Mitigating GNSS Vulnerabilities in Commercial Network Timing Applications

Kris Sowolla
May 2013
Agenda

• Introduction and Overview of GNSS
• Vulnerabilities
• Mitigation
“Everyone” Depends on GNSS

All market segments use GPS receiver technology to synchronize their network infrastructure
Precise Timing is More Important Than Ever

• Higher precision is needed
 – Seconds ➔ Milliseconds ➔ Microsecond ➔ Nanoseconds

• More time-based correlation from widely dispersed sources and locations
 – Data centers and WANs, cloud networks, smart substations and WAMS, mobile small cell eICIC, transaction systems, operating centers, billing systems...

• Reactive, post event analysis ➔ Proactive, automated operations

Once a routine network function, timing and synchronization is now a sophisticated foundation technology that is essential to mission critical network operations and data applications. And it must be protected.
Global Navigation Satellite Systems (GNSS)

- GPS (United States)
 - Operational

- GLONASS (Russia)
 - Operational

- Beidou (aka Compass) (China)
 - Partially operational
 (regional system)

- Galileo (European Union)
 - In preparation stages

- Other regional systems are also in operation or being planned

In general: an array of 24-30 satellites, in orbits over 19,000 km away, circling the earth every 12 hours

1. Control Stations send position and time synchronization information to the satellites
2. Satellites send their position and time info to Earth
3. Receiver calculates its position and time
GPS Transmit Power is Very Low

Multiple atomic clocks are on each satellite.

Visibility of 4 satellites needed to solve for position and precise time applications.

PPS
Precise Positioning Service
- P(Y) Code modulated onto L1 and L2 carrier
- Encrypted signals
- Authorized users only

SPS
Standard Positioning Service
- C/A (Coarse Acquisition) Code modulated onto L1 carrier
- No encryption
- Commercial, civil and gov’t users (everybody)

25 to 100 Watts, over 20,000 kilometers away!
GPS Signal Characteristics

Coarse Acquisition Code is the signal available for commercial purposes.

C/A Code is more vulnerable than the P(Y) code used by government/military.
Vulnerabilities
GNSS Vulnerabilities are a Major Concern

"Maintains a central database for reports of domestic and international interference to civil use of GPS …"

U.S. GPS Interference Detection and Mitigation (IDM) Program

GNSS vulnerability is a growing concern in critical infrastructure applications
GPS timing is used in 15 of the CIKRs and is essential in 11 of the 18.
GNSS Challenges: GPS tested by the U.S. DOD

During the 9 month study there was an outage somewhere in the study area ~12% of the time, affecting on average ~4.5% of the continental U.S.

Source: FAA, 2010
Normal Operations Can Induce Errors

1. Orbit error
2. Satellite clock error
3. Ionospheric delay
4. Tropospheric delay
5. Multipath
6. Receiver noise
Everyday GPS Outages (Intentional)

Jammers and Spoofing

Software attacks

Cheap jammers to sophisticated spoofing

Signal Characteristics of Civil GPS

Devices which claim to jam or “block” GPS signals are widely available through a number of web and online entities. The cost of these devices ranges from a few tens of dollars to several hundred. This does not seem to correlate with the claims made by the purveyors of these devices regarding the range and effectiveness of the product in question. The ranges from a few meters to several tens of kilometers are advertised, but it will be shown that effective ranges are significantly greater. The actual power consumptions range from a fraction of a watt to several watts.

In this work, we systematically map out a larger attack surface by viewing GPS as a computer system. Our surface includes higher level GPS protocol messages than previous work, as well as the GPS OS and downstream dependent systems. We develop a new hardware platform for GPS attacks, and develop novel attacks against GPS infrastructure. Our experiments on consumer and professional grade receivers show that GPS and GPS-dependent systems are significantly more vulnerable than previously thought. For example, we show that remote attacks via malicious GPS broadcasts are capable of bringing down up to 30% and 20% of the global CORS navigation and NTRIP networks, respectively, using hardware that costs about the same as a laptop. In order to improve security, we propose systems-level defenses and principles that can be deployed to secure critical GPS and dependent systems.
Everyday GNSS Outages (Unintentional)

Mechanical, Human Error
- Antennas are easily damaged and can interfere with each other.
- Human error in GNSS system operations.
- GPS cable conduit dangling in the wind.
- Harmonics or radiation from nearby electronics, failures or misaligned transmission equipment.

Natural, Environmental
- Lightning hits and high winds take out antennas, antenna icing.
- Solar flares, atmospheric phenomena.
- Foliage causes signal masking.
“Blue Team Jamming”
Governments may intentionally jam GPS to stop terrorist activities for example:

- Five GPS phones that were used by the terrorists during the Nov 26, 2008 attacks in Mumbai
- Terrorists using GPS to navigate and organize anti-government activities
- War
<table>
<thead>
<tr>
<th>Event</th>
<th>Duration</th>
<th>Cause & Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Charles, MO</td>
<td>11-21 Oct, 1994 and May 1995</td>
<td>GPS/L1 interference from test equipment at nearby aerospace facility</td>
</tr>
<tr>
<td>Chesterfield, SC</td>
<td>15-23 April 1999</td>
<td>Army communications system radiating in GPS/L1 band</td>
</tr>
<tr>
<td>Moss Landing, CA</td>
<td>15 April – 22 May, June</td>
<td>TV antenna pre-amp radiating in GPS/L1 band, GPS denied throughout harbor region</td>
</tr>
<tr>
<td>San Diego, CA</td>
<td>22 Jan, 2007</td>
<td>wide-scale denial of GP</td>
</tr>
<tr>
<td>Leesburg, VA</td>
<td>July 2011 - January 2012</td>
<td>100mW jammers caused minor disturbance to FAA Control Center, ZDC</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>March 2012</td>
<td>DoD event, unintentional going, daylight coast battery, Las Vegas airport ground stop for approximately 1 hour</td>
</tr>
</tbody>
</table>

March 2011: a U.S. military reconnaissance aircraft was forced to land ... due to GPS jamming...jamming supposedly originating with the North Koreans.

March 2011: North Korean military units jammed GPS signals in some parts of South Korea. It was believed that 146 cell sites were knocked out.

Dec 2011 Iranian state media claimed GPS meaconing (among others technique) was used to capture a U.S drone aircraft.

May 2012: “North Korea pumps up the GPS jamming in week-long attack”

Source: Examples compiled from published reports and open literature
Timing Backups are Necessary

Findings

As with any radionavigation system, the vulnerability of the transportation system to unintentional and intentional GPS disruption can be reduced, but not eliminated, by growing awareness within the transportation community that the safety system cannot serve as a sole source for position location critical applications. Public policy must ensure loss of GPS. Utilization of backup systems for positioning and precision timing are necessary for all GPS applications involving the potential for life-threatening situations or major economic or environmental impacts. The backup options involve some combination of: (1) terrestrial or space-based navigation and precision timing systems; (2) on-board vehicle/vessel systems; and (3) operating procedures. Precision timing backups include cesium clocks or Loran-C for long-term equivalent performance, or rubidium or quartz clocks. The appropriate mix for a given application will result from careful analysis of benefits, costs, and risk acceptance.
Mitigation
Mitigation Alternatives

- Dual GNSS Reception
- Oscillator Holdover
- Cesium Primary Reference
- Network Distributed Timing

Each has pros and cons, benefit and cost differences. Not mutually exclusive—can be used in combination for complete protection.
Dual GNSS Reception

- Many modern receivers are able to use both GPS and GLONASS signals
 - Galileo and Beidou in the future
- See 24+ satellites at a time instead of just ~12
- If one system is impaired (anything from war to human error) the other keeps you in service
- Another benefit: increases the probability of viewing satellites in urban canyons, obstructed environments.
Holdover

Holdover: continuing operation when the primary timing and synchronization source is lost.
When GPS is lost, timing is held by the oscillator in the equipment.

• The period of effective holdover depends on three criteria
 - Timing requirements of the application
 - Performance of the holdover oscillator—higher quality oscillators provide longer holdover
 - Temperature changes, both degrees of change and speed of change, affect holdover performance

There are a wide variety of oscillator types in use today. Each provides a different performance/cost profile. OCXO and Rubidium are most common when holdover is important.
Examples of Holdover Requirements and Performance

- **Power Substation LANs**
 - Smart Grid Substations require ±1 µsec timing accuracy (IEC 61850)
 - OCXO: about 10 minutes
 - Rubidium: about 8 hours

- **Wireless Networks: GSM and LTE-FDD**
 - Base stations require 16 ppm accuracy (frequency) at the network interface (3GPP)
 - OCXO: about 1 month
 - Rubidium: years (CDMA, with phase timing requirement: 3 to 7 days)

- **Wireless networks: LTE-TDD and LTE-A**
 - ±1.5 µsec to ±5 µsec: phase timing standards are still works-in-progress (3GPP)
 - OCXO: about 30 minutes (±1.5µsec)
 - Rubidium: about 24 hours (±1.5µsec)

- **Enterprise: Data Center LANs**
 - No standard, but lets say ± 1 millisecond is the objective (using NTP)
 - OCXO: about 1 day
 - Rubidium: over 60 days

- **Enterprise: High Frequency Trading Network LANs**
 - No standard, but lets say ± 1 microsecond is the objective (using PTP)
 - OCXO: about 10 minutes
 - Rubidium: about 8 hours

Actual performance will vary widely depending on the quality (cost) of the oscillator and environmental conditions.
Rubidium Atomic Clock Holdover

Rubidium versus OCXO

time error over temperature changes

Service continuity

Fewer truck rolls

Fewer off-hour repair calls

Rubidium performance is 5 to 8 times better than OCXO.
Ultimate Holdover: Cesium Technology

- Cesium technology is considered the most comprehensive holdover option against GNSS vulnerabilities
 - No meaningful frequency drift
 - Maintains 5×10^{-15} accuracy over the life of the instrument
- Critical for long-term autonomous operation
- No on-going calibration required
- More expensive than Rubidium and OCXO
 - Consumes more power and space
- Typical commercial applications
 - Telecommunications infrastructure
 - Power Utility infrastructure
 - Research facilities

Cesium atomic frequency is used as the international definition of the second
Network Distributed Timing

- Local and Wide Area Networks:
 - Communications Service Providers: Wireless and Wireline
 - Power Utilities: Data and Control Centers, Telecom Network, Substation Networks
 - Information & Communications Technology Operations: High Frequency Trading, Data Centers & WANs, Cloud Computing Networks

- Timing Technologies
 - GNSS remains the primary reference source
 - IEEE 1588 Precision Time Protocol (PTP)
 - Network Time Protocol (NTP)

- Primary Timing Equipment
 - PTP Grandmaster Clock or NTP Time Server with integrated GNSS receiver and/or Cesium reference
 - PTP or NTP client embedded in networked equipment
 - Oscillators (OCXO, rubidium) in network equipment for extended holdover

Back-up the primary reference with another source a long distance away, mitigating local impairments and outages
• PTP Grandmaster in the substation, microsecond accuracy for Smart Grid measurement equipment
• Redundant deployment for N-1 protection
• Eliminate “GPS antenna farms”
• Rubidium for extended holdover
• Backup and support with PTP over the telecom network
• PTP Grandmasters are deployed near the core or near the edge depending on timing requirements ability of backhaul to maintain accuracy
• Multiple deployment locations allow Grandmasters to backup each other
Network Distributed Timing Computing Centers

- Data Centers, Billing Centers, Operating Centers, Cloud Networks

- Multiple time sources
- NTP peering, PTP redundant master clock deployments
- Dial-up and radio broadcasts
- National time services: NIST, USNO, JJY, ITU-R TF583.4

Note: PTP backup over public carrier WAN facilities may not maintain accuracy needed for very stringent requirements.
Summary

Protect your time

- Dual GNSS reception: GPS and GLONASS
- Extended holdover: rubidium or cesium
- Multiple primary time sources: redundant clocks and alternatives sources, distributed geographically

- Each has pros and cons, but they are not mutually exclusive. Best practices will use them in combinations.
Symmetricom is well positioned to ensure our customers are able to protect against GPS vulnerabilities across all applications.

Visit our website or contact us for additional information.

www.symmetricom.com
Thank You.

Mitigating GNSS Vulnerabilities In Commercial Networks

Kris Sowolla
ksowolla@symmetricom.com

Related, recorded webinars from Symmetricom:

“Mitigating GPS Vulnerabilities in Mission Critical Applications”
“NTP or PTP: Which is the Best Network Timing Protocol for your Enterprise Application Needs”

A link will be in your “Thank You” email message.