
Design of a Secure
Wireless Communication

System
Application Example

Introduction
The dramatic growth in network connected embedded systems has been driven, at least in part, by the
ability to support remote management functions, eliminating the need for in-person inspection and system
updates. Unfortunately, remote access of an embedded system can also invite malicious intrusion, if
proper security features are not included in the design. The Shodan computer search engine home page, a
portion of which is shown in Figure 1, identifies several types of connected devices that can be searched
for and identified. When combined with network testing software like Metasploit, that can be used to
penetrate a network (an illegal use of course), any unprotected system can be put at risk. Frighteningly, a
recent research paper (refer to the "References" section at the end of this paper) showed that using
Shodan uncovers over 500 million internet control systems that could be at risk.

Digital Signal Processor (DSP) based designs can be particularly vulnerable to intrusion when the DSP
doesn't have sufficient native security capabilities. In many applications advanced security capabilities can
be implemented for free when a companion FPGA is used to offload the processor. Furthermore, if the
companion FPGA uses a technology that is inherently secure from copying or cloning you can also protect
your design from these types of theft. Let’s look at an example design in more detail to see how this can be
accomplished.

Wireless Communications System
In a wireless communications system example that uses an FPGA and a DSP, as shown in Figure 2 on
page 2, the DSP implements the high-level signal processing algorithms while the FPGA implements the
front-end decimation functions. A high speed Serial RapidIO bus is used to connect the FPGA and the
DSP, providing an efficient data transfer capability. The FPGA also connects to a PCIe®bus, used as a
chassis management port with remote access through the internet.

Figure 1: Shodan Search Engine for Finding Network Connected Devices
1 Design of a Secure Wireless Communication System

www.shodanhq.com
www.shodanhq.com

The PCIe bus can also bridge traffic to and from the RapidIO bus to extend remote management
connectivity to the DSP. The external ADC and DAC devices connect to the FPGA using the JESD204x
standard, which dramatically reduces the number of signals needed for interconnect, thus simplifying
board layout and minimizing interconnect related dynamic power dissipation. The FPGA controls an
external DDR3 DRAM that acts as a buffer for packets to and from the wireless interface and allows the
FPGA to also offload any low-level data protocol processing and buffer management functions from the
DSP. The DDR3 DRAM can also provide storage space for the bridging functions.

The FPGA will also be responsible for ‘booting’ the DSP from an external SPI flash memory. The FPGA
uses the boot function from the DSPs SPI port to mirror the boot process using its own SPI memory as the
DSPs code source. Once the code is transferred the FPGA allows the DSP to begin execution. If your
FPGA has an internal flash block that can be used for the boot code source the SPI memory may not be
needed.

Security Requirements
A troubling trend in embedded systems is the growth in attacks against embedded systems with
connections to the internet, or to any remote entity. When these systems have remote update capabilities,
they can be even more vulnerable to attacks. In particular, if systems don't protect the boot processes an
intruder can substitute their own code and effectively hijack the entire system. This can result in damage to
the system, significant financial losses, and possibly personal liability. A secure boot process needs to be
used to minimize such attacks and a Hardware Root-of-Trust (RoT) is required to implement any secure
process.

A Hardware RoT supports verification of system data integrity and confidentiality, as well as the extension
of trust to internal and external entities. A Hardware Root-of-Trust is known to be secure from intrusion or
modification and can thus be the starting point for proving that higher-level functions are also secure. In
embedded systems, the RoT works in conjunction with other system elements to ensure the main
processor boots securely using only authorized code, thus extending the trusted zone to the processor and
its applications.

The Hardware Root-of-Trust needs to build on a secure FPGA, since only a secure FPGA can be trusted.

Figure 2: Wireless Communications System Using an FPGA and DSP
Design of a Secure Wireless Communication System 2

This means that the FPGA configuration bitstream must be protected from copying or reverse engineering
so a malicious intruder can’t break the root-of-trust. Another way to say this, is that securing the Intellectual
Property (IP) of the FPGA is a necessary requirement for securing the rest of the embedded system.

Security Requirements for a Multi-Stage Boot Process
Initializing embedded processing systems from rest requires a secure boot process that executes trusted
code, free from malicious content or compromise. Figure 3 illustrates the various phases a secure boot
process must go through to adequately protect the initialization of an embedded system. Validation of each
stage must be performed by the prior successful phase to ensure a ‘chain-of-trust’ all the way through to
the top application layer. The immutable boot loader (Phase 0) code can be embedded within an FPGA
device and is validated by the secure RoT, using protected security keys and associated security
algorithms, to ensure the integrity and authenticity of the code. Each sequential phase of secure boot is
validated by the previously trusted system before code and execution is transferred to it. In the wireless
communications example design a smaller number of stages may be required, but the fundamental
methodology is the same.

Implementing a Secure Wireless Embedded System Using
Microsemi FPGAs and SoC FPGAs
Now that the key security requirements of IP protection, Hardware Root-of-Trust and secure boot have
been described, let’s look at an example implementation showing how these requirements can be
satisfied. First, let’s look at how to protect the IP for our FPGA by protecting the configuration bitstream.

Design IP Protection
A common method of protecting configuration bitstreams that are used on power-up (like those used for
SRAM-based FPGAs) is to encrypt the bitstream data. This makes it more difficult to capture the bitstream
by just observing it during the configuration start-up process. A decryption key is stored within the FPGA
and is used to decrypt the data prior to configuring the FPGA fabric. The key must be retained when power
is removed, so a battery is typically required to retain the security key.

Another approach to securing the FPGA configuration bitstream is to store it completely on-chip using non-
volatile memory. Because the configuration bitstream isn’t exposed during start-up, it is much more secure.
Some FPGA’s, like the SmartFusion®2 and IGLOO®2 families from Microsemi, also provide additional
security by encrypting the bitstream when programming is done during manufacturing. This also protects
the design from being copied or reverse engineered by an unscrupulous contract manufacturer, which
could also break the required Hardware Root-of-Trust.

Figure 3: Multi-Stage Secure Boot Process Overview
3 Design of a Secure Wireless Communication System

Implementing a Secure Hardware Root-of-Trust
Once we have created a secure FPGA, the implementation of a Hardware Root-of-Trust is our next key
requirement. As we saw in the requirements section, the FPGA that creates the RoT must be able to
securely store and manage security keys, and implement the common cryptographic functions, usually
industry standards, needed to authenticate and protect secure data transmissions. IGLOO2 and
SmartFusion2 devices offer an inherently secure starting point for RoT implementations; due to their use of
on-chip flash configuration storage and secure bit stream programming. Additional security features
support standard encryption, decryption, and authentication operations so that communications on- and
off-chip are secure as well. For a detailed description of the wide array of standard oriented security
features available on IGLOO2 and SmartFusion2 devices, review the Data Security related material listed
in the "To Learn More" section at the end of this paper.

As seen in the previously described secure boot process, the FPGA must protect the security keys and the
phase ‘0’ immutable boot loader on-chip so that malicious intruders can’t attack or modify them in any way.
When the immutable code and security keys are stored on-chip using a Flash FPGA, they also benefit from
the security afforded the configuration bitstream, since they will be loaded through the configuration
process. The security keys are a small portion of the overall design however, are important enough to be
protected from additional forms of attack.

Protecting Security Keys from Side-Channel Attacks
As an example, one popular method of attack is to use Side-Channel Analysis (such as observations of
power or timing signatures during security key related operations) to try and determine on-chip secure
information. This side-channel approach is similar to one a safe cracker might use to determine the safes
combination by listening to the noise made by the tumblers while manipulating the lock. In this case, the
side-channel is the sound made by the physical implementation of the security “function”. SmartFusion2
and IGLOO2 FPGAs implement side-channel attack resistant decryption algorithms, and in particular are
designed to be resistant to the most advanced Differential Power Analysis (DPA) form of side-channel
attack.

If DPA-resistant techniques are not used, an intruder can measure the power used by the design when
security keys and algorithms are being processed. Knowing the typical algorithm operations, a statistical
analysis of the power use can be used to determine the security key value. For example, many security
algorithms are implemented on an 8-bit basis, which means that only 256 combinations need to be
checked through the DPA to identify an 8-bit section of the security key. DPA resistance can be
dramatically improved by changing the architecture of the algorithm to limit such divide and conquer
strategies. Additionally, changing the security key frequently will limit the number of measurements an
attacker can use for statistical analysis making such approaches dramatically more difficult. Furthermore,
circuit design tricks, like pre-charging registers and busses will limit the “noise” available to an intruder.
Design of a Secure Wireless Communication System 4

Many of the techniques used on Microsemi DPA-resistant FPGAs are licensed from Cryptographic™
Research Inc. (CRI, a division of Rambus, Inc.), and contribute to making them the most secure devices
available for protecting design IP and implementing Hardware Root-of-Trust functions.

Implementation Description
Now that the FPGA IP has been secured and the Hardware Root-of-Trust established for our design, we
can look at the full wireless communications system implementation in more detail. Figure 4 shows the
implementation of a secure wireless communications system and illustrates the various elements of the
secure boot process. Immutable boot code is stored on-chip along with the security keys. The external SPI
memory stores the balance of the DSP code (including any required OS loader and OS code along with
the Application code), all of which is securely verified using a secure Challenge and Response system
managed by the Root-of-Trust system. At the end of the process the secured code has been loaded into
the DSP on-chip SRAM and the FPGA can allow the DSP to begin operation, confident that only
authorized code is being executed. Note that a low cost PCB tamper detection mesh can be easily
implemented using FPGA I/Os, so that any attempt to drill holes or cut traces can be detected and
protective measures taken.

Once secure boot is completed, the FPGA can implement the other functions required by the system-
bridging the PCIe and RapidIO interfaces, connecting to the JESD204x bus, pre-processing the wireless
signals through the FPGA fabric, and controlling the DDR3 buffer memory. SmartFusion2 FPGA has an
on-chip processor when additional algorithmic capabilities are required, while IGLOO2 FPGA can be used
when the FPGA fabric is sufficient to implement the needed control functions. A critical point is that these
non-security functions are already required by the system, thus the security features available in the FPGA
are virtually free.

Figure 4: Example of Secure Implementation Using SF2 or IGLOO2 FPGAs
5 Design of a Secure Wireless Communication System

Conclusion
Flash-based FPGAs, like IGLOO2 and SmartFusion2 FPGAs, offer secure IP and Hardware Root-of-Trust
that can be used to build higher-level security functions, such as secure boot, to protect your wireless
communications designs from invasive intrusion. The additional security capabilities of these devices, like
secured programming bitstreams, DPA resistance, and secure key storage, all come along with the
fundamental architecture and design of the devices so they require no additional work or cost to the
designer. With Microsemi FPGAs and SoC FPGAs advanced security is free.

References
“Thousands of Industrial Control Systems At Risk”, J. Nicholas Hoover, Information Week, Jan 11, 2013

To Learn More
Data Security

1. Overview of Data Security Using Microsemi FPGAs and SoC FPGAs

2. SmartFusion2 and IGLOO2 Cryptography Services

3. Overview of Secure Boot with Microsemi SmartFusion2 SoC FPGAs

Secure Boot

1. Overview of Secure Boot with Microsemi IGLOO2 FPGAs

2. Overview of Secure Boot with Microsemi SmartFusion2 SoC FPGAs
Design of a Secure Wireless Communication System 6

http://microsemi.com/document-portal/doc_download/132873-overview-of-data-security-using-microsemi-fpgas-and-soc-fpgas
http://www.informationweek.com/government/security/thousands-of-industrial-control-systems/240146091
http://www.techonline.com/electrical-engineers/education-training/webinars/4422911/SmartFusion2-and-IGLOO2-Design-Security-and-Cryptography-Services
http://microsemi.com/document-portal/doc_download/132874-overview-of-secure-boot-with-microsemi-smartfusion2-fpgas
http://microsemi.com/document-portal/doc_download/132863-overview-of-secure-boot-with-microsemi-igloo2-fpgas
http://microsemi.com/document-portal/doc_download/132874-overview-of-secure-boot-with-microsemi-smartfusion2-fpgas
http://www.techonline.com/electrical-engineers/education-training/webinars/4422911/SmartFusion2-and-IGLOO2-Design-Security-and-Cryptography-Services
http://www.techonline.com/electrical-engineers/education-training/webinars/4422911/SmartFusion2-and-IGLOO2-Design-Security-and-Cryptography-Services

55900168-0/11.13

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

http://www.microsemi.com

	Introduction
	Wireless Communications System
	Security Requirements
	Security Requirements for a Multi-Stage Boot Process

	Implementing a Secure Wireless Embedded System Using Microsemi FPGAs and SoC FPGAs
	Design IP Protection
	Implementing a Secure Hardware Root-of-Trust
	Protecting Security Keys from Side-Channel Attacks

	Implementation Description
	Conclusion
	References
	To Learn More

