

GPS-2600 and GPS-2650

100 MHz DOCXO-based GPS Disciplined Oscillator

Key Features

- High-performance GPS Receiver
- Small footprint and low profile: only 1.5" x 4" x 0.8"
- Excellent holdover stability
- Built-in Distribution Amplifier for multiple outputs at both 100 MHz and 10 MHz
- Low phase noise and very low phase noise floor at 100 MHz
- 1 PPS output accuracy of ±30 ns to UTC RMS (1-sigma), GPS-locked

Applications

- Unmanned Aerial Vehicles (UAV's)
- IED Jammers fixed, mounted, dismounted
- Radar Systems
- Satellite Communications terminals
- Aircraft Guidance Systems
- Tactical Radios
- Underwater systems using GPS for initialization

The Symmetricom® GPS-2600 and GPS-2650 are 100 MHz Double-Oven OCXO-based GPS Disciplined Oscillators (GPSDO's). The GPS-2600 covers a temperature range of 0°C to +75°C, while the GPS-2650 covers an extended range of -25°C to +75°C. Both units feature a high-performance GPS receiver that can track up to 50 GPS signals, down to levels as low as -160 dBm. The receiver is compatible with GPS, WAAS, EGNOS, and MSAS signals.

Special software functionality supports airborne applications by providing avionics systems with a 3D velocity vector, Attitude/ Tilt information, Speed, Heading, Height (both MSL and GPS height), Position, Time, Date, Frequency, Time-stamping, and Health information. For mission-critical applications, the units also provide a direct redundancy feature, allowing multiple units to be daisy-chained to each other for increased reliability.

By providing both 10 MHz and 100 MHz reference outputs in one compact unit, the GPS-2600 and GPS-2650 are an excellent fit for up-conversion subsystems used in radar and satellite equipment, where very low phase noise is critical. The units provide two 10 MHz outputs, one sine wave at +13 dBm, and one with LVDS-compatible levels. They also provide seven

100 MHz outputs, 2 sine wave at +7 dBm each, 4 LVDS-compatible, and 1 5V CMOS-compatible. There are also three 1 PPS outputs, one each with 5V CMOS, LVDS, and RS-232 compatible levels. The 1 PPS output is accurate to within ±30 ns of UTC RMS [1-sigma], once GPS lock has been achieved.

Holdover stability is excellent, at better than $\pm 7~\mu s$ over a 24-hour period at $\pm 25^{\circ} C$. Phase noise at 10 MHz is <-100 dBc/Hz at a 1 Hz offset, with the comparable number for the 100 MHz output being $\pm 118~\mu c$ at 100 Hz. The noise floor of the 10 MHz output is <-145 dBc/Hz, and for the 100 MHz output it is an extremely low $\pm 160~\mu c$. The units consume <4W of power at $\pm 25^{\circ} C$.

These units can be monitored and controlled through an RS-232 port via standard SCPI commands, and they also can generate NMEA-0183 output sentences for easy integration into existing system architectures.

GPS-2600 and GPS-2650 100 MHz DOCXO-based GPS Disciplined Oscillator

Specifications

ELECTRICAL SPECIFICATIONS

MODULE SPECIFICATION:

±30ns to UTC RMS (1-sigma) 1 PPS Accuracy

GPS locked

Better than ±3.0 E-10 after 1 Frequency Accuracy

hour operation with GPS locked

Holdover Stability ±7µs over 24 hour period

@+25°C (no motion, after 3 days

with GPS)

1s to 1000s: 2.0E-11 with GPS **ADEV**

lock (typical)

1 PPS Outputs (OCXO Flywheel Generated)

Three outputs: 5V CMOS, LVDS differential pair and RS-232 level

10/100MHz Outputs (9 outputs total, 7 @ 100MHz, 2 at 10MHz)

4 differential LVDS pairs @ 100MHz, 2x sine 100MHz at +7dBm, 1x CMOS @ 100MHZ, 1x sine 10MHz at +12dBm, 1 differential LVDS pair @ 10MHz

Full control via SCPI-99 control RS-232 Control

commands, NMEA-0183

Avionics Support 3D velocity vector (velocity output

for the X, Y, and Z planes), 3D MEMS acceleromoter with ±3G

range

GPS Frequency L1, C/A 1574MHz GPS Antenna Passive or active, 5V

GPS Receiver 50 channels, mobile, GPS, WAAS,

EGNOS, MSAS supported

Acquisition - 144 dBm Sensitivity

Tracking - 160 dBm

Cold start - <45 sec **GPS TTFF**

Warm start - 1 sec Hot start

TTL Alarm Output GPS unlock and event indicator Warm Up Time/ <10 min to 1.0E-9 accuracy

Stabilization Time at +25°C (typical)

Supply Voltage (Vdd) 11.0V to 16.0V DC nominal

< 4W at +25°C Power Consumption

0°C to +75°C (GPS-2600) and Operating Temperature

-25°C to +75° C (GPS-2650)

MIL-STD-202, method 204, Environmental Conformance

condition I-A

-45°C to +85°C Storage Temperature

OSCILLATOR SPECIFICATION:

10MHz and 100MHz Frequency Output

±2E-08 after 24 hrs. on, 24 10/100MHz Retrace

hrs. off, 1 hr. on (no GPS)

>10 years

Frequency Stability

Over Temperature low-g option: ±3E-10 per

g per axis <8 min

Oscillator Heater

Warm-Up Time

Designed Lifetime

Phase Noise	100MHz Out	10MHz Out
1Hz 10Hz 100Hz 1kHz 10kHz 100Khz	-60dBc/Hz -95dBc/Hz -118dBc/Hz -140dBc/Hz -155dBc/Hz -160dBz/Hz	-100dBc/Hz -125dBc/Hz -140dBc/Hz -142dBc/Hz -145dBc/Hz -145dBc/Hz

