325 package.

Table 2 • USB Supported Interfaces Per Device

	FCS325 Package				
Device	ULPI (I/Os) A	ULPI (I/Os) B	ULPI (I/Os) C	ULPI (I/Os) D	UТMI
M2S025	Yes	Yes	Yes	No	Yes
M2S050	No	No	No	No	No

Fabric Resources

Table 3 gives a high-level summary of the differences between the M2S025 and M2S050 fabric resources. Based on the differences, effective logic count, RAM size, and number of I/Os migration can be evaluated and planned from one device to another without any resource conflicts or issues.

Table 3 • Summary of the Fabric Features Supported Per Device

		FCS325	Package	
Fabric Features (Logic, DSP, and Memory)		M2S025 and M2S025T	M2S050 and M2S050T	
Logic/DSP	Logic Modules (4-Input LUT)	27,696	56,340	
	Mathblocks	34	72	
	PLLs and CCCs	6	6	
Fabric Memory	LSRAM 18K blocks	31	69	
	uSRAM 1K blocks	34	72	
User I/Os	MSIO (3.3 V max)	94	90	
	MSIOD (2.5 V max)	22	22	
	DDRIO (2.5 V max)	64	88	
	Total user I/Os per package	180	200	

On-Chip Oscillators

Table 4 shows the summary of SmartFusion2 System-on-Chip oscillators that are the primary sources for generating free-running clocks.

Table 4 • On-Chip Oscillators Support Per Device

	FCS325 Package		
Feature	M2S025	M2S050	
1 MHz RC oscillator	1	1	
50 MHz RC oscillator	1	1	
Main crystal oscillator (32 KHz–20 MHz)	1	1	
Auxiliary crystal oscillator (32 KHz–20 MHz)	1	-	

The auxiliary crystal oscillator is dedicated for real-time counter (RTC) clocking as an alternative clock source. Refer to the *SmartFusion2 Clocking Resources User's Guide* for more information.

I/O Banks and Standards

SmartFusion2 SoC FPGA I/Os are partitioned into multiple I/O voltage banks. The number of banks depends on the device. There are seven I/O banks in the M2S025 device and eight I/O banks in the M2S050 device. Table 5 shows a summary of organization of the I/O banks between the M2S025 and M2S050 FPGA devices.

Table 5 • Organization of the I/O Banks in SmartFusion2 SoC FPGA Devices

	FCS325 Package			
I/O Banks	M2S025T	M2S050T		
Bank 0	DDRIO: MDDR or fabric	DDRIO: MDDR or fabric		
Bank 1	MSIO: MSS or fabric	MSIO: MSS or fabric		
Bank 2	MSIO: MSS or fabric	MSIO: MSS or fabric		
Bank 3	MSIO: JTAG/SWD	MSIO: MSS or fabric		
Bank 4	MSIO: fabric	MSIO: JTAG/SWD		
Bank 5	MSIOD: SERDES_0 or fabric	DDRIO: fabric		
Bank 6	MSIO: fabric	MSIOD: SERDES_0 or fabric		
Bank 7	MSIO: fabric	MSIOD: fabric		
Bank 8	-	MSIO: fabric		

Package pins VDDIx are the bank power supplies where x indicates the bank number. For example, VDDI0 is bank0 power supply. Figure 1 and Figure 2 on page 5 show the different I/O bank locations and numbers per device in the FCS325 package.

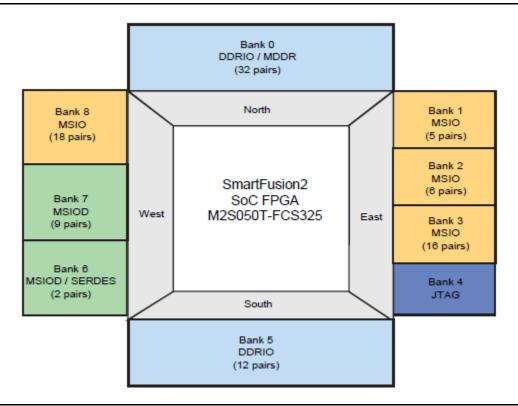


Figure 1 • SmartFusion2 M2S050T FCS325 I/O Bank Locations

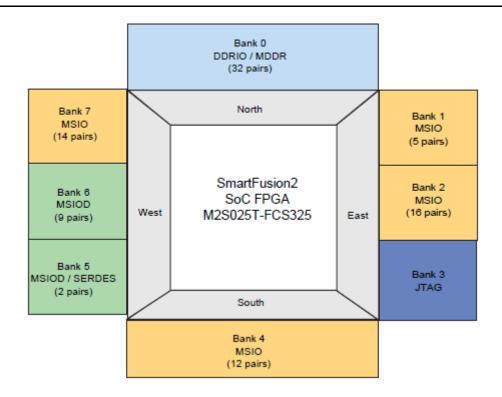


Figure 2 • SmartFusion2 M2S025T FCS325 I/O Bank Locations

An MSIO bank supports 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V standards. MSIOD or DDRIO bank supports 1.2 V, 1.5 V, 1.8 V, or 2.5 V standards. The 3.3 V is not supported for MSIOD or DDRIO I/Os. For more details on user I/O pins (MSIO, MSIOD, and DDRIO) and supported voltage standards, refer to the "Supported Voltage Standards" table in the *SmartFusion2 Soc FPGA Fabric User's Guide*.

Pin Migration and Compatibility

Although the SmartFusion2 SoC FPGA devices and packaging have been designed to allow footprint compatibility for smoother migration, some of the pins have a reduced compatibility feature set between the M2S025 and M2S050 devices in the FCS325 package. This section addresses the different aspects of the pin compatibility. The differences can be grouped into three categories:

- Global Versus Regular Pins
- Available versus No Connect Pins
- I/Os Technology Compatibility Per Pin or Bank
- Oscillator Pins
- Probe Pins

Global Versus Regular Pins

When migrating designs between the SmartFusion2 SoC FPGA devices, it is important to evaluate the different types of pins that are available per device. The functionality of the same pin can be different between devices. This section focuses on highlighting and comparing the global pins in one device against the other devices. Therefore, migration can be evaluated and planned from one device to another without any resource conflicts or issues.

Moving from a device, where the I/O is a global pin, to a device where the same I/O is a regular
pin. In this case, replace the global clock (for example, CLKBUF) with a regular input buffer (for
example, INBUF) and then internally promote the signal to a global resource using a CLKINT or
synthesis options.

Moving from a device, where the I/O is a regular pin, to a device where the same I/O is a global
pin. In this case, replace the INBUF with a CLKBUF or keep the INBUF and internally promote the
signal to a global using a CLKINT or synthesis options.

Table 6 provides a comparison between the global pins available in the M2S025 and M2S050 devices. The unused global pins are configured as inputs with pull-up resistors by the Libero[®] System-on-Chip (SoC) software.

For more information, refer to the "FPGA Fabric Global Network Architecture" chapter of the SmartFusion2 Clocking Resources User's Guide.

Table 6 • Non-Equivalent Global Pins Comparison Per Device

	F	FCS325 Package Pin Names			
Package Pins	M2S025	Bank No	M2S050	Bank No	
A18	DDRIO61PB0/CCC_NW1_CLKI3	0	DDRIO88PB0	0	
R8	MSIO134PB4/VCCC_SE1_CLKI	4	DDRIO164PB5/VCCC_SE1_CLKI	5	
E15	DDRIO62PB0/MDDR_DQ_ECC1	0	DDRIO87PB0/MDDR_DQ_ECC1/CCC_NW1_CLKI3	0	
U10	MSIO131PB4/GB11/VCCC_SE0_CLKI	4	DDRIO161PB5/GB11/VCCC_SE0_CLKI	5	
U11	MSIO125PB4/GB3/CCC_SW0_CLKI3	4	DDRIO152PB5/GB3/CCC_SW0_CLKI3	5	
U12	MSIO125NB4/CCC_SW1_CLKI2	4	DDRIO152NB5/CCC_SW1_CLKI2	5	
W11	MSIO129PB4/CCC_SW1_CLKI3	4	DDRIO159PB5/CCC_SW1_CLKI3	5	
Y8	MSIO133PB4/GB15/VCCC_SE1_CLKI	4	DDRIO163PB5/GB15/VCCC_SE1_CLKI	5	
Y9	MSIO130PB4/VCCC_SE0_CLKI	4	DDRIO160PB5/VCCC_SE0_CLKI	5	

Table 7 shows the list of global pins that are similar between the two devices.

Table 7 • Equivalent Global Pins Per Device

	FCS325	Pin Nan	nes	
Package Pins	M2S025	Bank No	M2S050	Bank No
AA10	MSIO120NB4/CCC_SW0_CLKI2	4	DDRIO147NB5/CCC_SW0_CLKI2	5
B20	DDRIO66NB0/CCC_NW0_CLKI2	0	DDRIO92NB0/CCC_NW0_CLKI2	0
B9	DDRIO49PB0/CCC_NE1_CLKI3/MDDR_DQ14	0	DDRIO75PB0/CCC_NE1_CLKI3/MDDR _DQ14	0
C11	DDRIO52PB0/GB8/CCC_NE0_CLKI3/MDDR _DQS1	0	DDRIO78PB0/GB8/CCC_NE0 _CLKI3/MDDR_DQS1	0
C16	DDRIO65NB0/GB4/CCC_NW1_CLKI2	0	DDRIO91NB0/GB4/CCC_NW1_CLKI2	0
D1	MSIO28PB1/GB14/MMUART_1_CLK/GPIO _25_B/VCCC_SE1_CLKI	1	MSIO42PB1/GB14/MMUART_1 _CLK/GPIO_25_B/VCCC_SE1_CLKI	1
D16	DDRIO65PB0/GB0/CCC_NW0_CLKI3	0	DDRIO91PB0/GB0/CCC_NW0_CLKI3	0
D9	DDRIO50PB0/GB12/CCC_NE1_CLKI2/MDDR _DQ12	0	DDRIO76PB0/GB12/CCC_NE1 _CLKI2/MDDR_DQ12	0
E11	DDRIO53PB0/MDDR_DQ10/CCC_NE0_CLKI2	0	DDRIO79PB0/MDDR_DQ10/CCC_NE0 _CLKI2	0
F1	MSIO27PB1/GB10/VCCC_SE0_CLKI	1	MSIO41PB1/GB10/VCCC_SE0_CLKI	1

Table 7 • Equivalent Global Pins Per Device (continued)

F2	MSIO26PB1/CCC_NE1_CLKI1/MMUART_1_RI /GPIO_15_B	1	MSIO40PB1/CCC_NE1_CLKI1/MMUART _1_RI/GPIO_15_B	1
G2	MSIO25PB1/CCC_NE0_CLKI1/MMUART_1_C TS/GPIO_13_B	1	MSIO39PB1/CCC_NE0_CLKI1/MMUART _1_CTS/GPIO_13_B	1
K17	MSIO99PB7/CCC_NW0_CLKI0	7	MSIO117PB8/CCC_NW0_CLKI0	8
L17	MSIO98PB7/CCC_NW1_CLKI0	7	MSIO116PB8/CCC_NW1_CLKI0	8
L19	MSIO96PB7/GB6/CCC_NW1_CLKI1	7	MSIO114PB8/GB6/CCC_NW1_CLKI1	8
L20	MSIO97PB7/GB2/CCC_NW0_CLKI1	7	MSIO115PB8/GB2/CCC_NW0_CLKI1	8
N17	MSIOD103PB6/CCC_SW0_CLKI0	6	MSIOD121PB7/CCC_SW0_CLKI0	7
N18	MSIOD102PB6/CCC_SW1_CLKI0	6	MSIOD120PB7/CCC_SW1_CLKI0	7
N2	MSIO20NB2/GB13/VCCC_SE1_CLKI/GPIO_26 _A	2	MSIO20NB3/GB13/VCCC_SE1_CLKI/GP IO_26_A	3
P1	MSIO20PB2/GB9/VCCC_SE0_CLKI/GPIO_25_A	2	MSIO20PB3/GB9/VCCC_SE0_CLKI/GPI O_25_A	3
P21	MSIOD100PB6/GB5/CCC_SW1_CLKI1	6	MSIOD118PB7/GB5/CCC_SW1_CLKI1	7
R21	MSIOD101PB6/GB1/CCC_SW0_CLKI1	6	MSIOD119PB7/GB1/CCC_SW0_CLKI1	7
R4	MSIO11PB2/CCC_NE0_CLKI0/I2C_1_SDA/GP IO_0_A/USB_DATA3_A	2	MSIO11PB3/CCC_NE0_CLKI0/I2C_1_S DA/GPIO_0_A	3
R5	MSIO11NB2/CCC_NE1_CLKI0/I2C_1_SCL/GPI O_1_A/USB_DATA4_A	2	MSIO11NB3/CCC_NE1_CLKI0/I2C_1_S CL/GPIO_1_A	3
A	D-f (- (b Ddi(O -b 1/O Ni O (i			1

Note: Refer to the "Dedicated Global I/O Naming Conventions" section in the SmartFusion2 Pin Descriptions.

Available versus No Connect Pins

There are pins that have one specific function in one device while those same pins are "no connect" (NC) in the other device. Table 8 lists the summary of these pins.

For example, pin AA5 functions as the XTLOSC_AUX_EXTAL pin in M2S025 while it is an NC in the M2S050 device. Similarly, the R11 pin is an NC in M2S025 but it is a VREF5 pin in the M2S050 device.

When moving from a device, where the I/O is an NC pin, to a device where the I/O has a defined functionality and it is not used, follow the recommended methods for connecting the unused I/Os; depending on the functionality of that I/O. Refer to "Unused Pin Configurations" in the *SmartFusion2 Board Design Guidelines Application Note*.

When moving from a device, where the I/O has a defined functionality, to a device where the I/O is an NC, then the NC pins can be driven to any voltage or can be left floating with no effect on the operation of the device. NC indicates that the pin is not connected to circuitry within the device.

Table 8 • Available Versus NC Pins

Package	FCS325 Pin Names					
Pins	M2S025	M2S050	Bank No			
E20	NC	MSIO99NB8	8			
E21	NC	MSIO99PB8	8			
G18	NC	MSIO106NB8	8			
H17	NC	MSIO106PB8	8			
H2	NC	MSIO37NB2/GPIO_10_B	2			
H4	NC	MSIO34NB2/GPIO_4_B	2			
H5	NC	MSIO34PB2/GPIO_3_B	2			
J1	NC	MSIO37PB2/GPIO_9_B	2			
J2	NC	MSIO32NB2/GPIO_0_B	2			
J4	NC	MSIO29PB2	2			
J5	NC	VDDI2	_			
K1	NC	MSIO32PB2/GPIO_31_A	2			
K2	NC	MSIO29NB2	2			
K21	NC	MSIO111PB8	8			
K4	NC	MSIO25NB2	2			
K5	NC	MSIO25PB2	2			
K7	NC	MSIO26NB2	2			
L21	NC	MSIO111NB8	8			
L7	NC	MSIO26PB2	2			
N20	NC	MSIO112PB8	8			
N21	NC	MSIO112NB8				
R11	NC	VREF5	_			
AA5	XTLOSC_AUX_EXTAL	NC	_			
Y5	XTLOSC_AUX_XTAL	NC	_			

I/Os Technology Compatibility Per Pin or Bank

Table 9 shows the list of I/Os that would lead to incompatibility with the different technology support while migrating between M2S025 and M2S050 within the FCS325 package. The difference is the type of I/O technology (MSIO versus DDRIO) that is supported on those regular I/Os.

Table 9 • I/O Standards Compatibility Per Device or Package Pins

		Pin Names		
Package Pins	M2S025	Bank No	M2S050	Bank No
AA10	MSIO120NB4/CCC_SW0_CLKI2	4	DDRIO147NB5/CCC_SW0_CLKI2	5
AA11	MSIO121NB4/PROBE_B	4	DDRIO148NB5/PROBE_B	5
AA6	MSIO145PB4	4	DDRIO186PB5	5
AA7	MSIO145NB4	4	DDRIO186NB5	5
AA8	MSIO130NB4	4	DDRIO160NB5	5
R8	MSIO134PB4/VCCC_SE1_CLKI	4	DDRIO164PB5/VCCC_SE1_CLKI	5
R9	MSIO134NB4	4	DDRIO164NB5	5
U10	MSIO131PB4/GB11/VCCC_SE0_CLKI	4	DDRIO161PB5/GB11/VCCC_SE0_CLKI	5
U11	MSIO125PB4/GB3/CCC_SW0_CLKI3	4	DDRIO152PB5/GB3/CCC_SW0_CLKI3	5
U12	MSIO125NB4/CCC_SW1_CLKI2	4	DDRIO152NB5/CCC_SW1_CLKI2	5
U8	MSIO137PB4	4	DDRIO172PB5	5
U9	MSIO137NB4	4	DDRIO172NB5	5
V10	MSIO131NB4	4	DDRIO161NB5	5
V11	MSIO129NB4	4	DDRIO159NB5	5
V6	MSIO142NB4	4	DDRIO184NB5	5
V7	MSIO140PB4	4	DDRIO177PB5	5
V8	MSIO140NB4	4	DDRIO177NB5	5
W11	MSIO129PB4/CCC_SW1_CLKI3	4	DDRIO159PB5/CCC_SW1_CLKI3	5
W6	MSIO142PB4	4	DDRIO184PB5	5
Y10	MSIO120PB4	4	DDRIO147PB5	5
Y11	MSIO121PB4/PROBE_A	4	DDRIO148PB5/PROBE_A	5
Y7	MSIO133NB4	4	DDRIO163NB5	5
Y8	MSIO133PB4/GB15/VCCC_SE1_CLKI	4	DDRIO163PB5/GB15/VCCC_SE1_CLKI	5
Y9	MSIO130PB4/VCCC_SE0_CLKI	4	DDRIO160PB5/VCCC_SE0_CLKI	5

The DDRIOs do not support single-ended 3.3 V I/O standards and differential LVPECL, LVDS 3.3 V, LVDS 2.5 V, RSDS BLVDS, MLVDS, and Mini-LVDS I/O standards, as shown in Table 10. To migrate from M2S025 to M2S050 successfully, ensure that the correct VDDI power supply is used to power the equivalent banks. Only I/Os with compatible standards can be assigned to the same bank.

Table 10 • Technology Support Difference Between Different I/O Types

	1/0 1	ypes	
I/O Standards	MSIO	DDRIO	
Single-Ended I/O	,		
LVTTL 3.3 V	Yes	_	
LVCMOS 3.3 V	Yes	-	
PCI	Yes	-	
LVCMOS 1.2 V	Yes	Yes	
LVCMOS 1.5 V	Yes	Yes	
LVCMOS 1.8 V	Yes	Yes	
LVCMOS 2.5 V	Yes	Yes	
Voltage-Referenced I/O			
HSTL1.5 V	Yes	Yes	
SSTL1.8	Yes	Yes	
SSTL2.5	Yes	Yes	
SSTL 2.5 V(DDR1)	Yes	Yes	
SSTL 1.8 V(DDR2)	Yes	Yes	
SSTL 1.5 V (DDR3)	Yes	Yes	
Differential I/O			
LVPECL (input only)	Yes	_	
LVDS 3.3 V	Yes	_	
LVDS 2.5 V	Yes	_	
RSDS	Yes	_	
BLVDS	Yes	-	
MLVDS	Yes	_	
Mini-LVDS	Yes	_	

Note: Even though the VDDI might be the same (for example, MSIO 2.5 V and DDRIO 2.5 V), the attributes and features supported might be different between different I/O types (MSIO versus DDRIO). Refer to the "I/O Programmable Features" section in the SmartFusion2 SoC FPGA Fabric User's Guide for more information on the list of features supported per I/O type.

Oscillator Pins

SmartFusion2 SoC FPGA devices include two crystal oscillators: the Main crystal oscillator and the Auxiliary crystal oscillator—except for the M2S050 devices. The SmartFusion2 SoC M2S050 devices do not have an Auxiliary crystal oscillator.

The Auxiliary crystal oscillator is dedicated for the RTC clocking as an alternative clock source. Both the Main and Auxiliary crystal oscillators have two I/O pads, as shown in Table 11, which can be connected externally to a crystal, a ceramic resonator, or an RC circuit.

When moving from a device, where the I/O is an NC pin, to a device where the I/O has a defined functionality and it is not used, follow the recommended methods for connecting the unused I/Os; depending on the functionality of that I/O. Refer to "Unused Pin Configurations" in the *SmartFusion2 SoC Board Design Guidelines Application Note*.

When moving from a device, where the I/O has a defined function, to a device where the I/O is an NC, the NC pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

Table 11 • Crystal Oscillator Pins Per Device

Package Pins	FCS325 Pin Names		
	M2S025	M2S050	
AA4	XTLOSC_MAIN_XTAL	XTLOSC_MAIN_XTAL	
AA5	XTLOSC_AUX_EXTAL	NC	
Y4	XTLOSC_MAIN_EXTAL	XTLOSC_MAIN_EXTAL	
Y5	XTLOSC_AUX_XTAL	NC	

Probe Pins

Probe pins locations are compatible between the two devices. Table 12 shows the different probe I/Os location per device within the FCS325 package. By default, probe pins are reserved for the probe functionality. Unreserve these pins by clearing the **Reserve Pins for Probes** check box in the "Device I/O Settings" under Project Setting in the Libero SoC. When the pins are not reserved, the probe I/Os can be used as regular I/Os.

Note: The I/O technology that is supported on these pins is different (MSIO versus DDRIO). Refer to "I/Os Technology Compatibility Per Pin or Bank" on page 9 for more information.

Table 12 • Probe Pins Per Device

Package	FCS325 Pin Names			
Pins	M2S025	Bank No	M2S050	Bank No
AA11	MSIO121NB4/PROBE_B	4	DDRIO148NB5/PROBE_B	5
Y11	MSIO121PB4/PROBE_A	4	DDRIO148PB5/PROBE_A	5

Power Supply and Board-Level Considerations

I/O power supply requirements are one of the key aspects to consider for design migrations. Since the migration is within the SmartFusion2 SoC FPGA family, there is no issue regarding the core voltage (VDD), charge pumps voltage (VPP), and the analog sense circuit supply of the eNVM voltage (VPPNVM). The ground pins (VSS) are also equivalent between the M2S025 and M2S050 devices. Refer to the *SmartFusion2 Pin Descriptions* for more details. The bank supply voltages VDDI pins must be connected appropriately. All the bank supplies that are located on the east side must be powered even if the associated bank I/Os are not used. Refer to the "Recommendation for Unused Bank Supplies" connections table in the *SmartFusion2 Board Design Guidelines Application Note* for more information, in the case where the specific banks are not used. An MSIO bank supports 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V and an MSIOD and DDRIO bank supports 1.2 V, 1.5 V, 1.8 V, or 2.5 V. For more details on user I/O pins (MSIO, MSIOD, and DDRIO) and supported voltage standards, refer to the "Supported Voltage Standards" table in the *SmartFusion2 Soc FPGA Fabric User's Guide*.

The banks have dedicated supplies. Therefore, only I/Os with compatible voltage standards can be assigned to the same I/O voltage bank. The correct bank supply must be used when migrating between the different devices per the appropriate voltages (I/O Standards) selected for the bank. Table 13 shows the different banks power supply compatibility per device in the FCS325 package.

Table 13 • Power Supply Compatibility Per Device

Package	FCS325 Pin Names		
Pins	M2S025	M2S050	
AA9	VDDI4	VDDI5	
D20	VDDI7	VDDI8	
F17	VDDI7	VDDI8	
J15	VDDI7	VDDI8	
J5	NC	VDDI2	
K20	VDDI7	VDDI8	
M2	VDDI2	VDDI3	
N15	VDDI6	VDDI7	
N5	VDDI2	VDDI3	
R10	VDDI4	VDDI5	
R18	VDDI6	VDDI7	
V2	VDDI2	VDDI3	
V5	VDDI3	VDDI4	
V9	VDDI4	VDDI5	
W20	VDDI5	VDDI6	

For the other bank supplies that are equivalent, refer to the provided recommendations in the *SmartFusion2 Pin Descriptions*.

Any other board-level considerations are common among the two devices. Refer to the *SmartFusion2 Board Design Guidelines Application Note* for more details.

Software Flow

The Libero SoC provides the option of reserving pins for moving between different devices within the SmartFusion2 SoC FPGA family, where pins within the current device that are not bonded in the destination device can be automatically reserved.

This option is available in the I/O Constraints Editor, which can be accessed from the Design Flow window, as shown in Figure 3. This is done in the very early stages of the design cycle.

Follow the procedure given below to reserve pins:

 After finishing the Compile process, select the I/O Constraints option from the Design Flow window, as shown in Figure 3.

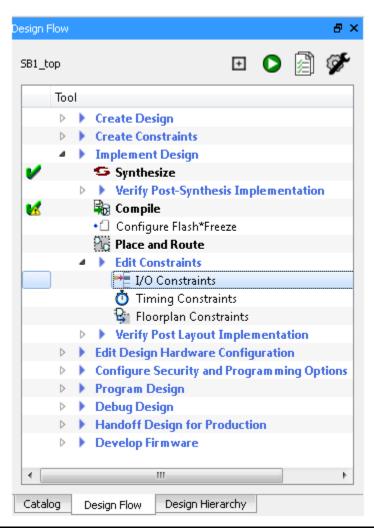


Figure 3 • I/O Constraint Editor Option Part of the Design Flow

Select the Reserve Pins for Device Migration option from the Tools menu. The window shown below in Figure 4 is displayed.

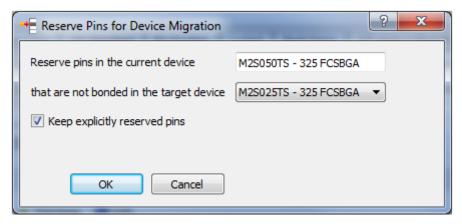


Figure 4 • Reserve Pins for Device Migration

The first option shows the device that is currently being used in the Libero SoC project. From the drop down menu select the device that is eventually migrated to as target device. Refer to Libero SoC software online help for more details on this window and options.

The Libero SoC software provides the option of moving between different devices within the SmartFusion2 SoC FPGA family by changing from M2S025 to M2S050 and vice-versa using the Project Settings option in the Libero SoC software. Upon changing the device, Libero SoC validates the features that are used within the design against the supported features within the new targeted device and package. Feedback messages are provided as part of the Libero SoC software flow listing the different actions taken by Libero SoC and the action required.

The first step that Libero SoC performs upon changing the device is to invalidate the original design components and the design flows. The message is displayed as shown in Figure 5.

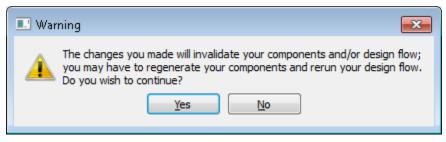


Figure 5 • Invalidating Component and Design Flow Message

As part of rerunning the design flow, Libero SoC checks the different steps needed to be performed for completing and updating the design flow. Furthermore, the Libero SoC converts the MSS configurations to be compatible with the selected device and package combination. The Libero SoC software displays the message, as shown in Figure 6.



Figure 6 • Converting the MSS Configurations

As part of the MSS conversion, any changes that were made automatically to be compatible with the device and package selected are printed to the log window. Libero SoC disables or defaults to different options if the current selected options are not supported in the new targeted device and package.

After the MSS configuration conversion is done, the MSS must be regenerated. To regenerate the MSS component, open the MSS component from the Libero SoC Design Hierarchy Flow window and proceed through the different MSS pages to complete the generation steps.

Conclusion

This application note describes the design migration among the SmartFusion2 SoC FPGA family devices focusing on migration between M2S025 and M2S050 within the FCS325 package. The SmartFusion2 SoC FPGA family devices share many common architectural features. During design migration, architecture differences between devices should be kept in mind to ensure seamless migration flow. Additionally, a key requirement is to run the functional simulation and timing analysis before and after the migration using Microsemi[®] tools.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.