
Overview of Secure Boot
With Microsemi

SmartFusion2 FPGAs

November 2013

Abstract
Microsemi SmartFusion®2 devices have a wide range of differentiated Security features that can
implement a secure boot capability on an embedded system. A secure boot process is needed to verify
that the boot code used to ‘bring-up’ an embedded system is authorized to run on the target processor.
Without such a check on the security of the MCU controlled subsystem, a malicious intruder can
compromise the entire system This white paper will educate embedded systems designers of the dangers
posed by poor system security and will illustrate how implementing secure boot using Microsemi
SmartFusion2 devices can dramatically increase the security of any embedded system that might be
subject to outside attacks. Additionally, this paper will demonstrate how, in most cases, the addition of
these types of security features can be included for free, since the SmartFusion2 FPGA will also be used
to implement other common embedded system functions, in addition to the security functions needed for
secure boot.

Introduction
Embedded Networked Systems control an ever-increasing amount of the modern industrial infrastructure.
In the industrial applications arena, embedded systems for smart energy grid installations, complex
chemical processing plants, and a host of similar sensitive systems all require advanced security features
to prevent malicious users from system intrusion. Standard approaches to protecting sensitive embedded
systems have evolved over the last couple of decades and have created the critical algorithms needed to
secure sensitive data and embedded processing functions.

The Microsemi SmartFusion2 FPGA family has the world’s best suite of complementary security features
for implementing protected embedded systems. SmartFusion2 FPGAs can implement many security-
enhancing capabilities without negatively impacting system requirements. Indeed, because of the
innovative technology, holistic security conscious device architecture (from the bottom level silicon process
all the way up to the target system), simplified design methodology, and extensive support ecosystem
many security capabilities can be implemented without any added system cost, additional power, or
increased time to market. Additionally, because in many applications an FPGA is already required to
implement a portion of the embedded system, by using a SmartFusion2 device to implement these non-
security related functions, the dedicated security capabilities can then be utilized to improve system
security, at no additional cost. This white paper will use secure boot as a demonstration of the unique
capabilities that enable the SmartFusion2 family to deliver increased security for free.

Security in Embedded Systems – A Quick Overview
The security of electronic systems can be divided into two major classes: Design Security and Data
Security. Design Security protects the actual design (intellectual property) associated with the embedded
system. Data Security protects the data associated with the applications running on the embedded system.
Design Security protects the intent of the owner of the design, typically by keeping the design and
associated bitstream keys confidential, preventing design changes (insertion of Trojan Horses, for
example), and controlling the number of copies made throughout the device life cycle. Design Security
applies to the device from initial production, includes any updates such as in-the-field upgrades, and can
even include decommissioning of the device at the end of its life. Design Security should protect against
tampering, cloning, overbuilding, reverse engineering, and counterfeiting, as well as providing traceability
through the entire lifetime of the system. Some of the important functions needed to implement robust
Design Security include:

• Certificate-of-Conformance to verify correct programming, and prevent insider attacks during
contract manufacturing

• Supply-chain assurances to eliminate counterfeiting
2 Overview of Secure Boot With Microsemi SmartFusion2 FPGAs

• Encrypted key and bitstream loading (using AES-256) to allow configuration to be done in less-
trusted locations

• Secure programming with SHA-256 bitstream authentication

• Elliptic Curve Cryptography (ECC) for securely loading user keys

• An SRAM-based Physically Unclonable Function (SRAM-PUF) for device authentication

Once the design is secure you can move on to Data Security. Data Security protects the information a
device is storing, processing, or communicating in its role in the end application. For example, if the
configured design is implementing the key management and encryption portion of a secure military radio,
Data Security could include encrypting and authenticating the radio traffic and protecting the associated
application-level cryptographic keys. Some of the important functions required to implement robust data
security include:

• Ability to destroy (zeroize) all sensitive stored data in the event of tampering

• User Cryptographic services (for example, AES-128/-256, SHA-256, and HMAC)

• Non-Deterministic Random Bit Generation (NRBG) for secret keys and nonces

• Advanced key storage and management based on a physically unclonable function (PUF), which
is a feature of the device analogous to a “biometric”

• Hardware firewalls to protect sensitive data from unauthorized access

• Advanced anti-tamper techniques such as Differential Power Analysis countermeasures to protect
secret keys from power side-channel attacks

SmartFusion2 Family Architecture Overview
The SmartFusion2 family architecture, as illustrated in Figure 1 on page 4, combines most of the common
function blocks required in just about any digital electronics system. The system controller provides overall
supervisory control of configuration, power management, and JTAG functions. The FPGA fabric includes
the user configurable logic and connects to the MSS, DDR controllers, and serial controllers. These main
function blocks all work together efficiently to provide the designer with a best in class programmable
system-on-chip (SoC) for a wide range of applications.

What sets SmartFusion2 devices apart from other programmable devices are the differentiated features
that have been included for increased reliability, advanced security, and low power. For example, the sub-
blocks shown in purple, are immune against single event upset (SEU) occurrences by the use of flash
memory cells instead of SRAM cells. These innovations result in dramatic reliability increases compared to
SRAM-based programmable devices. Design and Data Security are also radically improved by the
inclusion of advanced security functions such as AES-256, SHA-256, SRAM-PUF, and NRBG in the
system controller.
Overview of Secure Boot With Microsemi SmartFusion2 FPGAs 3

The next few sections provide an overview each of the main blocks and their differentiated features that
assist in implementing security related functions for your designs.

SmartFusion2 Microcontroller Subsystem Description
The SmartFusion2 family combines several key processing, memory storage, and data transfer functions
within the Microcontroller Subsystem (MSS). By combining these functions into a common block the
SmartFusion2 MSS makes it easier to implement control functions using a traditional MCU development
process. The ‘hardened’ blocks of the MSS result in a more highly integrated, lower power, and lower cost
implementation for embedded control applications. Key elements of the MSS that are useful in
implementing secure boot applications include the ARM®Cortex™-M3 CPU; memory related functions
including the cache, SRAM, flash code storage blocks, High-Performance DMA (HPDMA) and the external
DDR memory controller; a variety of high-speed peripherals for data communications including Tri-speed
Ethernet, USB, and a peripheral DMA controller (PDMA); several lower speed communications peripherals
like SPI, I2C, UART and CAN; timers and counters; and interfaces to the FPGA fabric.

FPGA Fabric
The ability to customize user logic and efficiently and easily integrate it with the other key blocks is perhaps
one of the most important capabilities of the SmartFusion2 family. SmartFusion2 devices are optimized for
advanced security, high-reliability, and low power consumption applications. Several key features of the
embedded FPGA fabric contribute to the best in class results the SmartFusion2 family delivers.

Figure 1: SF2 Architecture Block Diagram
4 Overview of Secure Boot With Microsemi SmartFusion2 FPGAs

SmartFusion2 FPGA fabric is composed of five key building blocks: the logic module, the large SRAM, the
micro SRAM, the Mathblock and the routing resources that connect everything together. These low level
elements can be used to construct the wide range of functions required in embedded systems designs.

High Speed Serial Interfaces – SERDES Interface
The SmartFusion2 high-speed Serializer Deserializer (SERDES) interface block supports multiple high-
speed serial protocols using a SERDES transceiver of up to 5 Gbps, supporting Peripheral Component
Interconnect Express (PCI Express®), eXtended Attachment Unit Interface (XAUI), and Serial Gigabit
Media Independent Interface (SGMII). In addition, any user defined high-speed serial protocol
implemented in the IGLOO®2 fabric can access SERDES lanes through the external physical coding sub-
layer (EPCS) interface. The SERDES block is configurable to support single or multiple serial protocol
modes of operation. The SERDES block is connected to the FPGA fabric through an AXI/AHBL interface
or EPCS interface.

System Security Block
The SmartFusion2 system security block manages all the programming and security related functions
included on SmartFusion2 devices. The best in class security features of IGLOO2 FPGAs include
encrypted user bitstream key-loading, Certificate-of-Conformance support, X.509 Compliant Digital
Certificate management, Elliptic Curve Cryptography (ECC) support, an Advanced Encryption Standard
(AES-128/256) engine, a Secure Hash (SHA-256) engine, a Non-Deterministic Random Bit Generator
(NRBG), Differential Power Analysis (DPA) countermeasures, anti-tampering countermeasures, single-
use debug passcodes, SRAM-PUF, zeroization and FlashLock® protection of bitstream decryption keys
and security settings. Some of the higher-level functions (like zeroization, AES, SRAM-PUF, NRBG, and
SHA-256) are easily included in user designs as security services accessible through the security block.
Many of these features will be described in more detail throughout the rest of this paper.

This overview of the SmartFusion2 architecture will be sufficient for our purposes of understanding the key
device features and the support available for a wide range of embedded system designs. This paper will
now focus on the security features needed to support a secure boot capability. Additional details on other
SmartFusion2 features are available in the SmartFusion2 User Guides on the Microsemi website.

Secure Boot Overview
One of the most important security capabilities to protect embedded systems is a secure boot process. A
secure boot process initializes an embedded processing system from rest. It does this by executing trusted
code, free from any tampering by a malicious intruder. Without this level of trust an alternate boot image
could replace the original boot code and allow an attacker to ‘hijack’ the entire embedded system. Just
about any embedded system needs to be free from such attacks, for many embedded systems such an
event could prove catastrophic. Financial transactions could be altered, industrial processes sabotaged, or
confidential business data compromised. It is easy to see why security, and in particular secure boot, is a
growing requirement for many embedded systems.

Root of Trust—The Starting Point for Implementing Secure Systems
A hardware root-of-trust is essential to system security. It is an entity that can be trusted to always behave
in the expected manner. As a system element, it supports verification of system, software, and data
integrity and confidentiality, as well as the extension of trust to internal and external entities. The root-of-
trust is the foundation upon which all further security layers are created, and it is essential that its keys
remain secret and the process it follows is immutable. In embedded systems, the root-of-trust works in
conjunction with other system elements to ensure the main processor boots securely using only authorized
code, thus extending the trusted zone to the processor and its applications.

The trusted platform module (TPM) is an example of an industry standard root-of-trust. TPM devices
provide cryptographic services (hashing, encryption) with a static RSA key embedded in each device.
Overview of Secure Boot With Microsemi SmartFusion2 FPGAs 5

All of the required security features of the TPM are available in SmartFusion2 FPGAs. For example,
features like on-chip oscillators, cryptographic services, a true random number generator, and stronger
design security and anti-tamper measures are all easily implemented in SmartFusion2 FPGAs.
Additionally, the advanced computational capabilities of SmartFusion2 devices (with FPGA fabric,
hardened arithmetic functions, and block memory) along with the breadth of communications capabilities
(including many more I/O pins and many built-in high-speed serial interfaces) make for a vastly superior
platform on which to build a robust security system than those provided by typical dedicated TPMs.

Multi-Stage Secure Boot Process Description
Initializing embedded processing systems from rest requires a secure boot process that executes trusted
code-free from malicious content or compromise. Figure 2 below illustrates the various phases a secure
boot process must go through to adequately protect the initialization of an embedded system. Validation of
each stage must be performed by the prior successful phase to ensure a ‘chain-of-trust’ all the way through
to the top application layer. The immutable boot loader (Phase-0) code is embedded within the
SmartFusion2 device and is validated by the secure root-of-trust, which ensures the integrity and
authenticity of the code. Each sequential phase of secure boot is validated by the previously trusted
system before code and execution is transferred to it.

It is essential that any code be validated prior to delivery and execution to ensure that no compromise has
occurred that could subvert or damage the boot of each phase. This can be done using either symmetric or
asymmetric key cryptographic techniques. One approach is to build an inherently trusted RSA or ECC
public key into the immutable Phase-0 boot loader. The developer uses the RSA or ECC private key to
digitally sign the Phase-1 code. During Phase-0 the root-of-trust subsystem validates the digital signature
of the Phase-1 code before allowing execution. The boot process is aborted if invalid. It is critically
important that the inherently trusted public key and the immutable root-of-trust signature checking process
cannot be modified by a would-be hacker. If a hacker could substitute another public key or subvert the
process, they could ‘spoof’ subsequently loaded digitally signed code.

Industrial Sensor Controller Example Design
A good illustrative design example makes it easier to identify security requirements and implementation
options for networked embedded systems. A common element in these systems is an industrial controller
that manages both a high-speed communications interface, such as PCI Express®, that connects the
controller to the rest of the installation and a variety of slower speed interfaces for sensors, and process
controllers. These types of embedded networked systems are now becoming targets of malicious hackers,
as evidenced by the growth in advanced attacks like the so-called Stuxnet computer worm.

Figure 2: Multi-Stage Secure Boot Process Overview
6 Overview of Secure Boot With Microsemi SmartFusion2 FPGAs

A high level of security will be required, with features like secure boot, anti-tampering, Design Security, and
application level data encryption, a given.

The example industrial sensor controller uses an FPGA and a DSP, as shown in Figure 3 below. The DSP
implements the high-level signal processing algorithms while the FPGA provides networking connectivity,
algorithm acceleration for computationally intensive sensor operations, such as Doppler computations for
velocity measurement, advanced motor control algorithms to improve motor efficiency and reduce
vibrational wear, and implements the front-end decimation functions. A high-speed Serial RapidIO bus is
used to connect the FPGA and the DSP, providing an efficient data transfer capability.

The FPGA also connects to a PCIe bus, used as a chassis management port with remote access through
the internet. The PCIe bus can also bridge traffic to and from the RapidIO bus to extend remote
management connectivity to the DSP. The external ADC and DAC devices connect to the FPGA using the
JESD204x standard, which dramatically reduces the number of signals needed for interconnect, thus
simplifying the board layout and minimizing interconnect-related dynamic power dissipation. The ADC
collects readings from the sensors while the DAC generates analog signals used to control motors, and
analog peripherals used for sensor positioning and management. The FPGA controls an external DDR3
DRAM that acts as a buffer for packets to and from the sensor and controller interface, as well as storage
for any intermediate data needed for DSP algorithms. This allows the FPGA to offload any low-level data
protocol processing and buffer management functions from the DSP. The DDR3 DRAM can also provide
storage space for the bridging functions.

The FPGA will also be responsible for ‘booting’ the DSP from an external SPI flash memory. The FPGA
uses the boot function from the DSPs SPI port to mirror the boot process using its own SPI memory as the
DSPs code source. Once the code is transferred, the FPGA allows the DSP to begin execution. An FPGA
with a large internal flash block that can be used for the boot code source, like SmartFusion2, means that
the SPI memory may not be required.

Implementing Security Features in the Example Design
Let’s now look at how we can implement the security requirements in the industrial sensor controller using
SmartFusion2 FPGAs with a focus on secure boot. A block diagram of the controller is shown in Figure 4
below and illustrates the various elements of the secure boot process.

Figure 3: Industrial Sensor Controller using an FPGA and a DSP
Overview of Secure Boot With Microsemi SmartFusion2 FPGAs 7

Immutable boot code is stored on-chip along with security keys. The external SPI memory (in the case
where the SmartFusion2 on-chip NVM isn’t large enough) stores the balance of the DSP code (including
any required OS loader and OS code along with the application code). All of this code is verified using a
secure Challenge and Response system managed by the Root-of-Trust subsystem. The multi-stage
process progresses through several phases, as illustrated in Figure 2 on page 6, with each phase built on
the security established at the previous stage.

The SmartFusion2 device serves as the root-of-trust for system security and manages the secure boot
process using a multi-stage boot process, as described in Figure 2 on page 6. In our example design, the
target DSP processor is paired with the secure SmartFusion2 FPGA, which manages the Phase-0 boot
process. The DSP Phase-0 code is stored securely in the SmartFusion2 eNVM memory. The
SmartFusion2 FPGA will manage the Phase-0 boot process ensuring the DSP executes authenticated
Phase-0 code. It can also independently provide run-time monitoring and apply system penalties if
malicious activity is detected.

In this implementation all code for Phases 1 and higher is stored in External SPI flash memory with all code
encrypted. During Phase-0, the SmartFusion2 device delivers secured code to the DSP to do authenticity
checks and decryption of the Phase-1 and higher code. For added security, the Phase-0 code is stored in
the eNVM of the SmartFusion2 FPGA, which has strong protections against overwriting, and could be
encrypted while at rest.

After power-up, the SmartFusion2 FPGA holds the main DSP in reset until it has completed its own
integrity self-tests. When ready, it releases the reset. The DSP is then configured to boot from its SPI port,
which is connected to the SmartFusion2 SPI port. The SmartFusion2 FPGA, acting as an SPI slave,
delivers the requested Phase-0 boot code to the DSP as it comes out of reset.

Assuming the DSP does not inherently support secure boot, the challenge is to load some code into the
DSP, with a high assurance that it hasn’t been tampered with.

One approach is to have the very first part of the boot code copy the boot image to the DSP’s on-chip
SRAM (or cache). Then, the code can perform an integrity check by computing a cryptographic digest of
the SRAM contents. This result can be made to vary each time the DSP boots up by including a different
true random number, used as a nonce, or ‘number used only once,’ in the uploaded data. The DSP returns
the digest value to the SmartFusion2 FPGA for validation.

Figure 4: Secure Embedded Industrial Sensor Controller
8 Overview of Secure Boot With Microsemi SmartFusion2 FPGAs

If it does not respond with the correct value, the SmartFusion2 FPGA would assume that either the data or
the process had been tampered with, and it would terminate the boot process and impose any system
penalties enabled by the user design. If everything checks, the boot process would continue by branching
to the now-trusted code in the DSP’s SRAM. This would contain the code needed to initiate the next phase,
and could include a now-trusted RSA or ECC public key.

Once the code in the DSP SRAM is trusted, additional security measures for secure boot can be
employed. This could include establishing a shared key by using public key methods, and encrypting all
the subsequent boot code transmitted between the SmartFusion2 FPGA and the DSP with that shared
key. Additionally, it may be possible to bind all the hardware components of the system together
cryptographically so no pieces would work independently, unless they are all the exact components of the
original system. This makes it much more difficult to attempt a ‘divide and conquer’ attack strategy typically
used in complex systems.

Additional Levels of Security
The requirement to further protect embedded systems from intrusion can also be supported by many of the
other advanced features of SmartFusion2 devices. These features cover capabilities for advanced
bitstream protection, security key protection, secure remote updates, protecting secure application data
and tamper protection.

Secure Configuration Bitstream
The use of flash technology with trusted encrypted user bitstream key loading during device programming,
protects the design data against supply chain attacks like cloning, overbuilding, reverse engineering, and
counterfeiting. Devices can be programmed by contract manufacturing houses, but the design data can be
secured and only the required number of units produced by using SmartFusion2 on-chip security keys and
encrypted bitstreams. This is a much more secure approach when compared to SRAM-based FPGAs
where the bitstream data, data security keys and other sensitive information is located off-chip and must be
used to configure the device every time the FPGA is initialized. Design and Data Security in such systems
is problematic.

Protecting Security Keys
Once the main DSP is running trusted code, much higher security levels can be achieved with proper
design. For many commercial and industrial applications, secure boot with a few low-cost anti-tamper
measures may be enough. For more secure applications (such as sensitive industrial processing and
defense applications) additional monitors and a tamper-sensing, tamper-evident enclosure may be
required. In all cases however, the security keys must be protected with as many layers of security as
possible. SmartFusion2 devices have several advanced features that offer the world’s best secure key
storage, which are not available on other FPGAs.

Some FPGAs permanently program keys within the device while others utilize battery-backed internal
SRAM. A superior approach is hardware-based key generation, which creates a device-unique secret key
upon power-up. This dynamic key can then be used to form the root-of-trust. Unlike other approaches, the
secret key can be transient (ephemeral) and immediately cleared after use, enhancing security since the
secret key is never present when the system is at rest.
Overview of Secure Boot With Microsemi SmartFusion2 FPGAs 9

Variations of individual circuits induced during the manufacturing process can be used to create a
physically unclonable function (PUF). The PUF creates a highly secure ‘digital fingerprint’ of the device
using a dedicated SRAM block and a controller. The controller collects underlying device characteristics
resulting in the generation of a unique-per-device hardware-based cryptographic key. SmartFusion2
FPGAs employ the Intrinsic-ID® SRAM-PUF along with immutable on-chip embedded non-volatile
memory. This and other security features create a root-of-trust for the configuration and secure boot of the
SmartFusion2 device. The SmartFusion2 FPGA can extend that trust to securely boot an external
processor chip—even if the processor chip has limited or no intrinsic secure boot capability.

Support for Remote Upgrades
One advantage of networked embedded systems is the ability to remotely upgrade system features by
downloading new code images to the embedded system. The SmartFusion2 device can serve as a root-of-
trust for any remote upgrade capability, using an established application level encrypted data transfer,
processed through the security services calls available in the System Controller block. A special remote
upgrade feature also retains a trusted ‘golden image’ during the update so that a ‘back revision’ to a known
working version is always available. Additionally, optional advanced security precautions are taken during
updates to prevent unauthorized roll-back to previous versions of a configuration bitstream with known
security vulnerabilities. This is useful in preventing a common form of attack where a previous code
revision, with know vulnerabilities or weaknesses, is used as an update to overwrite a newly secure
revision.

Protecting Secure Application Data
SmartFusion2 devices have many other security features that can be used to protect secure content. For
example, the eNVM can be checked automatically on power up to enhance reliability and security by
generating a digest of memory content and comparing it against the expected result, so that any natural
failures or malicious tampering can be detected prior to a secure boot process. Specialized hardware
firewalls can protect the eSRAM, eNVM, and DDR controller from access by a ‘blocked’ master to restrict
activity to known processes. A special JTAG tamper protection feature can be used to restrict JTAG access
to eliminate it as a possible attack channel.

Tamper Protection
One form of low cost PCB tamper detection is to form a signal mesh using FPGA I/Os, so that any attempt
to drill holes or cut traces can be easily detected. Various penalties can be applied depending on the
security level of the system. A common penalty is to reboot the DSP to see if the problem is only transient
in nature. If it persists it may be appropriate to put the DSP into a full reset state and send an error
indication to the higher level chassis management system. In the most secure cases it may be appropriate
to completely erase all the secure information (keys and code) within the system. This zeroization process
is supported natively in SmartFusion2 devices and in the most severe case makes the SmatFusion2
device completely unusable, by removing the ability to be programmed or interrogated.

Implementing Additional Operations in the Example Design
Once secure boot and other security related features are functioning the FPGA can implement the other
system requirements. Bridging for the PCIe bus and RapidIO interfaces can be accomplished using the
dedicated PCIe port accessed through the FPGA fabric interface. The RapidIO interface can be
implemented in the FPGA fabric and can use the high-speed SERDES in native mode to implement the
physical layer interface. Either the fabric DDR controller or the MSS DDR controller can be used in
conjunction with the RapidIO and PCIe ports, since both have easy access to the FPGA fabric. If transfers
to the eSRAM require high-performance, the MSS DDR controller with HPDMA assist may be the best
option. If traffic will be buffered in the FPGA block memories instead, the fabric DDR controller might be the
best choice.
10 Overview of Secure Boot With Microsemi SmartFusion2 FPGAs

The interface to the JESD204x bus, which dramatically reduces the number of signals needed for
interconnect thus simplifying the board layout and minimizing interconnect related dynamic power
dissipation, is also easily accomplished with the FPGA fabric. The use of several small fabric memory
buffers may simplify ADC sensor data collection and the associated preprocessing decimation DSP
functions implemented in the FPGA fabric. Similarly, small data buffers may be appropriate for storing data
for the DACs used for motor control and sensor related control functions. JESD204B IP cores are
available for SmartFusion2 devices (both transmit and receive) to speed implementation.

The pre-processing of the sensor signals is done through the FPGA fabric using DSP blocks, fabric block
memories, fabric interconnect, and fabric logic. A variety of filtering algorithms are available in the form of
IP cores targeted for the SmartFusion2 devices. For example, a Fast Fourier Transform core generator is
available to easily create a target FFT function. In particular, a Radix-2 decimation-in-place core is
available with rates of 10us for a 256 point implementation.

The SmartFusion2 MSS provides all the capabilities required to manage the overall system. The CPU uses
on-chip eNVM and eSRAM for code and data storage to implement the main system management
routines. The wide variety of peripherals are available to simplify timing and serial communications tasks.
The general purpose timing functions will be useful in managing sensor readings and motor control
functions. The peripheral interfaces will help in managing low speed peripherals used for temperature
sensing, fan control, status indications, and other system I/O functions. DMA control can be very effective
in improving data transfer efficiency and minimizing CPU overhead and SmartFusion2 devices have two
DMA controllers to simplify peripheral DMA and higher-speed memory DMA functions.

The SmartFusion2 CPU can also be used for additional algorithmic tasks to further off-load the DSP so it
only needs to run the most computationally demanding functions. In fact, special algorithm acceleration
peripherals can be created in the FPGA fabric and can execute complex algorithms with just the
management (such as initialization of data buffer addresses, selection of coefficient tables, or other
algorithm variable definition tasks) being done by the CPU. A typical architecture could allocate all the
‘simple’ DSP tasks to the FPGA, with the DSP only executing higher level tasks where existing routines are
used from the DSP function library to speed development.

Conclusion – Security for Free
A critical point to consider, is that since all the non-security functions are already required by the system,
the additional security features available in the SmartFusion2 FPGA are virtually free. The secure NVM
technology, encrypted bitstream, secure key storage, secure remote update capabilities, tamper
protection/penalties, and the multitude of other security related capabilities create the hardware root-of-
trust fundamental to all higher-level security capabilities, such as secure boot. Microsemi SmartFusion2
devices are thus the worlds most secure starting point for protecting your valuable embedded system
design.

To learn more about any of the topics discussed in the paper refer to the wide selection of security related
papers and videos available on the Microsemi Security website.

To Learn More
Supply Chain Assurance

1. Securing Your Supply Chain Life Cycle

2. Overview of Supply Chain Assurance of Intelligent ICs

Protecting Your Design from Side-Channel Attacks

1. Protect FPGAs from Power Analysis

2. How Easy is it to Secure Your Designs?

3. What is Design Security in a Mainstream SoC Chalk Talk
Overview of Secure Boot With Microsemi SmartFusion2 FPGAs 11

http://microsemi.com/document-portal/doc_download/132851-securing-your-supply-chain-life-cycle
http://microsemi.com/document-portal/doc_download/132865-overview-of-supply-chain-assurance-of-intelligent-ics
http://microsemi.com/document-portal/doc_download/131563-protecting-fpgas-from-power-analysis
http://soc.microsemi.com/videos/DesignSecurity.html
http://www.eejournal.com/archives/on-demand/2013041601-microsemi-sf2

55900172-0/11.13

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

http://www.microsemi.com

	Abstract
	Introduction
	Security in Embedded Systems – A Quick Overview
	SmartFusion2 Family Architecture Overview
	SmartFusion2 Microcontroller Subsystem Description
	FPGA Fabric
	High Speed Serial Interfaces – SERDES Interface
	System Security Block

	Secure Boot Overview
	Root of Trust—The Starting Point for Implementing Secure Systems
	Multi-Stage Secure Boot Process Description

	Industrial Sensor Controller Example Design
	Implementing Security Features in the Example Design
	Additional Levels of Security
	Secure Configuration Bitstream
	Protecting Security Keys
	Support for Remote Upgrades
	Protecting Secure Application Data
	Tamper Protection

	Implementing Additional Operations in the Example Design
	Conclusion – Security for Free
	To Learn More

