In addition to phase noise measurements, the 5125A simultaneously performs a variety of other measurements, which enables users to more fully characterize their Devices Under Test (DUT). The industry-standard stability metric for short-term stability, the Allan Deviation (ADEV), can be measured out to more than 300 days; the frequency and phase vs. time are plotted in real time; and the frequency counter displays 13 digits of precision in 1 second.

Established Leader in Time and Frequency Measurements

Years of research at the National Institute of Standards and Technology (NIST) and in private industry have come to fruition in Microsemi’s phase noise test sets, which employ both direct sampling of the RF waveforms as well as cross correlation, making it possible to easily characterize the lowest noise frequency references available, such as those used in RADAR and satellite communications. The all-digital architecture employed in the 5125A uses advanced, high-speed, low-noise analog-to-digital converters in a patented architecture that does not require a phase-lock loop to make measurements. This provides multiple benefits for 5125A users. First, the input carrier signals can be characterized much more accurately than before, to within 0.1 mHz of the carrier. Second, the measurements can be used to simultaneously evaluate the short-term stability. Last but not least, the user does not need to calibrate each individual measurement setup.
Quickest Start-to-Finish Measurements
Thanks to the 5125A’s innovative internal architecture, it requires no user configuration or calibration and thus makes phase noise measurements in a matter of seconds.

Extremely Wide Range Measurement Capability
The 5125A supports a wide range of phase noise and ADEV measurements. By converting the DUT and reference signals to their digital representation at the first stage, the all-digital design in the 5125A has eliminated the need for carrier suppression when making measurements, enabling phase noise measurements at smaller frequency offsets than previously possible (to below 0.1 mHz). This same technology enables simultaneous long-term ADEV measurements. Technical advances like these provide the ability to characterize high-performance sources better than ever before.

Excellent Close-In Phase Noise Floor
The 5125A’s built-in cross correlation capability results in an extremely low close-in phase noise floor. At 100 MHz, measurements can be made down to –130 dBc/Hz (typical) at an offset of 1 Hz from the carrier, making the 5125A an excellent solution for the most demanding phase noise measurement requirements.

Advanced Spur Detection
The 5125A is equipped with sophisticated algorithms that analyze spurious signals in the spectrum simultaneous with the phase noise measurement. Internally generated spurs are detected and suppressed. External spurs are highlighted in red on the unit’s display, as shown in the 5125A Sample Display Capture—Phase Noise diagram. The power of each spur is calculated without the need for a separate measurement. The results are shown on the phase noise plot as well as in a separate table.

Easy-to-Use
Microsemi has combined its extensive knowledge in phase noise and ADEV measurement techniques into a one-box solution with an intuitive, easy-to-learn GUI. Since all configuration and calibration are done by the 5125A, extremely accurate measurements can be made without a highly trained engineer having to supervise the measurements.

Making measurements is as simple as connecting the DUT and a reference and pressing the Start button.

5125A Sample Display Capture—Phase Noise
Spurs are highlighted in red. The instrument’s real-time noise floor, shown in gray, provides the user with a way to estimate the 5125A’s internal noise bias on the current measurement.
No Longer Must the Reference and DUT be at the Same Frequency

Unlike traditional measurement systems, the 5125A does not require that the frequency of the reference be the same as the DUT. Two enablers for this advance are that the 5125A synthesizes the two input frequencies for conversion to baseband, and the 5125A’s phase detector has infinite range that doesn’t require the two inputs to be phase locked. These advances allow accurate measurements to be made on a DUT at any frequency between 1 MHz–400 MHz, with a single low-noise reference.

Multiple Connectivity Options

Connecting a mouse and/or keyboard directly to the 5125A’s USB ports makes operating this instrument even easier. When remote operation is required, the user can connect to the 5125A's Ethernet port (over a standard 10/100BASE-T network) to start/stop measurements, gather raw phase data or measurement results, and print.

5125A Sample Display Capture – Allan Deviation

The instrument’s real-time self-calculated noise floor, which can be used to estimate the 5125A’s internal noise bias, is shown in gray. Allan Deviation measurements to over 300 days are supported.
Benefits Of An All-Digital Test Set

The 5125A combines sophisticated timing technologies into a single, advanced measurement instrument. As is shown in the 5125A Block Diagram, after bandpass filtering to prevent undesired aliasing, the DUT and reference signals are converted to digital. This allows the 5125A to make accurate measurements without the need for an external phaselock loop and to measure both phase noise and Allan Deviation simultaneously. The use of a ratiometric phase measurement that depends on a trigonometric phase detector eliminates the need for user calibration.

Benefits of Cross-Correlation

The parallel measurement channels in the 5125A Block Diagram illustrate the unit’s use of cross correlation. After making independent phase-difference measurements, the 5125A computes the cross spectrum using the discrete Fourier transforms from the two channels to estimate the noise of the input devices while rejecting the noises of the measurement sub-systems. This enables the instrument noise to be well below the noise floor of a single channel.

Specifications

Performance
- Frequency range: 1 MHz–400 MHz (sinewave)
- Allan Deviation: 3×10^{-15} at 1 sec (10 MHz–400 MHz, 0.5 Hz BW)

Phase Noise
- Measurement accuracy: ±1.0 dB
- Offset frequency range: 0.1 mHz to 1 MHz
- System noise floor (specifications): L(f) dBc/Hz

<table>
<thead>
<tr>
<th>Offset Frequency</th>
<th>Input Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 MHz</td>
</tr>
<tr>
<td>1 Hz</td>
<td>-140</td>
</tr>
<tr>
<td>10 Hz</td>
<td>-150</td>
</tr>
<tr>
<td>100 Hz</td>
<td>-157</td>
</tr>
<tr>
<td>1 kHz</td>
<td>-162</td>
</tr>
<tr>
<td>10 kHz</td>
<td>-165</td>
</tr>
<tr>
<td>>100 kHz</td>
<td>-165</td>
</tr>
</tbody>
</table>

- System noise floor (typical): L(f) dBc/Hz

<table>
<thead>
<tr>
<th>Offset Frequency</th>
<th>Input Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 MHz</td>
</tr>
<tr>
<td>1 Hz</td>
<td>-145</td>
</tr>
<tr>
<td>10 Hz</td>
<td>-155</td>
</tr>
<tr>
<td>100 Hz</td>
<td>-160</td>
</tr>
<tr>
<td>1 kHz</td>
<td>-165</td>
</tr>
<tr>
<td>10 kHz</td>
<td>-170</td>
</tr>
<tr>
<td>>100 kHz</td>
<td>-170</td>
</tr>
</tbody>
</table>

Electrical
- Input signal level: 3 dBm–17 dBm
- Input impedance: 50 Ω
- Input connectors: TNC (supplied with two BNC adapters)

Mechanical and Environmental
- Size: 34 cm x 17 cm x 44 cm (13” x 7” x17”)
- Power: 100 VAC–240 VAC, 47 Hz–63 Hz IEC 320 connector, power switch.
- Operating temperature: 15 °C to 45 °C
- Storage temperature: –25 °C to 55 °C

Options
- Rack Mount Tray Kit (Option 001)
- Unlike the 5120A, there is no internal reference option

Product Includes
- 5125A Test Set, 2 TNC-BNC adapters, manual (on CD) and power cord
- One-year warranty

Front Panel
- Display: High-resolution 640 x 480 RGB LCD
- Buttons: 6 SoftKeys, Start, Stop, Print, Power
- TNC (2x): Input, Reference (3 dBm–17 dBm)
- LED: Power

Rear Panel
- USB: 2 each
- Network: RJ-45 10/100BASE-T Ethernet
- Printers: Printers with internal PostScript interpreters only.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs, power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs, power management products; timing and synchronization devices and precise time solutions, setting the world’s standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

DS/5125A/0917 900 00482 000B