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Abstract
Microsemi SmartFusion®2 devices have a wide range of differentiated Security features that can 
implement a secure boot capability on an embedded system. A secure boot process is needed to verify 
that the boot code used to ‘bring-up’ an embedded system is authorized to run on the target processor. 
Without such a check on the security of the MCU controlled subsystem, a malicious intruder can 
compromise the entire system This white paper will educate embedded systems designers of the dangers 
posed by poor system security and will illustrate how implementing secure boot using Microsemi 
SmartFusion2 devices can dramatically increase the security of any embedded system that might be 
subject to outside attacks. Additionally, this paper will demonstrate how, in most cases, the addition of 
these types of security features can be included for free, since the SmartFusion2 FPGA will also be used 
to implement other common embedded system functions, in addition to the security functions needed for 
secure boot.

Introduction
Embedded Networked Systems control an ever-increasing amount of the modern industrial infrastructure. 
In the industrial applications arena, embedded systems for smart energy grid installations, complex 
chemical processing plants, and a host of similar sensitive systems all require advanced security features 
to prevent malicious users from system intrusion. Standard approaches to protecting sensitive embedded 
systems have evolved over the last couple of decades and have created the critical algorithms needed to 
secure sensitive data and embedded processing functions. 

The Microsemi SmartFusion2 FPGA family has the world’s best suite of complementary security features 
for implementing protected embedded systems. SmartFusion2 FPGAs can implement many security-
enhancing capabilities without negatively impacting system requirements. Indeed, because of the 
innovative technology, holistic security conscious device architecture (from the bottom level silicon process 
all the way up to the target system), simplified design methodology, and extensive support ecosystem 
many security capabilities can be implemented without any added system cost, additional power, or 
increased time to market. Additionally, because in many applications an FPGA is already required to 
implement a portion of the embedded system, by using a SmartFusion2 device to implement these non-
security related functions, the dedicated security capabilities can then be utilized to improve system 
security, at no additional cost. This white paper will use secure boot as a demonstration of the unique 
capabilities that enable the SmartFusion2 family to deliver increased security for free.

Security in Embedded Systems – A Quick Overview
The security of electronic systems can be divided into two major classes: Design Security and Data 
Security. Design Security protects the actual design (intellectual property) associated with the embedded 
system. Data Security protects the data associated with the applications running on the embedded system. 
Design Security protects the intent of the owner of the design, typically by keeping the design and 
associated bitstream keys confidential, preventing design changes (insertion of Trojan Horses, for 
example), and controlling the number of copies made throughout the device life cycle. Design Security 
applies to the device from initial production, includes any updates such as in-the-field upgrades, and can 
even include decommissioning of the device at the end of its life. Design Security should protect against 
tampering, cloning, overbuilding, reverse engineering, and counterfeiting, as well as providing traceability 
through the entire lifetime of the system. Some of the important functions needed to implement robust 
Design Security include:

• Certificate-of-Conformance to verify correct programming, and prevent insider attacks during 
contract manufacturing

• Supply-chain assurances to eliminate counterfeiting 
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• Encrypted key and bitstream loading (using AES-256) to allow configuration to be done in less-
trusted locations

• Secure programming with SHA-256 bitstream authentication

• Elliptic Curve Cryptography (ECC) for securely loading user keys

• An SRAM-based Physically Unclonable Function (SRAM-PUF) for device authentication

Once the design is secure you can move on to Data Security. Data Security protects the information a 
device is storing, processing, or communicating in its role in the end application. For example, if the 
configured design is implementing the key management and encryption portion of a secure military radio, 
Data Security could include encrypting and authenticating the radio traffic and protecting the associated 
application-level cryptographic keys. Some of the important functions required to implement robust data 
security include:

• Ability to destroy (zeroize) all sensitive stored data in the event of tampering 

• User Cryptographic services (for example, AES-128/-256, SHA-256, and HMAC) 

• Non-Deterministic Random Bit Generation (NRBG) for secret keys and nonces

• Advanced key storage and management based on a physically unclonable function (PUF), which 
is a feature of the device analogous to a “biometric” 

• Hardware firewalls to protect sensitive data from unauthorized access

• Advanced anti-tamper techniques such as Differential Power Analysis countermeasures to protect 
secret keys from power side-channel attacks

SmartFusion2 Family Architecture Overview
The SmartFusion2 family architecture, as illustrated in Figure 1 on page 4, combines most of the common 
function blocks required in just about any digital electronics system. The system controller provides overall 
supervisory control of configuration, power management, and JTAG functions. The FPGA fabric includes 
the user configurable logic and connects to the MSS, DDR controllers, and serial controllers. These main 
function blocks all work together efficiently to provide the designer with a best in class programmable 
system-on-chip (SoC) for a wide range of applications.

What sets SmartFusion2 devices apart from other programmable devices are the differentiated features 
that have been included for increased reliability, advanced security, and low power. For example, the sub-
blocks shown in purple, are immune against single event upset (SEU) occurrences by the use of flash 
memory cells instead of SRAM cells. These innovations result in dramatic reliability increases compared to 
SRAM-based programmable devices. Design and Data Security are also radically improved by the 
inclusion of advanced security functions such as AES-256, SHA-256, SRAM-PUF, and NRBG in the 
system controller. 
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The next few sections provide an overview each of the main blocks and their differentiated features that 
assist in implementing security related functions for your designs.

SmartFusion2 Microcontroller Subsystem Description
The SmartFusion2 family combines several key processing, memory storage, and data transfer functions 
within the Microcontroller Subsystem (MSS). By combining these functions into a common block the 
SmartFusion2 MSS makes it easier to implement control functions using a traditional MCU development 
process. The ‘hardened’ blocks of the MSS result in a more highly integrated, lower power, and lower cost 
implementation for embedded control applications. Key elements of the MSS that are useful in 
implementing secure boot applications include the ARM®Cortex™-M3 CPU; memory related functions 
including the cache, SRAM, flash code storage blocks, High-Performance DMA (HPDMA) and the external 
DDR memory controller; a variety of high-speed peripherals for data communications including Tri-speed 
Ethernet, USB, and a peripheral DMA controller (PDMA); several lower speed communications peripherals 
like SPI, I2C, UART and CAN; timers and counters; and interfaces to the FPGA fabric.

FPGA Fabric
The ability to customize user logic and efficiently and easily integrate it with the other key blocks is perhaps 
one of the most important capabilities of the SmartFusion2 family. SmartFusion2 devices are optimized for 
advanced security, high-reliability, and low power consumption applications. Several key features of the 
embedded FPGA fabric contribute to the best in class results the SmartFusion2 family delivers. 

Figure 1: SF2 Architecture Block Diagram
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SmartFusion2 FPGA fabric is composed of five key building blocks: the logic module, the large SRAM, the 
micro SRAM, the Mathblock and the routing resources that connect everything together. These low level 
elements can be used to construct the wide range of functions required in embedded systems designs. 

High Speed Serial Interfaces – SERDES Interface
The SmartFusion2 high-speed Serializer Deserializer (SERDES) interface block supports multiple high-
speed serial protocols using a SERDES transceiver of up to 5 Gbps, supporting Peripheral Component 
Interconnect Express (PCI Express®), eXtended Attachment Unit Interface (XAUI), and Serial Gigabit 
Media Independent Interface (SGMII). In addition, any user defined high-speed serial protocol 
implemented in the IGLOO®2 fabric can access SERDES lanes through the external physical coding sub-
layer (EPCS) interface. The SERDES block is configurable to support single or multiple serial protocol 
modes of operation. The SERDES block is connected to the FPGA fabric through an AXI/AHBL interface 
or EPCS interface. 

System Security Block
The SmartFusion2 system security block manages all the programming and security related functions 
included on SmartFusion2 devices. The best in class security features of IGLOO2 FPGAs include 
encrypted user bitstream key-loading, Certificate-of-Conformance support, X.509 Compliant Digital 
Certificate management, Elliptic Curve Cryptography (ECC) support, an Advanced Encryption Standard 
(AES-128/256) engine, a Secure Hash (SHA-256) engine, a Non-Deterministic Random Bit Generator 
(NRBG), Differential Power Analysis (DPA) countermeasures, anti-tampering countermeasures, single- 
use debug passcodes, SRAM-PUF, zeroization and FlashLock® protection of bitstream decryption keys 
and security settings. Some of the higher-level functions (like zeroization, AES, SRAM-PUF, NRBG, and 
SHA-256) are easily included in user designs as security services accessible through the security block. 
Many of these features will be described in more detail throughout the rest of this paper.

This overview of the SmartFusion2 architecture will be sufficient for our purposes of understanding the key 
device features and the support available for a wide range of embedded system designs. This paper will 
now focus on the security features needed to support a secure boot capability. Additional details on other 
SmartFusion2 features are available in the SmartFusion2 User Guides on the Microsemi website. 

Secure Boot Overview
One of the most important security capabilities to protect embedded systems is a secure boot process. A 
secure boot process initializes an embedded processing system from rest. It does this by executing trusted 
code, free from any tampering by a malicious intruder. Without this level of trust an alternate boot image 
could replace the original boot code and allow an attacker to ‘hijack’ the entire embedded system. Just 
about any embedded system needs to be free from such attacks, for many embedded systems such an 
event could prove catastrophic. Financial transactions could be altered, industrial processes sabotaged, or 
confidential business data compromised. It is easy to see why security, and in particular secure boot, is a 
growing requirement for many embedded systems.

Root of Trust—The Starting Point for Implementing Secure Systems
A hardware root-of-trust is essential to system security. It is an entity that can be trusted to always behave 
in the expected manner. As a system element, it supports verification of system, software, and data 
integrity and confidentiality, as well as the extension of trust to internal and external entities. The root-of-
trust is the foundation upon which all further security layers are created, and it is essential that its keys 
remain secret and the process it follows is immutable. In embedded systems, the root-of-trust works in 
conjunction with other system elements to ensure the main processor boots securely using only authorized 
code, thus extending the trusted zone to the processor and its applications.

The trusted platform module (TPM) is an example of an industry standard root-of-trust. TPM devices 
provide cryptographic services (hashing, encryption) with a static RSA key embedded in each device. 
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All of the required security features of the TPM are available in SmartFusion2 FPGAs. For example, 
features like on-chip oscillators, cryptographic services, a true random number generator, and stronger 
design security and anti-tamper measures are all easily implemented in SmartFusion2 FPGAs. 
Additionally, the advanced computational capabilities of SmartFusion2 devices (with FPGA fabric, 
hardened arithmetic functions, and block memory) along with the breadth of communications capabilities 
(including many more I/O pins and many built-in high-speed serial interfaces) make for a vastly superior 
platform on which to build a robust security system than those provided by typical dedicated TPMs.

Multi-Stage Secure Boot Process Description
Initializing embedded processing systems from rest requires a secure boot process that executes trusted 
code-free from malicious content or compromise. Figure 2 below illustrates the various phases a secure 
boot process must go through to adequately protect the initialization of an embedded system. Validation of 
each stage must be performed by the prior successful phase to ensure a ‘chain-of-trust’ all the way through 
to the top application layer. The immutable boot loader (Phase-0) code is embedded within the 
SmartFusion2 device and is validated by the secure root-of-trust, which ensures the integrity and 
authenticity of the code. Each sequential phase of secure boot is validated by the previously trusted 
system before code and execution is transferred to it.

It is essential that any code be validated prior to delivery and execution to ensure that no compromise has 
occurred that could subvert or damage the boot of each phase. This can be done using either symmetric or 
asymmetric key cryptographic techniques. One approach is to build an inherently trusted RSA or ECC 
public key into the immutable Phase-0 boot loader. The developer uses the RSA or ECC private key to 
digitally sign the Phase-1 code. During Phase-0 the root-of-trust subsystem validates the digital signature 
of the Phase-1 code before allowing execution. The boot process is aborted if invalid. It is critically 
important that the inherently trusted public key and the immutable root-of-trust signature checking process 
cannot be modified by a would-be hacker. If a hacker could substitute another public key or subvert the 
process, they could ‘spoof’ subsequently loaded digitally signed code.

Industrial Sensor Controller Example Design
A good illustrative design example makes it easier to identify security requirements and implementation 
options for networked embedded systems. A common element in these systems is an industrial controller 
that manages both a high-speed communications interface, such as PCI Express®, that connects the 
controller to the rest of the installation and a variety of slower speed interfaces for sensors, and process 
controllers. These types of embedded networked systems are now becoming targets of malicious hackers, 
as evidenced by the growth in advanced attacks like the so-called Stuxnet computer worm. 

Figure 2: Multi-Stage Secure Boot Process Overview
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A high level of security will be required, with features like secure boot, anti-tampering, Design Security, and 
application level data encryption, a given. 

The example industrial sensor controller uses an FPGA and a DSP, as shown in Figure 3 below. The DSP 
implements the high-level signal processing algorithms while the FPGA provides networking connectivity, 
algorithm acceleration for computationally intensive sensor operations, such as Doppler computations for 
velocity measurement, advanced motor control algorithms to improve motor efficiency and reduce 
vibrational wear, and implements the front-end decimation functions. A high-speed Serial RapidIO bus is 
used to connect the FPGA and the DSP, providing an efficient data transfer capability. 

The FPGA also connects to a PCIe bus, used as a chassis management port with remote access through 
the internet. The PCIe bus can also bridge traffic to and from the RapidIO bus to extend remote 
management connectivity to the DSP. The external ADC and DAC devices connect to the FPGA using the 
JESD204x standard, which dramatically reduces the number of signals needed for interconnect, thus 
simplifying the board layout and minimizing interconnect-related dynamic power dissipation. The ADC 
collects readings from the sensors while the DAC generates analog signals used to control motors, and 
analog peripherals used for sensor positioning and management. The FPGA controls an external DDR3 
DRAM that acts as a buffer for packets to and from the sensor and controller interface, as well as storage 
for any intermediate data needed for DSP algorithms. This allows the FPGA to offload any low-level data 
protocol processing and buffer management functions from the DSP. The DDR3 DRAM can also provide 
storage space for the bridging functions.  

The FPGA will also be responsible for ‘booting’ the DSP from an external SPI flash memory. The FPGA 
uses the boot function from the DSPs SPI port to mirror the boot process using its own SPI memory as the 
DSPs code source. Once the code is transferred, the FPGA allows the DSP to begin execution. An FPGA 
with a large internal flash block that can be used for the boot code source, like SmartFusion2, means that 
the SPI memory may not be required.

Implementing Security Features in the Example Design
Let’s now look at how we can implement the security requirements in the industrial sensor controller using 
SmartFusion2 FPGAs with a focus on secure boot. A block diagram of the controller is shown in Figure 4 
below and illustrates the various elements of the secure boot process. 

Figure 3: Industrial Sensor Controller using an FPGA and a DSP
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Immutable boot code is stored on-chip along with security keys. The external SPI memory (in the case 
where the SmartFusion2 on-chip NVM isn’t large enough) stores the balance of the DSP code (including 
any required OS loader and OS code along with the application code). All of this code is verified using a 
secure Challenge and Response system managed by the Root-of-Trust subsystem. The multi-stage 
process progresses through several phases, as illustrated in Figure 2 on page 6, with each phase built on 
the security established at the previous stage. 

The SmartFusion2 device serves as the root-of-trust for system security and manages the secure boot 
process using a multi-stage boot process, as described in Figure 2 on page 6. In our example design, the 
target DSP processor is paired with the secure SmartFusion2 FPGA, which manages the Phase-0 boot 
process. The DSP Phase-0 code is stored securely in the SmartFusion2 eNVM memory. The 
SmartFusion2 FPGA will manage the Phase-0 boot process ensuring the DSP executes authenticated 
Phase-0 code. It can also independently provide run-time monitoring and apply system penalties if 
malicious activity is detected.

In this implementation all code for Phases 1 and higher is stored in External SPI flash memory with all code 
encrypted. During Phase-0, the SmartFusion2 device delivers secured code to the DSP to do authenticity 
checks and decryption of the Phase-1 and higher code. For added security, the Phase-0 code is stored in 
the eNVM of the SmartFusion2 FPGA, which has strong protections against overwriting, and could be 
encrypted while at rest.

After power-up, the SmartFusion2 FPGA holds the main DSP in reset until it has completed its own 
integrity self-tests. When ready, it releases the reset. The DSP is then configured to boot from its SPI port, 
which is connected to the SmartFusion2 SPI port. The SmartFusion2 FPGA, acting as an SPI slave, 
delivers the requested Phase-0 boot code to the DSP as it comes out of reset. 

Assuming the DSP does not inherently support secure boot, the challenge is to load some code into the 
DSP, with a high assurance that it hasn’t been tampered with.

One approach is to have the very first part of the boot code copy the boot image to the DSP’s on-chip 
SRAM (or cache). Then, the code can perform an integrity check by computing a cryptographic digest of 
the SRAM contents. This result can be made to vary each time the DSP boots up by including a different 
true random number, used as a nonce, or ‘number used only once,’ in the uploaded data. The DSP returns 
the digest value to the SmartFusion2 FPGA for validation. 

Figure 4: Secure Embedded Industrial Sensor Controller
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If it does not respond with the correct value, the SmartFusion2 FPGA would assume that either the data or 
the process had been tampered with, and it would terminate the boot process and impose any system 
penalties enabled by the user design. If everything checks, the boot process would continue by branching 
to the now-trusted code in the DSP’s SRAM. This would contain the code needed to initiate the next phase, 
and could include a now-trusted RSA or ECC public key. 

Once the code in the DSP SRAM is trusted, additional security measures for secure boot can be 
employed. This could include establishing a shared key by using public key methods, and encrypting all 
the subsequent boot code transmitted between the SmartFusion2 FPGA and the DSP with that shared 
key. Additionally, it may be possible to bind all the hardware components of the system together 
cryptographically so no pieces would work independently, unless they are all the exact components of the 
original system. This makes it much more difficult to attempt a ‘divide and conquer’ attack strategy typically 
used in complex systems.

Additional Levels of Security
The requirement to further protect embedded systems from intrusion can also be supported by many of the 
other advanced features of SmartFusion2 devices. These features cover capabilities for advanced 
bitstream protection, security key protection, secure remote updates, protecting secure application data 
and tamper protection.

Secure Configuration Bitstream
The use of flash technology with trusted encrypted user bitstream key loading during device programming, 
protects the design data against supply chain attacks like cloning, overbuilding, reverse engineering, and 
counterfeiting. Devices can be programmed by contract manufacturing houses, but the design data can be 
secured and only the required number of units produced by using SmartFusion2 on-chip security keys and 
encrypted bitstreams. This is a much more secure approach when compared to SRAM-based FPGAs 
where the bitstream data, data security keys and other sensitive information is located off-chip and must be 
used to configure the device every time the FPGA is initialized. Design and Data Security in such systems 
is problematic. 

Protecting Security Keys
Once the main DSP is running trusted code, much higher security levels can be achieved with proper 
design. For many commercial and industrial applications, secure boot with a few low-cost anti-tamper 
measures may be enough. For more secure applications (such as sensitive industrial processing and 
defense applications) additional monitors and a tamper-sensing, tamper-evident enclosure may be 
required. In all cases however, the security keys must be protected with as many layers of security as 
possible. SmartFusion2 devices have several advanced features that offer the world’s best secure key 
storage, which are not available on other FPGAs.

Some FPGAs permanently program keys within the device while others utilize battery-backed internal 
SRAM. A superior approach is hardware-based key generation, which creates a device-unique secret key 
upon power-up. This dynamic key can then be used to form the root-of-trust. Unlike other approaches, the 
secret key can be transient (ephemeral) and immediately cleared after use, enhancing security since the 
secret key is never present when the system is at rest.
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Variations of individual circuits induced during the manufacturing process can be used to create a 
physically unclonable function (PUF). The PUF creates a highly secure ‘digital fingerprint’ of the device 
using a dedicated SRAM block and a controller. The controller collects underlying device characteristics 
resulting in the generation of a unique-per-device hardware-based cryptographic key. SmartFusion2 
FPGAs employ the Intrinsic-ID® SRAM-PUF along with immutable on-chip embedded non-volatile 
memory. This and other security features create a root-of-trust for the configuration and secure boot of the 
SmartFusion2 device. The SmartFusion2 FPGA can extend that trust to securely boot an external 
processor chip—even if the processor chip has limited or no intrinsic secure boot capability.

Support for Remote Upgrades 
One advantage of networked embedded systems is the ability to remotely upgrade system features by 
downloading new code images to the embedded system. The SmartFusion2 device can serve as a root-of-
trust for any remote upgrade capability, using an established application level encrypted data transfer, 
processed through the security services calls available in the System Controller block. A special remote 
upgrade feature also retains a trusted ‘golden image’ during the update so that a ‘back revision’ to a known 
working version is always available. Additionally, optional advanced security precautions are taken during 
updates to prevent unauthorized roll-back to previous versions of a configuration bitstream with known 
security vulnerabilities. This is useful in preventing a common form of attack where a previous code 
revision, with know vulnerabilities or weaknesses, is used as an update to overwrite a newly secure 
revision.

Protecting Secure Application Data
SmartFusion2 devices have many other security features that can be used to protect secure content. For 
example, the eNVM can be checked automatically on power up to enhance reliability and security by 
generating a digest of memory content and comparing it against the expected result, so that any natural 
failures or malicious tampering can be detected prior to a secure boot process. Specialized hardware 
firewalls can protect the eSRAM, eNVM, and DDR controller from access by a ‘blocked’ master to restrict 
activity to known processes. A special JTAG tamper protection feature can be used to restrict JTAG access 
to eliminate it as a possible attack channel.

Tamper Protection
One form of low cost PCB tamper detection is to form a signal mesh using FPGA I/Os, so that any attempt 
to drill holes or cut traces can be easily detected. Various penalties can be applied depending on the 
security level of the system. A common penalty is to reboot the DSP to see if the problem is only transient 
in nature. If it persists it may be appropriate to put the DSP into a full reset state and send an error 
indication to the higher level chassis management system. In the most secure cases it may be appropriate 
to completely erase all the secure information (keys and code) within the system. This zeroization process 
is supported natively in SmartFusion2 devices and in the most severe case makes the SmatFusion2 
device completely unusable, by removing the ability to be programmed or interrogated. 

Implementing Additional Operations in the Example Design
Once secure boot and other security related features are functioning the FPGA can implement the other 
system requirements. Bridging for the PCIe bus and RapidIO interfaces can be accomplished using the 
dedicated PCIe port accessed through the FPGA fabric interface. The RapidIO interface can be 
implemented in the FPGA fabric and can use the high-speed SERDES in native mode to implement the 
physical layer interface. Either the fabric DDR controller or the MSS DDR controller can be used in 
conjunction with the RapidIO and PCIe ports, since both have easy access to the FPGA fabric. If transfers 
to the eSRAM require high-performance, the MSS DDR controller with HPDMA assist may be the best 
option. If traffic will be buffered in the FPGA block memories instead, the fabric DDR controller might be the 
best choice.
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The interface to the JESD204x bus, which dramatically reduces the number of signals needed for 
interconnect thus simplifying the board layout and minimizing interconnect related dynamic power 
dissipation, is also easily accomplished with the FPGA fabric. The use of several small fabric memory 
buffers may simplify ADC sensor data collection and the associated preprocessing decimation DSP 
functions implemented in the FPGA fabric. Similarly, small data buffers may be appropriate for storing data 
for the DACs used for motor control and sensor related control functions. JESD204B IP cores are  
available for SmartFusion2 devices (both transmit and receive) to speed implementation.

The pre-processing of the sensor signals is done through the FPGA fabric using DSP blocks, fabric block 
memories, fabric interconnect, and fabric logic. A variety of filtering algorithms are available in the form of 
IP cores targeted for the SmartFusion2 devices. For example, a Fast Fourier Transform core generator is 
available to easily create a target FFT function. In particular, a Radix-2 decimation-in-place core is 
available with rates of 10us for a 256 point implementation.

The SmartFusion2 MSS provides all the capabilities required to manage the overall system. The CPU uses 
on-chip eNVM and eSRAM for code and data storage to implement the main system management 
routines. The wide variety of peripherals are available to simplify timing and serial communications tasks. 
The general purpose timing functions will be useful in managing sensor readings and motor control 
functions. The peripheral interfaces will help in managing low speed peripherals used for temperature 
sensing, fan control, status indications, and other system I/O functions. DMA control can be very effective 
in improving data transfer efficiency and minimizing CPU overhead and SmartFusion2 devices have two 
DMA controllers to simplify peripheral DMA and higher-speed memory DMA functions.

The SmartFusion2 CPU can also be used for additional algorithmic tasks to further off-load the DSP so it 
only needs to run the most computationally demanding functions. In fact, special algorithm acceleration 
peripherals can be created in the FPGA fabric and can execute complex algorithms with just the 
management (such as initialization of data buffer addresses, selection of coefficient tables, or other 
algorithm variable definition tasks) being done by the CPU. A typical architecture could allocate all the 
‘simple’ DSP tasks to the FPGA, with the DSP only executing higher level tasks where existing routines are 
used from the DSP function library to speed development. 

Conclusion – Security for Free
A critical point to consider, is that since all the non-security functions are already required by the system, 
the additional security features available in the SmartFusion2 FPGA are virtually free. The secure NVM 
technology, encrypted bitstream, secure key storage, secure remote update capabilities, tamper 
protection/penalties, and the multitude of other security related capabilities create the hardware root-of-
trust fundamental to all higher-level security capabilities, such as secure boot. Microsemi SmartFusion2 
devices are thus the worlds most secure starting point for protecting your valuable embedded system 
design. 

To learn more about any of the topics discussed in the paper refer to the wide selection of security related 
papers and videos available on the Microsemi Security website.
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