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Introduction
The dramatic growth in network connected embedded systems has been driven, at least in part, by the 
ability to support remote management functions, eliminating the need for in-person inspection and system 
updates. Unfortunately, remote access of an embedded system can also invite malicious intrusion, if 
proper security features are not included in the design. The Shodan computer search engine home page, a 
portion of which is shown in Figure 1, identifies several types of connected devices that can be searched 
for and identified. When combined with network testing software like Metasploit, that can be used to 
penetrate a network (an illegal use of course), any unprotected system can be put at risk. Frighteningly, a 
recent research paper (refer to the "References" section at the end of this paper) showed that using 
Shodan uncovers over 500 million internet control systems that could be at risk.  

Digital Signal Processor (DSP) based designs can be particularly vulnerable to intrusion when the DSP 
doesn't have sufficient native security capabilities. In many applications advanced security capabilities can 
be implemented for free when a companion FPGA is used to offload the processor. Furthermore, if the 
companion FPGA uses a technology that is inherently secure from copying or cloning you can also protect 
your design from these types of theft. Let’s look at an example design in more detail to see how this can be 
accomplished.

Wireless Communications System
In a wireless communications system example that uses an FPGA and a DSP, as shown in Figure 2 on 
page 2, the DSP implements the high-level signal processing algorithms while the FPGA implements the 
front-end decimation functions. A high speed Serial RapidIO bus is used to connect the FPGA and the 
DSP, providing an efficient data transfer capability. The FPGA also connects to a PCIe®bus, used as a 
chassis management port with remote access through the internet.

Figure 1: Shodan Search Engine for Finding Network Connected Devices
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The PCIe bus can also bridge traffic to and from the RapidIO bus to extend remote management 
connectivity to the DSP. The external ADC and DAC devices connect to the FPGA using the JESD204x 
standard, which dramatically reduces the number of signals needed for interconnect, thus simplifying 
board layout and minimizing interconnect related dynamic power dissipation. The FPGA controls an 
external DDR3 DRAM that acts as a buffer for packets to and from the wireless interface and allows the 
FPGA to also offload any low-level data protocol processing and buffer management functions from the 
DSP. The DDR3 DRAM can also provide storage space for the bridging functions.

The FPGA will also be responsible for ‘booting’ the DSP from an external SPI flash memory. The FPGA 
uses the boot function from the DSPs SPI port to mirror the boot process using its own SPI memory as the 
DSPs code source. Once the code is transferred the FPGA allows the DSP to begin execution. If your 
FPGA has an internal flash block that can be used for the boot code source the SPI memory may not be 
needed.

Security Requirements
A troubling trend in embedded systems is the growth in attacks against embedded systems with 
connections to the internet, or to any remote entity. When these systems have remote update capabilities, 
they can be even more vulnerable to attacks. In particular, if systems don't protect the boot processes an 
intruder can substitute their own code and effectively hijack the entire system. This can result in damage to 
the system, significant financial losses, and possibly personal liability. A secure boot process needs to be 
used to minimize such attacks and a Hardware Root-of-Trust (RoT) is required to implement any secure 
process.

A Hardware RoT supports verification of system data integrity and confidentiality, as well as the extension 
of trust to internal and external entities. A Hardware Root-of-Trust is known to be secure from intrusion or 
modification and can thus be the starting point for proving that higher-level functions are also secure. In 
embedded systems, the RoT works in conjunction with other system elements to ensure the main 
processor boots securely using only authorized code, thus extending the trusted zone to the processor and 
its applications.

The Hardware Root-of-Trust needs to build on a secure FPGA, since only a secure FPGA can be trusted. 

Figure 2: Wireless Communications System Using an FPGA and DSP
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This means that the FPGA configuration bitstream must be protected from copying or reverse engineering 
so a malicious intruder can’t break the root-of-trust. Another way to say this, is that securing the Intellectual 
Property (IP) of the FPGA is a necessary requirement for securing the rest of the embedded system. 

Security Requirements for a Multi-Stage Boot Process
Initializing embedded processing systems from rest requires a secure boot process that executes trusted 
code, free from malicious content or compromise. Figure 3 illustrates the various phases a secure boot 
process must go through to adequately protect the initialization of an embedded system. Validation of each 
stage must be performed by the prior successful phase to ensure a ‘chain-of-trust’ all the way through to 
the top application layer. The immutable boot loader (Phase 0) code can be embedded within an FPGA 
device and is validated by the secure RoT, using protected security keys and associated security 
algorithms, to ensure the integrity and authenticity of the code. Each sequential phase of secure boot is 
validated by the previously trusted system before code and execution is transferred to it. In the wireless 
communications example design a smaller number of stages may be required, but the fundamental 
methodology is the same.

Implementing a Secure Wireless Embedded System Using 
Microsemi FPGAs and SoC FPGAs
Now that the key security requirements of IP protection, Hardware Root-of-Trust and secure boot have 
been described, let’s look at an example implementation showing how these requirements can be 
satisfied. First, let’s look at how to protect the IP for our FPGA by protecting the configuration bitstream.

Design IP Protection
A common method of protecting configuration bitstreams that are used on power-up (like those used for 
SRAM-based FPGAs) is to encrypt the bitstream data. This makes it more difficult to capture the bitstream 
by just observing it during the configuration start-up process. A decryption key is stored within the FPGA 
and is used to decrypt the data prior to configuring the FPGA fabric. The key must be retained when power 
is removed, so a battery is typically required to retain the security key.

Another approach to securing the FPGA configuration bitstream is to store it completely on-chip using non-
volatile memory. Because the configuration bitstream isn’t exposed during start-up, it is much more secure. 
Some FPGA’s, like the SmartFusion®2 and IGLOO®2 families from Microsemi, also provide additional 
security by encrypting the bitstream when programming is done during manufacturing. This also protects 
the design from being copied or reverse engineered by an unscrupulous contract manufacturer, which 
could also break the required Hardware Root-of-Trust.

Figure 3: Multi-Stage Secure Boot Process Overview
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Implementing a Secure Hardware Root-of-Trust
Once we have created a secure FPGA, the implementation of a Hardware Root-of-Trust is our next key 
requirement. As we saw in the requirements section, the FPGA that creates the RoT must be able to 
securely store and manage security keys, and implement the common cryptographic functions, usually 
industry standards, needed to authenticate and protect secure data transmissions. IGLOO2 and 
SmartFusion2 devices offer an inherently secure starting point for RoT implementations; due to their use of 
on-chip flash configuration storage and secure bit stream programming. Additional security features 
support standard encryption, decryption, and authentication operations so that communications on- and 
off-chip are secure as well. For a detailed description of the wide array of standard oriented security 
features available on IGLOO2 and SmartFusion2 devices, review the Data Security related material listed 
in the "To Learn More" section at the end of this paper.

As seen in the previously described secure boot process, the FPGA must protect the security keys and the 
phase ‘0’ immutable boot loader on-chip so that malicious intruders can’t attack or modify them in any way. 
When the immutable code and security keys are stored on-chip using a Flash FPGA, they also benefit from 
the security afforded the configuration bitstream, since they will be loaded through the configuration 
process. The security keys are a small portion of the overall design however, are important enough to be 
protected from additional forms of attack.

Protecting Security Keys from Side-Channel Attacks
As an example, one popular method of attack is to use Side-Channel Analysis (such as observations of 
power or timing signatures during security key related operations) to try and determine on-chip secure 
information. This side-channel approach is similar to one a safe cracker might use to determine the safes 
combination by listening to the noise made by the tumblers while manipulating the lock. In this case, the 
side-channel is the sound made by the physical implementation of the security “function”. SmartFusion2 
and IGLOO2 FPGAs implement side-channel attack resistant decryption algorithms, and in particular are 
designed to be resistant to the most advanced Differential Power Analysis (DPA) form of side-channel 
attack.

If DPA-resistant techniques are not used, an intruder can measure the power used by the design when 
security keys and algorithms are being processed. Knowing the typical algorithm operations, a statistical 
analysis of the power use can be used to determine the security key value. For example, many security 
algorithms are implemented on an 8-bit basis, which means that only 256 combinations need to be 
checked through the DPA to identify an 8-bit section of the security key. DPA resistance can be 
dramatically improved by changing the architecture of the algorithm to limit such divide and conquer 
strategies. Additionally, changing the security key frequently will limit the number of measurements an 
attacker can use for statistical analysis making such approaches dramatically more difficult. Furthermore, 
circuit design tricks, like pre-charging registers and busses will limit the “noise” available to an intruder.
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Many of the techniques used on Microsemi DPA-resistant FPGAs are licensed from Cryptographic™ 
Research Inc. (CRI, a division of Rambus, Inc.), and contribute to making them the most secure devices 
available for protecting design IP and implementing Hardware Root-of-Trust functions.

Implementation Description
Now that the FPGA IP has been secured and the Hardware Root-of-Trust established for our design, we 
can look at the full wireless communications system implementation in more detail. Figure 4 shows the 
implementation of a secure wireless communications system and illustrates the various elements of the 
secure boot process. Immutable boot code is stored on-chip along with the security keys. The external SPI 
memory stores the balance of the DSP code (including any required OS loader and OS code along with 
the Application code), all of which is securely verified using a secure Challenge and Response system 
managed by the Root-of-Trust system. At the end of the process the secured code has been loaded into 
the DSP on-chip SRAM and the FPGA can allow the DSP to begin operation, confident that only 
authorized code is being executed. Note that a low cost PCB tamper detection mesh can be easily 
implemented using FPGA I/Os, so that any attempt to drill holes or cut traces can be detected and 
protective measures taken.

Once secure boot is completed, the FPGA can implement the other functions required by the system- 
bridging the PCIe and RapidIO interfaces, connecting to the JESD204x bus, pre-processing the wireless 
signals through the FPGA fabric, and controlling the DDR3 buffer memory. SmartFusion2 FPGA has an 
on-chip processor when additional algorithmic capabilities are required, while IGLOO2 FPGA can be used 
when the FPGA fabric is sufficient to implement the needed control functions. A critical point is that these 
non-security functions are already required by the system, thus the security features available in the FPGA 
are virtually free. 

Figure 4: Example of Secure Implementation Using SF2 or IGLOO2 FPGAs
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Conclusion
Flash-based FPGAs, like IGLOO2 and SmartFusion2 FPGAs, offer secure IP and Hardware Root-of-Trust 
that can be used to build higher-level security functions, such as secure boot, to protect your wireless 
communications designs from invasive intrusion. The additional security capabilities of these devices, like 
secured programming bitstreams, DPA resistance, and secure key storage, all come along with the 
fundamental architecture and design of the devices so they require no additional work or cost to the 
designer. With Microsemi FPGAs and SoC FPGAs advanced security is free.
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To Learn More
Data Security

1. Overview of Data Security Using Microsemi FPGAs and SoC FPGAs

2. SmartFusion2 and IGLOO2 Cryptography Services

3. Overview of Secure Boot with Microsemi SmartFusion2 SoC FPGAs

Secure Boot

1. Overview of Secure Boot with Microsemi IGLOO2 FPGAs

2. Overview of Secure Boot with Microsemi SmartFusion2 SoC FPGAs
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