
UG0448
User Guide

IGLOO2 FPGA High Performance Memory Subsystem

50200448. 10.0 9/22

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

© 2022 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com
http://www.microsemi.com
http://www.microsemi.com

Contents

1 Revision History . 1
1.1 Revision 10.0 . 1
1.2 Revision 9.0 . 1
1.3 Revision 8.0 . 1
1.4 Revision 7.0 . 1
1.5 Revision 6.0 . 2
1.6 Revision 5.0 . 3
1.7 Revision 4.0 . 3
1.8 Revision 3.0 . 3
1.9 Revision 2.0 . 3
1.10 Revision 1.0 . 3
1.11 Revision 0.0 . 4

2 Embedded NVM (eNVM) Controllers . 5
2.1 Features . 5
2.2 Functional Description . 6

2.2.1 Memory Organization . 7
2.2.2 Data Retention Time . 8
2.2.3 eNVM Access Time . 8
2.2.4 Theory of Operation . 8
2.2.5 eNVM Command Register . 10
2.2.6 Error Response . 17
2.2.7 Interrupt to Fabric Master . 17

2.3 Security . 17
2.3.1 User-Protectable 4K Regions . 18
2.3.2 eNVM Pages for Special Purpose Storage . 21

2.4 How to Use eNVM . 24
2.4.1 Data Storage in eNVM Using the Libero eNVM Client . 24
2.4.2 HPMS Subsystem . 29
2.4.3 HPMS Subsystem Connected to the FPGA Fabric Master . 30
2.4.4 Reading the eNVM Block . 30
2.4.5 Writing to the eNVM Block . 30

2.5 SYSREG Control Registers . 30
2.6 eNVM Control Registers . 35

2.6.1 Status Register Bit Definitions . 39

3 Embedded SRAM (eSRAM) Controllers . 42
3.1 Features . 42
3.2 Functional Description . 43

3.2.1 Memory Organization . 44
3.2.2 Modes of Operation . 45
3.2.3 Pipeline Modes and Wait States for Read and Write Operations . 46

3.3 How to Use eSRAM . 48
3.3.1 Accessing eSRAM Using FPGA Fabric Master . 49
3.3.2 HPMS Subsystem . 52
3.3.3 HPMS Subsystem Connected to the FPGA Fabric Master . 53

3.4 SYSREG Control Registers . 53

4 AHB Bus Matrix . 62
Microchip Proprietary UG0448 Revision 10.0 iii

4.1 Functional Description . 62
4.1.1 Architecture Overview . 62
4.1.2 Timing Diagrams . 65
4.1.3 Details of Operation . 69
4.1.4 System Memory Map . 74

4.2 How to Use AHB Bus Matrix . 76
4.3 Register Map . 78

5 High Performance DMA Controller . 79
5.1 Features . 79
5.2 Functional Description . 80

5.2.1 Architecture Overview . 80
5.2.2 Initialization . 82
5.2.3 Details of Operation . 83

5.3 How to Use HPDMA . 84
5.3.1 Configuring HPDMA . 85
5.3.2 HPMS Subsystem . 88
5.3.3 HPMS Subsystem Connected to the FPGA Fabric Master . 89
5.3.4 MDDR to eSRAM . 89

5.4 HPDMA Controller Register Map . 90
5.4.1 HPDMA Register Bit Definitions . 91

5.5 SYSREG Control Register . 107

6 Peripheral DMA . 108
6.1 Features . 108
6.2 Functional Description . 109

6.2.1 Architecture Overview . 109
6.2.2 PDMA Port List . 112
6.2.3 Initialization . 113
6.2.4 Details of Operations . 113

6.3 How to Use PDMA . 114
6.3.1 HPMS Subsystem . 118
6.3.2 HPMS Subsystem Connected to the FPGA Fabric Master . 119
6.3.3 SPI_0 to eSRAM_0 . 119
6.3.4 eNMV_0 to eSRAM_0 . 120

6.4 PDMA Register Map . 121
6.4.1 PDMA Configuration Register Bit Definitions . 124

6.5 SYSREG Control Registers . 130

7 Serial Peripheral Interface Controller . 131
7.1 Features . 131
7.2 Functional Description . 132

7.2.1 Architecture Overview . 132
7.2.2 Interface . 133
7.2.3 Initialization . 143
7.2.4 Details of Operation . 144

7.3 How to Use the SPI Controller . 146
7.3.1 HPMS Subsystem . 148
7.3.2 HPMS Subsystem Connected to the FPGA Fabric Master . 149
7.3.3 Accessing the External SPI Flash Using HPMS SPI_0 . 149

7.4 SPI Register Map . 150
7.4.1 SYSREG Configuration Register Summary . 150
7.4.2 SPI Register Summary . 151
7.4.3 SPI Register Details . 152
Microchip Proprietary UG0448 Revision 10.0 iv

8 Communication Block . 162
8.1 Features . 162
8.2 Functional Description . 163

8.2.1 Architecture Overview . 163
8.2.2 Frame/Command Marker . 164
8.2.3 Clocks . 165
8.2.4 Resets . 165
8.2.5 Interrupts . 165
8.2.6 CoreSysServices Soft IP . 165

8.3 How to Use COMM_BLK . 166
8.3.1 Configuring COMM_BLK . 167

8.4 COMM_BLK Configuration Registers . 172
8.5 COMM_BLK Register Interface Details . 173

8.5.1 Control Register . 173
8.5.2 Status Register . 174
8.5.3 Interrupt Enable Register . 174
8.5.4 Byte Data Register . 175
8.5.5 Word Data Register . 175
8.5.6 Frame/Command Byte Register . 175
8.5.7 Frame/Command Word Register . 176

9 Reset Controller . 177
9.1 Functional Description . 178

9.1.1 Power-On Reset Generation Sequence . 178
9.1.2 Power-Up to Functional Time Sequence . 181
9.1.3 Power-Up to Functional Time Data . 182
9.1.4 Power-On Reset . 188
9.1.5 System Reset . 188
9.1.6 Block Resets . 189

9.2 CoreResetP Soft Reset Controller . 191
9.2.1 Reset Topology . 191
9.2.2 Implementation . 194
9.2.3 Timing Diagrams . 194

9.3 SYSREG Control Registers . 196

10 System Register Block . 197
10.1 SYSREG Block Register Write Protection . 197

10.1.1 Register Write Protect . 197
10.1.2 Field Write Protect . 198
10.1.3 Bit Write Protect . 198

10.2 Register Types . 199
10.3 Register Lock Bits Configuration . 201

10.3.1 Lock Bit File . 202
10.3.2 Lock Bit File Syntax . 202
10.3.3 Locking and Unlocking a Register . 203

10.4 Register Map . 203
10.5 System Registers Behavior for M2GL005/010 devices . 207
10.6 Register Details . 207

10.6.1 eSRAM Latency Configuration Register . 207
10.6.2 eNVM Configuration Register . 208
10.6.3 eNVM FPGA Fabric Remap Base Address Register . 210
10.6.4 HPMS DDR Bridge Buffer Timer Control Register . 211
10.6.5 HPMS DDR Bridge Non-Bufferable Address Control Register . 211
10.6.6 HPMS DDR Bridge Non-Bufferable Size Control Register . 211
10.6.7 HPMS DDR Bridge Configuration Register . 212
10.6.8 EDAC Configuration Register . 213
Microchip Proprietary UG0448 Revision 10.0 v

10.6.9 Master Weight Configuration Register 0 . 213
10.6.10 Master Weight Configuration Register 1 . 214
10.6.11 Software Interrupt Register . 214
10.6.12 Software Reset Control Register . 215
10.6.13 Fabric Interface Control (FIC) Register . 216
10.6.14 MDDR Configuration Register . 216
10.6.15 Peripheral Clock MUX Select Control Register . 217
10.6.16 MDDR I/O Calibration Control Register . 217
10.6.17 EDAC Interrupt Enable Control Register . 218
10.6.18 eSRAM PIPELINE Configuration Register . 218
10.6.19 HPMS DDR PLL Status Low Configuration Register . 219
10.6.20 HPMS DDR PLL Status High Configuration Register . 220
10.6.21 HPMS DDR Fabric Alignment Clock Controller (FACC) Configuration Register 1 221
10.6.22 HPMS DDR Fabric Alignment Clock Controller Configuration Register 2 223
10.6.23 HPMS Clock Calibration Control Register . 225
10.6.24 PLL Delay Line Select Control Register . 225
10.6.25 Reset Source Control Register . 225
10.6.26 HPMS DDR Bridge High Performance DMA Master Error Address Status Register 226
10.6.27 HPMS DDR Bridge AHB Bus Error Address Status Register . 226
10.6.28 HPMS DDR Bridge Buffer Empty Status Register . 226
10.6.29 HPMS DDR Bridge Disable Buffer Status Register . 227
10.6.30 eSRAM0 EDAC Count . 227
10.6.31 eSRAM1 EDAC Count . 227
10.6.32 eSRAM0 EDAC Address Register . 228
10.6.33 eSRAM1 EDAC Address Register . 228
10.6.34 Security Configuration Register for Masters 4, 5, and DDR_FIC . 228
10.6.35 Security Configuration Register for Masters 3 and 7 . 229
10.6.36 Security Configuration Register for Master 9 . 230
10.6.37 Device Status Register . 230
10.6.38 eNVM Protect User Register . 231
10.6.39 IGLOO2 eNVM Status Register . 232
10.6.40 Device Version Register . 232
10.6.41 HPMS PLL Status Register . 232
10.6.42 eNVM Status Register . 233
10.6.43 DDRB Status Register . 234
10.6.44 MDDR IO Calibration Status Register . 234
10.6.45 HPMS Clock Calibration Status . 235
10.6.46 Fabric Protected Size Register . 235
10.6.47 Fabric Protected Base Address Register . 236
10.6.48 EDAC Status Register . 236
10.6.49 HPMS Internal Status Register . 237
10.6.50 HPMS External Status Register . 237
10.6.51 Clear EDAC Counters . 238
10.6.52 Flush Configuration Register . 239

11 Fabric Interface Interrupt Controller . 240
11.1 Features . 240
11.2 Functional Description . 241

11.2.1 Architecture Overview . 241
11.2.2 FIIC Port List . 243

11.3 How to Use FIIC . 243
11.4 FIIC Controller Registers . 244
11.5 FIIC Controller Register Bit Definitions . 244

12 Fabric Interface Controller . 250
12.1 Functional Description . 251

12.1.1 Configuring FIC for Master or Slave Interface . 251
Microchip Proprietary UG0448 Revision 10.0 vi

12.2 FIC Interface Port List . 252
12.3 Timing Diagrams . 254
12.4 Implementation Considerations . 257
12.5 Fabric Interface Clocks . 257
12.6 How to Use FIC . 258

12.6.1 FIC_1 Configuration . 258
12.6.2 FIC_0 Configuration . 262
12.6.3 Use Model 1: Connecting APB3 Master and Slave to FIC_1 . 262
12.6.4 Use Model 2: Connecting AHB-Lite Master and Slave to FIC_1 . 262

12.7 SYSREG Control Registers for FIC_0 and FIC_1 . 263
12.8 Reference Documents . 263

13 FIC_2 (APB Configuration Interface) . 264
13.1 Functional Description . 264

13.1.1 Architecture Overview . 265
13.1.2 Port List . 265
13.1.3 CoreConfig IP . 267

13.2 How to Use FIC_2 . 267
13.2.1 Configuring FIC_2 (Peripheral Initialization) Using Libero SoC . 267
13.2.2 FIC_2 Interfaces for MDDR . 269
13.2.3 FIC_2 Interfaces for SerDes . 270
Microchip Proprietary UG0448 Revision 10.0 vii

Figures

Figure 1 eNVM Connection to AHB Bus Matrix . 5
Figure 2 eNVM Controller Block Diagram . 6
Figure 3 Write Path . 9
Figure 4 Read Path . 9
Figure 5 Timing Diagram for Single Word Read Operation . 13
Figure 6 Timing Diagram for Consecutive Reads Incrementing Through Memory . 13
Figure 7 eNVM Program and Verify Operations . 14
Figure 8 Exclusive Register Access and Filling Data in WDBUFF . 14
Figure 9 Issuing the ProgramADS Command . 15
Figure 10 Completion of ProgramADS and Issue of VerifyADS Command . 15
Figure 11 Completion of eNVM Verify Operation . 15
Figure 12 Complete eNVM Program and Verify Operations Waveform . 16
Figure 13 Exclusive Register Access and Filling Data in WDBUFF . 16
Figure 14 ProgramAD Command . 16
Figure 15 ProgramDA command . 16
Figure 16 ProgramStart Command . 17
Figure 17 eNVM Special Sectors for the M2GL050TS Device with 256 KB eNVM_0 18
Figure 18 eNVM Special Sectors for the M2GL005S Device with 128 KB eNVM_0 18
Figure 19 eNVM Special Sectors for M2GL010TS and M2GL025TS Devices with 256 KB eNVM_0 19
Figure 20 eNVM Special Sectors for the M2GL060TS Device with 256 KB eNVM_0 19
Figure 21 eNVM Special Sectors for M2GL090TS and M2GL150TS Devices with 512 KB 20
Figure 22 System Builder Window . 24
Figure 23 System Builder - Device Features Tab . 25
Figure 24 System Builder - Memories Tab . 25
Figure 25 eNVM: Modify Core Dialog Box . 26
Figure 26 Add Data Storage Client Dialog . 27
Figure 27 eNVM: Modify Core Dialog Box with Two eNVM Clients . 27
Figure 28 System Builder - Security Tab . 28
Figure 29 System Builder - Memory Map Tab . 29
Figure 30 HPMS Subsystem . 29
Figure 31 HPMS Interconnection with FPGA Fabric Master . 30
Figure 32 eSRAM_0 and eSRAM_1 Connection to AHB Bus Matrix . 42
Figure 33 eSRAM Controller Block Diagram . 43
Figure 34 System Builder Window . 48
Figure 35 System Builder - Device Features Tab . 49
Figure 36 System Builder - HPMS Options Tab . 50
Figure 37 System Builder - SECDED Tab . 50
Figure 38 System Builder - Security Tab . 51
Figure 39 System Builder - Memory Map Tab . 52
Figure 40 HPMS Subsystem . 52
Figure 41 HPMS Interconnection with FPGA Fabric Master . 53
Figure 42 AHB Bus Matrix Masters and Slaves . 62
Figure 43 Master Stage and Slave Stage Interconnection . 64
Figure 44 APB Destinations Connected to AHB Bus Matrix . 64
Figure 45 AHB-Lite Write Transactions . 65
Figure 46 AHB-Lite Read Transactions . 66
Figure 47 AHB-to-AHB Write Transactions . 67
Figure 48 AHB-to-AHB Read Transactions . 68
Figure 49 Pure Round Robin and Fixed Priority Slave Arbitration Scheme . 70
Figure 50 WRR and Fixed Priority Slave Arbitration Scheme . 71
Figure 51 Slave Arbitration Flow Diagram . 73
Figure 52 Default System Memory Map . 74
Figure 53 System Builder Window . 76
Figure 54 System Builder - HPMS Options Tab . 77
Microchip Proprietary UG0448 Revision 10.0 viii

Figure 55 HPDMA Interfacing With HPMSDDR Bridge and AHB Bus Matrix . 79
Figure 56 HPDMA Controller Block Diagram . 80
Figure 57 HPDMA Registers . 81
Figure 58 DMA Controller Flow Chart . 81
Figure 59 System Builder Window . 84
Figure 60 System Builder - Device Features Tab . 85
Figure 61 System Builder - Peripherals Tab . 86
Figure 62 HPMS Options Tab - Round Robin Weight Configuration for HPDMA Master 87
Figure 63 System Builder - Memory Map Tab . 88
Figure 64 HPMS Subsystem . 88
Figure 65 HPMS Interconnection with FPGA Fabric Master . 89
Figure 66 PDMA Interfacing with AHB Bus Matrix . 108
Figure 67 PDMA Internal Architecture . 109
Figure 68 Ping-Pong Operation Flow for DMA Channel . 111
Figure 69 System Builder Window . 114
Figure 70 System Builder - Device Features Tab . 115
Figure 71 System Builder - Peripherals Tab . 116
Figure 72 Configuring PDMA Weight Values . 117
Figure 73 System Builder - Memory Map Tab . 118
Figure 74 HPMS Subsystem . 118
Figure 75 HPMS Subsystem Connected to the FPGA Fabric Master . 119
Figure 76 Microcontroller Subsystem Showing SPI Peripherals . 131
Figure 77 SPI Controller Block Diagram . 132
Figure 78 Motorola SPI Mode 0 . 135
Figure 79 Motorola SPI Mode 0 Multiple Frame Transfer . 135
Figure 80 Motorola SPI Mode 1 . 136
Figure 81 Motorola SPI Mode 2 . 136
Figure 82 Motorola SPI Mode 3 . 136
Figure 83 Write Operation Timing . 138
Figure 84 Read Operation Timing . 138
Figure 85 Page Program Timing . 139
Figure 86 National Semiconductor MICROWAVE Single Frame Transfer . 140
Figure 87 National Semiconductor MICROWIRE Multiple Frame Transfer . 140
Figure 88 TI Synchronous Serial Single Frame Transfer . 141
Figure 89 TI Synchronous Serial Multiple Frame Transfer . 141
Figure 90 SPE Command/Data Format . 142
Figure 91 System Builder Window . 146
Figure 92 System Builder - Device Features Tab . 147
Figure 93 System Builder - Memory Map Tab . 148
Figure 94 HPMS Subsystem . 148
Figure 95 HPMS Interconnection with FPGA Fabric Master . 149
Figure 96 Fabric Master Accessing the External SPI Flash Using HPMS SPI_0 . 149
Figure 97 Interfacing of COMM_BLK with AHB Bus Matrix . 163
Figure 98 Interfacing of COMM_BLK with System Controller . 164
Figure 99 System Builder Window . 166
Figure 100 System Builder - Device Features Tab . 167
Figure 101 CoreSysServices IP to COMM_BLK Path . 168
Figure 102 Clocks Configuration . 169
Figure 103 System Builder - Memory Map Tab . 170
Figure 104 COMM_BLK Connection with CoreSysServices IP . 171
Figure 105 COMM_BLK Configuration Dialog . 172
Figure 106 Reset Signals Distribution in IGLOO2 Devices . 177
Figure 107 Power-On Reset Generation Block Diagram . 178
Figure 108 Power-On Reset Delay Configuration . 179
Figure 109 SYSRESET Macro . 179
Figure 110 Power-Up to Functional Time Sequence Diagram . 181
Figure 111 VDD Power-Up to Functional Time Design Setup . 183
Figure 112 VDD Power-Up to Functional Timing Diagram . 183
Figure 113 VDD Power-Up to Functional Time Flow . 185
Microchip Proprietary UG0448 Revision 10.0 ix

Figure 114 DEVRST_N Power-Up to Functional Timing Diagram . 186
Figure 115 DEVRST_N Power-Up to Functional Time Flow . 187
Figure 116 Reset Controller During Power-On Reset . 188
Figure 117 SYSRESET_N Generation . 188
Figure 118 Reset Controller During SYSRESET_N . 189
Figure 119 Reset Controller With Only Block Level Resets . 189
Figure 120 MDDR_AXI_RESET_N Generation . 190
Figure 121 MDDR_APB_RESET_N Generation . 190
Figure 122 Block Level Reset Generation . 190
Figure 123 HPMS_READY Signal Generation . 191
Figure 124 System Builder-Generated Design with MDDR and SERDESIF Interfaces 192
Figure 125 System Builder-Generated Design without MDDR/FDDR/SerDes Interface 192
Figure 126 CoreResetP Connectivity with Peripheral Resets . 193
Figure 127 CoreResetP Connectivity with SERDES_IF Block . 193
Figure 128 Timing Diagram for Reset Signals Initiated by the Assertion of POWER_N_RESET_N 194
Figure 129 Timing Diagram for Reset Signals Initiated by the Assertion of FIC_2_APB_M_PRESET_N . . . 194
Figure 130 Timing for Reset Signals Initiated by the Assertion of EXT_RESET_IN_N 195
Figure 131 Timing for Reset Signals Initiated by the Assertion of USER_FAB_RESET_IN_N 195
Figure 132 Register Write Protect . 197
Figure 133 Field Write Protect . 198
Figure 134 Bit Write Protect . 198
Figure 135 RW-P Type . 199
Figure 136 RW Type . 200
Figure 137 RO Type . 200
Figure 138 RO-P Type . 201
Figure 139 RO-U Type . 201
Figure 140 Register Lock Bit Settings . 201
Figure 141 Lock Bit Configuration File . 202
Figure 142 FIIC Connection to AHB Bus Matrix . 240
Figure 143 Block Diagram for Fabric Interface Interrupt Controller . 241
Figure 144 Combinational Circuit for Mapping HPMS Interrupts to a HPMS_INT_M2F 241
Figure 145 FIIC Bus . 243
Figure 146 HPMS to Fabric Interrupts . 243
Figure 147 The FIC Connection to the AHB Bus Matrix . 250
Figure 148 Fabric Interface Controller Block Diagram . 251
Figure 149 Fabric Interface Controller Top-Level View . 252
Figure 150 Timing Diagram for AHB-Lite Bus Signals from Fabric Master to FIC for a Write Transaction . . . 254
Figure 151 Timing Diagram for AHB-Lite Bus Signals from Fabric Master to FIC for a Read Transaction . . 254
Figure 152 Timing Diagram for AHB-Lite Bus Signals from FIC to the Fabric Slave for a Write Transaction . 255
Figure 153 Timing Diagram for AHB-Lite Bus Signals from FIC to the Fabric Slave for a Read Transaction 255
Figure 154 Timing Diagram for APB3 Bus Signals from Fabric Master to FIC for a Write Transaction 256
Figure 155 Timing Diagram for APB3 Bus Signals from Fabric Master to FIC for a Read Transaction 256
Figure 156 Timing Diagram for APB3 Bus Signals from FIC to the Fabric Slave for a Write Transaction . . . 257
Figure 157 Timing Diagram for APB3 Bus Signals from FIC to the Fabric Slave for a Read Transaction . . . 257
Figure 158 System Builder Window . 258
Figure 159 System Builder- Peripherals Tab . 259
Figure 160 Peripherals Tab - Configure Option for AMBA_MASTER_0 . 259
Figure 161 Interface Type Configuration . 260
Figure 162 Clocks Tab - Fabric Interface Clocks . 260
Figure 163 HPMS Options Tab with Round Robin Weight for FIC_1 Master . 261
Figure 164 Memory Map Tab . 261
Figure 165 Top-Level Smart Design View for Use Model 1 . 262
Figure 166 Top-Level Smart Design View for Use Model 2 . 263
Figure 167 APB Configuration Interface and Subsystems Connections with HPMS Master 264
Figure 168 System Builder Window . 267
Figure 169 System Builder - Device Features Window . 268
Figure 170 System Builder - Memory Map Tab . 269
Figure 171 FIC_2 Interfaces for MDDR . 269
Figure 172 HPMS Subsystem with APB Configuration Interface Signals . 270
Microchip Proprietary UG0448 Revision 10.0 x

Figure 173 Interfacing of CoreConfig IP Mirrored APB Slave with SERDES_IF Block 271
Microchip Proprietary UG0448 Revision 10.0 xi

Tables

Table 1 eNVM Address Locations . 6
Table 2 Memory Organization . 7
Table 3 Data Retention Time . 8
Table 4 AHBL Address Map to NVM . 9
Table 5 Command (CMD) Register . 10
Table 6 Command Table . 10
Table 7 User Protection Regions . 20
Table 8 Special Purpose Storage Regions . 21
Table 9 Special Purpose Storage Regions for M2GL060, M2GL090 and M2GL150 Devices 21
Table 10 SYSREG Control Registers . 30
Table 11 ENVM_CR . 31
Table 12 SW_ENVMREMAPSIZE . 33
Table 13 ENVM_REMAP_FAB_CR . 33
Table 14 ENVM_PROTECT_USER . 34
Table 15 ENVM_STATUS . 35
Table 16 ENVM_SR . 35
Table 17 eNVM Control Registers Base Address . 35
Table 18 Control Registers Description . 35
Table 19 Status Register Bit Definitions . 39
Table 20 NV_PAGE_STATUS . 40
Table 21 INTEN[10:0] . 40
Table 22 NV_FREQRNG Calculations at Different HPMS_CLK Frequencies for IGLOO2 Devices 40
Table 23 CLRHINT[2:0] . 41
Table 24 eSRAM Block Sizes and Address Ranges . 43
Table 25 SRAM Organization in SECDED-ON Mode . 44
Table 26 SRAM Organization in SECDED-OFF Mode . 45
Table 27 Wait States in Different Operation Modes . 46
Table 28 SYSREG Control Registers . 53
Table 29 ESRAM_MAX_LAT . 55
Table 30 eSRAM Maximum Latency Values . 55
Table 31 ESRAM1_EDAC_CNT . 56
Table 32 ESRAM0_EDAC_ADR . 56
Table 33 ESRAM_PIPELINE_CR . 56
Table 34 ESRAM0_EDAC_CNT . 56
Table 35 ESRAM1_EDAC_ADR . 57
Table 36 MM4_5_DDR_FIC_SECURITY/MM4_5_FIC64_SECURITY . 57
Table 37 MM3_7_SECURITY . 58
Table 38 MM9_SECURITY . 58
Table 39 EDAC_SR . 59
Table 40 CLR_EDAC_COUNTERS . 59
Table 41 EDAC_IRQ_ENABLE_CR . 60
Table 42 EDAC_CR . 61
Table 43 AHB Bus Matrix Connectivity . 63
Table 44 WRR Masters . 69
Table 45 Pure Round Robin and Fixed Priority Arbitration Scenario for eSRAM1 . 70
Table 46 WRR and Fixed Priority Arbitration Scenario for eNVM_0 . 72
Table 47 WRR Arbitration Scenario for eSRAM_0 slave . 72
Table 48 Master and Slave Pairing . 75
Table 49 AHB Bus Matrix Register Map . 78
Table 50 HPDMA Register Map . 90
Table 51 HPDMAEDR_REG . 91
Table 52 HPDMAD0SAR_REG . 95
Table 53 HPDMAD1SAR_REG . 95
Table 54 HPDMAD2SAR_REG . 95
Microchip Proprietary UG0448 Revision 10.0 xii

Table 55 HPDMAD3SAR_REG . 95
Table 56 HPDMAD0DAR_REG . 96
Table 57 HPDMAD1DAR_REG . 96
Table 58 HPDMAD2DAR_REG . 96
Table 59 HPDMAD3DAR_REG . 96
Table 60 HPDMAD0CR_REG . 97
Table 61 HPDMAD1CR_REG . 98
Table 62 HPDMAD2CR_REG . 99
Table 63 HPDMAD3CR_REG . 100
Table 64 HPDMAD0SR_REG . 101
Table 65 HPDMAD1SR_REG . 101
Table 66 HPDMAD2SR_REG . 102
Table 67 HPDMAD3SR_REG . 103
Table 68 HPDMAD0PTR_REG . 103
Table 69 HPDMAD1PTR_REG . 104
Table 70 HPDMAD2PTR_REG . 104
Table 71 HPDMAD3PTR_REG . 105
Table 72 HPDMAICR_REG . 105
Table 73 HPDMADR_REG . 106
Table 74 SYSREG Control Registers . 107
Table 75 RATIOHILO Field Definition . 112
Table 76 Port List . 112
Table 77 IGLOO2 FPGA PDMA Register Map . 121
Table 78 Ratio_HIGH_LOW . 124
Table 79 BUFFER_STATUS . 124
Table 80 CHANNEL_x_CONTROL . 126
Table 81 PERIPHERAL_SEL . 127
Table 82 CHANNEL_x_STATUS . 127
Table 83 CHANNEL_x_BUFFER_A_SRC_ADDR . 128
Table 84 CHANNEL_x_BUFFER_A_DST_ADDR . 128
Table 85 CHANNEL_x_BUFFER_A_TRANSFER_COUNT . 128
Table 86 CHANNEL_x_BUFFER_B_SRC_ADDR . 129
Table 87 CHANNEL_x_BUFFER_B_DST_ADDR . 129
Table 88 CHANNEL_x_BUFFER_B_TRANSFER_COUNT . 129
Table 89 SYSREG Control Registers . 130
Table 90 SPI Interface Signals . 133
Table 91 Data Transfer Modes . 134
Table 92 Summary of Master SPI Modes . 134
Table 93 Behavior of the Output Enable Signal . 137
Table 94 Soft Reset Bit Definitions for SPI Peripheral . 144
Table 95 SYSREG Control Registers . 150
Table 96 SPI Register Summary . 151
Table 97 CONTROL . 152
Table 98 TXRXDF_SIZE . 153
Table 99 STATUS . 153
Table 100 INT_CLEAR . 154
Table 101 RX_DATA . 155
Table 102 TX_DATA . 155
Table 103 CLK_GEN . 155
Table 104 CLK_MODE Example, APB Clock = 153.8 MHz . 155
Table 105 SLAVE_SELECT . 156
Table 106 MIS . 157
Table 107 RIS . 157
Table 108 CONTROL2 . 158
Table 109 COMMAND . 159
Table 110 PKTSIZE . 160
Table 111 CMD_SIZE . 160
Table 112 HWSTATUS . 160
Table 113 STAT8 . 161
Microchip Proprietary UG0448 Revision 10.0 xiii

Table 114 COMM_BLK Register Map . 172
Table 115 CONTROL . 173
Table 116 STATUS . 174
Table 117 INT_ENABLE . 174
Table 118 DATA8 . 175
Table 119 DATA32 . 175
Table 120 FRAME_START8 . 175
Table 121 FRAME_START32 . 176
Table 122 VDD Power-Up to Functional Time . 184
Table 123 DEVRST_N Power-Up to Functional Time . 186
Table 124 Switch Register Map . 196
Table 125 Register Types . 199
Table 126 SYSREG . 203
Table 127 Subset of System Registers . 207
Table 128 ESRAM_MAX_LAT . 207
Table 129 eSRAM Maximum Latency Values . 208
Table 130 ENVM_CR . 208
Table 131 SW_ENVMREMAPSIZE . 210
Table 132 ENVM_REMAP_FAB_CR . 210
Table 133 DDRB_BUF_TIMER_CR . 211
Table 134 DDRB_NB_ADDR_CR . 211
Table 135 DDRB_NB_SIZE_CR . 211
Table 136 Non-Bufferable Region . 212
Table 137 DDRB_CR . 212
Table 138 EDAC_CR . 213
Table 139 MASTER_WEIGHT0_CR . 213
Table 140 MASTER_WEIGHT1_CR . 214
Table 141 Programmable Weight Values . 214
Table 142 SOFT_IRQ_CR . 214
Table 143 SOFT_RESET_CR . 215
Table 144 FAB_IF_CR . 216
Table 145 MDDR_CR . 216
Table 146 PERIPH_CLK_MUX_SEL_CR . 217
Table 147 MDDR_IO_CALIB_CR . 217
Table 148 EDAC_IRQ_ENABLE_CR . 218
Table 149 ESRAM_PIPELINE_CR . 218
Table 150 HPMS_PLL_STATUS_LOW_CR . 219
Table 151 FACC_PLL_RANGE . 220
Table 152 HPMS_PLL_STATUS_HIGH_CR . 220
Table 153 HPMS_FACC1_CR . 221
Table 154 Clock Ratio . 223
Table 155 HPMS_FACC2_CR . 223
Table 156 HPMS_CLK_CALIB_CR . 225
Table 157 PLL_DELAY_LINE_SEL_CR . 225
Table 158 RESET_SOURCE_CR . 225
Table 159 DDRB_HPD_ERR_ADR_SR . 226
Table 160 DDRB_SW_ERR_ADR_SR . 226
Table 161 DDRB_BUF_EMPTY_SR . 226
Table 162 DDRB_DSBL_DN_SR . 227
Table 163 ESRAM0_EDAC_CNT . 227
Table 164 ESRAM1_EDAC_CNT . 227
Table 165 ESRAM0_EDAC_ADR . 228
Table 166 ESRAM1_EDAC_ADR . 228
Table 167 MM4_5_DDR_FIC_SECURITY/MM4_5_FIC64_SECURITY . 228
Table 168 MM3_7_SECURITY . 229
Table 169 MM9_SECURITY . 230
Table 170 DEVICE_SR . 230
Table 171 ENVM_PROTECT_USER . 231
Table 172 ENVM_STATUS . 232
Microchip Proprietary UG0448 Revision 10.0 xiv

Table 173 DEVICE_VERSION . 232
Table 174 HPMS_PLL_STATUS . 232
Table 175 ENVM_SR . 233
Table 176 DDRB_STATUS . 234
Table 177 MDDR_IO_CALIB_STATUS . 234
Table 178 HPMS_CLK_CALIB_STATUS . 235
Table 179 FAB_PROT_SIZE . 235
Table 180 Region Size . 235
Table 181 FAB_PROT_BASE . 236
Table 182 EDAC_SR . 236
Table 183 HPMS_INTERNAL_SR . 237
Table 184 HPMS_EXTERNAL_SR . 237
Table 185 CLR_EDAC_COUNTERS . 238
Table 186 FLUSH_CR . 239
Table 187 Interrupt Line Signal Distribution . 242
Table 188 FIIC Port List . 243
Table 189 IGLOO2 FPGA FIIC Register Map . 244
Table 190 INTERRUPT_ENABLE0 . 244
Table 191 INTERRUPT_ENABLE1 . 246
Table 192 INTERRUPT_REASON1 . 246
Table 193 INTERRUPT_REASON0 . 247
Table 194 INTERRUPT_MODE . 249
Table 195 Number of FICs Available for Use in Each Device . 250
Table 196 Fabric Interface Controller Port List . 252
Table 197 FAB_IF Register in the SYSREG Block . 263
Table 198 FDDR APB Slave Configuration Interface Port List . 265
Table 199 MDDR APB Slave Configuration Interface Port List . 265
Table 200 SERDERIF APB Slave Configuration Interface Port List . 266
Table 201 HPMS APB Master Configuration Interface Port List . 266
Microchip Proprietary UG0448 Revision 10.0 xv

Revision History
1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 10.0
• Updated the paragraph in section Power-Up to Functional Time Sequence, page 181 to mention that

all mandatory banks must be powered up.
• Updated the paragraph to replace all power supplies with VDD and VPP in Power-On Reset

Generation Sequence, page 178.
• Updated the paragraph for PO_RESET_N signal in Power-Up to Functional Time Sequence,

page 181.

1.2 Revision 9.0
• Updated the FIIC offset address to 0x40006000 throughout the document.
• After Figure 113, page 185 and Figure 115, page 187, added a note to mention that power-up to

functional time also depends on PLL lock time if PLL is used.
• In Power-On Reset Generation Sequence, page 178, added a note to mention that Power-on Reset

Delay is also referred as VDD Supply Ramp Time in the latest version of Libero SoC.
• inTable 18, page 35, updated the functionality of REQACCESS Control Register for values "110"

and "111".
• After Table 122, page 184 and Table 123, page 186 added a note to mention that timing numbers

are for worst case condition.
• In eNVM Command Register, page 10 added information about ready bit of the ENVM_SR register

and HREADY signal.

1.3 Revision 8.0
The following changes were made in revision 8.0 of this document.

• Information about the assertion of the POWER_ON_RESET_N signal was added. For more
information, see Power-Up to Functional Time Sequence, page 181 and VDD Power-Up to
Functional Time Data, page 182.

• An example was added to show how power-on reset delay settings affect VDD calculation. For more
information, see VDD Power-Up to Functional Time Data, page 182.

• The PDMA port list was updated and descriptions added for each port. For more information. see
PDMA Port List, page 112.

• Information about SMC_FIC was added. For more information, see Configuring HPDMA, page 85.

1.4 Revision 7.0
The following changes were made in revision 7.0 of this document.

• Added System Registers Behavior for M2GL005/010 devices, page 207 and Table 127, page 207
(SAR 84564).

• Edited Software Reset Control Register, page 215 to add a note on reset values (SAR 86186).
• Added a note to Table 143, page 215, Table 144, page 216, Table 145, page 216, Table 146,

page 217, Table 148, page 218, Table 150, page 219, Table 152, page 220, and Table 153,
page 221 (SAR 84564).

• Edited Table 173, page 232 (SAR 86187).
• Edited Data Retention Time, page 8, Table 3, page 8, eNVM Pages for Special Purpose Storage,

page 21, Table 8, page 21, Table 9, page 21, Table 21, page 40, Table 19, page 39 in the Embedded
NVM (eNVM) Controllers, page 5 (SAR 86089).

• Edited Security, page 17, Figure 17, page 18, Figure 18, page 18, Figure 19, page 19, Figure 20,
page 19, Figure 21, page 20 (SAR 86276).
Microchip Proprietary UG0448 Revision 10.0 1

Revision History
1.5 Revision 6.0
The following changes were made in revision 6.0 of this document.

• Added M2GL060 device entry in Table 2, page 7 and Table 3, page 8 (SAR 78895).
• Added Power-Up to Functional Time Data, page 182 (SAR 81548, SAR 73079).
• Updated HPDMA transfer information in High Performance DMA Controller, page 79 (SAR 51843).
• Updated PDMA transfer information in Peripheral DMA, page 108 (SAR 51843).
• Updated eNVM Pages for Special Purpose Storage, page 21 for M2GL060 device (SAR 78895).
• Added a note in How to Use eNVM, page 24 on the support of simulation models (SAR 80669).
• Added Figure 20, page 19 that depicts eNVM Protected Region for the M2GL060 Device (SAR

78895).
• Updated the NV_FREQRNG description in Table 11, page 31 (SAR 62544).
• Added the Register Lock Bits Configuration, page 201 (SAR 79855).
• Updated the REQACCESS description in Table 11, page 31 (SAR 61550).
• Updated Embedded NVM (eNVM) Controllers, page 5 chapter (SAR 78895).
• Added a note on DEVREST_N state when it is tied low in Power-On Reset Generation Sequence,

page 178 (SAR 58928, SAR 58927).
• Added a note in AHB Bus Matrix, page 62 on the support of simulation models (SAR 80669).
• Added a note in How to Use FIC, page 258 on the support of simulation models (SAR 80669).
• Updated Peripheral DMA, page 108 (SAR 80669).
• Updated Serial Peripheral Interface Controller, page 131 chapter (SAR 80669).
• Added a note in How to Use PDMA, page 114 on the support of simulation models (SAR 80669).
• Added the 060 device entry in Table 195, page 250 (SAR 78911).
Microchip Proprietary UG0448 Revision 10.0 2

Revision History
1.6 Revision 5.0
The following changes were made in revision 5.0 of this document.

• Updated Power-Up to Functional Time Sequence, page 181 (SAR 72906).
• Updated Table 16, page 35 and Table 175, page 233 (SAR 70182).
• Updated Figure 17, page 18, Figure 18, page 18, Figure 19, page 19, and Figure 21, page 20, and

added eNVM Pages for Special Purpose Storage, page 21 (SAR 66208).

1.7 Revision 4.0
The following changes were made in revision 4.0 of this document.

• Updated Reset Controller, page 177 (SAR 66766).
• Updated SAR 67010.
• Updated Implementation Considerations, page 257 (SAR 64802).

1.8 Revision 3.0
The following changes were made in revision 3.0 of this document.

• Updated Embedded NVM (eNVM) Controllers, page 5 (SAR 62858).
• Updated Fabric Interface Controller, page 250 (SAR 62858).
• Removed all instances of and references to M2GL100 device from the eNVM Controllers Features

section, Table 1, page 6, Table 2, page 7, Table 20, page 40, and Table 195, page 250 (SAR 62858).
• Updated the latest Libero screen shots as required (SAR 54023).

1.9 Revision 2.0
The following changes were made in revision 2.0 of this document.

• Updated Embedded NVM (eNVM) Controllers, page 5 (SAR 55309).
• Updated Table 170, page 230 (SAR 50729).
• Updated Embedded SRAM (eSRAM) Controllers, page 42(SAR 55309).
• Updated High Performance DMA Controller, page 79 (SAR 55309).
• Updated Peripheral DMA, page 108(SAR 55309).
• Updated Serial Peripheral Interface Controller, page 131 (SAR 55309).
• Added How to Use the SPI Controller, page 146 (SAR 50196).
• Updated Table 97, page 152 (SAR 50168).
• Updated Communication Block, page 162 (SAR 55309, SAR 50310).
• Updated Reset Controller, page 177 (SAR 55309).
• Updated System Register Block, page 197 (SAR 55044).
• Updated Fabric Interface Interrupt Controller, page 240 (SAR 55309).
• Updated Fabric Interface Controller, page 250 (SAR 55309).

1.10 Revision 1.0
The following changes were made in revision 1.0 of this document.

• Updated Embedded NVM (eNVM) Controllers, page 5 (SAR 50164, 50072).
• Updated Table 5, page 10 (SAR 50533).
• Added Single Word Read, page 13, Consecutive Reads Incrementing through Memory, page 13,

and eNVM Program and Verify Operations Timing Diagrams, page 14 (SAR 50533).
• Added How to Use eSRAM, page 48 (SAR 50165).
• Updated Table 97, page 152 (SAR 50168).
• Modified Table 24, page 43 (SAR 50276).
• Added AHB Bus Matrix, page 62 (SAR 49904).
• Added How to Use HPDMA, page 84 (SAR 50365).
• Updated Peripheral DMA, page 108 (SAR 50365).
• Updated Serial Peripheral Interface Controller, page 131 (SAR 50618).
• Updated Figure 77, page 132 and Table 90, page 133 (SAR 50770).
• Added How to Use FIIC, page 243 section (SAR 50344).
• Table 190, page 244 is updated (SAR 50558).
Microchip Proprietary UG0448 Revision 10.0 3

Revision History
• Updated Communication Block, page 162 (SAR 50616).
• Added How to Use COMM_BLK, page 166.
• Added How to Use FIC, page 258 section (SAR 50294).
• Added FIC_2 (APB Configuration Interface), page 264.

1.11 Revision 0.0
Revision 0 was the first publication of this document.
Microchip Proprietary UG0448 Revision 10.0 4

Embedded NVM (eNVM) Controllers
2 Embedded NVM (eNVM) Controllers

The IGLOO®2 FPGA devices have one or two embedded nonvolatile memory (eNVM) blocks
(depending on the device) for user non-volatile memory. The eNVM controller interfaces these eNVM
blocks to the advanced high-performance bus (AHB) bus matrix.

2.1 Features
• Single error correction and dual error detection (SECDED) protected.
• Based on the selected IGLOO2 device, the total size of eNVM memory ranges from 128 KB,

256 KB, and 512 KB.
• M2GL005 has a single block of 128 KB.
• M2GL010, M2GL025, M2GL050, and M2GL060 have a single block of 256 KB.
• M2GL090 and M2GL150 have two blocks of 256 KB each, the total eNVM memory size is 512

KB.
• In devices with two blocks present, any two masters can access the eNVM blocks (eNVM_0 and

eNVM_1) in parallel, which improves the overall performance of the system.
As shown in the following figure, the eNVM block(s) is connected as slave to the AHB bus matrix.

Figure 1 • eNVM Connection to AHB Bus Matrix

AHB Bus Matrix

MS5

eSRAM_1 eSRAM_0 eNVM_0HPDMADDR Bridge

MS1 MS0MS2MM3MS6MM7

AHB To AHB Bridge with Address Decoder

APB_0SYSREGFIC_1

MM4 MS4 MM5

SPI

PDMA
Configuration

FIIC COMM_BLK

MS5_FIC MS5_SR MS5_APB0 MS5_APB1

High Performance Memory Subsystem
DDR

PDMASystem
Controller

MM9

APB_1FIC_0

eNVM_1

MS3

HPDMA
Configuration

FIC_2 (Peripheral
Initialization)

MS5_FIC2
Microchip Proprietary UG0448 Revision 10.0 5

Embedded NVM (eNVM) Controllers
2.2 Functional Description
The address range of eNVM_0 is 0x60000000 to 0x6003FFFF and the address range of eNVM_1 is
0x60040000 to 0x6007FFFF. The location of eNVM_1 always follows eNVM_0 in the system memory
map. The following table gives the eNVM_0 and eNVM_1 addresses for different devices.

Both eNVMs and embedded NVM controllers are identical and the eNVM controller consists of three
components:

• eNVM Array
• eNVM Controller
• eNVM to AHB Controller

Figure 2 • eNVM Controller Block Diagram

HPMS_CLK is used within the HPMS to clock the AHB bus matrix. See UG0449: SmartFusion2 and
IGLOO2 Clocking Resources User Guide for more information on HPMS_CLK.

Table 1 • eNVM Address Locations

Device eNVM_0 eNVM_1 Total NVM
M2GL005 0x60000000 None 128 Kbytes

M2GL010 0x60000000 None 256 Kbytes

M2GL025 0x60000000 None 256 Kbytes

M2GL050 0x60000000 None 256 Kbytes

M2GL060 0x60000000 None 256 Kbytes

M2GL090 0x60000000 0x60040000 512 Kbytes

M2GL150 0x60000000 0x60040000 512 Kbytes

Sector 0

.

.

.

.
Sector n-1

Sector n

eNVM to
AHB

Controller

eNVM Array

AHBL Interface

eNVM Controller

ECC

Write
Data

Buffer

Assembly
Buffer

Read
Buffer

HINT

FREQRNG

FREQRNG
DPD
NVM_BLOCK_SIZE
NVM_G4C_INT

NVM_BUSY

Commands and
64-Bit Data
Interface

Address Interface

Write data

Read data

32-Bit

32-Bit

64-Bit

AHB
Bus

Matrix
HRDATA

HPMS_CLK
Microchip Proprietary UG0448 Revision 10.0 6

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microchip_smartfusion2_igloo2_clocking_resources_user_guide_ug0449_v9.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microchip_smartfusion2_igloo2_clocking_resources_user_guide_ug0449_v9.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012

Embedded NVM (eNVM) Controllers
eNVM Array: The eNVM array is connected to a 25 MHz internal oscillator. This 25 MHz internal
oscillator is used during device start up to initialize the NVM controller. It is also used for eNVM program
operation. For other eNVM operations (Read and Verify), the eNVM controller operates at the
HPMS_CLK. During eNVM read operations, the NVM controller uses the NV_FREQRNG input to insert
wait states to match with the eNVM array access times. The eNVM array stores the data. Table 2, page 7
shows the eNVM memory organization and the total size of the eNVM.

eNVM Controller: Decodes all transactions from the AHBL master and issues the commands to the
eNVM array.

ECC: The error-correcting code (ECC) block in eNVM Controller performs the SECDED. The ECC stores
error correction information with each block to perform SECDED on each 64-bit data word. ECC does not
consume any eNVM array bits. See Table 19, page 39 for ECC status information. ECC block in eNVM
Controller is enabled by default. The user has no access to control the ECC block.

Read Data Buffer: Contains four 64-bit data words. It functions as a small cache by reading NVM data
as four consecutive 64-bit data words. Data read from the eNVM is stored in read data buffer (RDBUFF)
and presented to AHB read data bus (HRDATA) corresponding to HADDR.

If the data is not available, an eNVM read cycle is invoked to retrieve data from the eNVM array. To
support an 8-bit fixed length wrapping burst, four eNVM read cycles are automatically invoked and data
read from the eNVM is stored in RDBUFF. Read data is presented to HRDATA when the data for the
current read address becomes available.

Assembly Buffer (AB): The eNVM is page-based flash memory. Only one page of data (1,024 bits) can
be written at a time. The assembly buffer stores thirty-two 32-bit data words for programming. During
programming, the assembly buffer cannot be updated. If more than one page is to be written, the page
programming function needs to be called as many times as the number of pages.

Write Data Buffer: The write data buffer provides a secondary 32-word data buffer. This can be updated
with the next 32 words to be programmed during eNVM programming.

eNVM to AHB Controller: This block interfaces the eNVM Controller with the AHB-Lite (AHBL) master
as shown in Figure 2, page 6.

2.2.1 Memory Organization
The eNVM is divided into sectors based on the eNVM size. Each sector is divided into 32 pages. Each
page holds 1,024 bits of data. The following table shows the total available memory and its organization.

Table 2 • Memory Organization

Device NVM Size
Number of
Sectors

Pages per
Sector

Bytes per
Page

Words per
Page

64-Bit Locations
per Page

Total
Bytes

M2GL005 128 KB 32 32 128 32 16 131072

M2GL010 256 KB 64 32 128 32 16 262,144

M2GL025 256 KB 64 32 128 32 16 262,144

M2GL050 256 KB 64 32 128 32 16 262,144

M2GL060 256 KB 64 32 128 32 16 262,144

M2GL090 512 KB
(two eNVMs,
each 256 KB)

64 per NVM 32 per NVM
per sector

128 32 16 262,144
per NVM

M2GL150 512 KB
(two eNVMs,
each 256 KB)

64 per NVM 32 per NVM
per sector

128 32 16 262,144
per NVM
Microchip Proprietary UG0448 Revision 10.0 7

Embedded NVM (eNVM) Controllers
2.2.2 Data Retention Time
The following table shows the retention time of the eNVM with respect to the number of programming
cycles. The same values are applicable for both commercial and industrial IGLOO2 product grades. See
DS0128: IGLOO2 and SmartFusion2 Datasheet for more information on programming cycles and
retention time.

Note: The eNVM is not prevented from programming, even if a page exceeds the write count threshold. The
eNVM Controller generates a flag through Status register (see Table 18, page 35).

2.2.3 eNVM Access Time
See the Embedded NVM (eNVM) Characteristics section from DS0128: IGLOO2 and SmartFusion2
Datasheet for eNVM Maximum Read Frequency and eNVM Page Programming Time.

2.2.4 Theory of Operation
The eNVM AHB Controller supports the following operations:

• Interface from AHBL for read, write, and erase operations
• Issues all eNVM commands through AHBL read and write bus operation. The data width to and from

AHBL bus is 32 bits, and data to and from eNVM is 64 bits.
• Assembly buffer (AB) can be read directly from AHBL bus.
• eNVMs treated as ROM. AHBL write transactions to eNVM user data array receive errors on

HRESP and write will be ignored.
• Page Program command is used to write the NVM user data array.
• AB can be written directly or loaded from the write data buffer (WDBUFF). Data can be written to

WDBUFF in byte, half-word or word AHB transfers.
• Data for Page Program comes from WDBUFF or user data previously written into AB.
• Command codes in Table 6, page 10 determine the NVM commands to be issued. The eNVM user

data array is treated as ROM, so any program operations must be performed by submitting relevant
commands to the controller. Any AHBL writes to NVM user data without a valid NVM command will
cause the HRESP signal to be asserted on the AHBL bus. Any data that needs to be written into the
NVM user array must be uploaded first to the WDBUFF and then written into the NVM user array
through the assembly buffer. Program operation for the NVM user array occurs at the page
boundaries.

2.2.4.1 Write Control
The following steps describe eNVM write control.

• The data to be programmed into eNVM must first be uploaded into WDBUFF due to the width
difference between the AHBL bus and the eNVM. Data can be written into WDBUFF by word, half-
word, or byte from the AHBL bus. ProgramDa and ProgramADS commands take care of uploading
data into AB from WDBUFF before programming eNVM.

• Data is sent to eNVM from WDBUFF in chunks of double words (64 bits). Subsequent data transfer
commands to the AB and then to eNVM array, or commands such as ProgramAd, ProgramDa, and
ProgramStart, must specify the page address and upload data to AB to start eNVM array
programming. See Table 6, page 10 for more information on commands.

Table 3 • Data Retention Time

Programming Cycles Per
eNVM Page Retention
< 1000 20 years

< 10000 10 years
Microchip Proprietary UG0448 Revision 10.0 8

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_and_igloo2_datasheet_ds0128_v12.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_and_igloo2_datasheet_ds0128_v12.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_and_igloo2_datasheet_ds0128_v12.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042

Embedded NVM (eNVM) Controllers
The following figure shows the eNVM array write path.

Figure 3 • Write Path

2.2.4.2 Read Control
The following steps describe eNVM read control.

• The read transaction from the eNVM user array to AHBL bus uses the read data buffer as a mini
cache.

• If the requested 32-bit word exists in the read data buffer, it will be returned immediately on the AHB
bus; otherwise a 64-bit read access of the eNVM is initiated and will take several clock cycles as
configured by ENVM_CR register (see Table 11, page 31).

• The eNVM data is stored in the read data buffer and provided to the AHB bus. Assuming that the
eNVM address is incremented, the data value stored in the read data buffer is available for the next
AHB read cycle.

The following figure shows the eNVM array read path.

Figure 4 • Read Path

In the eNVM array, the addresses are 64-bit locations; therefore each page of 1,024 bits (16 double
words = 32 words) requires an AHBL address map, as specified in the following table.

When programming the eNVM, sector and page addresses must be programmed into the command
(CMD) register, as specified in Table 5, page 10.

Table 4 • AHBL Address Map to NVM

Sector Number Page Number in Sector Address in Page Byte Number in 64-Bit Data
HADDR[17:12] HADDR[11:7] HADDR[6:3] HADDR[2:0]

Sector 0

.

.

.

.
Sector n-1

Sector n

eNVM to
AHB

Controller

eNVM Array

AHBL Interface

eNVM Controller

ECC Write
Data

Buffer

Assembly
Buffer

Commands and
64-Bit Data

Interface

Address Interface

Write data

32-Bit
64-Bit

Sector 0

.

.

.

.
Sector n-1

Sector n

eNVM to
AHB

Controller

eNVM Array

AHBL Interface

ECC

Read
Buffer

4-64 Bit
Registers

Commands and Data
Interface

Address Interface

Read data

32-Bit 64-Bit
Microchip Proprietary UG0448 Revision 10.0 9

Embedded NVM (eNVM) Controllers
2.2.4.3 eNVM Commands
The eNVM commands are explained in the Table 6, page 10. The eNVM Command Register is used to
program the eNVM commands. The following section explains the details of the eNVM Command
Register.

2.2.5 eNVM Command Register
The following table shows the Command Register bit definitions.

The Command Register is located at offset 0x148 in the Control Register. See Table 18, page 35 for
more information. By writing to CMD when HADDR[18:0] = 0×148, any eNVM operation may be invoked.
The eNVM goes into a busy state and HREADY is set High until it finishes the write operation. Any
further invoking of the eNVM operation will cause HREADY to go Low until it finishes the previous
operation.

Before using the eNVM read command ensure to check the ready bit of the ENVM_SR register. The
value '0' of the ready bit indicates that the eNVM controller is not busy. To execute eNVM reads/writes via
FIC, ensure that HREADY is LOW.

The following steps describe when to write to the Command Register, decoding of commands and
command execution.

• The Command Register should only be written when the NVM is non-busy (Status Register bit 0.
See Table 19, page 39 for the Status Register definitions.).

• If the Command Register is written when the NVM is still busy from a previous command then the
logic will prevent the new command and all future commands, the access_denied bit in the STATUS
Register will be set. To recover from this state, 1 should be written to bit 1 in the CLRHINT[2:0]
register (see Table 23, page 41) to clear the access_denied bit. This mechanism is used to detect
the improper NVM command sequences and protect the NVM data until the firmware recovers.

• When the AHBL triggers a write transaction with HADDR[18:0] = 0×148, HWDATA is treated as a
command (CMD).

• CMD[31:24] will be decoded as the eNVM operation, as mentioned in Figure 4, page 9.
• The value from CMD[23:3] will be decoded as the NVM array address for the eNVM operation.

Depending on the command code, some LSB bits of CMD[23:0] will be ignored. For example, to
submit a program address, only the page address CMD[17:7] is significant. Therefore CMD[17:7] is
taken as the NVM address and CMD[6:0] is ignored. See Table 6, page 10 for more information.

For masters, which are only capable of byte access, four cycles of write may be needed to fill the
Command (CMD) Register, by writing to 0x14b, 0x14a, 0x149, and 0x148.

Table 5 • Command (CMD) Register

Bit Description
[31:24] Command code

[23:0] Address field; to supply address for NVM operation (see Table 6, page 10)

Table 6 • Command Table

Name
HADDR HWDATA Transaction

Type Description18 17:0 31:24 23:0
Read Page 0 AA X X Read

ProgramAd 1 ACMD 05 PGA Write Submit page address for programming.
CMD[17:7] is considered as the eNVM
address and CMD[6:0] is ignored.
Microchip Proprietary UG0448 Revision 10.0 10

Embedded NVM (eNVM) Controllers
Notes:

• AA = NVM Array address. See Table 1, page 6.
• AAB = Address of assembly buffer. See Table 18, page 35 for address values.
• ACMD = Address of CMD register. The Command register is located at offset 0x148 in the Control

Register. See Table 18, page 35 for more information.
• PGA = Page address
• SEA = Sector address
• X = Not used

2.2.5.1 Read Page
Data read from eNVM is stored in the read data buffer (eight 32-bit memory blocks) and presented to
HRDATA based on HADDR[2:0]. For non-sequential reads, the read data buffer is checked first. If the
data is available, it is presented to HRDATA; otherwise an eNVM read cycle is invoked to read the data
from the eNVM array and data is presented to HRDATA as soon as corresponding data is available.
To support 8-byte fixed length burst (that is, to read the complete read data buffer, which consists of eight
32-bit memory blocks), 4 eNVM read cycles (each 64-bit) are automatically invoked. Data read from the
eNVM is stored in the read data buffer.

ProgramDa 1 ACMD 06 AAB Write Submit data to assembly buffer for
programming, up to 16 dwords can be
written to the assembly buffer as
specified by DWSIZE. ProgramDa
must be preceded by ProgramAd.
CMD[17:7] is considered as the eNVM
address and CMD[6:0] is ignored.

ProgramStart 1 ACMD 07 X Write Start program NVM operation

ProgramADS 1 ACMD 08 PGA Write Start whole program page procedure,
includes sending page address,
sending entire content of write data
buffer to assembly buffer, then starting
the NVM operation.

VerifyAd 1 ACMD 0D PGA Write Submit page address for standalone
verify. CMD[17:7] is taken as the eNVM
address and CMD[6:0] is ignored.

VerifyDa 1 ACMD 0E AAB Write Submit data to assembly buffer for
standalone verify. Up to 16 dwords can
be written to the assembly buffer, as
specified by DWSIZE. VerifyDa must
be preceded by the VerifyAd. CMD[6:3]
is taken as the starting double word
address and CMD[23:7] is ignored.

VerifyStart 1 ACMD 0F X Write Start standalone verify NVM operation

VerifyADS 1 ACMD 10 PGA Write Start whole standalone verify
procedure; includes sending page
address, sending entire content of write
data buffer to assembly buffer, and
then starting NVM operation.

User Unlock 13 X Write Submit a User Unlock NVM command
before Program NVM.

Table 6 • Command Table (continued)

Name
HADDR HWDATA Transaction

Type Description18 17:0 31:24 23:0
Microchip Proprietary UG0448 Revision 10.0 11

Embedded NVM (eNVM) Controllers
2.2.5.2 Page Program
This mode allows writing the page with pre-erase. In Page Program there are three stages:

• ProgramAd: This command is used to submit the page address to be programmed.
• ProgramDa: Once the ProgramAd command is issued, data can be written to AB.
• ProgramStart: After ProgramAd and ProgramDa (optional), ProgramStart can be used to start the

NVM operation. Once the NVM operation starts and until it finishes, any further NVM accessing
AHBL transaction will result in HREADYOUT going Low until the operation is done.

If the command ProgramDa is not issued after the ProgramAd operation, the current data in the
assembly buffer will be programmed to the NVM array.

2.2.5.2.1 Program Page with a Single AHBL Write
• ProgramADS: During the command ProgramADS, a single AHBL write transaction can be used to

start and complete the program page procedure. By default, all WDBUFF content is written to AB
and internal program operation automatically begins.

2.2.5.3 Standalone Verify
This mode allows verifying the contents of a page. In verify there are three stages:

• VerifyAd: This command is used to submit the page address to be verified.
• VerifyDa: Once the VerifyAd command is issued, data can be written to AB.
• VerifyStart: After VerifyAd and VerifyDa (optional), VerifyStart can be used to start the NVM

operation. Once the NVM operation starts and until it finishes, any further NVM accessing AHBL
transaction will result in HREADYOUT going Low until the operation is done. If the VerifyDa
command is not issued after the VerifyAd operation, the current data in the assembly buffer is
verified with the NVM array.

2.2.5.3.1 Standalone-Verify with a Single AHBL Write
VerifyADS: With the command VerifyADS, a single AHBL write transaction can be used to start and
complete the verify page procedure. By default, all WDBUFF content is written to AB and the internal
Standalone-Verify operation automatically starts.

2.2.5.4 Set Lock Bit and User Unlock Commands
There is a user page lock bit to lock the page for writing. The Control Register PAGE_LOCK_SET[0] is
used to set the user lock bit of the page. See NV_PAGE_STATUS register in Table 18, page 35 for more
information. If PAGE_LOCK_SET[0] == 1, then the nv_s_page_lock_set signal will be asserted when
submitting the address for Program.

To program a page, the User Unlock command must be submitted before submitting ProgramAd or
ProgramADS.
Microchip Proprietary UG0448 Revision 10.0 12

Embedded NVM (eNVM) Controllers
2.2.5.5 eNVM Read Operations with Timing Diagrams
The following are the example eNVM read operations with the HPMS clock at 166 MHz and NVM
FREQRNG is set to the value of 6.

2.2.5.5.1 Single Word Read
The following figure shows the AHB read command to 0x60001000 starting at the first cursor, and data
being returned at the second cursor 9 clock cycles later.

Figure 5 • Timing Diagram for Single Word Read Operation

2.2.5.5.2 Consecutive Reads Incrementing through Memory
In this case, four reads from addresses 0x60000010, 0x60000014, 0x60000018, and 0x6000001C are
initiated by the AHB master in succession. The first word is returned 9 clock cycles later (as shown in the
preceding figure), but the second word occurs in the following cycle, 9 clock cycles later the third word is
provided and the fourth word occurs in the next clock cycle. This pattern is repeated as the memory is
incremented as shown in the following figure.

Figure 6 • Timing Diagram for Consecutive Reads Incrementing Through Memory

Microchip Proprietary UG0448 Revision 10.0 13

Embedded NVM (eNVM) Controllers
2.2.5.6 eNVM Program and Verify Operations Timing Diagrams
Timing diagrams in this section illustrate eNVM Program and Verify operations at the AHB bus transfer
level with the fabric master operating at 166 MHz. The eNVM NV_FREQRNG is set to 15. The sample
eNVM operation programs the eNVM sector 0 page 4 with random data and verifies the eNVM sector 0
page 4.

Note: In all the waveforms, the eNVM controller register offset is shown in AHB address line (HADDR). See
eNVM Control Registers, page 35 for more information.

2.2.5.6.1 Sequence of eNVM Program and Verify Operations when using ProgramADS and
VerifyADS Commands
The following figure shows the following sequence of eNVM ProgramADS and VerifyADS commands:

1. Fabric master requests for exclusive register access by writing 0x1 to the REQACCESS register.
2. Fills the WDBUFF (Write Data Buffer) register with the data to be written to the eNVM array.
3. Issues ProgramADS command.
4. Completes the eNVM Program operation and starts the eNVM Verification by issuing a VerifyADS

command.
5. Completes the eNVM verify operation.
6. Releases the exclusive register access by writing 0x0 to the REQACCESS register.
The status of the eNVM operations are monitored by polling the Status register response.

For a description of each register, see Table 18, page 35.

The following figure shows the complete eNVM program (ProgramADS) and eNVM verify (VerifyADS)
operations.

Figure 7 • eNVM Program and Verify Operations

At cursor 1, step 1 and step 2 of the sequence are performed. At cursor 2, the eNVM Program operation
gets completed and Verify operation gets started. At cursor 3, the verify operation is completed (see the
preceding figure).

The following figures (Figure 8, page 14 through Figure 11, page 15) show the eNVM commands
sequence in waveforms.

The fabric master gets the exclusive register access by writing 0x1 to the REQACCESS register. It reads
the value 0x5 from AHB read data line (HRDATA), it means the exclusive register access is issued. Then
the WDBUFF (Write Data Buffer) register is filled with the random data, as shown in the following figure.

Figure 8 • Exclusive Register Access and Filling Data in WDBUFF
Microchip Proprietary UG0448 Revision 10.0 14

Embedded NVM (eNVM) Controllers
The following figure shows issue of ProgramADS command by writing 0x08 to CMD register.

Figure 9 • Issuing the ProgramADS Command

Note: HWDATA[31:24] holds the ProgramADS command and HWDATA[23:0] holds the eNVM page address.
See Table 5, page 10.

The following figure shows completion of ProgramADS and issue of VerifyADS command.

Figure 10 • Completion of ProgramADS and Issue of VerifyADS Command

The ProgramADS command completion can be confirmed by polling Status register response. The
following figure shows completion of eNVM verify operation.

Figure 11 • Completion of eNVM Verify Operation

2.2.5.6.2 Sequence of eNVM Program and Verify Operations when using ProgramAD,
ProgramDA, ProgramStart, VerifyAD, VerifyDA, and VerifyStart Commands
Figure 13, page 16 through Figure 16, page 17 show the sequence of eNVM program operation:

1. Fabric master requests for exclusive register access by writing 0x1 to the REQACCESS register.
See Figure 13, page 16.

2. Fills the WDBUFF (Write Data Buffer) register with the data to be written to the eNVM array. See
Figure 13, page 16.

3. Issues ProgramAD command. See Figure 14, page 16.
4. Completes the ProgramAD command and Issues the ProgramDA command. See Figure 15,

page 16.
5. Completes the ProgramDA command and Issues ProgramStart command. See Figure 16, page 17.
6. Completes the eNVM Program operation and starts the eNVM verification by issuing a VerifyAD

command.
7. Completes the VerifyAD command and Issues the VerifyDA command.
8. Completes the VerifyDA command and Issue the VerifyStart command.
9. Completes the eNVM verify operation.
10. Releases the exclusive register access by writing 0x0 to the REQACCESS register.
Microchip Proprietary UG0448 Revision 10.0 15

Embedded NVM (eNVM) Controllers
The status of the eNVM operations is monitored by polling the Status register response.

The following figure shows the complete eNVM program and eNVM verify operations.

Figure 12 • Complete eNVM Program and Verify Operations Waveform

At cursor 1, step 1 and step 2 of the sequence are performed. At cursor 2, the eNVM ProgramStart
operation is completed and VerifyAD operation is started. At Cursor 3, the verify operation is completed
(see the preceding figure). The eNVM commands sequence is explained in waveforms.

The following figure shows the fabric master requesting for exclusive register access and filling WDBUFF
(Write Data Buffer).

Figure 13 • Exclusive Register Access and Filling Data in WDBUFF

The following figure shows issue of ProgramAD command.

Figure 14 • ProgramAD Command

The following figure shows completion of ProgramAD command and issue of ProgramDA command.

Figure 15 • ProgramDA command
Microchip Proprietary UG0448 Revision 10.0 16

Embedded NVM (eNVM) Controllers
The following figure shows completion of ProgramDA command and issue of ProgramStart command.

Figure 16 • ProgramStart Command

The completion of the eNVM command is confirmed by monitoring the eNVM status register for eNVM
ready and the next command in sequence is sent. VerifyAD, VerifyDA, and VerifyStart commands are
issued by writing corresponding command value into CMD register.

2.2.6 Error Response
The error response, which is indicated by the HRESP signal, is asserted if any of the following conditions
occur:

• AHBL burst read is terminated early or address sequence is not as expected. This should never
occur within the system during normal operation.

• AHBL write transaction addressed to read-only user data array
• AHBL read or write transaction to a protected memory area. See Security, page 17
Data on HRDATA with error response is zero. A write transaction addressed to read-only Control
Register such as RD or RDT will not trigger an error response. However, the data in these registers will
not be affected.

2.2.7 Interrupt to Fabric Master
Setting the Control Registers INTEN[10:0] as shown in Table 18, page 35 allows the user to configure
HINT to assert an interrupt on any active status events from eNVM, such as the assertion of any status
bit from eNVM or when an internal eNVM operation ends.

After HINT is asserted, the fabric master determines the next steps. The fabric master can respond to the
interrupt and then clear HINT by writing 1 to bit 0 of the write-only register CLRHINT[2:0] (HADDR =
0x158) in Table 18, page 35. If the fabric master decides to ignore the interrupt (by masking it out), the
interrupt is cleared if read or write continues and the interrupt-triggering events are not re-occurring. If the
same triggering event happens again, HINT will remain asserted.

2.3 Security
The eNVM is protected using four levels of security features:

• The eNVM page protection uses two levels: factory lock and user lock. Factory lock is not accessible
for the user. See Set Lock Bit and User Unlock Commands, page 12.

• There are two or four special sectors per eNVM array that can be protected for read and write,
depending on which entity is accessing the region as shown in Figure 17, page 18 through
Figure 21, page 20. On devices with smaller or bigger eNVMs, the upper 4 KB special sector is
aligned to the top 4 KB region of the eNVM. These user protectable 4 KB special sectors, can be
configured by Libero® software. See Figure 28, page 28 for more details.

• There are two private regions in M2GL060, M2GL090, and M2GL150 as shown in Figure 20,
page 19 and Figure 21, page 20 which are reserved for storing device certificate, eNVM digest,
security keys, and so on. Only system controller can access the private regions. See eNVM Pages
for Special Purpose Storage, page 21 for more details.

• Using AHB bus master access control, the eNVM can be protected from different masters connected
on the AHB bus matrix. See AHB Bus Matrix, page 62.

• User-defined regions can be protected from the FPGA fabric.
Microchip Proprietary UG0448 Revision 10.0 17

Embedded NVM (eNVM) Controllers
2.3.1 User-Protectable 4K Regions
Figure 17 • eNVM Special Sectors for the M2GL050TS Device with 256 KB eNVM_0

Figure 18 • eNVM Special Sectors for the M2GL005S Device with 128 KB eNVM_0

0x6003F000 to 0x6003FFFF

0x60000000 to 0x60000FFF

eNVM_0
Total 256 KB

Special Sector Upper 4 KB Region (U0)

Special Sector Lower 4 KB Region (L0)

248 KB

M2GL050TS

0x6001F000 to 0x6001FFFF

0x60000000 to 0x60000FFF

eNVM_0
Total 128 KB

Special Sector Upper 4 KB Region (U0)

Special Sector Lower 4 KB Region (L0)

112 KB

M2GL005S

0x6001E000 to 0x6001EFFF

0x6001D000 to 0x6001DFFF

Special Sector Lower 4 KB Region (L1)

Special Sector Upper 4 KB Region (U1)
Microchip Proprietary UG0448 Revision 10.0 18

Embedded NVM (eNVM) Controllers
Figure 19 • eNVM Special Sectors for M2GL010TS and M2GL025TS Devices with 256 KB eNVM_0

Figure 20 • eNVM Special Sectors for the M2GL060TS Device with 256 KB eNVM_0

0x6003F000 to 0x6003FFFF

0x60000000 to 0x60000FFF

eNVM_0
Total 256 KB

Special Sector Upper 4 KB Region (U0)

Special Sector Lower 4 KB Region (L0)

240 KB

M2GL010TS, M2GL025TS

0x6003E000 to 0x6003EFFF

0x6003D000 to 0x6003DFFF

Special Sector Lower 4 KB Region (L1)

Special Sector Upper 4 KB Region (U1)

0x6003F000 to 0x6003FFFF

0x60000000 to 0x60000FFF

eNVM_0
Total 256 KB

Private Region 4 KB

Special Sector Lower 4 KB Region (L0)

240 KB

M2GL060TS

0x6003E000 to 0x6003EFFF

0x6003D000 to 0x6003DFFF

Private Region 4 KB

Special Sector Upper 4 KB Region (U0)
Microchip Proprietary UG0448 Revision 10.0 19

Embedded NVM (eNVM) Controllers
Figure 21 • eNVM Special Sectors for M2GL090TS and M2GL150TS Devices with 512 KB

The security configuration is provided as input to the eNVM Controller from system registers as per the
ENVM_PROTECT_USER register described in Table 10, page 30 for configuration of upper and lower
regions of NVM. The following table lists user protection regions for different masters.

2.3.1.1 Read Protection
When AHB masters other than the system controller issue read transactions to protected regions, the
address and protection configuration is checked to determine whether the read is targeted to the
protected region and if the read is allowed. If the read is not allowed, the eNVM read command is not
sent to the eNVM and an error is generated. For a specific AHB master to read a protected region, both
the factory and user allowed bits must be set. See Table 14, page 34 for information on eNVM access
controls for AHB masters.

2.3.1.2 Write Protection
When AHB masters other than system controller issue write transactions (which may be one of the
program commands supported by this interface) to protected regions, the address and protection
configuration is checked to determine whether the transaction is targeted to the protected region. If the
transaction is not allowed, no command is sent to eNVM and the Status bit (see Table 18, page 35) is
asserted.

2.3.1.3 Power-Down
During device startup, the eNVM(s) will be powered up as the fabric is powered up. As soon as the fabric
is active, if the user sets the deep power down (DPD) bit, the NVM(s) will be powered down. Each eNVM
block can be put into deep power down mode by configuring the SYSREG. The eNVM can permanently
be switched on or switched off. See ENVM_CR register (Table 10, page 30) for configuration settings.

Table 7 • User Protection Regions

Master Function
Fabric master FIC_0 can access the protected memory regions. Access bit defines the read

accessibility. Write allowed bit indicates that the masters which have read access can
also have write access.

Other masters
(PDMA and HPDMA)

All other masters are allowed access. Access bit defines the read accessibility.

0x6007D000 to 0x6007DFFF

0x60000000 to 0x60000FFF

Total
eNVM
512 KB

Special Sector Upper 4 KB Region (U0)

Special Sector Lower 4 KB Region (L0)

488 KB

M2GL090TS, M2GL150TS

0x6007C000 to 0x6007CFFF

0x6007B000 to 0x6007BFFF

Special Sector Lower 4 KB Region (L1)

Special Sector Upper 4 KB Region (U1)

eNVM_1
256 KB

eNVM_0
256 KB

0x6007E000 to 0x6007EFFF

0x6007F000 to 0x6007FFFF

Private Region 4 KB

Private Region 4 KB
Microchip Proprietary UG0448 Revision 10.0 20

Embedded NVM (eNVM) Controllers
During Flash*Freeze, users may want to put the NVM(s) into deep power down mode, to save power.
The user should not enter power down while the NVM is in use. DPD is not entered automatically when
Flash*Freeze is entered.

Note: Flash*Freeze applies mainly to the fabric.

2.3.2 eNVM Pages for Special Purpose Storage
A few pages in the final sectors (N-1 and N-2) of the last eNVM module are used for special purpose
storage like device certificate, eNVM digest and peripheral initialization configuration data for SerDes,
FDDR and MDDR. Some special purpose pages are reserved and protected. See Table 8, page 21 and
Table 9, page 21 for more information on eNVM special purpose storage based on IGLOO2 device
density. The system controller performs read/write operations on unreserved eNVM pages using system
controller services. It only reads data from reserved eNVM pages. 48 pages in the final sectors of
eNVM_0 module for M2GL005, M2GL010, M2GL025, and M2GL050 devices are used for special
purpose storage as listed in the following table.

64 pages of eNVM in the final 2 sectors (private regions) of the last eNVM module for M2GL060,
M2GL090, and M2GL150 devices are used for special purpose storage like device certificate, eNVM
digest and security keys. 32 pages in N-3 sector of the last eNVM module are used as peripheral
initialization configuration data for SerDes, FDDR and MDDR. For more information, see Table 9,
page 21. The M2GL060 device has two private regions in eNVM_0 and the M2GL090/M2GL150 device
has two private regions in eNVM_1.

Table 8 • Special Purpose Storage Regions

Device eNVM module Sector Page Type Usage
M2GL005/M2GL010/
M2GL025/M2GL050

eNVM_0 N-2 16-31 Unreserved Peripheral
initialization
configuration data
for SerDes, FDDR
and MDDR

N-1 0-15 Unreserved

16-24 Reserved Reserved for future
use

25-30 Unreserved Device Certificate

31 Unreserved Digest for eNVM_0

Table 9 • Special Purpose Storage Regions for M2GL060, M2GL090 and M2GL150 Devices

Sector
in eNVM Page Type Usage

Offset in
page
(Bytes)

Range
(Bytes)

N-3 31-0 Unreserved Peripheral initialization configuration data for
SerDes, FDDR and MDDR

0 4095:0
Microchip Proprietary UG0448 Revision 10.0 21

Embedded NVM (eNVM) Controllers
N-2 20-0 Unreserved User Key Code#2 to User Key Code #N.
N can be maximum 58.
Maximum 56 Key Codes (KC#2 to KC#58),each
occupies 48 Bytes
Minimum 5 Key Codes (KC#2 to KC#7), each
occupies 528 Bytes

0 2687:0

29-21 Unreserved User Activation Code 0 1151:0

30 Unreserved User Activation Code (Total 1192 bytes across page
21 to page 30)

0 39:0

30 Unreserved User Defined (Key sizes + Exported bit + Valid bit)
byte array: 56 bytes holds 56 key sizes along with
exported and valid bit flags.

40 55:0

30 Unreserved Reserved for future use 96 31:0

31 Unreserved User PK-X (384-bit User PUF ECC Public Key) 0 47:0

31 Unreserved User PK-Y (384-bit User PUF ECC Public Key) 48 47:0

31 Unreserved User Activation Code exported flag (Digests Valid,
Activation Code missing)

96 1 byte

31 Unreserved User Activation Code valid flag 97 1 byte

31 Unreserved User Key Code #0 exported flag (Digests Valid, Key
Code missing)

98 1 byte

31 Unreserved User Key Code #0 valid flag 99 1 byte

31 Unreserved User Key Code #1 exported flag (Digests Valid, Key
Code missing)

100 1 byte

31 Unreserved User Key Code #1 valid flag 101 1 byte

31 Unreserved User Public Key valid flag 102 1 byte

31 Unreserved Reserved for future use 103 24:0

Table 9 • Special Purpose Storage Regions for M2GL060, M2GL090 and M2GL150 Devices (continued)
Microchip Proprietary UG0448 Revision 10.0 22

Embedded NVM (eNVM) Controllers
See UG0443: SmartFusion2 SoC FPGA and IGLOO2 FPGA Security and Reliability User Guide for
more information on the certificates, key codes, and digests. System controller performs read/write
operations on unreserved eNVM pages, and reads data from reserved eNVM pages.

N-1 0 Unreserved User Key Code #0 (256-bit User AES Key) 0 43:0

0 Unreserved User Key Code#1 (384-bit User PUF ECC Key)
(76 bytes)

44 75:0

0 Unreserved Reserved for future use 120 7:0

9-1 Reserved Factory Activation Code 0 1151:0

10 Reserved Factory Activation Code (Total 1192 bytes across
page 1 to page 10)

0 1191:1152

10 Reserved Factory Key Code (384 bit Factory ECC Key Code) 40 75:0

10 Reserved Reserved for future use 116 11:0

15-11 Reserved Second ECC Key Certificate 0 639:0

21-16 Reserved Reserved for future use 0 767:0

22 Unreserved eNVM_1 Private User Digest of page 0 of N-1 and
all pages of N-2

0 127:0

23 Reserved eNVM_1 Private Factory Digest of pages from 1 to
30 of N-1 except pages 22, 23, and 24

0 127:0

24 Unreserved eNVM_1 Public Digest 0 127:0

30-25 Reserved Device Certificate 0 767:0

31 Unreserved eNVM_0 Digest 0 127:0

Table 9 • Special Purpose Storage Regions for M2GL060, M2GL090 and M2GL150 Devices (continued)
Microchip Proprietary UG0448 Revision 10.0 23

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/UserGuides/SmartFusion2_IGLOO2_FPGA_Security_Best_Practices_UG0443_V10.pdf

Embedded NVM (eNVM) Controllers
2.4 How to Use eNVM
This section describes how to use the eNVM in the IGLOO2 devices. To configure the IGLOO2 device
features and then build a complete system, use the System Builder graphical design wizard in the
Libero SoC software.

2.4.1 Data Storage in eNVM Using the Libero eNVM Client
The Libero eNVM client creates the eNVM data that the FlashPro software uses to initialize the eNVM
during programming. The programmed eNVM can be accessed by the HPDMA, PDMA, or the FPGA
fabric master connected to the AHB bus matrix.

The following figure shows the initial System Builder window where the required device features can be
selected. For details on how to launch the System Builder wizard and detailed information on how to
use it, see IGLOO2 System Builder User Guide.

Figure 22 • System Builder Window
Microchip Proprietary UG0448 Revision 10.0 24

http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf

Embedded NVM (eNVM) Controllers
The following steps describe how to generate a programming file with the eNVM client in an application
using System Builder.

1. Check the HPMS On-chip Flash Memory (eNVM) check box under the Device Features tab and
leave the other check boxes unchecked. The following figure shows the System Builder - Device
Features tab.

Figure 23 • System Builder - Device Features Tab

2. Click Next to navigate to the Memories tab. The following figure shows the System Builder –
Memories tab.

Figure 24 • System Builder - Memories Tab
Microchip Proprietary UG0448 Revision 10.0 25

Embedded NVM (eNVM) Controllers
3. Click Configure Flash Memory to open the eNVM: Modify core dialog box. The following figure
shows the eNVM: Modify Core dialog box.

Figure 25 • eNVM: Modify Core Dialog Box

4. Select Data Storage under Available Client Types and click Add to System.
5. The following figure shows the Add Data Storage Client dialog. It supports the following types of file

formats:
• Intel-Hex
• Motorola-S
• Microchip-Hex
• Microchip-Binary
Enter the Client name, navigate to the memory file location using Browse, and select it. Give the
rest of the parameters according to the requirements and click OK to add the eNVM client. For more
information on Use absolute addressing, Use as ROM and other options, click Help.
Microchip Proprietary UG0448 Revision 10.0 26

Embedded NVM (eNVM) Controllers
Figure 26 • Add Data Storage Client Dialog

6. The eNVM client data is populated in the eNVM: Modify core dialog box. The following figure shows
the eNVM: Modify core dialog box with two eNVM clients.

Figure 27 • eNVM: Modify Core Dialog Box with Two eNVM Clients
Microchip Proprietary UG0448 Revision 10.0 27

Embedded NVM (eNVM) Controllers
7. After adding the eNVM clients, click OK.
8. Navigate to the Security tab to select the read and write access permissions of eNVM including

protected regions for different masters as shown in the following figure. For more information about
eNVM Access Configuration, click Help and see HPMS Design and Data Security document. The
read and write permission options for different masters are available for data and design security
enabled devices like M2GL010TS only.

Figure 28 • System Builder - Security Tab
Microchip Proprietary UG0448 Revision 10.0 28

Embedded NVM (eNVM) Controllers
9. Navigate to the Memory Map tab giving the required data in the rest of the System Builder tabs.
The following figure shows the System Builder - Memory Map tab. Click Finish to proceed with
creating the HPMS Subsystem, page 29.

Figure 29 • System Builder - Memory Map Tab

2.4.2 HPMS Subsystem
The following figure shows an example HPMS subsystem that can be used to access the eNVM client
data using the FPGA fabric master.

Figure 30 • HPMS Subsystem
Microchip Proprietary UG0448 Revision 10.0 29

Embedded NVM (eNVM) Controllers
2.4.3 HPMS Subsystem Connected to the FPGA Fabric Master
The following figure shows the FPGA fabric master connected to the AHB master port. The eNVM client
data can be accessed using the FPGA fabric master that is connected to the AHB master port.

Figure 31 • HPMS Interconnection with FPGA Fabric Master

• The HPMS eNVM supports full-behavioral simulation models. See Embedded Nonvolatile Memory
(eNVM) Simulation for information on how to simulate the eNVM operations.

• See AC429: SmartFusion2 and IGLOO2 - Accessing eNVM and eSRAM from FPGA Fabric
Application Note for information on how to access the eNVM using FPGA fabric logic.

2.4.4 Reading the eNVM Block
Any master, for example, HPDMA, PDMA, or FPGA fabric connected to the AHB bus matrix can access
the eNVM blocks using the address range provided in Table 1, page 6 for read operations.

2.4.5 Writing to the eNVM Block
The FPGA fabric master can implement the user logic using the commands sequence explained in
eNVM Commands, page 10.

2.5 SYSREG Control Registers
The System Control Registers control eNVM behavior. These registers are located in the SYSREG
section and are listed here for clarity. See System Register Block, page 197 for more information on each
register and bit.

Table 10 • SYSREG Control Registers

Register Name
Register
Type

Flash Write
Protect

Reset
Source Description

ENVM_CR (0x4003800C) RW-P Register sysreset_n eNVM Configuration Register. For more
information, see Table 11, page 31.

ENVM_REMAP_FAB_CR
(0x40038014)

R W-P Register sysreset_n eNVM remap Configuration Register for a soft
processor in the FPGA. For more information,
see Table 13, page 33.
Microchip Proprietary UG0448 Revision 10.0 30

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_igloo2_accessing_envm_esram_application_note_ac429_v6.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_igloo2_accessing_envm_esram_application_note_ac429_v6.pdf
http://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/MSS/sf2_mss_envm_sim_ug_1.pdf
http://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/MSS/sf2_mss_envm_sim_ug_1.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134388

Embedded NVM (eNVM) Controllers
ENVM_PROTECT_USER
(0x40038144)

RO-U N/A sysreset_n Configuration for accessibility of protected
regions of eNVM_0 and eNVM_1 by different
masters on the AHB bus matrix. This register
gets updated by flash bit configuration set
during device programming. This configuration
can be done through the System Builder
using settings on the Security tab. For more
information, see Table 14, page 34.

ENVM_STATUS
(0x40038148)

RO-U N/A sysreset_n Code shadow Status Register. For more
information, see Table 15, page 35.

ENVM_SR
(0x40038158)

RO N/A sysreset_n Indicates busy status for eNVM_0, eNVM_1.
For more information, see Table 16, page 35.

Table 11 • ENVM_CR

Bit
Number Name Reset Value Description
[31:17] Reserved 0

16 ENVM_SENSE_ON 0 Turns on or off the sense amps for both NVM0 and NVM1.
The sense amp switching feature is useful to decrease the
eNVM access time.
0: Normal Operation -The sense amp switches off after every
read cycle if an idle cycle follows. This saves power but
slightly increases access time on the next read cycle.
1:The sense amp is turned ON. This increases power but
decreases access times.

15 ENVM_PERSIST 0 Reset control for NVM0 and NVM1.
0: NVM0, NVM1 will get reset on SYSRESET_N and
PORESET_N.
1: NVM0, NVM1 will get reset on PORESET_N.

14 NV_DPD1 0 Deep power-down control for the NVM1.
0: Normal operation
1: NVM deep power-down

13 NV_DPD0 0 Deep power-down control for the NVM0.
0: Normal operation
1: NVM deep power-down

Table 10 • SYSREG Control Registers (continued)

Register Name
Register
Type

Flash Write
Protect

Reset
Source Description
Microchip Proprietary UG0448 Revision 10.0 31

Embedded NVM (eNVM) Controllers
[12:5] NV_FREQRNG 0x7 Setting of NV_FREQRNG[8:5] or NV_FREQRNG[12:9]
determines the behavior of eNVM BUSY_B with respect to the
AHB Bus interface clock. NV_FREQRNG[8:5] is used for
NVM0 and NV_FREQRNG[12:9] is used for NVM1.
This control can be used to accommodate various frequencies
of the external interface clock, HPMS_CLK, or it can be used
to advance or delay the data capture due to variation of read
access time of the NVM core. It sets the number of wait states
to match with the fabric master operating frequency for read
operations. The small counter in the NVM Controller uses this
value to advance or delay the data capture before sampling
data.
0000: NOT SUPPORTED
0001: NOT SUPPORTED
0010: Page Read = 3, All other modes (Page program and
Page verify) = 2
0011: Page Read = 4, All other modes (Page program and
Page verify) = 2
0100: Page Read = 5, All other modes (Page program and
Page verify) = 2
0101: Page Read = 6, All other modes (Page program and
Page verify) = 3
0110: Page Read = 7, All other modes (Page program and
Page verify) = 3
0111: Page Read = 8, All other modes (Page program and
Page verify) = 4
1000: Page Read = 9, All other modes (Page program and
Page verify) = 4
1001: Page Read = 10, All other modes (Page program and
Page verify) = 4
1010: Page Read = 11, All other modes (Page program and
Page verify) = 5
1011: Page Read = 12, All other modes (Page program and
Page verify) = 5
1100: Page Read = 13, All other modes (Page program and
Page verify) = 6
1101: Page Read = 14, All other modes (Page program and
Page verify) = 6
1110: Page Read = 15, All other modes (Page program and
Page verify) = 6
1111: Page Read = 16, All other modes (Page program and
Page verify) = 7

[4:0] SW_ENVMREMAPSIZE 0x11 Size of the segment in eNVM, which is to be remapped to
location 0x00000000. This logically splits eNVM into a number
of segments, each of which may be used to store a different
firmware image, for example. The region sizes are shown in
Table 12, page 33.

Table 11 • ENVM_CR (continued)

Bit
Number Name Reset Value Description
Microchip Proprietary UG0448 Revision 10.0 32

Embedded NVM (eNVM) Controllers
Table 12 • SW_ENVMREMAPSIZE

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Remap Size
0 0 0 0 0 Reserved

0 0 0 0 1 Reserved

0 0 0 1 0 Reserved

0 0 0 1 1 Reserved

0 0 1 0 0 Reserved

0 0 1 0 1 Reserved

0 0 1 1 0 Reserved

0 0 1 1 1 Reserved

0 1 0 0 0 Reserved

0 1 0 0 1 Reserved

0 1 0 1 0 Reserved

0 1 0 1 1 Reserved

0 1 1 0 0 Reserved

0 1 1 0 1 16 Kbytes

0 1 1 1 0 32 Kbytes

0 1 1 1 1 64 Kbytes

1 0 0 0 0 128 Kbytes

1 0 0 0 1 256 Kbytes

1 0 0 1 0 512 Kbytes, reset value

Table 13 • ENVM_REMAP_FAB_CR

Bit Number Name Reset Value Description
[31:19] Reserved 0

[18:1] SW_ENVMFABREMAPBASE 0 Offset within eNVM address space of the base
address of the segment in eNVM, which is to be
remapped to location 0x00000000 for use by a soft
processor in the FPGA fabric. The base address of
the remapped segment of eNVM is determined by
the value of this register. Bit 0 of this register is
defined as SW_ENVMFABREMAPENABLE. Bit 0
must be set to remap the NVM.

0 SW_ENVMFABREMAPENABLE 0 0: eNVM fabric remap not enabled for access by
fabric master/soft processor. The portion of eNVM
visible in the eNVM window at location 0x00000000
of a soft processor’s memory space corresponds to
the memory locations at the bottom of eNVM.
1: eNVM fabric remap enabled. The portion of
eNVM visible at location 0x00000000 of a soft
processor’s memory space of is a remapped
segment of eNVM.
Microchip Proprietary UG0448 Revision 10.0 33

Embedded NVM (eNVM) Controllers
Table 14 • ENVM_PROTECT_USER

Bit Number Name Reset Value Description
[31:16] Reserved 0

15 NVM1_UPPER_WRI
TE_ALLOWED

0x1 When set indicates that the masters who have
read access can have write access to the
upper protection region of eNVM1. This is
updated by the user flash row bit.

14 NVM1_UPPER_OTH
ERS_ACCESS

0x1 When set indicates that the other masters can
access the upper protection region of
eNVM1.This is set by the user flash row bit.

13 NVM1_UPPER_FAB
RIC_ACCESS

0x1 When set indicates that the fabric can access
the upper protection region of eNVM1. This is
set by the user flash row bit.

12 Reserved

11 NVM1_LOWER_WRI
TE_ALLOWED

0x1 When set indicates that the masters who have
read access can have write access to the
lower protection region of eNVM1. This is set
by the user flash row bit.

10 NVM1_LOWER_OTH
ERS_ACCESS

0x1 When set indicates that the other masters can
access the lower protection region of eNVM1.
This is set by the user flash row bit.

9 NVM1_LOWER_FAB
RIC_ACCESS

0x1 When set indicates that the fabric can access
the lower protection region of eNVM1.This is
set by user flash row bit.

8 Reserved

7 NVM0_UPPER_WRI
TE_ALLOWED

0x1 When set indicates that the masters who have
read access can have write access to the
upper protection region of eNVM0. This will be
set by the user flash row bit.

6 NVM0_UPPER_OTH
ERS_ACCESS

0x1 When set indicates that the other masters can
access the upper protection region of eNVM0.

5 NVM0_UPPER_FAB
RIC_ACCESS

0x1 When set indicates that the fabric can access
the upper protection region of eNVM0. This will
be set by the user flash row bit.

4 Reserved

3 NVM0_LOWER_WRI
TE_ALLOWED

0x1 When set indicates that the masters who have
read access can have write access to the
lower protection region of eNVM0. This will be
set by the user flash row bit.

2 NVM0_LOWER_OTH
ERS_ACCESS

0x1 When set indicates that the other masters can
access the lower protection region of eNVM0.
This will be set by the user flash row bit.

1 NVM0_LOWER_FAB
RIC_ACCESS

0x1 When set indicates that the fabric can access
the lower protection region of eNVM0. This will
be set by the user flash row bit.

0 Reserved
Microchip Proprietary UG0448 Revision 10.0 34

Embedded NVM (eNVM) Controllers
See Table 7, page 20 for information on different masters.

2.6 eNVM Control Registers
To perform any transaction with the NVM array, the Control Registers must be configured appropriately
as per the following table.

To access or update the Control Register, the AHBL master must first get access to the register set.
Without access rights, all writes to the Control Register will be ignored and the read will return zero from
REQACC and the status register bit definitions (see Table 19, page 39).

This access rights system ensures that while a master is programming the NVM array, no other master
can interfere or see what data is being programmed.

To obtain access rights, the master writes 0x1 to the REQACC register and then reads the register to
check whether access is granted. If access is granted the Control Register is set.

The following table shows the base address of the eNVM Control Registers for eNVM_0 and eNVM_1.

Table 15 • ENVM_STATUS

Bit Number Name Reset Value Description
[31:1] Reserved 0

0 CODE_SHADOW_EN 0 Read by the system controller during device start-
up, to indicate whether the user has configured the
device such that code shadowing is to be
performed by system controller firmware.

Table 16 • ENVM_SR

Bit Number Name Reset Value Description
[31:2] Reserved 0

[1:0] ENVM_BUSY 0 Active high signals indicate a busy state per
eNVM for CLK-driven operations and for internal
operations triggered by the
write/program/erase/transfer command.
ENVM_BUSY[1] = Busy indication from ENVM1
ENVM_BUSY[0] = Busy indication from ENVM0

Table 17 • eNVM Control Registers Base Address

eNVM Block Control Registers Base Address
eNVM_0 0x60080000

eNVM_1 0x600C0000

Table 18 • Control Registers Description

OFFSET
HADDR[8:0] Register Name Width Type Default Access Rights Description
0x000-0x07F Assembly Buffer 1023:0

32 × 32bits
R Exclusive access

to the requested
master

Reads from these addresses
will return data read from
assembly buffer within the
NVM array
Microchip Proprietary UG0448 Revision 10.0 35

Embedded NVM (eNVM) Controllers
0x080-0x0FF WDBUFF (Write Data
Buffer)

1023:0
32 × 32bits

R/W 0 Any master on
AHB bus matrix

Write data buffer.
This register is cleared when
exiting normal mode.
This register is not cleared
when the System Controller
grabs ownership by writing
0x03 to REQACCESS (see
Table 18, page 35).

0x120 Status 31:0 R Any master on
AHB bus matrix

See Table 19, page 39.

0x128 NV_PAGE_STATUS 1:0 R/W 0 Exclusive access
to the requested
master

See Table 21, page 40.

0x12C NV_FREQRNG[7:0] 7:0 R SYSRE
G

Exclusive access
to the requested
master

eNVM interface frequency
range setting:
Bits [3:0] set the number of
wait cycles required for each
NVM access cycles.
This is read-only register.
The ENVM_CR system
register NV_FREQRNG field
needs to be set with value as
calculated below.
NV_FREQRNG =
roundup(40 ns / HPMS_CLK
clock period in ns)
The NV_FREQRNG[3:0] is
for NVM0 wait states and
NV_FREQRNG[7:4] is for
NVM1 wait states.
See Table 20, page 40
NV_FREQRNG calculations
at different HPMS_CLK
frequencies for all IGLOO2
devices.
Bits [7:4] are unused with the
AHB-NVM block when the
device has only eNVM_0.
This controls the
NV_FREQRNG[3:0] input on
the NVMCTRL function that
sets the required number of
clock cycles required for
NVM accesses relative to
the operating frequency.

0x130 NV_DPD_B 1-bit R SYSRE
G

Exclusive access
to the requested
master

NV_DPD_B[0] describes
NVM deep power-down
state.
0: NVM operational
1: NVM In deep power-down

Table 18 • Control Registers Description (continued)

OFFSET
HADDR[8:0] Register Name Width Type Default Access Rights Description
Microchip Proprietary UG0448 Revision 10.0 36

Embedded NVM (eNVM) Controllers
0x134 NV_CE 2-bit R/W 1 Exclusive access
to the requested
master

NV_CE[0] = 0: NVM disabled
NV_CE[0] = 1: NVM enabled
NV_CE [1] = 1; The internal
read cache is disabled. All
reads will directly read the
eNVM array, AB or SFR
space. When set NVM
access latency will increase.
By default this bit is set to '0'.

0x140 PAGE_LOCK_SET 1 R/W 0 Exclusive access
to the requested
master

PAGE_LOCK_SET[0] = 1:
Page is locked.
PAGE_LOCK_SET[0] = 0:
Page is unlocked.
If the page is locked, then
before writing the page
should be unlocked.

0x144 DWSIZE 3:0 R/W 0 Exclusive access
to the requested
master

Write size in number of
double words, to be written
to assembly buffer from
Write Data buffer during
NVM commands. See
description for individual
commands.
0000 = 1 dword
1111 = 16 dwords

0x148 CMD 31:0 R/W 0 Exclusive access
to the requested
master

Write to CMD and if
command field in HWDATA
decoded to be a command,
then NVM command will be
initiated. See description of
Table 5, page 10: CMD
Register and individual
commands.

0x154 INTEN[10:0] 10:0 R/W 0 Exclusive access
to the requested
master

Writing '1' to each bit will
enable the corresponding
interrupt. For more
information, see Table 22,
page 40.

0x158 CLRHINT[2:0] 2:0 W 0 Exclusive access
to the requested
master

Clear interrupts/flag/busy bit
by writing 1 to the
corresponding bit. For more
information, see Table 23,
page 41.

Table 18 • Control Registers Description (continued)

OFFSET
HADDR[8:0] Register Name Width Type Default Access Rights Description
Microchip Proprietary UG0448 Revision 10.0 37

Embedded NVM (eNVM) Controllers
Note: Addresses that are not mentioned in the register range are either reserved or exclusively for System
Controller usage.

0x1FC REQACCESS 2:0 R/W 000 Any master on
AHB bus matrix.
This register can
only be accessed
using word, half
or byte accesses
to address
0x01FC.
Accesses to
addresses
0x1FD, 0x1FE,
and 0x1F should
not be used.

Request register access
When written with 0x01, it
will request exclusive
access.
Read indicates whether
access has granted or not or
which entity currently has
been granted access.
Read Value [2:0]
0XX: No entity has access
The XX value indicates who
had last access.
100: System controller
101: Reserved
110: Fabric (FIC_0)
111: Other master (such as
PDMA, HDMA or FIC_1)
To release access rights,
write 0x00.
The System Controller may
gain immediate access by
writing 0x03 to this register.
When access is
relinquished, the WDBUFF
buffer, and RDBUFF buffers
are cleared.

Table 18 • Control Registers Description (continued)

OFFSET
HADDR[8:0] Register Name Width Type Default Access Rights Description
Microchip Proprietary UG0448 Revision 10.0 38

Embedded NVM (eNVM) Controllers
2.6.1 Status Register Bit Definitions
Table 19 • Status Register Bit Definitions

Bit Description
[31:29] Value of locked state of the AHB interface. These bits contain the same information as

REQACCESS[2:0] (see Table 18, page 35).

[28:20] Reserved

19 Command when Busy. Indicates that a command was loaded while the controller was busy and
has been ignored. Once set all command operations are disabled.
Cleared by writing 1 to bit-2 in CLRHINT[2:0] (see Table 23, page 41).

18 Access denied. Indicates that read or writes operations were denied due to protection systems,
or that an illegal command was loaded. Once set all command operations are disabled.
Cleared by writing 1 to bit 1 in the CLRHINT[2:0].

17 NVM deep power-down state, indicates NVM has entered DPD mode
0: NVM operational
1: NVM In deep power down
There is delay of ~5µs for the NVM to enter power down and assert this bit from requesting
power down.

[16:15] RDBUFF3 (Read data buffer 3 = Read data buffer[255:192]) ECC status (2-bit error, 1 bit
corrected)
00: no error
01: 1 bit corrected
10: 2 bit detected
11: 3 or more bits detected

[14:13] RDBUFF2 (Read data buffer 2 = Read data buffer[191:128]) ECC status (2-bit error, 1 bit
corrected)
00: no error
01: 1 bit corrected
10: 2 bit detected
11: 3 or more bits detected

[12:11] RDBUFF1 (Read data buffer 1 = Read data buffer[127:64]) ECC status (2-bit error, 1 bit
corrected)
00: no error
01: 1 bit corrected
10: 2 bit detected
11: 3 or more bits detected

[10:9] RDBUFF0 (Read data buffer 0 = Read data buffer[63:0]) ECC status (2-bit error, 1 bit
corrected)
00: no error
01: 1 bit corrected
10: 2 bit detected
11: 3 or more bits detected

8 Asserted for ECC2 (2 bit error). Valid after read and read assembly buffer.

7 Asserted for ECC1 (1 bit correction). Valid after read and read assembly buffer.

6 Asserted for refresh required. Valid after program, write only and page erase.

5 Asserted when write count is over threshold. Valid after program, verify and read page
status.The threshold value per eNVM page is 1000 or 10000 depending on the data retention
period. See DS0128: IGLOO2 and SmartFusion2 Datasheet for more information on
programming cycles and retention time.
Microchip Proprietary UG0448 Revision 10.0 39

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_and_igloo2_datasheet_ds0128_v12.pdf

Embedded NVM (eNVM) Controllers
Note: If HPMS_CLK is 166 MHz, clock period is 6.024ns. NV_FREQRNG[3:0] = roundup (40ns/6.024ns)=7.

4 Asserted for program or erase failure due to page lock. Valid after program, page erase.
Asserted for write failure when executing write only on the page with currently erased page bar
(CEPB) = 1.

3 Asserted for write verify failure. Valid after program and write only.

2 Asserted for erase verify failure. Valid after program, page erase.

1 Asserted for verify failure. Valid only after verify operation.

0 NVM Ready/busy
0: Busy
1: Ready

Table 20 • NV_FREQRNG Calculations at Different HPMS_CLK Frequencies for
IGLOO2 Devices

Standard HPMS Frequencies
HPMS_CLK in MHz 166 142 133
NV_FREQRNG[3:0] 0x7 0x6 0x 5

NV_FREQRNG[7:4] 0x7 0x6 0x 5

NV_FREQRNG[7:0] 0x77 0x66 0x55

Table 21 • NV_PAGE_STATUS

Bit Description
1 R/W page status select

0 Reserved

Table 22 • INTEN[10:0]

Bit Description
10 Command loaded when busy

9 NVM command denied by protection

8 NVM internal operation (erase/program/write
only) is complete

7 ECC2 (2-bit error)

6 ECC1 (1-bit correction)

5 Refresh required

4 Write count is over threshold

3 Program or erase failure due to page lock.
Write failure when executing write only on the
page with currently erased page bar (CEPB)
=1.

2 Write verify failure

1 Erase verify failure

0 Verify failure

Table 19 • Status Register Bit Definitions (continued)

Bit Description
Microchip Proprietary UG0448 Revision 10.0 40

Embedded NVM (eNVM) Controllers
Table 23 • CLRHINT[2:0]

Bit Description
2 Clear the internal command when busy bit

1 Clear the internal access denied flag

0 Clear HINTERRUPT output
Microchip Proprietary UG0448 Revision 10.0 41

Embedded SRAM (eSRAM) Controllers
3 Embedded SRAM (eSRAM) Controllers

IGLOO2 FPGAs have two embedded SRAM (eSRAM) blocks of 32 Kbytes each for data read and write
operations. These eSRAM blocks are interfaced through eSRAM controllers to the AHB bus matrix.

3.1 Features
• Each eSRAM controller supports single bit error correction and dual bit error detection (SECDED).
• Two modes of operation: SECDED-ON and SECDED-OFF.
• The total amount of available eSRAM in each device is 64 Kbytes in SECDED-ON mode and 80

Kbytes in SECDED-OFF mode.
• Each individual eSRAM block is 32 Kbytes in SECDED-ON mode and 40 Kbytes in

SECDED-OFF mode, organized in a 2 × 4096 × 40 fashion.
• Having two blocks (eSRAM_0 and eSRAM_1) maximizes hardware parallelism. For example, at the

same instant that the fabric master is reading from eSRAM_0, another fabric master can read from
eSRAM_1 independently.

• The eSRAM address space is byte, half-word (16 bit), and word (32 bit) addressable.
• A pipeline is provided to address the latency issues at higher speeds of operation.
As shown in the following figure, the total available size of the eSRAM is divided into two equal-sized
blocks: eSRAM_0 and eSRAM_1. eSRAM_0 and eSRAM_1 are connected to slave 0 and slave 1 on the
AHB bus matrix through eSRAM controller 0 and eSRAM controller 1.

The eSRAM controller is designed to interface to an 8192 × 40 RAM, which is organized in a
2 × 4096 × 40 fashion with five 8-bit byte lanes in total. The fabric master and other masters find the
eSRAMs available as one contiguous area of memory.

The following figure depicts the connectivity of eSRAM_0 and eSRAM_1 to the AHB bus matrix.

Figure 32 • eSRAM_0 and eSRAM_1 Connection to AHB Bus Matrix

AHB Bus Matrix

MS5

eSRAM_1 eSRAM_0 eNVM_0HPDMADDR Bridge

MS1 MS0MS2MM3MS6MM7

AHB To AHB Bridge with Address Decoder

APB_0SYSREGFIC_1

MM4 MS4 MM5

SPI

PDMA
Configuration

FIIC COMM_BLK

MS5_FIC MS5_SR MS5_APB0 MS5_APB1

High Performance Memory Subsystem
DDR

PDMASystem
Controller

MM9

APB_1FIC_0

eNVM_1

MS3

HPDMA
Configuration

FIC_2 (Peripheral
Initialization)

MS5_FIC2
Microchip Proprietary UG0448 Revision 10.0 42

Embedded SRAM (eSRAM) Controllers
3.2 Functional Description
The following table shows the size of the eSRAM blocks and their address range.

The following figure shows the eSRAM controller blocks and their connectivity in IGLOO2 FPGAs. Both
eSRAMs and eSRAM controllers are identical in all design aspects.

Figure 33 • eSRAM Controller Block Diagram

HPMS_CLK is used within the HPMS to clock the AHB bus matrix. See UG0449: SmartFusion2 and
IGLOO2 Clocking Resources User Guide for more information on HPMS_CLK.

Table 24 • eSRAM Block Sizes and Address Ranges

eSRAM Block

Physical
RAM4096X40
Block

Size and Address Range
with SECDED ON Size and Address Range with SECDED OFF

eSRAM_0 RAM4096X40_0 16 KB from 0x20000000 to
0x20003FFF and ECC from
0x20010000 to 0x20010FFF

16 KB from 0x20000000 to 0x20003FFF and
4 KB from 0x20010000 to 0x20010FFF

RAM4096X40_1 16 KB from 0x20004000 to
0x20007FFF and ECC from
0x20011000 to 0x20011FFF

16 KB from 0x20004000 to 0x20007FFF and
4 KB from 0x20011000 to 0x20011FFF

eSRAM_1 RAM4096X40_2 16 KB from 0x20008000 to
0x2000BFFF and ECC from
0x20012000 to 0x20012FFF

16 KB from 0x20008000 to 0x2000BFFF and
4 KB from 0x20012000 to 0x20012FFF

RAM4096X40_3 16 KB from 0x2000C000 to
0x2000FFFF and ECC from
0x20013000 to 0x20013FFF

16 KB from 0x2000C000 to 0x2000FFFF and
4 KB from 0x20013000 to 0x20013FFF

AHBL
INTERFACE

ECC
GENERATOR
& DATA MUX

ADDRESS
MUX

FSM

PIPELINE

ECC
CHECKER &

HRDATA
GENERATOR

RAM
4096X40_0

RAM
4096X40_1

ERROR
STATUS
SIGNAL

EDAC_AD

EDAC_1E

EDAC_2E

HWDATA

ADDR
HADDRU

HSEL

HREADY

HTRANS

HREADYOUT

HRDATA

HRESP

WEB_0

CSB

DO

S

E
LE

C
T

DO_0

DO_1

DI_0

DI_1

WEB_1

DO

D
O

HADDR

ESRAM_PIPELI
NE_ENABLE

AHBL InterfaceAHB
BUS

Matrix

HPMS_CLK
Microchip Proprietary UG0448 Revision 10.0 43

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microchip_smartfusion2_igloo2_clocking_resources_user_guide_ug0449_v9.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microchip_smartfusion2_igloo2_clocking_resources_user_guide_ug0449_v9.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012

Embedded SRAM (eSRAM) Controllers
AHBL Interface: Each eSRAM controller is an AHB-Lite (AHBL) slave that provides access to the
eSRAM block from the AHB bus matrix.

ECC Generator and Data MUX: In SECDED-ON mode, the ECC Generator generates the check bits for
32-bit data. For a 32-bit write from the AHBL interface, the input data AHB write data bus (HWDATA) is
used to generate check bits. These check bits are appended to HWDATA and written to the memory. For
8-bit and 16-bit writes from the AHBL interface, a read-modify-write operation is used. This reads data
from the 32-bit word, corrects if necessary, and then writes the new data value and ECC check bits.

In SECDED-OFF mode, if the memory access is within 32 Kbyte memory, HWDATA is sent directly to the
memory input. If the access is for additional 8 Kbyte memory, then the address for a particular byte of
HWDATA will be selected based on the shift address.

Address MUX: This utilizes the AHB address bus (HADDR) and HADDRU (an additional HADDR bit) for
selecting upper 8 K bank of the RAM. Based on the FSM internal signals, output ADDR is generated and
passed to the memory. The shifted address is also generated and used for multiplexing data.

FSM: This generates output signal HREADYOUT and internal signals that are used for multiplexing an
address.

Pipeline: A pipeline stage in the read path of eSRAM and the master that accesses this path is
configurable using the ESRAM_PIPELINE_ENABLE signal. When ESRAM_PIPELINE_ENABLE is High,
there is an extra one clock cycle delay for the read operation to maximize operational frequency. At
higher frequencies (> 100 MHz) of fabric or other masters accessing eSRAM, the eSRAM operations
need an extra clock cycle for the correct data transactions.

ECC Checker and AHB Read Data Bus (HRDATA) Generator: In SECDED-ON mode, the ECC
Checker takes data (DO) from the memory as the input during the read or read-modify-write cycle and
checks for errors. One-bit errors detected are corrected.

If errors of more than one bit are detected, they are not corrected. In SECDED-OFF mode, the read out
data is directly given as output from this block. Error Status Signals are set if any errors are detected.

Error Status Signals: Error bits are inputs from the ECC Checker. If one error bit is High, it causes the
EDAC_1E signal to be High. In this case, there is no HRESP as the error is corrected. If there are two-bit
errors, it cause the EDAC_2E signal to be High. In this case, HRESP is set High because the error is not
corrected. The EDAC_1E and EDAC_2E signals are used to increment the ECC error counters within the
SYSREG block (and the failing address is also passed to the SYSREG block). When the HRESET to
ESRAMTOAHB is applied, it resets the EDAC address register which is maintained in ESRAMTOAHB
and it does not clear the contents of SRAM. EDAC error counters are maintained in System Register
which can be cleared either through same HRESET or by setting the
CLR_EDAC_COUNTERS (see Table 40, page 59).

3.2.1 Memory Organization
The 40 Kbytes of eSRAM memory is divided into two banks: 32 Kbytes and 8 Kbytes, to store 32 bits of
data and 7 check bits in SECDED-ON mode. Physically, however, the memory is organized as
4096 × 40, which is 4096 × 5 bytes. When ECC is enabled, the fifth byte stores ECC values for the 32
bits of data. When ECC is disabled, the fifth byte location is used to create an additional 2 Kbytes of user
memory. Four locations are used for each 32-bit word.

The following table shows the organization of 4096 × 40 bits in SECDED-ON mode. The total size of the
SRAM in the table is 40 Kbytes. The locations show the memory used for the 32 Kbyte block. ECC
represents the 7-bit ECC.

Table 25 • SRAM Organization in SECDED-ON Mode

RAM 4096X40_1 4096 x 40 Bits RAM 4096X40_0 4096 x 40 Bits
Location Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0
0 ECC 4003 4002 4001 4000 ECC 0003 0002 0001 0000

1 ECC 4007 4006 4005 4004 ECC 0007 0006 0005 0004
Microchip Proprietary UG0448 Revision 10.0 44

Embedded SRAM (eSRAM) Controllers
The following table shows the organization of 4096 × 40 bits in SECDED-OFF mode. The total size of the
SRAM in the table is 40 Kbytes. The red locations show the memory used for the 32 Kbyte block. The
green locations show memory used for the upper 8 Kbyte block.

3.2.2 Modes of Operation
There are two modes of operation for the eSRAM controller: SECDED-ON and SECDED-OFF.

3.2.2.1 SECDED-ON
SECDED mode can be turned ON by configuring the EDAC_CR register (Table 42, page 61). The total
available memory for each eSRAM in this mode is 32 Kbytes. The eSRAM controller generates 7 check
bits for every 32 bits of data, so for every 32 bits of data there will be 7 bits of encoded data. The 7 bits of
ECC allow 1-bit correction and 2-bit detection on the user data and ECC field. The 32 data bits and 7 bits
of ECC are written to the memory with zero wait states. Byte and half-word write operations are done
using a read-modify-write operation. The read-modify-write operation requires an additional wait state for
byte and half-word write operations.

In the case of a 1-bit error, the previous 32 bits of data and ECC value are read and correction
takes place automatically. The complete 32 bits plus ECC is rewritten. For byte and half-word write
operations, there is one wait state required as the ECC value is read and corrected for the byte/half-
word.

When a 2-bit error is detected during a read cycle for 32-bit data, HRESP is asserted High for two clock
cycles and at the same time HREADYOUT goes Low for one clock cycle to indicate an error.

When a 2-bit error is detected during the read part of a read-modify-write byte or half-word operation,
HRESP is asserted High.

2046 ECC 5FFB 5FFA 5FF9 5FF8 ECC 1FFB 1FFA 1FF9 1FF8

2047 ECC 5FFF 5FFE 5FFD 5FFC ECC 1FFF 1FFE 1FFD 1FFC

2048 ECC 6003 6002 6001 6000 ECC 2003 2002 2001 2000

2049 ECC 6007 6006 6005 6004 ECC 2007 2006 2005 2004

4094 ECC 7FFB 7FFA 7FF9 7FF8 ECC 3FFB 3FFA 3FF9 3FF8

4095 ECC 7FFF 7FFE 7FFD 7FFC ECC 3FFF 3FFE 3FFD 3FFC

Table 26 • SRAM Organization in SECDED-OFF Mode

RAM 4096X40_1 4096 x 40 Bits RAM 4096X40_0 4096 x 40 Bits
Location Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0
0 0001 4003 4002 4001 4000 0000 0003 0002 0001 0000

1 0005 4007 4006 4005 4004 0004 0007 0006 0005 0004

2046 1FF9 5FFB 5FFA 5FF9 5FF8 1FF8 1FFB 1FFA 1FF9 1FF8

2047 1FFD 5FFF 5FFE 5FFD 5FFC 1FFC 1FFF 1FFE 1FFD 1FFC

2048 0003 6003 6002 6001 6000 0002 2003 2002 2001 2000

2049 0007 6007 6006 6005 6004 0006 2007 2006 2005 2004

4094 1FFB 7FFB 7FFA 7FF9 7FF8 1FFA 3FFB 3FFA 3FF9 3FF8

4095 1FFF 7FFF 7FFE 7FFD 7FFC 1FFE 3FFF 3FFE 3FFD 3FFC

Table 25 • SRAM Organization in SECDED-ON Mode (continued)

RAM 4096X40_1 4096 x 40 Bits RAM 4096X40_0 4096 x 40 Bits
Location Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0
Microchip Proprietary UG0448 Revision 10.0 45

Embedded SRAM (eSRAM) Controllers
3.2.2.2 SECDED-OFF
SECDED mode can be turned OFF by configuring the EDAC_CR register (see Table 42, page 61). The
total available memory for each eSRAM is 40 Kbytes. 1-bit correction and 2-bit detection on the user data
is not applicable in this mode.

3.2.3 Pipeline Modes and Wait States for Read and Write Operations
When any master on the AHB bus matrix operates at a high frequency greater than 100 MHz and is
accessing eSRAM, an extra clock cycle is needed for transactions. An optional pipeline can be enabled
on the Read data bus; this adds a clock cycle to all read operations. The pipeline is enabled by default in
both SECDED-ON and SECDED-OFF modes. When the master on the AHB bus matrix operates at low
frequency, less than 100 MHz, the pipeline can be turned off. See Table 31, page 56 for information on
pipeline enable/disable.

The actual frequency at which this is possible is specified in the AC characteristics table of
DS0128: IGLOO2 FPGA and SmartFusion2 SoC FPGA Datasheet. When the pipeline is disabled, the
number of wait states is less, increasing throughput of read operations.

The following table describes the wait states in different operation modes. These values indicate the
number of wait states inserted by eSRAM controllers and apply to the reads and writes from masters
within the High Performance Memory Subsystem (HPMS). Accessing eSRAM blocks from the FPGA
fabric is performed through the fabric interface controller (FIC) interfaces. The FIC interface supports
Bypass mode and Pipeline mode.

In Pipeline mode, the FIC interface adds one extra clock cycle for read and write, so the overall latency
for accessing the eSRAM increases in this case.

Table 27 • Wait States in Different Operation Modes

Pipeline eSRAM
SECDED
Mode Operation Size

Number of Wait
States

Number of Wait States
(Reads following a Write)

Enabled 32 KB
RAM

SECDED-
ON Mode

Write 32-Bit 0 1

16-Bit 1 3

8-Bit 1 3

Read 32-Bit 1 2

16-Bit 1 2

8-Bit 1 2

SECDED-
OFF Mode

Write 32-Bit 0 0

16-Bit 0 0

8-Bit 0 0

Read 32-Bit 1 2

16-Bit 1 2

8-Bit 1 2

8 KB
RAM

SECDED-
OFF Mode

Write 32-Bit 1 1

16-Bit 0 0

8-Bit 0 0

Read 32-Bit 2 3

16-Bit 1 2

8-Bit 1 2
Microchip Proprietary UG0448 Revision 10.0 46

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_and_igloo2_datasheet_ds0128_v12.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042

Embedded SRAM (eSRAM) Controllers
Disabled 32 KB
RAM

SECDED-
ON Mode

Write 32-Bit 0 0

16-Bit 1 3

8-Bit 1 3

Read 32-Bit 0 1

16-Bit 0 1

8-Bit 0 1

SECDED-
OFF Mode

Write 32-Bit 0 0

16-Bit 0 0

8-Bit 0 0

Read 32-Bit 0 1

16-Bit 0 1

8-Bit 0 1

8 KB
RAM

SECDED-
OFF Mode

Write 32-Bit 1 1

16-Bit 0 0

8-Bit 0 0

Read 32-Bit 1 2

16-Bit 0 1

8-Bit 0 1

Table 27 • Wait States in Different Operation Modes (continued)

Pipeline eSRAM
SECDED
Mode Operation Size

Number of Wait
States

Number of Wait States
(Reads following a Write)
Microchip Proprietary UG0448 Revision 10.0 47

Embedded SRAM (eSRAM) Controllers
3.3 How to Use eSRAM
This section describes how to use the eSRAM in the IGLOO2 devices. To configure the IGLOO2 device
features and then build a complete system, use the System Builder graphical design wizard in the
Libero Software.

The following figure shows the initial System Builder window where the required device features can be
selected. For details on how to launch the System Builder wizard and a detailed information on how to
use it, See IGLOO2 System Builder User Guide.

Figure 34 • System Builder Window
Microchip Proprietary UG0448 Revision 10.0 48

https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf

Embedded SRAM (eSRAM) Controllers
3.3.1 Accessing eSRAM Using FPGA Fabric Master
Any master (for example, FPGA fabric master, HPDMA, or PDMA) connected to the AHB bus matrix can
access the eSRAM blocks using the address range provided in Table 24, page 43 for read and write
operations. The following steps are used to enable the eSRAM blocks and eSRAM SECDED feature in
the application using system builder.

1. Check the HPMS On-chip SRAM (eSRAM) check box under the Device Features tab and leave
the other check boxes unchecked. The following figure shows the System Builder - Device
Features tab.

Figure 35 • System Builder - Device Features Tab
Microchip Proprietary UG0448 Revision 10.0 49

Embedded SRAM (eSRAM) Controllers
2. Navigate to the HPMS Options tab in the System Builder to configure Programmable Slave
Maximum Latency for eSRAM_0 and eSRAM_1. The following figure shows the System Builder -
HPMS Options tab. For more information about the Programmable Slave Maximum Latency
configuration, click Help and select HPMS AHB Bus Matrix document.

Figure 36 • System Builder - HPMS Options Tab

3. Navigate to the SECDED tab in the System Builder to configure SECDED options for eSRAM_0
and eSRAM_1. The following figure shows the System Builder - SECDED tab.

Figure 37 • System Builder - SECDED Tab

The SECDED feature can be enabled or disabled by selecting Enable EDAC for eSRAM_0 and
eSRAM_1. The interrupts for 1-bit error or 2-bit error, or both 1-bit and 2-bit errors can be enabled.
The FPGA fabric master has to implement user logic to clear these interrupts and to take the neces-
sary actions in case of a 2- bit error.
Microchip Proprietary UG0448 Revision 10.0 50

Embedded SRAM (eSRAM) Controllers
4. Navigate to the Security tab to select the read and write access permissions of eSRAM for different
masters as shown in the following figure. For more information about eSRAM access configuration,
click Help and see HPMS Design and Data Security document. The read and write permission
options for different masters are available for data and design security enabled devices like
M2GL010TS only.

Figure 38 • System Builder - Security Tab
Microchip Proprietary UG0448 Revision 10.0 51

Embedded SRAM (eSRAM) Controllers
5. Navigate to the Memory Map tab giving the required data in the rest of the System Builder tabs.
The following figure shows the System Builder - Memory Map tab. Click Finish to proceed with
creating the HPMS Subsystem (see HPMS Subsystem, page 52).

Figure 39 • System Builder - Memory Map Tab

3.3.2 HPMS Subsystem
The following figure shows the HPMS subsystem for accessing the eSRAM using FPGA fabric master.

Figure 40 • HPMS Subsystem
Microchip Proprietary UG0448 Revision 10.0 52

Embedded SRAM (eSRAM) Controllers
3.3.3 HPMS Subsystem Connected to the FPGA Fabric Master
The following figure shows the FPGA fabric master connected to AHB master port. The eSRAM blocks
can be accessed using FPGA fabric master connected to the AHB master port for read and write
operations.

Figure 41 • HPMS Interconnection with FPGA Fabric Master

3.4 SYSREG Control Registers
The registers listed in the following table control the behavior of the eSRAM. These registers are detailed
in SYSREG (see Table 126, page 203) and are listed here for clarity. See System Register Block,
page 197 for a detailed description of each register and bit.

Table 28 • SYSREG Control Registers

Register Name
Register
Type

Flash Write
Protect Reset Source Description

ESRAM_MAX_LAT
(0x40038004)

RW-P Register SYSRESET_N Configuration of maximum latency for
accessing eSRAM_0 and eSRAM_1
slaves. This register gets updated by
flash bit configuration set during device
programming. This configuration can be
done through the System Builder also
using settings on the HPMS Options
tab. For more information, see Table 29,
page 55.

ESRAM_PIPELINE_CR
(0x40038080)

RW-P Register SYSRESET_N Controls the pipeline present in the
memory read path of eSRAM memory.
For more information, see Table 31,
page 56.

ESRAM0_EDAC_CNT
(0x400380F0)

RO N/A SYSRESET_N Represents 1-bit error count of
eSRAM_0. For more information, see
Table 32, page 56.
Microchip Proprietary UG0448 Revision 10.0 53

Embedded SRAM (eSRAM) Controllers
ESRAM1_EDAC_CNT
(0x400380F4)

RO N/A SYSRESET_N Represents 1-bit error count of
eSRAM_1. For more information, see
Table 33, page 56.

ESRAM0_EDAC_ADR
(0x4003810C)

RO N/A SYSRESET_N Address from eSRAM_0 on which 1-bit
ECC error has occurred. For more
information, see Table 34, page 56.

ESRAM1_EDAC_ADR
(0x40038110)

RO N/A SYSRESET_N Address from eSRAM_1 on which 1-bit
ECC error has occurred. For more
information, see Table 35, page 57.

MM4_5_DDR_FIC_SECUR
ITY/MM4_5_FIC64_SECU
RITY(0x40038128)

RO-U N/A SYSRESET_N Read and Write security for Mirrored
Master (MM) 4, 5, and DDR_FIC to
eSRAM_0 and eSRAM_1. This register
gets updated by flash bit configuration
set during device programming. This
configuration can be done through the
System Builder using settings on the
Security tab. For more information, see
Table 36, page 57.

MM3_7_SECURITY
(0x4003812C)

RO-U N/A SYSRESET_N Read and Write security for Mirrored
Master (MM) 3 and 7 to eSRAM_0 and
eSRAM_1. This register gets updated
by flash bit configuration set during
device programming. This configuration
can be done through the System
Builder using settings on the Security
tab. For more information, see Table 37,
page 58.

MM9_SECURITY
(0x40038130)

RO-U N/A SYSRESET_N Read and Write security for Mirrored
Master (MM) 9 to eSRAM_0 and
eSRAM_1. This register gets updated
by flash bit configuration set during
device programming. This configuration
can be done through the System
Builder using settings on the Security
tab. For more information, see Table 38,
page 58.

EDAC_SR
(0x40038190)

SW1C N/A SYSRESET_N Status of 1-bit ECC error detection and
correction (EDAC), 2-bit ECC error
detection for eSRAM_0 and eSRAM_1.
Individual register bits are set ('1') when
related input is asserted. Bits are
individually cleared when corresponding
register bit is written high. For more
information, see Table 39, page 59.

CLR_EDAC_COUNTERS
(0x400381A4)

W1P N/A SYSRESET_N This is used to clear the 16-bit counter
value in eSRAM_0 and eSRAM_1
corresponding to the count value of
EDAC 1-bit and 2-bit errors. For more
information, see Table 40, page 59.

Table 28 • SYSREG Control Registers (continued)

Register Name
Register
Type

Flash Write
Protect Reset Source Description
Microchip Proprietary UG0448 Revision 10.0 54

Embedded SRAM (eSRAM) Controllers
The following table gives eSRAM maximum latency values, where x is either 0 or 1.

EDAC_IRQ_ENABLE_CR
(0x40038078)

RW-P Register SYSRESET_N Enable/disable of 1-bit error, 2-bit error
status update for eSRAM_0 and
eSRAM_1. This can be set by the
System Builder also using settings on
the SECDED tab. For more information,
see Table 41, page 60.

EDAC_CR
(0x40038038)

RW-P Register SYSRESET_N EDAC enable/disable and soft reset for
eSRAM_0 and eSRAM_1. This can be
set by the System Builder also using
settings on the SECDED tab. For more
information, see Table 42, page 61.

Table 29 • ESRAM_MAX_LAT

Bit
Number Name

Reset
Value Description

[31:6] Reserved 0

[5:3] SW_MAX_LAT_ESRAM1 0x1 Defines the maximum number of cycles the processor bus will
wait for eSRAM1 when it is being accessed by a master with a
weighted round robin (WRR) priority scheme. The latency values
are as given in Table 30, page 55.

[2:0] SW_MAX_LAT_ESRAM0 0x1 Defines the maximum number of cycles the processor bus will
wait for eSRAM0 when it is being accessed by a master with a
WRR priority scheme. It is configurable from 1 to 8 (8 by default).
The latency values are as given in Table 30, page 55.

Table 30 • eSRAM Maximum Latency Values

SW_MAX_LAT_ESRAM<X> Latency
0 8 (default)

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Table 28 • SYSREG Control Registers (continued)

Register Name
Register
Type

Flash Write
Protect Reset Source Description
Microchip Proprietary UG0448 Revision 10.0 55

Embedded SRAM (eSRAM) Controllers
Note: See Table 40, page 59 to clear the counter.

Note: See Table 40, page 59 to clear the counter.

Table 31 • ESRAM_PIPELINE_CR

Bit Number Name Reset Value Description
[31:1] Reserved 0

0 ESRAM_PIPELINE_ENABLE 0x1 Controls the pipeline present in the read path of eSRAM
memory. Allowed values:
0: Pipeline will be bypassed.
1: Pipeline will be present in the memory read path.

Table 32 • ESRAM0_EDAC_CNT

Bit Number Name Reset Value Description
[31:16] ESRAM0_EDAC_CNT_2E 0 16-bit counter that counts the number of 2-bit

uncorrected errors for eSRAM0. The counter will not roll
back and will stay at its maximum value.

[15:0] ESRAM0_EDAC_CNT_1E 0 16-bit counter that counts the number of 1-bit corrected
errors for eSRAM0. The counter will not roll back and
will stay at its maximum value.

Table 33 • ESRAM1_EDAC_CNT

Bit Number Name Reset Value Description
[31:16] ESRAM1_EDAC_CNT_2E 0 16-bit counter that counts the number of 2-bit

uncorrected errors for eSRAM1. The counter will not
roll back and will stay at its maximum value.

[15:0] ESRAM1_EDAC_CNT_1E 0 16-bit counter that counts the number of 1-bit corrected
errors for eSRAM1. The counter will not roll back and
will stay at its maximum value.

Table 34 • ESRAM0_EDAC_ADR

Bit Number Name Reset Value Description
[31:25] Reserved 0

[25:13] ESRAM0_EDAC_2E_AD 0 Stores the address from eSRAM0 on which a 2-bit
SECDED error has occurred.

[12:0] ESRAM0_EDAC_1E_AD 0 Stores the address from eSRAM0 on which a 1-bit
SECDED error has occurred.
Microchip Proprietary UG0448 Revision 10.0 56

Embedded SRAM (eSRAM) Controllers
Table 35 • ESRAM1_EDAC_ADR

Bit Number Name Reset Value Description
[31:25] Reserved 0

[25:13] ESRAM1_EDAC_2E_AD 0 Stores the address from eSRAM1 on which a 2-bit
SECDED error has occurred.

[12:0] ESRAM1_EDAC_1E_AD 0 Stores the address from eSRAM1 on which a 1-bit
SECDED error has occurred.

Table 36 • MM4_5_DDR_FIC_SECURITY/MM4_5_FIC64_SECURITY

Bit
Number Name

Reset
Value Description

[31:10] Reserved 0

9 MM4_5_DDR_FIC_MS6_ALLOWED_W 1 Write security bits for masters 4, 5, and DDR_FIC to
slave 6 (HPMS DDR bridge). If not set, masters 4, 5
and DDR_FIC will not have write access to slave 6.

8 MM4_5_DDR_FIC_MS6_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC to
slave 6 (HPMS DDR bridge). If not set, masters 4, 5,
and DDR_FIC will not have read access to slave 6.

7 MM4_5_DDR_FIC_MS3_ALLOWED_W 1 Write security bits for masters 4, 5, and DDR_FIC to
slave 3 (eNVM1). If not set, masters 4, 5, and
DDR_FIC will not have write access to slave 3.

6 MM4_5_DDR_FIC_MS3_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC to
slave 3 (eNVM1). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 3.

5 MM4_5_DDR_FIC_MS2_ALLOWED_W 1 Write Security Bits for masters 4, 5, and DDR_FIC to
slave 2 (eNVM0). If not set, masters 4, 5, and
DDR_FIC will not have write access to slave 2.

4 MM4_5_DDR_FIC_MS2_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC to
slave 2 (eNVM0). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 2.

3 MM4_5_DDR_FIC_MS1_ALLOWED_W 1 Write security bits for masters 4, 5, and DDR_FIC to
slave 1 (eSRAM1). If not set, masters 4, 5, and
DDR_FIC will not have write access to slave 1.

2 MM4_5_DDR_FIC_MS1_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC to
slave 1 (eSRAM1). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 1.

1 MM4_5_DDR_FIC_MS0_ALLOWED_W 1 Write security bits for masters 4, 5, and DDR_FIC to
slave 0 (eSRAM0). If not set, masters 4, 5, and
DDR_FIC will not have write access to slave 0.

0 MM4_5_DDR_FIC_MS0_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC to
slave 0 (eSRAM0). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 0.
Microchip Proprietary UG0448 Revision 10.0 57

Embedded SRAM (eSRAM) Controllers
Note: See Figure 42, page 62 for more information on AHB Bus Matrix masters and slaves.

Note: See Figure 42, page 62 for more information on AHB Bus Matrix masters and slaves.

Table 37 • MM3_7_SECURITY

Bit
Number Name

Reset
Value Description

[31:10] Reserved 0

9 MM3_7_MS6_ALLOWED_W 1 Write security bits for masters 3, 7 to slave 6 (HPMS DDR
bridge). If not set, masters 3 and 7 will not have write access
to slave 6.

8 MM3_7_MS6_ALLOWED_R 1 Read security bits for masters 3, 7 to slave 6 (HPMS DDR
bridge). If not set, masters 3 and 7 will not have read access
to slave 6.

7 MM3_7_MS3_ALLOWED_W 1 Write security bits for masters 3, 7 to slave 3 (eNVM1). If not
set, masters 3 and 7 will not have write access to slave 3.

6 MM3_7_MS3_ALLOWED_R 1 Read security bits for masters 3, 7 to slave 3 (eNVM1). If not
set, masters 3 and 7 will not have read access to slave 3.

5 MM3_7_MS2_ALLOWED_W 1 Write security bits for masters 3, 7 to slave 2 (eNVM0). If not
set, masters 3 and 7 will not have write access to slave2.

4 MM3_7_MS2_ALLOWED_R 1 Read security bits for masters 3, 7 to slave 2 (eNVM0). If not
set, masters 3 and 7 will not have read access to slave 2.

3 MM3_7_MS1_ALLOWED_W 1 Write security bits for masters 3, 7 to slave 1 (eSRAM1). If
not set, masters 3 and 7, will not have write access to slave
1.

2 MM3_7_MS1_ALLOWED_R 1 Read security bits for masters 3, 7 to slave 1 (eSRAM1). If
not set, masters 3 and 7 will not have read access to slave
1.

1 MM3_7_MS0_ALLOWED_W 1 Write security bits for masters 3, 7 to slave 0 (eSRAM0). If
not set, masters 3 and 7 will not have write access to slave
0.

0 MM3_7_MS0_ALLOWED_R 1 Read security bits for masters 3, 7 to slave 0 (eSRAM0). If
not set, masters 3 and 7 will not have read access to slave
0.

Table 38 • MM9_SECURITY

Bit
Number Name

Reset
Value Description

[31:10] Reserved 0

9 MM9_MS6_ALLOWED_W 1 Write security bits for master 9 to slave 6 (HPMS DDR bridge).
If not set, master 9 will not have write access to slave 6.

8 MM9_MS6_ALLOWED_R 1 Read security bits for master 9 to slave 6 (HPMS DDR bridge).
If not set, master 9 will not have read access to slave 6.

7 MM9_MS3_ALLOWED_W 1 Write security bits for master 9 to slave 3 (eNVM1). If not set,
master 9 will not have write access to slave 3.

6 MM9_MS3_ALLOWED_R 1 Read security bits for master 9 to slave 3 (eNVM1). If not set,
master 9 will not have read access to slave 3.
Microchip Proprietary UG0448 Revision 10.0 58

Embedded SRAM (eSRAM) Controllers
Note: See Figure 42, page 62 for more information on AHB Bus Matrix masters and slaves.

5 MM9_MS2_ALLOWED_W 1 Write security bits for master 9 to slave 2 (eNVM0). If not set,
master 9 will not have write access to slave 2.

4 MM9_MS2_ALLOWED_R 1 Read security bits for master 9 to slave 2 (eNVM0). If not set,
master 9 will not have read access to slave 2.

3 MM9_MS1_ALLOWED_W 1 Write security bits for master 9 to slave 1 (eSRAM1). If not set,
master 9 will not have write access to slave 1.

2 MM9_MS1_ALLOWED_R 1 Read security bits for master 9 to slave 1 (eSRAM1). If not set,
master 9 will not have read access to slave 1.

1 MM9_MS0_ALLOWED_W 1 Write security bits for master 9 to slave 0 (eSRAM0). If not set,
master 9 will not have write access to slave 0.

0 MM9_MS0_ALLOWED_R 1 Read security bits for master 9 to slave 0 (eSRAM0). If not set,
master 9 will not have read access to slave 0.

Table 39 • EDAC_SR

Bit
Number Name

Reset
Value Description

[31:14] Reserved 0

[13:6] Reserved 0

5 Reserved 0

4 Reserved 0

3 ESRAM1_EDAC_2E 0 Updated by the eSRAM_1 controller when a 2-bit
SECDED error has been detected for eSRAM1 memory.

2 ESRAM1_EDAC_1E 0 Updated by the eSRAM_1 Controller when a 1-bit
SECDED error has been detected and is corrected for
eSRAM1 memory.

1 ESRAM0_EDAC_2E 0 Updated by the eSRAM_0 controller when a 2-bit
SECDED error has been detected for eSRAM0 memory.

0 ESRAM0_EDAC_1E 0 Updated by the eSRAM_0 controller when a 1-bit
SECDED error has been detected and is corrected for
eSRAM0 memory.

Table 40 • CLR_EDAC_COUNTERS

Bit
Number Name

Reset
Value Description

[31:14] Reserved 0

[13:6] Reserved 0

5 Reserved 0

4 Reserved 0

Table 38 • MM9_SECURITY (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 59

Embedded SRAM (eSRAM) Controllers
3 ESRAM1_EDAC_CNTCLR_2E 0 Pulse generated to clear the 16-bit counter value
in eSRAM1 corresponding to the count value of
EDAC 2-bit errors. This in turn clears the upper
16 bits of the ESRAM1_EDAC_CNT register (see
Table 33, page 56).

2 ESRAM1_EDAC_CNTCLR_1E 0 Pulse generated to clear the 16-bit counter value
in eSRAM1 corresponding to count value of
EDAC 1-bit errors. This in turn clears the lower 16
bits of the ESRAM1_EDAC_CNT register.

1 ESRAM0_EDAC_CNTCLR_2E 0 Pulse generated to clear the 16-bit counter value
in eSRAM0 corresponding to count value of
EDAC 2-bit Errors. This in turn clears the upper
16 bits of the ESRAM1_EDAC_CNT register.

0 ESRAM0_EDAC_CNTCLR_1E 0 Pulse generated to clear the 16-bit counter value
in eSRAM0 corresponding to the count value of
EDAC 1-bit errors. This in turn clears the lower 16
bits of the ESRAM1_EDAC_CNT register.

Table 41 • EDAC_IRQ_ENABLE_CR

Bit
Number Name

Reset
Value Description

[31:15] Reserved 0

[13:6] Reserved 0

5 Reserved 0

4 Reserved 0

3 ESRAM1_EDAC_2E_EN 0 Allows the 2-bit error EDAC for eSRAM1
status update to be disabled. Allowed values:
0: Disabled.
1: Enabled.

2 ESRAM1_EDAC_1E_EN 0 Allows the 1-bit error EDAC for eSRAM1
status update to be disabled. Allowed values:
0: Disabled.
1: Enabled.

1 ESRAM0_EDAC_2E_EN 0 Allows the 2-bit error EDAC for eSRAM0
status update to be disabled. Allowed values:
0: Disabled.
1: Enabled.

0 ESRAM0_EDAC_1E_EN 0 Allows the 1-bit error EDAC for eSRAM0
status update to be disabled. Allowed values:
0: Disabled.
1: Enabled.

Table 40 • CLR_EDAC_COUNTERS (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 60

Embedded SRAM (eSRAM) Controllers
Table 42 • EDAC_CR

Bit
Number Name

Reset
Value Description

[31:7] Reserved 0

[6:2] Reserved 0

1 ESRAM1_EDAC_EN 0 Allows the EDAC for eSRAM1 to be disabled.
Allowed values:
0: Disabled
1: Enabled

0 ESRAM0_EDAC_EN 0 Allows the EDAC for eSRAM0 to be disabled.
Allowed values:
0: Disabled
1: Enabled
Microchip Proprietary UG0448 Revision 10.0 61

AHB Bus Matrix
4 AHB Bus Matrix

The AHB bus matrix is a multi-layer AHB matrix. It is not a full crossbar switch, but a customized subset
of a full switch. It works purely as an AHB-Lite matrix. The IGLOO2 FPGA AHB bus matrix has five
masters and seven direct slaves as depicted in the following figure. One master is permitted to access a
slave at the same time another master is accessing a different slave. If more than one master is
attempting to access the same slave simultaneously, arbitration for that slave is performed.

Figure 42 • AHB Bus Matrix Masters and Slaves

The preceding figure shows the connectivity of masters and slaves in the AHB bus matrix. Nomenclature
such as MM0 and MS0 refers to a mirrored master and a mirrored slave. A mirrored master port in the
matrix connects directly to an AHB master; it has the same set of signals, but the direction of the signals
is described relative to the other end of the connection.

A mirrored slave port in the matrix connects directly to an AHB slave. Only a subset of the full set of
theoretical paths is implemented within the AHB bus matrix. The AHB bus matrix performs the address
decoding of all slaves except for slaves that connect to the AHB-to-AHB bridge.

4.1 Functional Description
This section provides a detailed description of the AHB bus matrix.

4.1.1 Architecture Overview
Figure 43, page 64 shows the interconnection between the master stage blocks and the slave stage
blocks. The basic building blocks of the AHB bus matrix are the master stage block with an address
decoder and the slave stage block with a slave arbiter. Each master interfaces with the master stage
block and each slave interfaces with the slave stage block. The masters and slaves connect as specified
in the following table.

AHB Bus Matrix

MS5

eSRAM_1 eSRAM_0 eNVM_0HPDMADDR Bridge

MS1 MS0MS2MM3MS6MM7

AHB To AHB Bridge with Address Decoder

APB_0SYSREGFIC_1

MM4 MS4 MM5

SPI

PDMA
Configuration

FIIC COMM_BLK

MS5_FIC MS5_SR MS5_APB0 MS5_APB1

High Performance Memory Subsystem
DDR

PDMASystem
Controller

MM9

APB_1FIC_0

eNVM_1

MS3

HPDMA
Configuration

FIC_2 (Peripheral
Initialization)

MS5_FIC2
Microchip Proprietary UG0448 Revision 10.0 62

AHB Bus Matrix
An address decoder sub-block in each master stage generates the slave select signal to the
corresponding slave. A slave arbiter sub-block in each slave stage generates the address-ready signal to
the selected master.

Reads or writes to areas not allowed cause the AHB bus matrix to complete the transaction with an
HRESP error indication. An error bit is set in the HPMS_EXTERNAL_SR[SW_ERRORSTATUS] field.
The following types of errors can occur:

• Write by an enabled master to a slave that is not RW
• Write by an enabled master to addresses not corresponding to a slave
• Write by the fabric master to the protected region
• Write by a disabled master to any location
• Read by an enabled master to any slave that is not R or RW
• Read by an enabled master to addresses not corresponding to a slave
• Read by the fabric master to the protected region
• Read by a disabled master to any location

Table 43 • AHB Bus Matrix Connectivity

Masters
System
Controller HPDMA FIC_0 FIC_1 PDMA
MM9 MM3 MM4 MM5 MM7

Priority 4 4 4 4 4

Arbitration Fixed WRR WRR WRR WRR

Slave eSRAM0 MS0 RW RW RW RW RW

eSRAM1 MS1 RW RW RW RW RW

eNVM_0 MS2 RW1

1. Exercise caution when commanding the eNVM to program or erase data. Other masters in the system may not be aware
that the eNVM is unavailable if it is in a program or erase cycle. Microchip recommends using some form of software
semaphore to control access.

R1 RW1 RW1 RW1

eNVM_1 MS3 RW1 R1 RW1 RW1 RW1

FIC_0 MS4 RW RW RW RW RW

FIC_1 MS5 RW RW RW RW RW

SYSREG RW RW RW

APB_0 RW RW RW RW

APB_1 RW RW RW RW

HPMS DDR
Bridge

MS6 RW RW RW RW
Microchip Proprietary UG0448 Revision 10.0 63

AHB Bus Matrix
Figure 43 • Master Stage and Slave Stage Interconnection

To reduce the load on the AHB bus matrix, some of the low-performance peripherals are connected
through the synchronous AHB-to-AHB bridge with an address decoder. The AHB bus matrix is
constructed of combinatorial logic, except for the AHB-to-AHB bridge, which inserts a one-cycle delay in
each direction.

The following figure shows the block diagram of all the APB peripherals connected to AHB bus matrix
using the AHB-to-AHB bridge. The APB peripherals are connected through the AHB to APB bus.

Figure 44 • APB Destinations Connected to AHB Bus Matrix

Master Stage 0

Slave Stage 1

Slave Stage 6 Master Stage 4

Master Stage 1

Slave Stage 0

Address
Decoder

Slave
Arbiter

Slave
Arbiter

Slave
Arbiter

Address
Decoder

Address
Decoder

AHB

AHB

AHB

AHB

AHB

AHB

AHB BUS
AHB Bus Matrix

MS5

AHB to AHB bridge with Address decoder

MS_APB0 MS_APB1

AHB to APB_0 AHB to APB_1

COMM_BLKSPI PDMA
ConfigurationFIIC
Microchip Proprietary UG0448 Revision 10.0 64

AHB Bus Matrix
4.1.2 Timing Diagrams
The following figures are the functional timing diagrams for AHBL read/write transactions through the
AHB bus matrix and AHB-to-AHB bridge. Signals to/from a master are denoted by X in the signal name,
and signals to/from a slave are denoted with Y in the signal name. For example, if any master initiates
the transactions of read/write to the eSRAM slave then the signals with X in the signal name indicates the
signals of the master and signals with Y indicate slave eSRAM signals.

Figure 45 • AHB-Lite Write Transactions

HCLK

X_HADDR[31:0]

X_HTRANS

X_HWRITE

X_HWDATA[31:0]

X_HREADY

X_HRESP 0

X_HMASTLOCK 0

Y_HADDR[31:0]

Y_HSEL

Y_HTRANS

Y_HWRITE

Y_HWDATA[31:0]

Y_HREADY

Y_HRESP 0

Y_HMAST 0

AD0

AD0

AD1 AD2 AD3 AD4 AD5 AD6

AD1 AD2 AD3 AD4 AD5 AD6

D0 D1 D3D2 D4 D5 D6

D0 D1 D2 D3 D4 D5 D6
Microchip Proprietary UG0448 Revision 10.0 65

AHB Bus Matrix
Figure 46 • AHB-Lite Read Transactions

HCLK

X_HADDR

X_HTRANS

X_HWRITE

X_HREADY

X_HRDATA

X_HRESP 0

X_HMASTLOCK 0

Y_HADDR

Y_HSEL

Y_HTRANS

Y_HWRITE

Y_HREADY

Y_HRDATA

Y_HRESP 0
Y_HMASTLOCK 0

AD0 AD1 AD2 AD3 AD4 AD5

D0 D1 D2 D3 D4 D5

AD0 AD1 AD2 AD3 AD4 AD5

D0 D1 D2 D3 D4 D5
Microchip Proprietary UG0448 Revision 10.0 66

AHB Bus Matrix
Figure 47 • AHB-to-AHB Write Transactions

HCLK

Y_HRESET

Y_HMASTLOCK

Y_HSIZE

Y_HSEL

Y_HTRANS1

Y_HWRITE

Y_HWDATA

Y_HADDR

Y_HREADY

Y_HRESP

Y_HREADYOUT

X_HREADYOUT

X_HRESP

X_HADDR

X_HSIZE

X_HTRANS1

X_HWRITE

X_HWDATA

X_HREADY

X_HMASTLOCK

AD0

AD0

D0

D0

11

11
Microchip Proprietary UG0448 Revision 10.0 67

AHB Bus Matrix
Figure 48 • AHB-to-AHB Read Transactions

HCLK

Y_HADDR

Y_HMASTLOCK

Y_HSIZE

Y_HSEL

Y_HTRANS1

Y_HWRITE

Y_HWDATA

Y_HREADY

Y_HRESP

Y_HRDATA

Y_HREADYOUT

X_HRDATA

X_HREADYOUT

X_HRESP

X_HADDR

X_HSIZE

X_HTRANS1

X_HWRITE

X_HREADY

X_HMASTLOCK

AD0

D0

AD0

D0

11

11
Microchip Proprietary UG0448 Revision 10.0 68

AHB Bus Matrix
4.1.3 Details of Operation
4.1.3.1 Slave Arbitration

Each of the slave devices on the AHB bus matrix contains an arbiter. Arbitration is done at two levels. At
the first level, the fixed higher priority master is evaluated for any access request to the slave. At the
second level, the remaining masters are evaluated in round robin fashion for any access request to the
slave. The priority levels of the buses with fixed priority and the buses with round robin priority are given
in the following table.

4.1.3.1.1 Arbitration Parameters
The following slave arbitration configuration parameters are user programmable registers in the
SYSREG block.

• Programmable slave maximum latency: Slave maximum latency, ESRAM_MAX_LAT, decides the
peak wait time for a fixed priority master arbitrating for eSRAM access while the WRR master is
accessing the slave. After the defined latency period, the WRR master will have to re-arbitrate for
slave access. Slave maximum latency can be configurable from one to eight clock cycles (eight by
default). ESRAM_MAX_LAT is only supported for fixed priority masters addressing eSRAM slaves; it
has no effect on WRR masters.

• Programmable weight: MASTER_WEIGHT0_CR and MASTER _WEIGHT1_CR are 5-bit
programmable registers located in the SYSREG block that define the number of consecutive
transfers the weighted master can perform without being interrupted by a fixed priority master, or
before moving onto the next master in the WRR cycle.

Table 44 • WRR Masters

Masters Priority Arbitration
System controller MM9 4 Fixed

HPDMA MM3 4 WRR

FIC_0 MM4 4 WRR

FIC_1 MM5 4 WRR

PDMA MM7 4 WRR
Microchip Proprietary UG0448 Revision 10.0 69

AHB Bus Matrix
4.1.3.1.2 Pure Round Robin Arbitration
This is the default arbitration mode after reset. The programmable weight value of each master is set to
1, and ESRAM_MAX_LAT = 1.

The arbitration scheme for each slave port is identical in pure round robin arbitration, as shown in the
following figure. The fixed priority master have priority over other masters. Each WRR master accessing
a slave has equal priority on a round robin basis. However, if a locked transaction occurs, the master
issuing the lock maintains ownership of the slave until the locked transaction completes.

Figure 49 • Pure Round Robin and Fixed Priority Slave Arbitration Scheme

The following table gives an example of a pure round robin and fixed priority arbitration scenario for
eSRAM1. This example illustrates default AHB bus matrix behavior.

In this table, WRR masters and fixed priority master arbitrate for the S1 (eSRAM1) slave during HCLK
cycle 1. The last row in the table, labeled eSRAM1: S1, shows which of the masters obtains access to
the slave according to the arbitration in that clock cycle. In the first cycle, master M3 (HPDMA) is granted
access, since it is the first master in the round robin scheme. In the second cycle, even though master
M4 is scheduled to get access to the slave as per the round robin scheme, the M9 master (System
Controller) is granted access since it has a higher priority. In the third cycle, the master M4 (FIC_0) in the
round robin scheme is granted access. In the fourth cycle, M9 (System Controller) is trying for access.

Table 45 • Pure Round Robin and Fixed Priority Arbitration Scenario for eSRAM1

Master 1 2 3 4 5 6
System
Controller: M9

eSRAM1 eSRAM1

HPDMA: M3 eSRAM1

FIC_0: M4 eSRAM1

FIC_1: M5 eSRAM1

PDMA: M7 eSRAM1

eSRAM1: S1 HPDMA M3 System
Controller M9

FIC_0 M4 System
Controller M9

FIC_1 M5 PDMA M7

HMASTLOCK

System
Controller

M9

FIC_1
M5

PDMA
M7 FIC_0

M4

Fixed Priority
Master

Round Robin
Masters

HMASTLOCK

HMASTLOCK

HPDMA
M3
Microchip Proprietary UG0448 Revision 10.0 70

AHB Bus Matrix
WRR masters are delayed while the fixed priority master get access to the slave. The remaining cycles
are consumed by the WRR masters in order.

4.1.3.1.3 WRR Arbitration
In this mode, the slave arbitration parameters, programmable weight (SW_WEIGHT_<master>) and
eSRAM slave maximum latency (SW_MAX_LAT_ESRAM<0/1> of ESRAM_MAX_LAT) can be
configured to operate as WRR arbitration. The slave arbiter operates on a round robin basis, with each
master having a maximum of N consecutive access opportunities to the slave in each round of
arbitration. The value of N is determined by the programmed weight for the master and eSRAM slave
maximum latency. Programmable weight values can be changed dynamically. The following figure shows
the WRR slave arbitration scheme. At each stage, the arbiter checks whether that master is requesting
access. If so, the master performs N transfers equal to its programmed weight and then has to re-
arbitrate for the bus. For a WRR master, the WRR priority in the round robin sequence changes after the
programmed number of transfers.If a locked transaction occurs, the master issuing the lock
(HMASTLOCK = 1) maintains ownership of the slave until the locked transaction completes.

Figure 50 • WRR and Fixed Priority Slave Arbitration Scheme

WRR with fixed priority arbitration allows more efficient usage of slave bandwidth in cases where the
slaves have a penalty when transitioning from one master to another.

The eSRAM AHB controller inserts an idle cycle every time there is a write followed by a read, enabling
WRR can increase the effective eSRAM bandwidth during this time from 66% to 94% of the theoretical
maximum. If a sequence of locked transfers is in progress, the locked master remains selected by the
slave arbiter until the lock sequence is finished, regardless of the number of transfers.

4.1.3.1.4 Arbitration for Non-eSRAM Slaves
In non-eSRAM slaves, any WRR master getting access to the slave can perform uninterrupted
transactions equal to its programmed weight before re-arbitrating for the slave. Thus, for example, if
FIC_1 is programmed with a weight of 8, it can do 8 continuous transactions with the slave even if the
high priority master is requesting access to the slave. Only after completing 8 transfers, the high priority
master will gain access to the slave.

The following table gives an arbitration scenario for a non-eSRAM slave. In this scenario, master M5
(FIC_1) starts a burst of twelve transfers (reads typically for accesses to eNVM) to slave S2 (eNVM_0) in

HMASTLOCK

System
Controller

M9

HPDMA
M3

FIC_1
M5

PDMA
M7

FIC_0
M4

Fixed Priority
Masters

Round Robin
Masters

HMASTLOCK

HMASTLOCK

PrgWeight

PrgWeight

PrgWeight

PrgWeight
Microchip Proprietary UG0448 Revision 10.0 71

AHB Bus Matrix
the first clock cycle. In the second clock, fixed priority master M9 (System Controller) bus tries to access
the same slave. Since the programmed weight of M5 master is 8, the M9 master does not gain access to
the slave until M5 completes eight transfers. As seen in the following table, the M9 master gains access
to the slave only after the M5 master completes eight transfers, which is in the 9th clock cycle. The M5
master has to
re-arbitrate for the slave to complete the remaining transfers. So the maximum latency seen by the
master M9 is equal to the programmed weight of 8.

4.1.3.1.5 Arbitration for eSRAM Slaves
For eSRAM slaves, a programmable maximum latency parameter SW_MAX_LAT_ESRAM<0/1> is
available to optimize arbitration for the eSRAM slaves from a fixed priority master. The parameter
SW_MAX_LAT_ESRAM_<0/1> sets a ceiling as to the number of cycles the fixed priority master, has to
wait before accessing an eSRAM slave that is currently being accessed by a WRR master. When a WRR
master has a programmable weight greater than the SW_MAX_LAT_ESRAM<0/1> value, the WRR
master will have to re-arbitrate for the slave after SW_MAX_LAT_ESRAM<0/1> cycles. The following
equation gives the maximum latency seen by a fixed priority master while accessing an eSRAM slave:

Maximum latency seen by the fixed priority master =min{programmable weight (WRR master),
SW_MAX_LAT_ESRAM<0/1>}

For example, if SW_WEIGHT_HPDMA is set to 18 and SW_MAX_LAT_ESRAM0 is set to 4, then the
maximum latency is min {18, 4} = 4. Similarly, if SW_WEIGHT_PDMA is set to 2 and
SW_MAX_LAT_ESRAM1 is set to 6, then the maximum latency is min {2, 6} = 2. The following table
depicts a typical scenario.

In this scenario, the slave maximum latency is set to 4 and the master programmable weight is set to 8,
so the maximum latency seen by the fixed priority master is min {4, 8} = 4. When the WRR master starts
transactions with the eSRAM slave, it can perform a number of transactions equal to the programmed
maximum latency or the programmed weight, whichever is less, before re-arbitrating for the slave.

Table 46 • WRR and Fixed Priority Arbitration Scenario for eNVM_0

Master HCLK
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

System
controller
M9

S2-
B4

FIC_1: M5 S2-
B12

eNVM_0:S
2

M5-
B1

M5-
B2

M5-
B3

M5-
B4

M5-
B5

M5-
B6

M5-
B7

M5-
B8

M9-
B1

M9-
B2

M9-
B3

M9-
B4

M5-
B9

M5-
B10

M5-
B11

M5-
B12

Table 47 • WRR Arbitration Scenario for eSRAM_0 slave

Master HCLK
1 2 3 4 5 6 7 8 9 10 11 12

System
controller M9

S0-B4

PDMA: M7 S0-B8

eSRAM_0: S0 M7-B1 M7-B2 M7-B3 M7-B4 M9-B1 M9-B2 M9-B3 M9-B4 M7-B5 M7-B6 M7-B7 M7-B8
Microchip Proprietary UG0448 Revision 10.0 72

AHB Bus Matrix
4.1.3.1.6 Slave Arbitration Flow Diagram
The following figure shows the slave arbitration flow diagram depicting the grant of access to master
requesting for slave access. At each stage the arbiter checks whether that master is requesting for an
access. If yes, then the master can do number of transfers equal to its programmed weight and then has
to re-arbitrate for the bus. In case of WRR master, after the programmed number of transfer WRR priority
changes for that master in round robin sequence.

Figure 51 • Slave Arbitration Flow Diagram

Slave Arbitration Flow Diagram

Re-arbitration

Re-arbitrate

Re-arbitrate

Re-arbitrate

YES

YES

YES

Transact till number of
transfer done <=PW_M9

Transact as long
as HMASTLOCK = 1

Transact till
number of

Transfer done <=
PW_WRR

HMASTLOCK = 1

No

No

No

If (WRRM=1)

If (M9=1) and if WRRM
has completed its burst

Index:
PW_M = Programmable
 Weight of master M
WRRM = Masters in WRR
Microchip Proprietary UG0448 Revision 10.0 73

AHB Bus Matrix
4.1.4 System Memory Map
The AHB bus matrix is responsible for implementing the address decoding of all masters to all slaves, so
it defines the system memory map. The following figure shows the default system memory map for
IGLOO2 devices.

Figure 52 • Default System Memory Map

4.1.4.1 Unimplemented Address Space
The AHB bus matrix performs address decoding based on the memory map defined in the preceding
figure, to decide which slave, if any, is being addressed. Any access to memory space outside of these
regions is considered unimplemented from the point of view of the AHB bus matrix. This access results in
the assertion of a SW_ERROR Status Register bit of the HPMS_EXTERNAL_SR Control Register, as
well as the assertion of HRESP by the AHB bus matrix to the master. If any master attempts a write
access to unimplemented address space, the AHB bus matrix completes the handshake to the master
with an HRESP error indication. No write occurs to any slave.

FPGA Fabric FIC Region5

MDDR Space 3
MDDR Space 2
MDDR Space 1
MDDR Space 0

FPGA Fabric FIC Region4
FPGA Fabric FIC Region3
FPGA Fabric FIC Region2

AHB-to-eNVM_1 Registers
AHB-to-eNVM_0 Registers

eNVM_1
eNVM_0

FPGA Fabric FIC Region1

SYSREG

Config FDDR, PCIe_0, PCIe_1, etc.
Config MDDR

COMBLK

High Performance DMA

Fabric Interface Interrupt Controller

Peripheral DMA Control

SPI_0

FPGA Fabric FIC Region0

ECC eSRAM_1
ECC eSRAM_0

eSRAM_1
eSRAM_0

eNVM (Fabric) virtual view

0xF0000000 - 0xFFFFFFFF
0xE0000000 - 0xEFFFFFFF
0xD0000000 - 0xDFFFFFFF
0xC0000000 - 0xCFFFFFFF
0xB0000000 - 0xBFFFFFFF
0xA0000000 - 0xAFFFFFFF
0x90000000 - 0x9FFFFFFF
0x80000000 - 0x8FFFFFFF
0x70000000 - 0x7FFFFFFF
0x60100000 - 0x6FFFFFFF
0x600C0000 - 0x600FFFFF
0x60080000 - 0x600BFFFF
0x60040000 - 0x6007FFFF
0x60000000 - 0x6003FFFF
0x50000000 - 0x5FFFFFFF
0x44000000 - 0x4FFFFFFF
0x42000000 - 0x43FFFFFF
0x40410000 - 0x41FFFFFF
0x40400000 - 0x4040FFFF
0x40044000 - 0x403FFFFF
0x40043000 - 0x40043FFF
0x40042000 - 0x40042FFF
0x40041000 - 0x40041FFF
0x40039000 - 0x40040FFF
0x40038000 - 0x40038FFF
0x40030000 - 0x40037FFF
0x40020400 - 0x4002FFFF
0x40020000 - 0x400203FF
0x40018000 - 0x4001FFFF
0x40017000 - 0x40017FFF
0x40016000 - 0x40016FFF
0x40015000 - 0x40015FFF
0x40014000 - 0x40014FFF
0x40013000 - 0x40013FFF
0x40012000 - 0x40012FFF
0x40011000 - 0x40011FFF
0x40010000 - 0x40010FFF
0x40007000 - 0x4000FFFF
0x40006000 - 0x40006FFF
0x40005000 - 0x40005FFF
0x40004000 - 0x40004FFF
0x40003000 - 0x40003FFF
0x40002000 - 0x40002FFF
0x40001000 - 0x40001FFF
0x40000000 - 0x40000FFF
0x30000000 - 0x3FFFFFFF
0x24000000 - 0x2FFFFFFF
0x22000000 - 0x23FFFFFF
0x20014000 - 0x21FFFFFF
0x20012000 - 0x20013FFF
0x20010000 - 0x20011FFF
0x20008000 - 0x2000FFFF
0x20000000 - 0x20007FFF
0x00080000 - 0x1FFFFFFF
0x0007FFFF

0x00000000

(63 K space
 allocation for

devices outside
HPMS)

Memory Map of System
Controller, FPGA Fabric
Master, Peripheral DMA

Microchip Proprietary UG0448 Revision 10.0 74

AHB Bus Matrix
If any master attempts a read access from unimplemented address space, the AHB bus matrix
completes the handshake to the master with an HRESP error indication. Undefined data is returned.
There may be further memory areas that are unimplemented, within individual slave memory regions.
Depending on the slave, accesses may be aliased within these areas or not. Firmware should not
perform writes to these locations because the aliasing may cause a write to another location within the
slave. Data read from these intra-slave unimplemented regions may be undefined.

4.1.4.2 Locked Transactions
HPMS supports locked accesses through its internal switch matrix to its slaves (eSRAM, DDR, FIC_0,
FIC_1). HMASTLOCK signal is not routed to the fabric to allow a matrix to implement a lock-based
arbitration system.

4.1.4.3 Fabric Memory Map
There are six regions of 256 Kbytes each, which may be allocated to either FIC_0 or FIC_1 (fabric
interrupt controller). This allows to configure large memory mapped windows into the FPGA fabric.

4.1.4.4 Fabric Master Considerations
The following consideration should be taken into account while implementing fabric logic:

• Configuring the AHB bus matrix: For the mode changes (change of protection region, memory map
mode, programmable weights and programmable maximum latency), all masters should be in IDLE
STATE (where no data transfer is required) for a sufficient amount of time-10 IDLE cycles (ten clock
cycles)-before and after the mode change.

4.1.4.5 Memory Security
After reset, all master ports on the AHB bus matrix are enabled. There are separate user-defined flash
configuration bits that control read and write access for each memory slave from various masters, which
are organized in groups. The pairing of the masters and the slaves with respect to the bits set in the
security registers are given in detail in the following table. Read access and write access can be
independently controlled by separate read and write flash bits. The detailed bit configuration of these S
registers is given in System Register Block, page 197.

An access attempt by a master where the corresponding master port is blocked (by a flash configuration
bit setting) causes the AHB bus matrix to assert HRESP to the master and terminate the transaction. If a
blocked port is attempting a read access, the read data is returned as garbage. If the blocked port is
attempting a write, the write of data does not occur to any slave. In both cases, one of the
SW_ERRORSTATUS bits is asserted. DDR_FIC is not part of the AHB bus matrix but can be blocked
from accessing the memory subsystem DDR (MDDR).

Table 48 • Master and Slave Pairing

SYSREG Register Master

Slave
MS0 MS1 MS2 MS3 MS6

eSRAM0 eSRAM1 eNVM_0 eNVM_1
HPMS DDR
Bridge

MM4_5_FIC64_SECURITY MM4: FIC_0 RW RW RW RW RW

MM5: FIC_1 RW RW RW RW RW

DDR_FIC RW RW RW RW RW

MM3_7_SECURITY MM3: HPDMA RW RW RW RW RW

MM7: PDMA RW RW RW RW RW

MM9_SECURITY MM9: System controller RW RW RW RW RW
Microchip Proprietary UG0448 Revision 10.0 75

AHB Bus Matrix
4.2 How to Use AHB Bus Matrix
This section describes how to use the AHB bus matrix in the IGLOO2 devices. To configure the IGLOO2
device features and then build a complete system, use the System Builder graphical design wizard in
the Libero Software.

The following figure shows the initial System Builder window where the required device features can be
selected. For details on how to launch the System Builder wizard and a detailed information on how to
use it, see,IGLOO2 System Builder User Guide.

Figure 53 • System Builder Window
Microchip Proprietary UG0448 Revision 10.0 76

https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf

AHB Bus Matrix
The following steps describe how to use the AHB bus matrix in the user application.

1. Use the Device Features tab and Peripherals tab of the System Builder wizard to configure the
AHB bus matrix masters in the application.

2. Navigate to the HPMS Options tab. The following figure shows the HPMS Options tab.
Figure 54 • System Builder - HPMS Options Tab

3. Enter the programmable weight values for the FIC_0, FIC_1, PDMA, and HPDMA masters in
Arbitration as shown in the preceding figure to configure the programmable weight registers,
MASTER_WEIGHT0_CR and MASTER_WEIGHT1_CR with the required weight values. The weight
values range is from 1 to 32.

Note: There is no option available in System Builder - HPMS Options tab to configure weight values for
System Controller master. The weight values of System Controller master is 1 by default.

4. Enter the maximum latency values for the fixed priority masters to configure ESRAM_MAX_LAT
registers that are located in the SYSREG block.
Maximum latency values decide the peak wait time for a fixed priority master arbitrating the eSRAM
access when the WRR master is accessing the slave. Fixed Priority Master Maximum Latency
can be configured from 1 to 8 clock cycles. 8 clock cycles is the default value.

Note: Fixed Priority Master Maximum Latency is only supported for fixed priority master accessing the
eSRAM slaves. It has no effect on WRR masters.

The HPMS AHB Bus Matrix supports full-behavioral simulation models.
Microchip Proprietary UG0448 Revision 10.0 77

AHB Bus Matrix
4.3 Register Map
The following table lists the AHB bus matrix Control Registers in the SYSREG block.

Table 49 • AHB Bus Matrix Register Map

Register Name
Register
Type

Flash
Write
Protect Reset Source Description

MASTER_WEIGHT0_CR RW-P Register SYSRESET_N Configures WRR master arbitration scheme for
masters. For more information, see Table 139,
page 213.

MASTER_WEIGHT1_CR RW-P Register SYSRESET_N Configures WRR master arbitration scheme for
masters. For more information, see Table 140,
page 214.

MM4_5_DDR_FIC_SECURIT
Y/MM4_5_FIC64_SECURITY

RO-U N/A SYSRESET_N Security bits for masters 4, 5, and DDR_FIC.
For more information, see Table 167, page 228.

MM3_7_SECURITY RO-U N/A SYSRESET_N Security bits for masters 3 and 7. For more
information, see Table 168, page 229.

MM9_SECURITY RO-U N/A SYSRESET_N Security bits for master 9. For more
information, see Table 169, page 230.

HPMS_EXTERNAL_SR SW1C N/A SYSRESET_N AHB bus matrix error status. Writing a 1 clears
the status. For more information, see
Table 184, page 237.

ENVM_CR RW-P Register SYSRESET_N Configures eNVM parameters. For more
information, see Table 130, page 208.

ESRAM_MAX_LAT RW-P Register SYSRESET_N Configures maximum latency for accessing
eSRAM0/1 slave. For more information, see
Table 128, page 207.

ENVM_REMAP_FAB_CR RW-P Register SYSRESET_N Configures where eNVM is mapped in fabric
master space. For more information, see
Table 132, page 210.

DDRB_NB_ADDR_CR RW-P Register SYSRESET_N Base address of the non-bufferable address
region. For more information, see Table 134,
page 211.

DDRB_NB_SIZE_CR RW-P Register SYSRESET_N Size of the non-bufferable address region. For
more information, see Table 135, page 211.

Microchip Proprietary UG0448 Revision 10.0 78

High Performance DMA Controller
5 High Performance DMA Controller

The high performance DMA Controller (HPDMA) provides fast data transfer between the HPMS DDR
bridge and HPMS memories. The HPMS memories are eSRAM0, eSRAM1, eNVM0, and eNVM1. The
DDR bridge connects to external DDR memory.

The following figure shows HPDMA interfacing with AHB Bus Matrix and HPMS DDR bridge. AHB bus
masters can offload the high speed memory transfers to HPDMA, making the master available for
performing other tasks. All transfers by the HPDMA are full word transfers. The HPDMA controller has
two AHB masters, HPMS DDR Bridge and AHB bus matrix master (MM0-MM9) which functions
concurrently to enable high performance data transfers. The configuration of HPDMA is done through the
APB interface.

Figure 55 • HPDMA Interfacing With HPMSDDR Bridge and AHB Bus Matrix

5.1 Features
• Faster read/write operations with two concurrent AHB masters
• 32-bit AHB operation at 166 MHz
• 32-bit APB slave interface for Control and Status Registers at 25/50/100/166 MHz
• Internal 32-bit Control, Status, and Debug Registers
• Single DMA channel with four queuing HPDMA descriptors, serviced with round robin priority
• Up to 64 Kbytes data transfer in single channel request
• 32-byte internal data buffer
• Supports word aligned data transfers
• Interrupts for DMA transfer complete and transfer errors
• DMA transfer pause
• Individual descriptor reset
• Data transfer in little-endian format

AHB Bus Matrix

MS5

eSRAM_1 eSRAM_0 eNVM_0HPDMADDR Bridge

MS1 MS0MS2MM3MS6MM7

AHB To AHB Bridge with Address Decoder

APB_0SYSREGFIC_1

MM4 MS4 MM5

SPI

PDMA
Configuration

FIIC COMM_BLK

MS5_FIC MS5_SR MS5_APB0 MS5_APB1

High Performance Memory Subsystem
DDR

PDMASystem
Controller

MM9

APB_1FIC_0

eNVM_1

MS3

HPDMA
Configuration

FIC_2 (Peripheral
Initialization)

MS5_FIC2
Microchip Proprietary UG0448 Revision 10.0 79

High Performance DMA Controller
5.2 Functional Description
HPDMA has a single channel which can process up to four service requests (HPDMA descriptor) in a
round robin fashion. To process each request, HPDMA descriptor is configured by an AHB bus matrix
master (fabric master) through APB interface. The HPDMA APB interface is connected on APB_1, which
is an AHB to APB bridge as shown in the preceding figure. HPDMA then reads data from the source
memory and transfers data to the destination.

5.2.1 Architecture Overview
HPDMA mainly consists of the following sub-blocks, as shown in the following figure:

• Interfaces
• Configuration and status registers
• DMA controller
• Write buffer controller
• Read buffer controller
• Data buffer

Figure 56 • HPDMA Controller Block Diagram

5.2.1.1 Interfaces
There are two types of interfaces used for communicating with HPDMA.

• 32-bit APB slave interface for configuration
• Two AHB master interfaces (AHB-M1, AHB-M2) for data transfers

• AHB master 1 does the read/write transfers at the AHB bus matrix end
• AHB master 2 does the read/write transfer s at the HPMS DDR bridge end

5.2.1.2 Configuration and Status Registers
The Configuration and Status Registers of the HPDMA controller are accessed through a 32-bit APB
slave, as shown in the following figure. In order to enable and use HPDMA services, the AHB bus matrix
master must configure the 32-bit wide descriptor registers. There are four descriptors available with the
HPDMA controller. Each descriptor has the following five registers.

• Source memory address register
• Destination memory address register
• Control Register

APB Interface

APB Slave

Configuration and
Status Registers

DMA
Controller

Write Buffer
Controller

Read Buffer
Controller

Data Buffer
MUX
Logic

AHB
Master 1

AHB
Master 2

AHB Bus Matrix

HPMS DDR
Bridge

HPDMA
Microchip Proprietary UG0448 Revision 10.0 80

High Performance DMA Controller
• Status Register
• Pending Transfer register

Figure 57 • HPDMA Registers

5.2.1.3 DMA Controller
The DMA controller controls and monitors transactions on the source and destination AHB master
interfaces. When a descriptor is configured, the DMA controller enables the write buffer controller to read
data from the appropriate source memory (AHB bus matrix or HPMS DDR bridge) and transfer it into the
internal data buffer. In a similar way, the DMA controller enables read buffer controller to read the data
from the internal data buffer and transfers it to the destination memory. The following figure shows the
detailed DMA Controller flow.

Figure 58 • DMA Controller Flow Chart

APB Interface

APB Slave

Descriptor 0 Registers

Descriptor 1 Registers

Descriptor 2 Registers

Descriptor 3 Registers

HPDMA Registers

Configuration and Status Registers

DMA Controller

Reset

Is Descriptor
valid?

Data
Transfer

direction = 1

Enable write buffer
controller to read data
from HPMS DDR
bridge and write to
internal data buffer

Transfer size
bytes are

transferred to
destination
memory

successfully

NO

YES
ERROR

YES

Enable Read
buffer controller

to send data from
internal data

buffer to
HPMS DDR bridge

Enable write buffer
controller to read
data from AHB bus
matrix and write to
internal data buffer

NO

YESNO
Enable read

buffer controller
to send data from

internal data buffer
to AHB bus matrix

Load Descriptor to
internal registers

Update DMA
Status and
Debug registers
Microchip Proprietary UG0448 Revision 10.0 81

High Performance DMA Controller
5.2.1.4 Write Buffer Controller
The write buffer controller enables the appropriate AHB master (AHB-M1 or AHB-M2) to read the data
from source memory. To initiate read transfers on the AHB bus, the write buffer controller provides the
read address and asserts the ready signal. The AHB master acknowledges, and the write buffer
controller writes the source memory data to the internal data buffer.

If the data buffer is full, the write buffer controller initiates idle transfers on the AHB bus, and asserts
ready signal when at least one data buffer is available. The write buffer controller pauses the DMA
transfers when the descriptor pause bit is enabled, and resumes the transfers as soon as the pause bit is
disabled. When the last count value is reached, the AHB slave acknowledges the last transfer.

5.2.1.5 Read Buffer Controller
The read buffer controller places the address and asserts the ready signal to the AHB master (AHB-M1
or AHB-M2). Depending on the transfer direction, AHB-M1 or AHB-M2 initiates the data transfers from
internal data buffer to destination memory.

If the data buffer is empty or if the DMA controller pause bit is enabled, then the read buffer controller
initiates IDLE transfers on the AHB bus.

5.2.1.6 Data Buffer
The data buffer block is 32 bits wide and 8 words deep. Data buffer read/write operations are performed
on the rising edge of the clock signal. There are 4-bit read and write pointers that increment on read and
write.

The 3 least significant bits (LSBs) are used to address the 8 locations; the most significant bit (MSB) of
the read and write pointers is used to signal the data buffer empty and full.

5.2.1.6.1 Data Buffer Full and Empty
When the read pointer and write pointer are equal, the data buffer is empty. When the 3 LSBs of read
pointer and write pointer are equal and the MSBs of the read pointer and write pointer are not equal, the
data buffer is full.

5.2.2 Initialization
To initiate and setup DMA transactions, HPDMA has to be initialized. The initialization process starts with
a reset sequence followed by Channel configuration and interrupt configuration.

5.2.2.1 Reset
The HPDMA registers are reset on power-up. The HPDMA can be reset by asserting the Bit 17 of
SOFT_RESET_CR system register.

5.2.2.2 Descriptor Configuration
Before configuring each HPDMA channel, the round robin weight is specified if needed, using the
MASTER_WEIGHT_CR register or configuring the AHB bus matrix in Libero SoC.

To configure each HPDMA descriptor, the following registers have to be set:

1. Descriptor Control Register bits:
• Direction: bit 1 of HPDMADXCR_REG (where X is 0 to 3)
• Transfer size in bytes: bits[15:0] of HPDMADXCR_REG (where X is 0 to 3)
• Enable Interrupts: bits[22:20] of HPDMADDXCR_REG (where X is 0 to 3)

2. 32 bit Source memory start Address: bits[31:0] of HPDMADXSAR_REG (where X is 0 to 3)
3. 32 bit Destination memory start Address: bits[31:0] of HPDMADXDAR_REG (where X is 0 to 3)

5.2.2.3 Interrupt
There are two interrupts: HPD_XFR_CMP_INT and HPD_XFR_ERR_INT from the HPDMA to the Fabric
master.

The interrupt signals are mapped to the dedicated interrupt signal HPMS_INT_M2F[9] and the
HPMS_INT_M2F[22] of the fabric interface interrupt controller (FIIC).
Microchip Proprietary UG0448 Revision 10.0 82

High Performance DMA Controller
This may be used to interrupt the user logic instantiated in the FPGA fabric. To enable HPDMA interrupts,
the 9th bit (HPD_XFR_CMP_INT_EN) and the 22nd bit (HPD_XFR_CMP_INT_EN) of
INTERRUPT_ENABLE0 register need to be set to High. The status of the interrupts to FIIC can be
determined by reading the 9th and 22nd bits of the INTERRUPT_REASON0 register. The address
offsets of INTERRUPT_ENABLE0 and INTERRUPT_REASON0 are listed in Table 189, page 244.

To determine the descriptor transfer status, monitor the Descriptor Status Register (HPDMADXSR,
where X is 0 to 3). Before start of transaction, the enabled Descriptor interrupt bits are to be cleared. See
Table 72, page 105 for clearing of interrupts.

5.2.3 Details of Operation
After initialization, the HPDMA is ready to function in one of the two following data transfer modes:

• AHB bus matrix to HPMS DDR bridge
• HPMS DDR bridge to AHB bus matrix
For initiation of the above data transfer modes, a descriptor valid bit has to be set (that is, bit 16 of the
Descriptor Control Register is asserted). If all the four descriptors are configured and set to valid, the
descriptor transfer begins and executes in a round robin fashion. If any of the descriptors is paused by
setting the bit 19 of Descriptor Control Register, the HPDMA stops the data transfer. HPDMA resumes
the operation once the pause bit is reset. The pending transfers of the source and destination can be
read from the Descriptor pending transfer register (HPDMADXPTR, where X is 0 to 3).

HPDMA can service the next descriptor only after the pending transfer of the current descriptor is
complete. The data transfer completion interrupt is monitored using bit 20 of the Descriptor Control
Register and bit 1 of the Descriptor Status Register. See HPDMA Register Bit Definitions, page 91 for
more information on HPDMA registers.
Microchip Proprietary UG0448 Revision 10.0 83

High Performance DMA Controller
5.3 How to Use HPDMA
This section describes how to use HPDMA in the IGLOO2 devices. To configure the IGLOO2 device
features and then build a complete system, use the System Builder graphical design wizard in the
Libero Software.

The following figure shows the initial System Builder window where the required device features can be
selected. For details on how to launch the System Builder wizard and a detailed information on how to
use it, see IGLOO2 System Builder User Guide.

Figure 59 • System Builder Window
Microchip Proprietary UG0448 Revision 10.0 84

https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf

High Performance DMA Controller
5.3.1 Configuring HPDMA
The following steps describe how to configure HPDMA.

1. Check the HPMS External DDR Memory (MDDR), and HPMS High Performance DMA (HPDMA)
check boxes in the Device Features tab and leave the other check boxes unchecked. These other
features can be used, but are outside the scope of this example. The following figure shows the
System Builder - Device Features tab with the HPDMA and MDDR check boxes and the HPDMA
block highlighted.

Figure 60 • System Builder - Device Features Tab
Microchip Proprietary UG0448 Revision 10.0 85

High Performance DMA Controller
2. Navigate to the Peripherals tab. The following figure shows the System Builder – Peripherals tab.
In the Peripherals tab, the fabric master core and slave components to HPMS_FIC_0 and HPMS
FIC_1 are added automatically by Libero SoC depending on selection on HPMS masters.

Figure 61 • System Builder - Peripherals Tab

3. Navigate to the HPMS Options in the System Builder wizard.
Microchip Proprietary UG0448 Revision 10.0 86

High Performance DMA Controller
4. In the HPMS Options tab, configure the Round Robin Weight for HPDMA Master. The round
robin weight is the number of consecutive transfers a master performs without being interrupted
during an access. In the following figure, the configured round robin weight value for HPDMA is 12. It
means that the HPDMA performs 12 consecutive transfers during its access before the next master
takes control. The following figure shows the Configuration dialog in the HPMS Options tab.

Figure 62 • HPMS Options Tab - Round Robin Weight Configuration for HPDMA Master
Microchip Proprietary UG0448 Revision 10.0 87

High Performance DMA Controller
5. Navigate to the Memory Map tab giving the required data in the rest of the System Builder tabs.
The following figure shows the System Builder - Memory Map tab. The CoreCONFIGP_0 is shown
in memory map because external DDR memory is selected. The CoreCONFIGP_0 facilitates in
configuring the IGLOO2 DDR controller. Click Finish to proceed with creating the HPMS subsystem.

Figure 63 • System Builder - Memory Map Tab

The IGLOO2 soft memory controller fabric interface controller (SMC_FIC) helps access external bulk
memories other than DDR through the FPGA fabric. The SMC_FIC is used in conjunction with a soft
memory controller to enable the HPMS to access memories such as SDRAM, flash, and SRAM. The
HPMS masters communicate with the SMC_FIC through an HPMS DDR bridge present in the HPMS.
For more information about SMC_FIC, see UG0446: SmartFusion2 and IGLOO2 FPGA High Speed
DDR Interfaces User Guide.

5.3.2 HPMS Subsystem
The following figure shows an example HPMS subsystem that can be used to access HPDMA using the
FPGA fabric master.

Figure 64 • HPMS Subsystem
Microchip Proprietary UG0448 Revision 10.0 88

https://www.microsemi.com/document-portal/doc_download/132040-ug0446-smartfusion2-and-igloo2-fpga-high-speed-ddr-interfaces-user-guide
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/SmartFusion2_IGLOO2_DDR_UG0446_V8.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/SmartFusion2_IGLOO2_DDR_UG0446_V8.pdf

High Performance DMA Controller
5.3.3 HPMS Subsystem Connected to the FPGA Fabric Master
The following figure shows the FPGA fabric master connected to the AHB master port.

Figure 65 • HPMS Interconnection with FPGA Fabric Master

5.3.4 MDDR to eSRAM
The following steps describe how to use the Fabric master for configuring HPDMA to transfer data from
MDDR to eSRAM.

1. Enable HPDMA using the System Builder wizard.
2. Initialize HPDMA:

• Reset HPDMAICR_REG register
• Reset HPDMAEDR_REG register

3. Configure HPDMA:
• Load the 32-bit source memory start address register with MDDR read address.

(See HPDMAD0SAR_REG register).
• Load the 32-bit destination memory start address register with eSRAM write address

(See HPDMAD0DAR_REG register).
• Set the following fields in HPDMA Control Register:

• Transfer size in bytes (Example: HPDMAD0CR[15:0] = 0x64 for 100 bytes)
• Set the direction bit HPDMAD0CR[1] = 1 to transfer data from MDDR to eSRAM
• For eSRAM to MDDR, set HPDMAD0CR[1] = 0
• Enable the HPDMAD0CR[22: 20] to generate transfer complete and transfer error, non-

word Align Interrupts
4. Start HPDMA by setting bit[16] of HPDMA Control Register (Example: HPDMAD0CR[16] = 1)
5. Pause the data transfers using bit[19] of HPDMA Control Register (Example: HPDMAD0CR[19] = 1)
6. Check the source and destination pending transfer bytes using HPDMA pending transfer register

(See HPDMAD0PTR_REG register).
7. Resume the data transfers using bit[19] of HPDMA Control Register

(Example: HPDMAD0CR[19] = 0).
8. Check for interrupt completion by monitoring HPMS_INT_M2F[9] bit.
9. Select Group0 interrupt HPMS_INT_M2F[8] to monitor transfer error interrupt.
10. Read the status of the configured descriptor (see HPDMAD0SR_REG register) to check the

following:
• If the current descriptor is active
• If there are any pending interrupts, clear the interrupts by configuring the HPDMAICR_REG

register (Interrupt clear register).
Microchip Proprietary UG0448 Revision 10.0 89

High Performance DMA Controller
5.4 HPDMA Controller Register Map
The following table summarizes the HPDMA controller register map. The sections that follow detail
register bit descriptions of status, configuration, and debug registers. All the register bits are active high;
on reset they assume default values. Register R/W corresponds to external processor accessibility. The
address range of the HPDMA APB registers is x40014000 to x40014FFF. Only the 7 LSBs are
considered for addressing the registers.

Table 50 • HPDMA Register Map

Register Name
Address
Offset

Register
Type

Reset
Value Description

HPDMAEDR_REG x00 R x0F HPDMA Empty Descriptor register

HPDMAD0SAR_REG x04 R/W x00 Descriptor 0 source memory start address

HPDMAD0DAR_REG x08 R/W x00 Descriptor 0 destination memory start address

HPDMAD0CR_REG x0C R/W x00 Descriptor 0 Control Register

HPDMAD0SR_REG x10 R x00 Descriptor 0 Status Register

HPDMAD0PTR_REG x14 R x00 Descriptor 0 Pending Transfer register

HPDMAD1SAR_REG x18 R/W x00 Descriptor 1 source memory start address

HPDMAD1DAR_REG x1C R/W x00 Descriptor 1 destination memory start address.

HPDMAD1CR_REG x20 R/W x00 Descriptor 1 Control Register

HPDMAD1SR_REG x24 R x00 Descriptor 1 Status Register

HPDMAD1PTR_REG x28 R x00 Descriptor 1 Pending Transfer register

HPDMAD2SAR_REG x2C R/W x00 Descriptor 2 source memory start address

HPDMAD2DAR_REG x30 R/W x00 Descriptor 2 destination memory start address

HPDMAD2CR_REG x34 R/W x00 Descriptor 2 Control Register

HPDMAD2SR_REG x38 R x00 Descriptor 2 Status Register

HPDMAD2PTR_REG x3C R x00 Descriptor 2 Pending Transfer register

HPDMAD3SAR_REG x40 R/W x00 Descriptor 3 source memory start address

HPDMAD3DAR_REG x44 R/W x00 Descriptor 3 destination memory start address

HPDMAD3CR_REG x48 R/W x00 Descriptor 3 Control Register

HPDMAD3SR_REG x4C R x00 Descriptor 3 Status Register

HPDMAD3PTR_REG x50 R x00 Descriptor 3 Pending Transfer register

HPDMAICR_REG x54 W x00 HPDMA Interrupt Clear register

HPDMADR_REG x58 R x01 HPDMA Debug register
Microchip Proprietary UG0448 Revision 10.0 90

High Performance DMA Controller
5.4.1 HPDMA Register Bit Definitions
5.4.1.1 HPDMA Empty Descriptor Register

Table 51 • HPDMAEDR_REG

Bit
Number Name

Reset
Value Description

[31:16] Reserved 0 Software should not rely on the value of a reserved
bit. To provide compatibility with future products, the
value of a reserved bit should be preserved across a
read-modify-write operation.

15 HPDMAEDR_DCP_NON_WORD_ERR[3] 0 Descriptor 3 non-word aligned transfer size error.
1: Descriptor 3 non-word aligned transfer size error
0: No non-word aligned transfer size error
This bit is asserted High, if a non-word aligned value
is configured in the descriptor 3 transfer size field.
This bit clears on writing ‘1’ to
HPDMAICR_NON_WORD_INT[3] of the HPDMA
Interrupt Clear register, or when the
HPDMACR_DCP_VALID[3] bit of the descriptor 3
Control Register is set, or when the
HPDMACR_DCP_CLR[3] bit of the HPDMA
Controller register is set.
In this case, HPDMA will continue the transfer by
ignoring the 2 LSBs of transfer size field.

14 HPDMAEDR_DCP_NON_WORD_ERR[2] 0 Descriptor 2 non-word aligned transfer size error.
1: Descriptor 2 non-word aligned transfer size error
0: No non-word aligned transfer size error
This bit is asserted High if a non-word aligned value is
configured in the descriptor 2 transfer size field.
This bit is cleared on writing ‘1’ to
HPDMAICR_NON_WORD_INT[2] of the HPDMA
Interrupt Clear register, or when the
HPDMACR_DCP_VALID[2] bit of the descriptor 2
Control Register is set, or when the
HPDMACR_DCP_CLR[2] bit of the HPDMA
Controller register is set.
In this case, HPDMA will continue the transfer by
ignoring the 2 LSBs of the transfer size field.

13 HPDMAEDR_DCP_NON_WORD_ERR[1] 0 Descriptor 1 non-word aligned transfer size error.
1: Descriptor 1 non-word aligned transfer size error
0: No non-word aligned transfer size error
This bit is asserted High if a non-word aligned value is
configured in the descriptor 1 transfer size field.
This bit is cleared on writing ‘1’ to
HPDMAICR_NON_WORD_INT[1] of the HPDMA
Interrupt Clear register, or when the
HPDMACR_DCP_VALID[1] bit of the descriptor 1
Control Register is set, or when the
HPDMACR_DCP_CLR[1] bit of the HPDMA
Controller register is set.
In this case, HPDMA will continue the transfer by
ignoring the 2 LSBs of the transfer size filed.
Microchip Proprietary UG0448 Revision 10.0 91

High Performance DMA Controller
12 HPDMAEDR_DCP_NON_WORD_ERR[0] 0 Descriptor 0 non-word aligned transfer size error.
1: Descriptor 0 non-word aligned transfer size error
0: No non-word aligned transfer size error
This bit is asserted High, if non-word aligned value is
configured in descriptor 0 transfer size field. This bit is
cleared on writing ‘1’ to
HPDMAICR_NON_WORD_INT[0] of the HPDMA
Interrupt Clear register, or when the
HPDMACR_DCP_VALID[0] bit of the descriptor 0
Control Register is set or when the
HPDMACR_DCP_CLR[0] bit of the HPDMA
Controller register is set.
In this case, HPDMA will continue the transfer by
ignoring the 2 LSBs of the transfer size field.

11 HPDMAEDR_DCP_ERR[3] 0 Descriptor 3 transfer error.
1: Descriptor 3 transfer error
0: No descriptor 3 transfer error
This bit is asserted High, if an error occurs during the
descriptor 3 transfer at either source or destination
end. This bit is cleared on writing ‘1’ to
HPDMAICR_CLR_XFR_INT[3] of the HPDMA
Interrupt Clear register, or when the
HPDMACR_DCP_VALID[3] bit of the descriptor 3
Control Register is set.

10 HPDMAEDR_DCP_ERR[2] 0 Descriptor 2 transfer error.
1: Descriptor 2 transfer error
0: No descriptor 2 transfer error
This bit is asserted High, if an error occurs during the
descriptor 2 transfer at either source or destination
end. This bit is cleared on writing ‘1’ to the
HPDMAICR_CLR_XFR_INT[2] bit of the HPDMA
Interrupt Clear register, or when the
HPDMACR_DCP_VALID[2] bit of the descriptor 2
Control Register is set.

9 HPDMAEDR_DCP_ERR[1] 0 Descriptor 1 transfer error.
1: Descriptor 1 transfer error
0: No descriptor 1 transfer error
This bit is asserted High, if an error occurs during the
descriptor 1 transfer at either source or destination
end. This bit is cleared on writing ‘1’ to
HPDMAICR_CLR_XFR_INT[1] of the HPDMA
Interrupt Clear register, or when the
HPDMACR_DCP_VALID[1] bit of Descriptor 1
Control Register is set.

Table 51 • HPDMAEDR_REG (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 92

High Performance DMA Controller
8 HPDMAEDR_DCP_ERR[0] 0 Descriptor 0 transfer error.
1: Descriptor 0 transfer error
0: No descriptor 0 transfer error
This bit is asserted High if an error occurs during the
descriptor 0 transfer at either source or destination
end. This bit is cleared on writing ‘1’ to the
HPDMAICR_CLR_XFR_INT[0] bit of the HPDMA
Interrupt Clear register or when the
HPDMACR_DCP_VALID[0] bit of the descriptor 0
Control Register is set.

7 HPDMAEDR_DCP_CMPLET[3] 0 Descriptor 3 transfer complete.
1: Descriptor 3 transfer completed successfully
0: Descriptor 3 transfer not completed
When the descriptor 3 transfer is completed, either
with transfer error or transfer done, the HPDMA
controller asserts this bit High.
This bit is cleared on writing ‘1’ to the
HPDMAICR_CLR_XFR_INT[3] bit of the HPDMA
Interrupt Clear Register or when the
HPDMACR_DCP_VALID[3] bit of the descriptor 3
Control Register is set.

6 HPDMAEDR_DCP_CMPLET[2] 0 Descriptor 2 transfer complete.
1: Descriptor 2 transfer completed successfully
0: Descriptor 2 transfer not completed
When the descriptor 2 transfer is completed, either
with transfer error or transfer done, the HPDMA
controller asserts this bit High.
This bit is cleared on writing ‘1’ to the
HPDMAICR_CLR_XFR_INT[2] bit of the HPDMA
Interrupt Clear register or when the
HPDMACR_DCP_VALID[2] bit of the descriptor 2
Control Register is set.

5 HPDMAEDR_DCP_CMPLET[1] 0 Descriptor 1 transfer complete.
1: Descriptor 1 transfer completed successfully.
0: Descriptor 1 transfer not completed.
When the descriptor 1 transfer is completed, either
with transfer error or transfer done, the HPDMA
controller asserts this bit High.
Cleared on writing ‘1’ to the
HPDMAICR_CLR_XFR_INT[1] bit of the HPDMA
Interrupt Clear register or when the
HPDMACR_DCP_VALID[1] bit of the descriptor 1
Control Register is set.

Table 51 • HPDMAEDR_REG (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 93

High Performance DMA Controller
4 HPDMAEDR_DCP_CMPLET[0] 0 Descriptor 0 transfer complete.
1: Descriptor 0 transfer completed successfully.
0: Descriptor 0 transfer not completed.
When the descriptor 0 transfer is completed, either
with transfer error or transfer done, HPDMA controller
asserts this bit High.
Cleared on writing ‘1’ to the
HPDMAICR_CLR_XFR_INT[0] bit of the HPDMA
Interrupt Clear register or when the
HPDMACR_DCP_VALID[0] bit of descriptor 0 Control
Register is set.

3 HPDMAEDR_DCP_EMPTY[3] 1 Descriptor 3 is empty and ready for software
configuration.
1: Descriptor 3 is empty and ready to configure.
0: Descriptor 3 is already configured and descriptor
transfer is in progress/queue.
At the end of the descriptor transfer, either on transfer
error or transfer done, the HPDMA controller asserts
this bit High.

2 HPDMAEDR_DCP_EMPTY[2] 1 Descriptor 2 is empty and ready for software
configuration.
1: Descriptor 2 is empty and ready to configure.
0: Descriptor 2 is already configured and descriptor
transfer is in progress/queue.
At the end of the descriptor transfer, either on transfer
error or transfer done, the HPDMA controller asserts
this bit High.

1 HPDMAEDR_DCP_EMPTY[1] 1 Descriptor 1 is empty and ready for software
configuration.
1: Descriptor 1 is empty and ready to configure.
0: Descriptor 1 is already configured and descriptor
transfer is in progress/queue.
At the end of the descriptor transfer, either on transfer
error or transfer done, the HPDMA controller asserts
this bit High.

0 HPDMAEDR_DCP_EMPTY[0] 1 Descriptor 0 is empty and ready for software
configuration.
1: Descriptor 0 is empty and ready to configure.
0: Descriptor 0 is already configured and descriptor
transfer is in progress/queue.
At the end of the descriptor transfer, either on transfer
error or transfer done, the HPDMA controller asserts
this bit High.

Table 51 • HPDMAEDR_REG (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 94

High Performance DMA Controller
5.4.1.2 Descriptor 0 Source Address Register

5.4.1.3 Descriptor 1 Source Address Register

5.4.1.4 Descriptor 2 Source Address Register

5.4.1.5 Descriptor 3 Source Address Register

5.4.1.5.1 Notes on the Source Address Register (SAR)
• Address is word aligned at the start.
• Address increments on each successful transfer at the source end.
• HPDMA controller starts reading the data from source memory and transfers to destination memory.
• Software can write all 32-bit source address to prevent non-word aligned transfers at the start and 2

LSBs, 1:0, are masked in the hardware.
• The source address is updated when descriptor transfer is in progress.

Table 52 • HPDMAD0SAR_REG

Bit Number Name Reset Value Description
[31:0] HPDMASAR_DCP0_SRC_ADRS 0x00 Descriptor 0 source end memory start address

Table 53 • HPDMAD1SAR_REG

Bit Number Name Reset Value Description
[31:0] HPDMASAR_DCP1_SRC_ADRS 0x00 Descriptor 1 source end memory start address

Table 54 • HPDMAD2SAR_REG

Bit Number Name Reset Value Description
[31:0] HPDMASAR_DCP2_SRC_ADRS 0x00 Descriptor 2 source end memory start address

Table 55 • HPDMAD3SAR_REG

Bit Number Name Reset Value Description
[31:0] HPDMASAR_DCP3_SRC_ADRS 0x00 Descriptor 3 source end memory start address
Microchip Proprietary UG0448 Revision 10.0 95

High Performance DMA Controller
5.4.1.6 Descriptor 0 Destination Address Register

5.4.1.7 Descriptor 1 Destination Address Register

5.4.1.8 Descriptor 2 Destination Address Register

5.4.1.9 Descriptor 3 Destination Address Register

5.4.1.9.1 Notes on the Destination Address Register (DAR)
• Address is word aligned at the start.
• Address increments on each successful transfer at the destination end.
• HPDMA controller starts reading the data from source memory and transfers to destination memory.
• Software can write all 32-bit destination addresses to prevent non-word aligned transfers at the start

and 2 LSBs, 1:0, are masked in the hardware.
• The destination address will be updated in the same field when the descriptor transfer is in progress.

Table 56 • HPDMAD0DAR_REG

Bit Number Name Reset Value Description
[31:0] HPDMADAR_DCP0_DST_ADRS 0x00 Descriptor 0 destination end memory start address

Table 57 • HPDMAD1DAR_REG

Bit Number Name Reset Value Description
[31:0] HPDMADAR_DCP1_DST_ADRS 0x00 Descriptor 1 destination end memory start address

Table 58 • HPDMAD2DAR_REG

Bit Number Name Reset Value Description
[31:0] HPDMADAR_DCP2_DST_ADRS 0x00 Descriptor 2 destination end memory start address

Table 59 • HPDMAD3DAR_REG

Bit Number Name Reset Value Description
[31:0] HPDMADAR_DCP3_DST_ADRS 0x00 Descriptor 3 destination end memory start address
Microchip Proprietary UG0448 Revision 10.0 96

High Performance DMA Controller
5.4.1.10 Descriptor 0 Control Register

Table 60 • HPDMAD0CR_REG

Bit
Number Name

Reset
Value Description

[31:23] Reserved 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

22 HPDMACR_NON_WORD_INT[0] 0 Non-word interrupt enable.
1: HPDMA asserts transfer error interrupt when non-word
aligned transfer size is programmed in
HPDMACR_DCP0_XFR_SIZE and HPDMA continues the
same descriptor transfer.
0: HPDMA will not generate interrupt.

21 HPDMACR_XFR_ERR_INT[0] 0 1: HPDMA asserts transfer error interrupt on error during
descriptor 0 transfers.
0: HPDMA will not generate transfer error interrupt.

20 HPDMACR_XFR_CMP_INT[0] 0 1: HPDMA asserts interrupt on completion of descriptor 0
transfers without error.
0: HPDMA will not generate transfer complete interrupt.

19 HPDMACR_DCP_PAUSE[0] 0 1: HPDMA pauses descriptor 0 transfers, does idle transfers.
0: HPDMA resumes descriptor 0 transfers from where they
have stopped.

18 HPDMACR_DCP_CLR[0] 0 When this bit is set, HPDMA clears the descriptor 0 fields.
HPDMA terminates the current transfer and reset descriptor
status and Control Registers.
This bit is always read back as zero.

17 HPDMACR_XFR_DIR[0] 0 Descriptor 0 data transfer direction.
0: AHB bus matrix to HPMS DDR bridge
1: HPMS DDR bridge to AHB bus matrix

16 HPDMACR_DCP_VALID[0] 0 1: Indicates the descriptor 0 is valid and ready to transfer.
On completing descriptor 0 transfer, the HPDMA controller
clears this bit.
Once the descriptor valid bit is set, descriptor fields such as
Source address, Destination Address, Transfer size, and
Descriptor Valid bits cannot be overwritten.
When this bit is set, HPDMA clears the status of the previous
transfer, which includes transfer complete, transfer error
interrupts, and corresponding descriptor 0 Status Register.

[15:0] HPDMACR_DCP0_XFR_SIZE 0 Descriptor 0 transfer size in bytes.
Defines number of bytes to be transferred in a descriptor 0
transfer.
All zeros in this field indicates 64-Kbyte transfers.
As all the transfers are word aligned, 2 LSBs 1:0 are ignored.
Microchip Proprietary UG0448 Revision 10.0 97

High Performance DMA Controller
5.4.1.11 Descriptor 1 Control Register

Table 61 • HPDMAD1CR_REG

Bit
Number Name

Reset
Value Description

[31:23] Reserved 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

22 HPDMACR_NON_WORD_INT[1] 0 Non-word interrupt enable
1: HPDMA asserts transfer error interrupt when non-word
aligned transfer size is programmed in
HPDMACR_DCP1_XFR_SIZE and HPDMA continues the
same descriptor transfer.
0: HPDMA will not generate interrupt.

21 HPDMACR_XFR_ERR_INT[1] 0 1: HPDMA asserts transfer error interrupt on error during
descriptor 1 transfers.
 0: HPDMA will not generate transfer error interrupt.

20 HPDMACR_XFR_CMP_INT[1] 0 1: HPDMA asserts interrupt on completion of descriptor 1
transfers without error.
0: HPDMA will not generate transfer complete interrupt.

19 HPDMACR_DCP_PAUSE[1] 0 1: HPDMA pauses Descriptor 1 transfers, does idle transfers.
0: HPDMA resumes descriptor 1 transfers from where they
have stopped.

18 HPDMACR_DCP_CLR[1] 0 When this bit is set, HPDMA clears the descriptor 1 fields.
HPDMA terminates the current transfer and resets descriptor
status and Control Registers.
This bit is always read back as zero.

17 HPDMACR_XFR_DIR[1] 0 Descriptor 2 data transfer direction:
0: AHB bus matrix to HPMS DDR bridge
1: HPMS DDR bridge to AHB bus matrix

16 HPDMACR_DCP_VALID[1] 0 1: Indicates the descriptor 1 is valid and ready to transfer.
On completing a descriptor 1 transfer, the HPDMA controller
clears this bit.
Once the descriptor valid bit is set, descriptor fields such as
Source Address, Destination Address, Transfer Size, and
Descriptor Valid bits cannot be overwritten.
When this bit is set, HPDMA clears the status of the previous
transfer, which includes transfer complete, transfer error
interrupts, and corresponding descriptor 1 Status Register.

[15:0] HPDMACR_DCP1_XFR_SIZE 0 Descriptor 1 transfer size in bytes.
Defines number of bytes to be transferred in a descriptor 1
transfer.
All zeroes in this field indicates 64-Kbyte transfers.
As all the transfers are word aligned, the 2 LSBs 1:0 are
ignored.
Microchip Proprietary UG0448 Revision 10.0 98

High Performance DMA Controller
5.4.1.12 Descriptor 2 Control Register

Table 62 • HPDMAD2CR_REG

Bit
Number Name

Reset
Value Description

[31:23] Reserved 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

22 HPDMACR_NON_WORD_INT[2] 0 Non-word interrupt enable.
1: HPDMA asserts transfer error interrupt when non-word
aligned transfer size is programmed in
HPDMACR_DCP2_XFR_SIZE and HPDMA continues the
same descriptor transfer.
0: HPDMA will not generate interrupt.

21 HPDMACR_XFR_ERR_INT[2] 0 1: HPDMA asserts transfer error interrupt on error during
descriptor 2 transfers.
0: HPDMA will not generate transfer error interrupt.

20 HPDMACR_XFR_CMP_INT[2] 0 1: HPDMA asserts interrupt on completion of descriptor 2
transfers without error.
0: HPDMA will not generate transfer complete interrupt.

19 HPDMACR_DCP_PAUSE[2] 0 1: HPDMA pauses the descriptor 2 transfers, does idle
transfers.
0: HPDMA resumes descriptor 2 transfers from where they
have stopped.

18 HPDMACR_DCP_CLR[2] 0 When this bit is set, HPDMA clears the descriptor 2 fields.
HPDMA terminates the current transfer and reset descriptor
status and Control Registers.
This bit is always read back as zero.

17 HPDMACR_XFR_DIR[2] 0 Descriptor 2 data transfer direction.
0: AHB bus matrix to HPMS DDR bridge
1: DDR bridge to AHB bus matrix

16 HPDMACR_DCP_VALID[2] 0 1: Indicates the descriptor 2 is valid and ready to transfer.
On completing descriptor 2 transfer, the HPDMA controller
clears this bit.
Once the descriptor valid bit is set, descriptor fields such as
Source Address, Destination Address, Transfer Size, and
Descriptor Valid bits cannot be overwritten.
When this bit is set, HPDMA clears the status of the previous
transfer, which includes transfer complete, transfer error
interrupts, and corresponding descriptor 2 Status Register.

[15:0] HPDMACR_DCP2_XFR_SIZE 0 Descriptor 2 transfer size in bytes.
Defines number of bytes to be transferred in a Descriptor 2
transfer.
All zeros in this field indicates 64 Kbytes transfers.
As all the transfers are word aligned, 2 LSBs 1:0 are
ignored.
Microchip Proprietary UG0448 Revision 10.0 99

High Performance DMA Controller
5.4.1.13 Descriptor 3 Control Register

Table 63 • HPDMAD3CR_REG

Bit
Number Name

Reset
Value Description

[31:23] Reserved 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

22 HPDMACR_NON_WORD_INT[3] 0 Non-word interrupt enable.
1: HPDMA asserts transfer error interrupt when non-word
aligned transfer size is programmed in
HPDMACR_DCP3_XFR_SIZE and HPDMA continues the
same descriptor transfer.
0: HPDMA will not generate interrupt

21 HPDMACR_XFR_ERR_INT[3] 0 1: HPDMA asserts transfer error interrupt on error during
descriptor 3 transfers.
0: HPDMA will not generate transfer error interrupt.

20 HPDMACR_XFR_CMP_INT[3] 0 1: HPDMA asserts interrupt on completion of descriptor 3
transfers without error.
0: HPDMA will not generate transfer complete interrupt.

19 HPDMACR_DCP_PAUSE[3] 0 1: HPDMA pauses the descriptor 3 transfers, does idle
transfers.
0: HPDMA resumes the descriptor 3 transfers from where
they have stopped.

18 HPDMACR_DCP_CLR[3] 0 When this bit is set, HPDMA clears the descriptor 3 fields.
HPDMA terminates the current transfer and resets descriptor
status and Control Registers.
This bit is always read back as zero.

17 HPDMACR_XFR_DIR[3] 0 Descriptor 3 data transfer direction.
0: AHB bus matrix to HPMS DDR bridge
1: HPMS DDR bridge to AHB bus matrix

16 HPDMACR_DCP_VALID[3] 0 1: Indicates descriptor 3 is valid and ready to transfer.
On completing descriptor 3 transfer, the HPDMA controller
clears this bit.
Once the descriptor valid bit is set, descriptor fields such as
Source address, Destination Address, Transfer size, and
Descriptor Valid bits cannot be overwritten.
When this bit is set, HPDMA clears the status of the previous
transfer, which includes transfer complete, transfer error
interrupts, and corresponding descriptor 3 Status Register.

[15:0] HPDMACR_DCP3_XFR_SIZE 0 Descriptor 3 transfer size in bytes.
Defines number of bytes to be transferred in a descriptor 3
transfer.
All zeroes in this field indicates 64-Kbytes transfers.
As all the transfers are word aligned, 2 LSBs, 1:0, are
ignored.
Microchip Proprietary UG0448 Revision 10.0 100

High Performance DMA Controller
5.4.1.14 Descriptor 0 Status Register

5.4.1.15 Descriptor 1 Status Register

Table 64 • HPDMAD0SR_REG

Bit
Number Name

Reset
Value Description

[31:4] Reserved 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

3 HPDMASR_DCP_DERR[0] 0 Descriptor 0 destination transfer error.
1: Descriptor 0 transfer error
0: No error at destination end during descriptor 0 transfer.
This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[0]
of the descriptor 0 Interrupt Clear register.

2 HPDMASR_DCP_SERR[0] 0 Descriptor 0 source transfer error.
1: Descriptor 0 transfer error occurred at source end.
0: No error at source end during descriptor 0 transfer
This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[0]
of the descriptor 0 Interrupt Clear register.

1 HPDMASR_DCP_CMPLET[0] 0 Descriptor 0 transfer complete.
1: Descriptor 0 transfer completed successfully
0: Descriptor 0 transfer not completed
This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[0]
of the descriptor 0 Control Register.

0 HPDMASR_DCP_ACTIVE[0] 0 Descriptor 0 transfer in progress.
1: Descriptor 0 transfer in progress.
0: Descriptor 0 is in queue when HPDMACR_DCP_VALID[0]
bit is set in descriptor 0 Control Register.

Table 65 • HPDMAD1SR_REG

Bit
Number Name

Reset
Value Description

[31:4] Reserved 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

3 HPDMASR_DCP_DERR[1] 0 Descriptor 1 destination transfer error.
1: Descriptor 1 transfer error
0: No error at destination end during descriptor 1 transfer
This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[1]
of the descriptor 1 Interrupt Clear register.

2 HPDMASR_DCP_SERR[1] 0 Descriptor 1 source transfer error.
1: Descriptor 1 transfer error occurred at source end
0: No error at source end during descriptor 1 transfer
This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[1]
of the descriptor 1 Interrupt Clear register.
Microchip Proprietary UG0448 Revision 10.0 101

High Performance DMA Controller
5.4.1.16 Descriptor 2 Status Register

1 HPDMASR_DCP_CMPLET[1] 0 Descriptor 1 transfer complete.
1: Descriptor 1 transfer completed successfully
0: Descriptor 1 transfer not completed
This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[1]
 of the descriptor 1 Control Register.

0 HPDMASR_DCP_ACTIVE[1] 0 Descriptor 1 transfer in progress.
1: Descriptor 1 transfer in progress.
0: Descriptor 1 is in queue when HPDMACR_DCP_VALID[1]
bit is set in Descriptor 1 Control Register.

Table 66 • HPDMAD2SR_REG

Bit
Number Name

Reset
Value Description

[31:4] Reserved 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

3 HPDMASR_DCP_DERR[2] 0 Descriptor 2 destination transfer error.
1: Descriptor 2 transfer error
0: No error at destination end during descriptor 2 transfer
This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[2]
of the descriptor 2 Interrupt Clear register.

2 HPDMASR_DCP_SERR[2] 0 Descriptor 2 source transfer error.
1: Descriptor 2 transfer error occurred at source end
0: No error at source end during descriptor 2 transfer
This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[2]
of the descriptor 2 Interrupt Clear register.

1 HPDMASR_DCP_CMPLET[2] 0 Descriptor 2 transfer complete.
1: Descriptor 2 transfer completed successfully.
0: Descriptor 2 transfer not completed.
This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[2]
of the descriptor 2 Control Register.

0 HPDMASR_DCP_ACTIVE[2] 0 Descriptor 2 Transfer in progress.
1: Descriptor 2 transfer in progress.
0: Descriptor 2 is in queue when HPDMACR_DCP_VALID[2]
bit is set in descriptor 2 Control Register.

Table 65 • HPDMAD1SR_REG (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 102

High Performance DMA Controller
5.4.1.17 Descriptor 3 Status Register

5.4.1.18 Descriptor 0 Pending Transfers Register

Table 67 • HPDMAD3SR_REG

Bit
Number Name

Reset
Value Description

[31:4] Reserved 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

3 HPDMASR_DCP_DERR[3] 0 Descriptor 3 destination transfer error.
1: Descriptor 3 transfer error
0: No error at destination end during descriptor 3 transfer
This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[3]
 of the descriptor 3 Interrupt Clear register

2 HPDMASR_DCP_SERR[3] 0 Descriptor 3 source transfer error.
1: Descriptor 3 transfer error occurred at source end.
0: No error at source end during descriptor 3 transfer
This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[3]
of the descriptor 3 Interrupt Clear register.

1 HPDMASR_DCP_CMPLET[3] 0 Descriptor 2 transfer complete.
1: Descriptor 3 transfer completed successfully.
0: Descriptor 3 transfer not completed.
This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[3]
of the descriptor 3 Control Register.

0 HPDMASR_DCP_ACTIVE[3] 0 Descriptor 3 transfer in progress.
1: Descriptor 3 transfer in progress.
0: Descriptor 3 is in queue when HPDMACR_DCP_VALID[3]
bit is set in descriptor 3 Control Register.

Table 68 • HPDMAD0PTR_REG

Bit
Number Name

Reset
Value Description

[31:16] HPDMAPTR_D0_DST_PNDNG 0 Descriptor 0 destination pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the destination end of descriptor 0.
At the end of the transfer, zero in this register indicates the
successful transfer, and a non-zero value indicates error
occurrence at the destination during the descriptor 0 transfer.

[15:0] HPDMAPTR_D0_SRC_PNDNG 0 Descriptor 0 source pending transfers in words.
This register indicates internal transfer size counter
corresponding to source end of the descriptor 0.
At the end of the transfer, zero in this register indicates the
successful transfer, and a non-zero value indicates error
occurrence at the source during the descriptor 0 transfer.
Microchip Proprietary UG0448 Revision 10.0 103

High Performance DMA Controller
5.4.1.19 Descriptor 1 Pending Transfers Register

5.4.1.20 Descriptor 2 Pending Transfers Register

Table 69 • HPDMAD1PTR_REG

Bit
Number Name

Reset
Value Description

[31:16] HPDMAPTR_D1_DST_PNDNG 0 Descriptor 1 destination pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the destination end of descriptor 1.
At the end of the transfer, zero in this register indicates the
successful transfer, and a non-zero value indicates error
occurrence at the destination during descriptor 1 transfer.

[15:0] HPDMAPTR_D1_SRC_PNDNG 0 Descriptor 1 source pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the source end of descriptor 1.
At the end of the transfer, zero in this register indicates the
successful transfer, and a non-zero value indicates error
occurrence at the source during descriptor 1 transfer.

Table 70 • HPDMAD2PTR_REG

Bit
Number Name

Reset
Value Description

[31:16] HPDMAPTR_D2_DST_PNDNG 0 Descriptor 2 destination pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the destination end of descriptor 2.
At the end of the transfer, zero in this register indicates the
successful transfer, and a non-zero value indicates error
occurrence at the destination during descriptor 2 transfer.

[15:0] HPDMAPTR_D2_SRC_PNDNG 0 Descriptor 2 source pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the source end of descriptor 2.
At the end of the transfer, zero in this register indicates the
successful transfer, and a non-zero value indicates error
occurrence at the source during descriptor 2 transfer.
Microchip Proprietary UG0448 Revision 10.0 104

High Performance DMA Controller
5.4.1.21 Descriptor 3 Pending Transfers Register

5.4.1.22 HPDMA Interrupt Clear Register

Table 71 • HPDMAD3PTR_REG

Bit
Number Name

Reset
Value Description

[31:16] HPDMAPTR_D3_DST_PNDNG 0 Descriptor 3 destination pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the destination end of descriptor 3.
At the end of the transfer, zero in this register indicates the
successful transfer, and a non-zero value indicates error
occurrence at the destination during descriptor 3 transfer.

[15:0] HPDMAPTR_D3_SRC_PNDNG 0 Descriptor 3 source pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the source end of descriptor 3.
At the end of the transfer, zero in this register indicates the
successful transfer, and a non-zero value indicates error
occurrence at the source during descriptor 0 transfer.

Table 72 • HPDMAICR_REG

Bit
Number Name

Reset
Value Description

[31:8] Reserved 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

7 HPDMAICR_NON_WORD_INT[3] 0 When this bit is set, HPDMA clears the
HPDMAEDR_DCP_NON_WORD_ERR[3] bit in the Empty
Descriptor register.
These bits always read back as 0.

6 HPDMAICR_NON_WORD_INT[2] 0 When this bit is set, HPDMA clears the
HPDMAEDR_DCP_NON_WORD_ERR[2] bit in the Empty
Descriptor register.
These bits always read back as 0.

5 HPDMAICR_NON_WORD_INT[1] 0 When this bit is set, HPDMA clears the
HPDMAEDR_DCP_NON_WORD_ERR[1] bit in the Empty
Descriptor Register.
These bits always read back as 0.

4 HPDMAICR_NON_WORD_INT[0] 0 When this bit is set, HPDMA clears the
HPDMAEDR_DCP_NON_WORD_ERR[0] bit in the Empty
Descriptor register.
These bits always read back as 0.

3 HPDMAICR_CLR_XFR_INT[3] 0 When this bit is set, HPDMA clears the following register bits:
Descriptor 3 Status Register
HPDMASR_DCP_CMPLET[3]
HPDMASR_DCP_DERR[3]
HPDMASR_DCP_SERR[3]
HPDMA Empty Descriptor register
HPDMAEDR_DCP_NON_WORD_ERR[3]
Microchip Proprietary UG0448 Revision 10.0 105

High Performance DMA Controller
5.4.1.23 HPDMA Debug Register

2 HPDMAICR_CLR_XFR_INT[2] 0 When this bit is set, HPDMA clears the following register bits:
Descriptor 2 Status Register
HPDMASR_DCP_CMPLET[2]
HPDMASR_DCP_DERR[2]
HPDMASR_DCP_SERR[2]
HPDMA Empty Descriptor register
HPDMAEDR_DCP_NON_WORD_ERR[2]

1 HPDMAICR_CLR_XFR_INT[1] 0 When this bit is set, HPDMA clears the following register bits:
Descriptor 1 Status Register
HPDMASR_DCP_CMPLET[1]
HPDMASR_DCP_DERR[1]
HPDMASR_DCP_SERR[1]
HPDMA Empty Descriptor register
HPDMAEDR_DCP_NON_WORD_ERR[1]

0 HPDMAICR_CLR_XFR_INT[0] 0 When this bit is set, HPDMA clears the following register bits:
Descriptor 0 Status Register
HPDMASR_DCP_CMPLET[0]
HPDMASR_DCP_DERR[0]
HPDMASR_DCP_SERR[0]
HPDMA Empty Descriptor register
HPDMAEDR_DCP_NON_WORD_ERR[0]

Table 73 • HPDMADR_REG

Bit
Number Name

Reset
Value Description

[31:28] Reserved 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-
write operation.

[27:26] HPDMADR_DMA_CST_DBG[1:0] 0 DMA controller FSM current state
01 – IDLE
10 – RUN

[25:22] HPDMADR_RRBN_CST_DBG[3:0] 0 Round robin FSM current state
0001 – D0
0010 – D1
0100 – D2
1000 – D3

[21:19] HPDMADR_RBC_CST_DBG[2:0] 0 Read buffer controller current state
001 – IDLE
010 – RUN
100 – WAIT

[18:16] HPDMADR_WBC_CST_DBG[2:0] 0 Write buffer controller current state
001 – IDLE
010 – RUN
100 – WAIT

Table 72 • HPDMAICR_REG (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 106

High Performance DMA Controller
5.5 SYSREG Control Register
In addition to the specific HPDMA registers, the registers provided in the following table also control the
behavior of the HPDMA peripheral. See System Register Block, page 197 for a detailed description of
each register and associated bits.

[15:12] HPDMADR_AHM2_CST_DBG[3:0] 0 Master 2 (HPMS DDR bridge) current state
0001 – IDLE
0010 – WRITE
0100 – READ
1000 – WAIT

[11:8] HPDMADR_AHM1_CST_DBG[3:0] 0 Master 1 (AHB bus matrix) current state
0001 – IDLE
0010 – WRITE
0100 – READ
1000 – WAIT

[7:5] HPDMADR_BFR_WR_PNTR[2:0] 0 HPDMA data buffer write pointer

[4:2] HPDMADR_BFR_RD_PNTR[2:0] 0 HPDMA data buffer read pointer

1 HPDMADR_BFR_FULL 0 Data buffer is full; HPDMA controller initiates idle transfers
on the source memory end.
1: Data buffer is full.
0: Data buffer is not full.

0 HPDMADR_BFR_EMPTY 1 Data buffer is empty; HPDMA controller initiates idle
transfers on the destination memory end.
1: Data buffer is empty.
0: Data Buffer is not empty.

Table 74 • SYSREG Control Registers

Register Name
Register
Type

Flash Write
Protect Reset Source Description

SOFT_RESET_CR RW-P Bit SYSRESET_N Bit 17 is used for HPDMA reset
’1’ – Reset HPDMA
’0’ – Release from HPDMA reset
For more information, see Table 143, page 215.

MASTER_WEIGHT1_CR RW-P Register SYSRESET_N Bits 4:0 define round robin weight values for the
HPDMA master. For more information, see
Table 140, page 214.

Table 73 • HPDMADR_REG (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 107

Peripheral DMA
6 Peripheral DMA

The peripheral direct memory access (PDMA) is an AHB master associated with the AHB bus matrix, as
shown in the following figure. The PDMA allows data transfer from various peripherals to memory,
memory to peripherals, and memory to memory. There are the following three connections available to
PDMA:

• HPMS peripheral
• HPMS memory
• FIC
HPMS peripheral can be any of the SPI or COMM_BLK. HPMS memory can be any of the eNVM_0,
eNVM_1, eSRAM_0, or eSRAM_1. FIC can connect to a fabric peripheral, a fabric internal memory
(uSRAM/LSRAM), or a fabric interfaced external memory.

6.1 Features
• Up to 8 DMA channels
• Ping-pong mode support
• Channel priority designations
• Memory to memory DMA capable
• Interrupt capability

Figure 66 • PDMA Interfacing with AHB Bus Matrix

AHB Bus Matrix

MS5

eSRAM_1 eSRAM_0 eNVM_0HPDMADDR Bridge

MS1 MS0MS2MM3MS6MM7

AHB To AHB Bridge with Address Decoder

APB_0SYSREGFIC_1

MM4 MS4 MM5

SPI

PDMA
Configuration

FIIC COMM_BLK

MS5_FIC MS5_SR MS5_APB0 MS5_APB1

High Performance Memory Subsystem
DDR

PDMASystem
Controller

MM9

APB_1FIC_0

eNVM_1

MS3

HPDMA
Configuration

FIC_2 (Peripheral
Initialization)

MS5_FIC2
Microchip Proprietary UG0448 Revision 10.0 108

Peripheral DMA
6.2 Functional Description
This section provides the detailed description of the PDMA.

6.2.1 Architecture Overview
The PDMA controller mainly consists of the following blocks, as shown in the following figure.

• AHB and APB Interfaces
• 8-Channel DMA Controller
• Timing and Control
• Channel Arbiter

Figure 67 • PDMA Internal Architecture

6.2.1.1 AHB and APB Interfaces
As shown in the preceding figure, the PDMA has two interfaces — AHB-lite and APB. The APB interface
is a 32-bit APB slave used for configuring the PDMA. DMA operations do not occur on the APB bus
interface of the PDMA. The PDMA performs single cycle accesses on the AHB interface only and Burst
mode is not supported.

AHB Bus Matrix (10x7)

DMA_READY_1[1:0]

DMA_READY_0[1:0]

RxRDY
and TxRDY

SPIRXAVAIL
and TxRFM

High Performance Memory Subsystem (HPMS)

PDMA

AHB To APB
Bridge

SPI

FIC_0

FIC_1

eNVM_0
AHB

Controller

eNVM_1
AHB

Controller

eSRAM_1
AHB

Controller

eSRAM_0
AHB

Controller

AHB
Interface

Timing
and

Control

APB Interface

8 DMA
Channels

COMM_BLK

Channel
Arbiter
Microchip Proprietary UG0448 Revision 10.0 109

Peripheral DMA
6.2.1.2 8-Channel DMA Controller
The 8-channel DMA controller consists of eight instances of a single DMA channel, as shown in the
preceding figure. Each channel can be configured to perform 8-bit, 16-bit, or 32-bit data transfers from
the peripheral to memory, memory to peripheral, and memory to memory. Each DMA channel supports
Ping-pong mode for continuous data transfer. To enable and use PDMA services, the AHB bus master
matrix must configure the following 32-bit registers.

• CHANNEL_x_CONTROL
• CHANNEL_x_BUFFER_A_SRC_ADDR
• CHANNEL_x_BUFFER_A_DST_ADDR
• CHANNEL_x_BUFFER_A_TRANSFER_COUNT
• CHANNEL_x_BUFFER_B_SRC_ADDR
• CHANNEL_x_BUFFER_B_DST_ADDR
• CHANNEL_x_BUFFER_B_TRANSFER_COUNT
For more information about these registers, see PDMA Configuration Register Bit Definitions, page 124.

If bidirectional DMA of peripheral to memory (receive) and memory to peripheral (transmit) is desired,
two channels must be programmed appropriately. In particular, the TRANSFER_SIZE fields in both the
CHANNEL_x_CONTROL registers (see Table 80, page 126)must be programmed identically. The PDMA
performs the correct byte lane adjustments appropriate to the address being used on the AHB. Efficient
use of memory storage is achieved in this manner, even if only performing byte or 16-bit accesses to or
from a peripheral. For example, when the PDMA is accessing peripherals, the lowest 8 or 16 bits of the
data bus are always used for 8-bit or 16-bit transfers. For 32-bit transfers, the full 32-bits are used. It is
possible to configure the data width of a transfer to be independent of the address increment. The
address increment at both ends of the DMA transfer can be different, which is required when reading
from a peripheral holding register (single address) and writing to memory incrementally (many
addresses).

Eight possible channels are available to the PDMA, as listed below.

• SPI_0 to any HPMS memory-mapped location
• Any HPMS memory-mapped location to SPI_0
• FPGA fabric peripheral on FIC_0 to any HPMS memory-mapped location
• Any HPMS memory-mapped location to FPGA fabric peripheral on FIC_0
• FPGA fabric peripheral on FIC_1 to any HPMS memory-mapped location
• Any HPMS memory-mapped location to FPGA fabric peripheral on FIC_1
• COMM_BLK to any HPMS memory-mapped location
• Any HPMS memory-mapped locations to COMM_BLK.

6.2.1.2.1 Ping-Pong Mode
Ping-pong mode is a dual buffering scheme for continuous stream of operation. There are two buffers
(Buffer A and Buffer B) associated with each DMA channel for ping-pong operation. This removes the
real-time constraint on the Fabric master of having to service the DMA channel in real time, which would
exist if there were only one DMA buffer per channel.

To begin a transaction, source address, destination address, and transfer size in bytes of buffer A and
buffer B are to be configured by the AHB bus matrix master (such as Fabric master). The following figure
shows the sequence of operations that must be performed by Fabric master for ping-pong operation on a
configured DMA channel. The channel Control Register (CHANNEL_x_CONTROL) is configured initially
before enabling ping-pong operation.
Microchip Proprietary UG0448 Revision 10.0 110

Peripheral DMA
The following figure shows the ping-pong operation flow.

Figure 68 • Ping-Pong Operation Flow for DMA Channel
Write to the following PDMA registers:

Write to
Channel_0_BUFFER_A_TRANSFER_COUNT

(DMA starts using buffer A)

Write to
Channel_0_BUFFER_B_TRANSFER_COUNT

(DMA will use a buffer B when channel0
buffer A transfer count reaches 0)

Write to
Channel_0_BUFFER_A_TRANSFER_COUNT

(DMA will use a buffer A when channel0
buffer B transfer count reaches 0)

Write to
Channel_0_BUFFER_A_TRANSFER_COUNT

(DMA will use a buffer A when channel0
buffer B transfer count reaches 0)

Write to Channel_0_BUFFER_A_SRC_ADDR
Write to Channel_0_BUFFER_A_DST_ADDR

Write to Channel_0_BUFFER_B_SRC_ADDR
Write to Channel_0_BUFFER_B_DST_ADDR

If interrupt
on the DMA

channel,
buffer A

If interrupt
on the DMA

channel,
buffer B

NO

NO

YES

YES

If Transfer
completed

NO

IDLE

YES

a. Channel_0_BUFFER_A_SRC_ADDR
b. Channel_0_BUFFER_A_DST_ADDR
c. Channel_0_BUFFER_B_SRC_ADDR
d. Channel_0_BUFFER_B_DST_ADDR
Microchip Proprietary UG0448 Revision 10.0 111

Peripheral DMA
6.2.1.3 Timing and Control
The peripheral ready signals from the SPI and COMM_BLK are directly connected to the PDMA. The
PDMA takes care of writing or reading the receive or transmit holding registers within each peripheral
using the APB interface.

The DMAREADY_0 and DMAREADY_1 signals correspond to the ready signals from the fabric
peripheral. If the channel is configured for peripheral DMA and the direction is from the fabric peripheral
to memory, this signal indicates that the fabric peripheral can write data to memory. If the channel is
configured for peripheral DMA and the direction is from memory to the fabric peripheral, this signal
indicates that the fabric peripheral can read data from memory. The PDMA does not support peripheral to
peripheral data transfer and scatter-gather DMA.

6.2.1.4 Channel Arbiter
The channel arbiter is an arbitration algorithm used to service the channels based on the priority, as
shown in Figure 67, page 109. By default, all channels have equal priority. To configure the PDMA
channel priority, RATIO_HIGH_LOW register must be configured by the AHB bus matrix master. The
RATIO_HIGH_LOW[RATIOHILO] field indicates the ratio of high priority requests to low priority requests.
For example, a RATIOHILO value of 3:1 means that a high priority DMA channel has 3 DMA access
opportunities for every one access of a low priority DMA channel.

When the RATIOHILO value is set to 0, both high and low priority requests are serviced in a round robin
fashion.

Refer to the following table and to the section PDMA Register Map, page 121 for more information on
configuring the register. The following table lists the valid values for RATIOHILO. All other values are
reserved.

6.2.2 PDMA Port List

Table 75 • RATIOHILO Field Definition

Value High:Low Ratio Comments
0 Round robin

1 1:1 Ping-pong between high and low priority requests

3 3:1 3 high to 1 low

7 7:1 7 high to 1 low

15 15:1 15 high to 1 low

31 31:1 31 high to 1 low

63 63:1 63 high to 1 low

127 127:1 127 high to 1 low

255 255:1 255 high to 1 low

All others Reserved

Table 76 • Port List

Name Type Polarity Description
DMAREADY_FIC_0 Input High Ready signal from fabric peripheral to

DMA through FIC_0

DMAREADY_FIC_1 Input High Ready signal from fabric peripheral to
DMA through FIC_1
Microchip Proprietary UG0448 Revision 10.0 112

Peripheral DMA
6.2.3 Initialization
To initiate and setup DMA transactions, PDMA has to be initialized. The initialization process starts with a
reset sequence followed by Channel configuration and interrupt configuration.

6.2.3.1 Reset
The PDMA registers are reset on power-up. The PDMA can be reset by configuring the following

• Bit[5] of SOFT_RESET_CR system register (see Table 143, page 215).
• Bit[5] of the CHANNEL_x_CONTROL register for channel reset (see Table 80, page 126).

6.2.3.2 Channel Configuration
Before configuring each PDMA channel, the round robin weight is specified if needed, using the
MASTER_WEIGHT_CR register or configuring the AHB bus matrix in Libero SoC.

To configure each PDMA channel, following fields of the channel Control Register has to be set:

• Peripheral select - CHANNEL_x_CONTROL[26:23]
• No. of wait states - CHANNEL_x_CONTROL[21:14]
• Source and/or destination address increment - CHANNEL_x_CONTROL[13:10]
• Channel priority - CHANNEL_x_CONTROL[9]
• Interrupt enable - CHANNEL_x_CONTROL[6]
• Transfer size - CHANNEL_x_CONTROL[3:2]
• Direction - CHANNEL_x_CONTROL[1]
• Select the data Transfer type - CHANNEL_x_CONTROL[0]
For CHANNEL_x_CONTROL register bit definitions, see Table 80, page 126.

6.2.3.3 Interrupt
The PDMA Interrupt signal is mapped to the dedicated interrupt signal HPMS_INT_M2F[8] of the fabric
interface interrupt controller (FIIC). This is to interrupt the user logic instantiated in the FPGA.

To determine transfer complete interrupt for each channel, the BUFFER_STATUS_x register bits[1:0] has
to be monitored. The bit[7] and bit[8] of CHANNEL_x_CONTROL register are used to clear the transfer
complete interrupts of the channel.

6.2.4 Details of Operations
After initialization, the PDMA is ready to function in any one of following transfer modes:

• Peripheral to Memory Transfers/Memory to Memory Transfers
• Posted APB Writes

6.2.4.1 Peripheral to Memory Transfers/Memory to Memory Transfers
For peripheral to memory or memory to memory transfer, the DMA transfer starts if
BUFFER_A_TRANSFER_COUNT or BUFFER_B_TRANSFER_COUNT is non-zero.

Before the transfer, the source address (CHANNEL_x_BUFFER_A_SRC_ADDR) and destination
address (CHANNEL_x_BUFFER_B_DST_ADDR) of a channel are configured; then a write to one of the
transfer count registers begins the DMA transaction. Additionally, FPGA fabric master can also write to
the Control Register first and turn pause on, if needed, then turn it off later.

If the PAUSE bit in the CHANNEL_x_CONTROL register (see Table 80, page 126) is set, when a non-
zero value is written to BUFFER_A_TRANSFER_COUNT or BUFFER_B_TRANSFER_COUNT, then the
DMA transaction waits to begin the transfer until PAUSE is cleared.

If bidirectional DMA of peripheral to memory (receive) and memory to peripheral (transmit) is desired,
two channels must be programmed appropriately. In particular, the TRANSFER_SIZE fields in both the
CHANNEL_x_CONTROL registers must be programmed identically.

Channels can be assigned to peripherals or memory arbitrarily. For example, to receive only DMA data
from one of the SPI ports, only one channel is required. In this case, the DIR bit in the
CHANNEL_x_CONTROL register should be set to 0 (peripheral to memory) and the PERIPHERAL_SEL
field should be set to 4 (SPI receive to memory).
Microchip Proprietary UG0448 Revision 10.0 113

Peripheral DMA
6.2.4.2 Posted APB Writes
The AHB to APB bridges in the IGLOO2 device implement posted writes (also known as dump and run)
for write accesses to peripherals. PDMA performs a write operation to a peripheral but the data is not
written to the peripheral immediately. Therefore, the PDMA block should not start another DMA on this
channel based on the state of the ready signal from that peripheral until the write is complete. The time
window involved is variable, depending on the ratio of HPMS_CLK to PCLK, for each of the two
peripheral buses. CHANNEL_x_CONTROL[WRITE_ADJ] is an 8-bit binary coded field used to define,
for each DMA channel, how long to wait (in HPMS_CLKs) after each DMA transfer cycle before
interpreting the ready signal for that DMA channel as representing a new request.

6.3 How to Use PDMA
This section describes how to use PDMA in the IGLOO2 devices. To configure the IGLOO2 device
features and then build a complete system, use the System Builder graphical design wizard in the
Libero Software.

The following figure shows the initial System Builder window where the required device features can be
selected. For details on how to launch the System Builder wizard and a detailed information on how to
use it, refer the IGLOO2 System Builder User Guide.

Figure 69 • System Builder Window
Microchip Proprietary UG0448 Revision 10.0 114

https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf

Peripheral DMA
The following steps describe how to enable the PDMA.

1. Check the HPMS On-chip Flash Memory (eNVM), HPMS On-chip SRAM (eSRAM), and HPMS
Peripheral DMA (PDMA) check boxes in the Device Features tab and leave the other check boxes
unchecked. The following figure shows the System Builder - Device Features tab.

Figure 70 • System Builder - Device Features Tab
Microchip Proprietary UG0448 Revision 10.0 115

Peripheral DMA
2. Click Next to navigate to the Peripherals tab. The following figure shows the System Builder –
Peripherals tab. In Peripherals tab, the fabric master core and slave components to HPMS_FIC_0
and HPMS_FIC_1 are added automatically by Libero SoC depending on selection on HPMS
masters.

Figure 71 • System Builder - Peripherals Tab

3. Navigate to the HPMS Options in the System Builder wizard.
Microchip Proprietary UG0448 Revision 10.0 116

Peripheral DMA
4. In the HPMS Options tab, configure the weight values for the PDMA master. The round robin weight
is the number of consecutive transfers master performs without being interrupted during an access.
In the following figure, the configured round robin weight value for PDMA is 12. It means the PDMA
performs 12 consecutive transfers during its access before the next master takes control. The
following figure shows the Configuration panel in the HPMS Options tab.

Figure 72 • Configuring PDMA Weight Values
Microchip Proprietary UG0448 Revision 10.0 117

Peripheral DMA
5. Navigate to the Memory Map tab giving the required data in the rest of the System Builder tabs.
The following figure shows the System Builder - Memory Map tab. Click Finish to proceed with
creating the HPMS subsystem (see HPMS Subsystem, page 118).

Figure 73 • System Builder - Memory Map Tab

6.3.1 HPMS Subsystem
The following figure shows an example HPMS subsystem that can be used to access PDMA using the
FPGA fabric master.

Figure 74 • HPMS Subsystem

Microchip Proprietary UG0448 Revision 10.0 118

Peripheral DMA
6.3.2 HPMS Subsystem Connected to the FPGA Fabric Master
The following figure shows the FPGA fabric master connected to the AHB master port.

Figure 75 • HPMS Subsystem Connected to the FPGA Fabric Master

6.3.3 SPI_0 to eSRAM_0
The following steps describe how to use the Fabric master for configuring PDMA to transfer data from
peripheral (SPI_0) to memory (eSRAM_0).

1. Enable PDMA using the System Builder wizard.
2. Reset the PDMA channel by asserting CHANNEL_x_CONTROL[5] = 1.
3. Check the interrupt status by monitoring CHANNEL_x_STATUS[1:0] bits and clear the interrupts

using CHANNEL_x_CONTROL[8:7] bits.
4. Configure PDMA:

i. Select the SPI_0 block by configuring CHANNEL_x_CONTROL[26:23]. = 0101.
ii. Set the transfer type by configuring CHANNEL_x_CONTROL[0] = 1.
iii. Set the direction by configuring CHANNEL_x_CONTROL[1] = 0.
iv. Set the transfer size/data width using CHANNEL_x_CONTROL[3:2].
v. Set the source and destination address increment using CHANNEL_x_CONTROL[13:10].
vi. Set the channel priority using CHANNEL_x_CONTROL[9]. If all the channels are configured as
low priority, requests are serviced in round robin fashion.
vii. Set the wait states using WRITE_ADJ (CHANNEL_x_CONTROL[21:14]).

5. Enable the PDMA interrupt to the Fabric by setting CHANNEL_x_CONTROL[4] and
PDMAINTERRUPT_ENBL bit of INTERRUPT_ENABLE0 register (refer to Fabric Interface Interrupt
Controller, page 240).

6. Start the data transfer by configuring:
i. Buffer A and buffer B source memory addresses with SPI_0 address and destination addresses
with eSRAM_0 address
• 32-bit buffer A source address (CHANNEL_x_BUFFER_A_SRC_ADDR)
• 32-bit buffer A destination address (CHANNEL_x_BUFFER_A_DST_ADDR)
• 32-bit buffer B source address (CHANNEL_x_BUFFER_B_SRC_ADDR)
• 32-bit buffer B destination address (CHANNEL_x_BUFFER_B_DST_ADDR)
ii. Transfer count in bytes.
• 32-bit buffer A transfer count (CHANNEL_x_BUFFER_A_TRANSFER_COUNT = 0x64/100

bytes)
• 32-bit buffer B transfer count (CHANNEL_x_BUFFER_B_TRANSFER_COUNT = 0x64/100

bytes)
Microchip Proprietary UG0448 Revision 10.0 119

Peripheral DMA
7. Read the Status Register BUFFER_STATUS, to check the status on the interrupt.
8. To pause the data transfers for a channel, reset bit[6] of channel Control Register

CHANNEL_x_CONTROL[6].
9. Check for buffer A data transfer completion by monitoring the dedicated interrupt

HPMS_INT_M2F[8] (PDMAINTERRUPT) or by polling bit[0] of the channel Status Register
CHANNEL_x_STATUS[0].

10. When the interrupt is detected, configure the following:
• 32-bit buffer A source address with SPI_0 address and 32-bit buffer A destination address with

eSRAM0 address
• 32-bit buffer A transfer count

11. Check for buffer B data transfer completion by monitoring PDMAINTERRUPT or by polling bit[1] of
the channel Status Register CHANNEL_x_STATUS[1].

12. When the interrupt is detected, configure the following:
• 32-bit buffer B source address with SPI_0 address and 32-bit buffer B destination address with

eSRAM0 address
• 32-bit buffer B transfer count

13. Check for transfer completion by monitoring CHANNEL_x_STATUS[1:0] bits.
14. For more information on bi-directional DMA transfers, refer to Details of Operations, page 113.

6.3.4 eNMV_0 to eSRAM_0
The following steps describe how to use the Fabric master for configuring PDMA to transfer data from a
memory (eNMV_0) to another memory (eSRAM_0).

1. Enable PDMA using the System Builder wizard.
2. Reset the PDMA channel by asserting CHANNEL_x_CONTROL[5] = 1.
3. Check the interrupt status by monitoring CHANNEL_x_STATUS[1:0] bits and clear the interrupts

using CHANNEL_x_CONTROL[8:7] bits.
4. Configure PDMA:
• Set the transfer type by configuring CHANNEL_x_CONTROL[0] = 0.
• Set the transfer size/data width using CHANNEL_x_CONTROL[3:2].
• Set the source and destination address increment using CHANNEL_x_CONTROL[13:10].
• Set the channel priority using CHANNEL_x_CONTROL[9]. If all the channels are configured as low

priority, requests are serviced in round robin fashion.
5. Enable the PDMA interrupt to the Fabric by setting CHANNEL_x_CONTROL[4] and

PDMAINTERRUPT_ENBL bit of INTERRUPT_ENABLE0 register.
6. Start the data transfer by configuring:

i. Buffer A and buffer B source address with eNVM_0 address and destination addresses with
eSRAM_0 address.
• 32-bit buffer A source address (CHANNEL_x_BUFFER_A_SRC_ADDR)
• 32-bit buffer A destination address (CHANNEL_x_BUFFER_A_DST_ADDR)
• 32-bit buffer B source address (CHANNEL_x_BUFFER_B_SRC_ADDR)
• 32-bit buffer B destination address (CHANNEL_x_BUFFER_B_DST_ADDR)
ii. Transfer count in bytes.
• 32-bit buffer A transfer count (CHANNEL_x_BUFFER_A_TRANSFER_COUNT = 0x64/100

bytes)
• 32-bit buffer B transfer count (CHANNEL_x_BUFFER_B_TRANSFER_COUNT = 0x64/100

bytes)
7. Read the Status Register BUFFER_STATUS, to check the status on the interrupt.
8. To pause the data transfers for a channel, reset bit[6] of channel Control Register

CHANNEL_x_CONTROL[6].
9. Check for buffer A data transfer completion by monitoring the dedicated interrupt

HPMS_INT_M2F[8] (PDMAINTERRUPT) or by polling bit[0] of the channel Status Register
CHANNEL_x_STATUS[0].

10. When the interrupt is detected, configure the following:
• 32-bit buffer A with eNVM_0 source address and 32-bit buffer A with eSRAM_0 destination

address
• 32-bit buffer A transfer count
Microchip Proprietary UG0448 Revision 10.0 120

Peripheral DMA
11. Check for buffer B data transfer completion by monitoring PDMAINTERRUPT or by polling bit[1] of
the channel Status Register CHANNEL_x_STATUS[1].

12. When the interrupt is detected, configure the following:
• 32-bit buffer B with eNVM_0 source address and 32-bit buffer B with eSRAM_0 destination

address
• 32-bit buffer B transfer count

13. Check for transfer completion by monitoring CHANNEL_x_STATUS[1:0] bits.
14. For more information on bi-directional DMA transfers, see Details of Operations, page 113.

Note: The HPMS PDMA does not support full-behavioral simulation models.

6.4 PDMA Register Map
The following table summarizes each of the registers covered by this document. The base address is
0x40003000.

Table 77 • IGLOO2 FPGA PDMA Register Map

Register Name
Address
Offset

Register
Type

Reset
Value Description

Ratio_HIGH_LOW 0x00 R/W 0 Ratio of high priority transfers
versus low priority transfers. For
more information, see Table 78,
page 124.

BUFFER_STATUS 0x04 R 0 Indicates when buffers have
drained. For more information,
see Table 79, page 124.

CHANNEL_x_CONTROL (X=0) 0x20 R/W 0 Channel 0 Control Register. For
more information, see Table 80,
page 126.

CHANNEL_x_STATUS (X=0) 0x24 R 0 Channel 0 Status Register. For
more information, see Table 82,
page 127.

CHANNEL_x_BUFFER_A_SRC_ADDR (x=0) 0x28 R/W 0 Channel 0 buffer A source
address. For more information,
see Table 83, page 128.

CHANNEL_x_BUFFER_A_DST_ADDR (x=0) 0x2C R/W 0 Channel 0 buffer A destination
address. For more information,
see Table 84, page 128.

CHANNEL_x_BUFFER_A_TRANSFER_COUNT
(x=0)

0x30 R/W 0 Channel 0 buffer A transfer
count. For more information, see
Table 85, page 128.

CHANNEL_x_BUFFER_B_SRC_ADDR (x=0) 0x34 R/W 0 Channel 0 buffer B source
address. For more information,
see Table 86, page 129.

CHANNEL_x_BUFFER_B_DST_ADDR (x=0) 0x38 R/W 0 Channel 0 buffer B destination
address. For more information,
see Table 87, page 129.

CHANNEL_x_BUFFER_B_TRANSFER_COUNT
(x=0)

0x3C R/W 0 Channel 0 buffer B transfer
count. For more information, see
Table 88, page 129.

CHANNEL_1_CONTROL 0x40 R/W 0 Channel 1 Control Register.

CHANNEL_1_STATUS 0x44 R 0 Channel 1 Status Register.
Microchip Proprietary UG0448 Revision 10.0 121

Peripheral DMA
CHANNEL_1_BUFFER_A_SRC_ADDR 0x48 R/W 0 Channel 1 buffer A source
address.

CHANNEL_1_BUFFER_A_DST_ADDR 0x4C R/W 0 Channel 1 buffer A destination
address.

CHANNEL_1_BUFFER_A_TRANSFER_COUNT 0x50 R/W 0 Channel 1 buffer A transfer
count.

CHANNEL_1_BUFFER_B_SRC_ADDR 0x54 R/W 0 Channel 1 buffer B source
address.

CHANNEL_1_BUFFER_B_DST_ADDR 0x58 R/W 0 Channel 1 buffer B destination
address.

CHANNEL_1_BUFFER_B_TRANSFER_COUNT 0x5C R/W 0 Channel 1 buffer B transfer
count.

CHANNEL_2_CONTROL 0x60 R/W 0 Channel 2 Control Register.

CHANNEL_2_STATUS 0x64 R 0 Channel 2 Status Register.

CHANNEL_2_BUFFER_A_SRC_ADDR 0x68 R/W 0 Channel 2 buffer A source
address.

CHANNEL_2_BUFFER_A_DST_ADDR 0x6C R/W 0 Channel 2 buffer A destination
address.

CHANNEL_2_BUFFER_A_TRANSFER_COUNT 0x70 R/W 0 Channel 2 buffer A transfer
count.

CHANNEL_2_BUFFER_B_SRC_ADDR 0x74 R/W 0 Channel 2 buffer B source
address.

CHANNEL_2_BUFFER_B_DST_ADDR 0x78 R/W 0 Channel 2 buffer B destination
address.

CHANNEL_2_BUFFER_B_TRANSFER_COUNT 0x7C R/W 0 Channel 2 buffer B transfer
count.

CHANNEL_3_CONTROL 0x80 R/W 0 Channel 3 Control Register.

CHANNEL_3_STATUS 0x84 R 0 Channel 3 Status Register.

CHANNEL_3_BUFFER_A_SRC_ADDR 0x88 R/W 0 Channel 3 buffer A source
address.

CHANNEL_3_BUFFER_A_DST_ADDR 0x8C R/W 0 Channel 3 buffer A destination
address.

CHANNEL_3_BUFFER_A_TRANSFER_COUNT 0x90 R/W 0 Channel 3 buffer A transfer
count.

CHANNEL_3_BUFFER_B_SRC_ADDR 0x94 R/W 0 Channel 3 buffer B source
address.

CHANNEL_3_BUFFER_B_DST_ADDR 0x98 R/W 0 Channel 3 buffer B destination
address.

CHANNEL_3_BUFFER_B_TRANSFER_COUNT 0x9C R/W 0 Channel 3 buffer B transfer
count.

CHANNEL_4_CONTROL 0xA0 R/W 0 Channel 4 Control Register.

CHANNEL_4_STATUS 0xA4 R 0 Channel 4 Status Register.

Table 77 • IGLOO2 FPGA PDMA Register Map (continued)

Register Name
Address
Offset

Register
Type

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 122

Peripheral DMA
CHANNEL_4_BUFFER_A_SRC_ADDR 0xA8 R/W 0 Channel 4 buffer A source
address.

CHANNEL_4_BUFFER_A_DST_ADDR 0xAC R/W 0 Channel 4 buffer A destination
address.

CHANNEL_4_BUFFER_A_TRANSFER_COUNT 0xB0 R/W 0 Channel 4 buffer A transfer
count.

CHANNEL_4_BUFFER_B_SRC_ADDR 0xB4 R/W 0 Channel 4 buffer B source
address.

CHANNEL_4_BUFFER_B_DST_ADDR 0xB8 R/W 0 Channel 4 buffer B destination
address.

CHANNEL_4_BUFFER_B_TRANSFER_COUNT 0xBC R/W 0 Channel 4 buffer B transfer
count.

CHANNEL_5_CONTROL 0xC0 R/W 0 Channel 5 Control Register.

CHANNEL_5_STATUS 0xC4 R 0 Channel 5 Status Register.

CHANNEL_5_BUFFER_A_SRC_ADDR 0xC8 R/W 0 Channel 5 buffer A source
address.

CHANNEL_5_BUFFER_A_DST_ADDR 0xCC R/W 0 Channel 5 buffer A destination
address.

CHANNEL_5_BUFFER_A_TRANSFER_COUNT 0xD0 R/W 0 Channel 5 buffer A transfer
count.

CHANNEL_5_BUFFER_B_SRC_ADDR 0xD4 R/W 0 Channel 5 buffer B source
address.

CHANNEL_5_BUFFER_B_DST_ADDR 0xD8 R/W 0 Channel 5 buffer B destination
address.

CHANNEL_5_BUFFER_B_TRANSFER_COUNT 0xDC R/W 0 Channel 5 buffer B transfer
count.

CHANNEL_6_CONTROL 0xE0 R/W 0 Channel 6 Control Register.

CHANNEL_6_STATUS 0xE4 R 0 Channel 6 Status Register.

CHANNEL_6_BUFFER_A_SRC_ADDR 0xE8 R/W 0 Channel 6 buffer A source
address.

CHANNEL_6_BUFFER_A_DST_ADDR 0xEC R/W 0 Channel 6 buffer A destination
address.

CHANNEL_6_BUFFER_A_TRANSFER_COUNT 0xF0 R/W 0 Channel 6 buffer A transfer
count.

CHANNEL_6_BUFFER_B_SRC_ADDR 0xF4 R/W 0 Channel 6 buffer B source
address.

CHANNEL_6_BUFFER_B_DST_ADDR 0xF8 R/W 0 Channel 6 buffer B destination
address.

CHANNEL_6_BUFFER_B_TRANSFER_COUNT 0xFC R/W 0 Channel 6 buffer B transfer
count.

CHANNEL_7_CONTROL 0x100 R/W 0 Channel 7 Control Register.

CHANNEL_7_STATUS 0x104 R 0 Channel 7 Status Register.

Table 77 • IGLOO2 FPGA PDMA Register Map (continued)

Register Name
Address
Offset

Register
Type

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 123

Peripheral DMA
6.4.1 PDMA Configuration Register Bit Definitions
The registers listed in the following tables are present in the PDMA engine:

6.4.1.1 RATIO_HIGH_LOW Register Bit Definition

6.4.1.2 BUFFER_STATUS Register Bit Definition

CHANNEL_7_BUFFER_A_SRC_ADDR 0x108 R/W 0 Channel 7 buffer A source
address.

CHANNEL_7_BUFFER_A_DST_ADDR 0x10C R/W 0 Channel 7 buffer A destination
address.

CHANNEL_7_BUFFER_A_TRANSFER_COUNT 0x110 R/W 0 Channel 7 buffer A transfer
count.

CHANNEL_7_BUFFER_B_SRC_ADDR 0x114 R/W 0 Channel 7 buffer B source
address.

CHANNEL_7_BUFFER_B_DST_ADDR 0x118 R/W 0 Channel 7 buffer B destination
address.

CHANNEL_7_BUFFER_B_TRANSFER_COUNT 0x11C R/W 0 Channel 7 buffer B transfer
count.

Table 78 • Ratio_HIGH_LOW

Bit
Number Name Reset Value Description
[31:8] Reserved 0 Software should not rely on the value of a reserved bit. To provide

compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

[0:7] RATIOHIL
O

0 Indicates the ratio of high priority to low priority for DMA access
opportunities. This register gives the number of DMA opportunities
provided by the channel arbiter to high priority channels for every
one opportunity provided to a low priority channel. Only certain
values are allowed, as shown in Table 75, page 112.

Table 79 • BUFFER_STATUS

Bit Number Name Reset Value Description
[31:16] Reserved 0 Software should not rely on the value of a reserved bit. To

provide compatibility with future products, the value of a reserved
bit should be preserved across a read-modify-write operation.

15 CH7BUFB 0 If CH_COMP_B for channel 7 is set and if BUF_B_SEL for
channel 7 is clear, this bit is asserted.

14 CH7BUFA 0 If CH_COMP_A for channel 7 is set and if BUF_A_SEL for
channel 7 is clear, this bit is asserted.

13 CH6BUFB 0 If CH_COMP_B for channel 6 is set and if BUF_B_SEL for
channel 6 is clear, this bit is asserted.

12 CH6BUFA 0 If CH_COMP_A for channel 6 is set and if BUF_A_SEL for
channel 6 is clear, this bit is asserted.

Table 77 • IGLOO2 FPGA PDMA Register Map (continued)

Register Name
Address
Offset

Register
Type

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 124

Peripheral DMA
11 CH5BUFB 0 If CH_COMP_B for channel 5 is set and if BUF_B_SEL for
channel 5 is clear, this bit is asserted.

10 CH5BUFA 0 If CH_COMP_A for channel 5 is set and if BUF_A_SEL for
channel 5 is clear, this bit is asserted.

9 CH4BUFB 0 If CH_COMP_B for channel 4 is set and if BUF_B_SEL for
channel 4 is clear, this bit is asserted.

8 CH4BUFA 0 If CH_COMP_A for channel 4 is set and if BUF_A_SEL for
channel 4 is clear, this bit is asserted.

7 CH3BUFB 0 If CH_COMP_B for channel 3 is set and if BUF_B_SEL for
channel 3 is clear, this bit is asserted.

6 CH3BUFA 0 If CH_COMP_A for channel 3 is set and if BUF_A_SEL for
channel 3 is clear, this bit is asserted.

5 CH2BUFB 0 If CH_COMP_B for channel 2 is set and if BUF_B_SEL for
channel 2 is clear, this bit is asserted.

4 CH2BUFA 0 If CH_COMP_A for channel 2 is set and if BUF_A_SEL for
channel 2 is clear, this bit is asserted.

3 CH1BUFB 0 If CH_COMP_B for channel 1 is set and if BUF_B_SEL for
channel 1 is clear, this bit is asserted.

2 CH1BUFA 0 If CH_COMP_A for channel 1 is set and if BUF_A_SEL for
channel 1 is clear, this bit is asserted.

1 CH0BUFB 0 If CH_COMP_B for channel 0 is set and if BUF_B_SEL for
channel 0 is clear, this bit is asserted.

0 CH0BUFA 0 If CH_COMP_A for channel 0 is set and if BUF_A_SEL for
channel 0 is clear, this bit is asserted.

Table 79 • BUFFER_STATUS (continued)

Bit Number Name Reset Value Description
Microchip Proprietary UG0448 Revision 10.0 125

Peripheral DMA
6.4.1.3 CHANNEL_x_CONTROL Register Bit Definition

Table 80 • CHANNEL_x_CONTROL

Bit Number Name Reset Value Description
[31:27] Reserved 0 Software should not rely on the value of a reserved bit. To provide

compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

[26:23] PERIPHERAL_SEL 0 Selects the peripheral assigned to this channel. Refer to Table 81,
page 127.

22 Reserved 0

[21:14] WRITE_ADJ 0 Contains a binary value, indicating the number of HPMS_CLK
periods which the PDMA must wait after completion of a read or
write access to a peripheral before evaluating the out-of-band status
signals from that peripheral for another transfer. This is typically
used to ensure that a posted write has fully completed to the
peripheral in cases where the peripheral is running at a lower clock
frequency than the PDMA. However, it may also be used to allow
the PDMA to take account of internal latencies in the peripheral,
where the ready status of a FIFO may not be available for a number
of clock ticks after a read or write, due to internal synchronization
delays, for example, within the peripheral. This applies particularly in
the case of user-designed peripherals in the FPGA fabric.

[13:12] DEST_ADDR_INC 00 Controls the address increment at the destination end of the DMA
transfer. The values have the following meanings:
00: 0 bytes
01: 1 byte
10: 2 bytes
11: 4 bytes

[11:10] SRC_ADDR_INC 00 Controls the address increment at the source end of the DMA
transfer. The values have the following meanings:
00: 0 bytes
01: 1 byte
10: 2 bytes
11: 4 bytes

9 HI_PRIORITY 0 When asserted, this channel is treated as high priority by the
arbitration state machine.

8 CLR_COMP_B 0 When asserted, clears the CH_COMP_B bit in the channel Status
Register and the buffer Status Register for this buffer in this channel.
This causes PDMAINTERRUPT to negate if not being held asserted
by another channel. This bit always reads back as zero.

7 CLR_COMP_A 0 When asserted, clears the CH_COMP_A bit in the channel Status
Register and the buffer Status Register for this buffer in this channel.
This causes PDMAINTERRUPT to negate if not being held asserted
by another channel. This bit always reads back as zero.

6 INTEN 0 When asserted, a DMA completion on this channel causes
PDMAINTERRUPT to assert.

5 RESET 0 When asserted, resets this channel. Always reads back as zero.

4 PAUSE 0 When asserted, pauses the transfers for this channel.
Microchip Proprietary UG0448 Revision 10.0 126

Peripheral DMA
The following table provides the PERIPHERAL_SEL bits description.

6.4.1.4 CHANNEL_x_STATUS Register Bit Definition

[3:2] TRANSFER_SIZE 00 Determines the data width of each DMA transfer cycle for this DMA
channel. The allowed values are:
00: Byte (8 bits)
01: Halfword (16 bits)
10: Word (32 bits)
11: Reserved

1 DIR 0 If PERIPHERAL_DMA = 1, then this bit is valid. If so, then the
values of this bit have the following meanings:
0: Peripheral to memory
1: Memory to peripheral

0 PERIPHERAL_DM
A

0 0: Channel is configured for memory to memory DMA.
1: Channel is configured for peripheral DMA. Based on the value of
DIR, the peripheral ready signal associated with this DMA channel
is interpreted as initiating transfers either from memory to the
peripheral or vice-versa.

Table 81 • PERIPHERAL_SEL

Bit 26 Bit 25 Bit 24 Bit 23 Function
0 1 0 0 From SPI_0 receive to any HPMS memory-mapped location

0 1 0 1 From any HPMS memory-mapped location to SPI_0 transmit

1 0 0 0 To/from FPGA fabric peripheral on FIC_0 interface (DMAREADY_0[1])

1 0 0 1 To/from FPGA fabric peripheral on FIC_0 interface (DMAREADY_0[0])

1 1 0 0 To/from FPGA fabric peripheral on FIC_1 interface (DMAREADY_1[1]).

1 1 0 1 To/from FPGA fabric peripheral on FIC_1 interface (DMAREADY_1[0]).

1 1 1 0 From COMM_BLK receive to any HPMS memory-mapped location

1 1 1 1 From any HPMS memory-mapped location to COMM_BLK transmit

Table 82 • CHANNEL_x_STATUS

Bit Number Name
Reset
Value Description

[31:3] Reserved 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

2 BUF_SEL 0 0: Buffer A is used
1: Buffer B is used

1 CH_COMP_B 0 Asserts when this channel completes its DMA. Cleared by writing to
CLR_COMP_B, bit[8] in CHANNEL_x_CONTROL register for this
channel. If INTEN is set for this channel, the assertion of CH_COMP_B
causes PDMAINTERRUPT to assert.

Table 80 • CHANNEL_x_CONTROL (continued)

Bit Number Name Reset Value Description
Microchip Proprietary UG0448 Revision 10.0 127

Peripheral DMA
6.4.1.5 CHANNEL_x_BUFFER_A_SRC_ADDR Register Bit Definition

6.4.1.6 CHANNEL_x_BUFFER_A_DST_ADDR Register Bit Definition

6.4.1.7 CHANNEL_x_BUFFER_A_TRANSFER_COUNT Register Bit Definition

0 CH_COMP_A 0 Asserts when this channel completes its DMA. Cleared by writing to
CLR_COMP_A, bit[8] in CHANNEL_x_CONTROL register for this
channel. If INTEN is set for this channel, the assertion of CH_COMP_A
causes PDMAINTERRUPT to assert.

Table 83 • CHANNEL_x_BUFFER_A_SRC_ADDR

Bit Number Name
Reset
Value Description

[31:0] BUF_A_SRC 0 Start address from which data is to be read during the next DMA
transfer cycle. If PERIPHERAL_DMA = 1 and DIR = 0, this value is not
incremented from one DMA transfer cycle to the next. Otherwise, it is
always incremented by an amount corresponding to the
TRANSFER_SIZE for this channel.

Table 84 • CHANNEL_x_BUFFER_A_DST_ADDR

Bit Number Name
Reset
Value Description

[31:0] BUF_A_DST 0 Start address from which data is to be write during the next DMA
transfer cycle. If PERIPHERAL_DMA = 1 and DIR = 1, this value is not
incremented from one DMA transfer cycle to the next. Otherwise, it is
always incremented by an amount corresponding to the
TRANSFER_SIZE for this channel.

Table 85 • CHANNEL_x_BUFFER_A_TRANSFER_COUNT

Bit Number Name
Reset
Value Description

[31:16] Reserved 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

[15:0] BUF_A_COUNT 0 Number of remaining transfers to be completed between source and
destination for buffer A for this channel. This field is decremented after
every DMA transfer cycle.
Writing a non-zero value to this register causes the DMA to start. This
must be the last register written by firmware when setting up a DMA
transfer.

Table 82 • CHANNEL_x_STATUS (continued)

Bit Number Name
Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 128

Peripheral DMA
6.4.1.8 CHANNEL_x_BUFFER_B_SRC_ADDR Register Bit Definition

6.4.1.9 CHANNEL_x_BUFFER_B_DST_ADDR Register Bit Definition

6.4.1.10 CHANNEL_x_BUFFER_B_TRANSFER_COUNT Register Bit Definition

Table 86 • CHANNEL_x_BUFFER_B_SRC_ADDR

Bit Number Name
Reset
Value Description

[31:0] BUF_B_SRC 0 Start address from which data is to be read during the next DMA
transfer cycle. If PERIPHERAL_DMA = 1 and DIR = 0, this value is not
incremented from one DMA transfer cycle to the next. Otherwise, it is
always incremented by an amount corresponding to the
TRANSFER_SIZE for this channel.

Table 87 • CHANNEL_x_BUFFER_B_DST_ADDR

Bit Number Name
Reset
Value Description

[31:0] BUF_B_DST 0 Start address from which data is to be write during the next DMA
transfer cycle. If PERIPHERAL_DMA = 1 and DIR = 1, this value is not
incremented from one DMA transfer cycle to the next. Otherwise, it is
always incremented by an amount corresponding to the
TRANSFER_SIZE for this channel.

Table 88 • CHANNEL_x_BUFFER_B_TRANSFER_COUNT

Bit Number Name
Reset
Value Description

[31:16] Reserved 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

[15:0] BUF_B_COUNT 0 Number of remaining transfers to be completed between source and
destination for buffer B for this channel. This field is decremented after
every DMA transfer cycle.
Writing a non-zero value to this register causes the DMA to start. This
must be the last register to be written by firmware when setting up a
DMA transfer.
Microchip Proprietary UG0448 Revision 10.0 129

Peripheral DMA
6.5 SYSREG Control Registers
In addition to the specific PDMA registers found in Table 77, page 121, the registers found in the
following table also control the behavior of the PDMA peripheral. These registers are located in the
SYSREG section of the user's guide and are listed here for convenience. Refer to System Register
Block, page 197 for a detailed description of each register and associated bits.

Table 89 • SYSREG Control Registers

Register Name
Register
Type

Flash Write
Protect Reset Source Description

SOFT_RESET_CR RW-P Bit SYSRESET_N Soft reset control. For more information,
see Table 143, page 215.

MASTER_WEIGHT1_CR RW-P Register SYSRESET_N Configures weighted round robin master
arbitration scheme for masters. For more
information, see Table 140, page 214.
Microchip Proprietary UG0448 Revision 10.0 130

Serial Peripheral Interface Controller
7 Serial Peripheral Interface Controller

Serial peripheral interface (SPI) is a synchronous serial data protocol that enables the FPGA fabric logic
and peripheral devices to communicate with each other. The SPI controller is an APB slave in the
IGLOO2 device that provides a serial interface compliant with the Motorola SPI, Texas Instruments
synchronous serial, and National Semiconductor MICROWIRE™ formats. In addition, SPI supports
interfacing with large SPI flash and EEPROM devices and a hardware-based slave protocol engine.

7.1 Features
IGLOO2 SPI peripheral supports the following features:

• Master and slave modes
• Configurable slave select operation
• Configurable clock polarity
• Separate transmit (Tx) and receive (Rx) FIFOs to reduce interrupt service loading
• Fabric logic controlled and PDMA controlled mode of data transfer
The following figure shows details of the high performance memory subsystem (HPMS). The SPI
peripheral is interfaced to the AHB bus matrix through the APB_0 interface.

Figure 76 • Microcontroller Subsystem Showing SPI Peripherals

AHB Bus Matrix

MS5

eSRAM_1 eSRAM_0 eNVM_0HPDMADDR Bridge

MS1 MS0MS2MM3MS6MM7

AHB To AHB Bridge with Address Decoder

APB_0SYSREGFIC_1

MM4 MS4 MM5

SPI

PDMA
Configuration

FIIC COMM_BLK

MS5_FIC MS5_SR MS5_APB0 MS5_APB1

High Performance Memory Subsystem
DDR

PDMASystem
Controller

MM9

APB_1FIC_0

eNVM_1

MS3

HPDMA
Configuration

FIC_2 (Peripheral
Initialization)

MS5_FIC2
Microchip Proprietary UG0448 Revision 10.0 131

Serial Peripheral Interface Controller
7.2 Functional Description
This section provides the detailed description of the following SPI peripherals.

7.2.1 Architecture Overview
The SPI controller supports master and slave modes of an operation.

• In master mode, the SPI generates SPI_0_CLK, selects a slave using SPI_0_SS0, transmits the
data on SPI_0_DO, and receives the data on SPI_0_DI.

• In slave mode, the SPI is selected by SPI_0_SS0. The SPI receives a clock on SPI_0_CLK and
incoming data on SPI_0_DI.

The SPI peripheral consists mainly of the following components.

• Transmit and receive FIFOs
• Configuration and control logic
• SPI clock generator
The following figure shows the SPI controller block diagram.

Figure 77 • SPI Controller Block Diagram

7.2.1.1 Transmit and Receive FIFOs
The SPI controller embeds two 4 × 32 (depth × width) FIFOs for receive and transmit, as shown in the
preceding figure. These FIFOs are accessible through RX data and TX data registers (refer to SPI
Register Details, page 152). Writing to the TX data register causes the data to be written to the transmit
FIFO. This is emptied by the transmit logic. Similarly, reading from the RX data register causes the data
to be read from the receive FIFO. The not-empty port of the receive FIFO and the not-full port of the
transmit FIFO flags (of the FIFOs) are exposed as SPI_0_RXAVAIL (SPI has data to be read) and
SPI_0_TXRFM (SPI has room for more data to send) ports. These are connected to the peripheral DMA

Configuration
and

Control logic
SPI_0_INT

APB Bus

Note:
- The SPI_0_DO, SPI_0_DI, SPI_0_SS0, and SPI_0_CLK signals are available
 to the FPGA fabric.
- SPI_0_DOE_N is accessible through the SPI control register.
- SPI_0_TXRFM and SPI_0_RXAVAIL signals are used only by PDMA.
- SPI_0_INT can be routed to the FPGA fabric.

PWDATA[31:0]

PRDATA[31:0]

4X32 Transmit FIFO

4X32 Receive FIFO
TX/RX
Logic

SPI_0_DO

SPI_0_DI

SPI_0_SS0

SPI_0_TXRFM

SPI_0_RXAVAIL

SPI_0_DOE_N

SPI_0_CLK
SPI Clock
Generator

APB_0_CLK
Microchip Proprietary UG0448 Revision 10.0 132

Serial Peripheral Interface Controller
(PDMA) engine to allow continuous DMA streaming for large SPI transfers and to help free up the Fabric
master.

7.2.1.2 Configuration and Control Logic
The SPI peripheral can be configured for master or slave mode by using the mode bit of the SPI
CONTROL register (see Table 97, page 152). The type of data transfer protocol can be configured by
using the TRANSFPRTL bit of the SPI CONTROL register. The control logic monitors the number of data
frames to be sent/received and enables the interrupts when the data frame transmission/reception is
completed. During data frames transmission/reception, if a transmit under-run error/ receive overflow
error is detected, the STATUS register (see Table 99, page 153) is updated. Refer to the STAT8 register
(Table 113, page 161) for bit definitions.

7.2.1.3 SPI Clock Generator
In master mode, the SPI clock generator generates the serial programmable clock from the APB clock.
Refer to SPI Clock Requirements, page 144 for more details.

7.2.2 Interface
This section provides the details of the SPI interfacing ports and various data transfer protocols.

7.2.2.1 Port List
The following table lists the SPI signals.

7.2.2.2 Data Transfer Protocol Details
The IGLOO2 SPI controller supports the following data transfer protocols:

• Motorola SPI Protocol
• National Semiconductor MICROWIRE Protocol
• Texas Instruments Synchronous Serial Protocol
• Slave Protocol Engine
The following sections describe the data transfer protocols, timing diagrams, signal requirements, and
error case scenarios for the above protocols.

Table 90 • SPI Interface Signals

Name Type Polarity/Bus Size Description
SPI_0_DI Input High Serial data input

SPI_0_DO Output High Serial data output

SPI_0_CLK Input/Output High Serial clock. It is a serial programmable bit rate clock
out signal.
Input when SPI is in the slave mode.
Output when SPI is in the master mode.

SPI_0_SS0 Input/Output Low,
except for TI mode

Slave select.
Input when SPI is in the slave mode.
Output when SPI is in the master mode.
The slave select output polarity is active Low. In TI
mode the slave select output is inverted to become
active High.

SPI_0_INT Output High SPI interrupt

SPI_0_DOE_N Output High Output enable

SPI_0_TXRFM Output High SPI ready to transmit. Used only by HPMS PDMA
engine

SPI_0_RXAVAIL Output High SPI received data available. Used only by HPMS
PDMA engine.
Microchip Proprietary UG0448 Revision 10.0 133

Serial Peripheral Interface Controller
7.2.2.3 Motorola SPI Protocol
The Motorola SPI is a full duplex, four-wire synchronous transfer protocol which supports programmable
clock polarity (SPO) and clock phase (SPH).The state of SPO and SPH control bits decides the data
transfer modes as shown in the following table.

The SPH control bit determines the clock edge that captures the data.

• When SPH is Low, data is captured on the first clock transition.
• Data is captured on the rising edge of SPI_CLK when SPO = 0 (Figure 78, page 135).
• Data is captured on the falling edge of SPI_CLK when SPO = 1 (Figure 81, page 136).

• When SPH is High, data is captured on the second clock transition (rising edge if SPO = 1).
• Data is captured on the falling edge of SPI_CLK when SPO = 0 (Figure 80, page 136).
• Data is captured on the rising edge of SPI_CLK when SPO = 1 (Figure 82, page 136).

The SPO control bit determines the polarity of the clock and SPS defines the slave select behavior.

• When SPO is Low and no data is transferred, SPI_CLK is driven to Low (Figure 79, page 135).
• When SPO is High and no data is transferred, SPI_CLK is driven to High (Figure 78, page 135).
The following table summarizes the clock active edges in various SPI master modes.

Table 91 • Data Transfer Modes

Data Transfer Mode SPO SPH
Mode 0 0 0

Mode 1 0 1

Mode 2 1 0

Mode 3 1 1

Table 92 • Summary of Master SPI Modes

Mode SPS SPO SPH
Clock in
Idle

Sample
Edge

Shift
Edge

Select in
Idle Select Between Frames

Motorola 0 0 0 Low Rising Falling High Pulses between all frames

0 1 0 High Falling Rising High

0 0 1 Low Falling Rising High Does not pulse between back-to-back
frames. Pulses if transmit FIFO
empties.

0 1 1 High Rising Falling High Does not pulse between back-to-back
frames. Pulses if transmit FIFO
empties.

1 0 0 Low Rising Falling High Stays active until all the frames set by
frame counter are transmitted.1 0 1 Low Falling Rising High

1 1 0 High Falling Rising High

1 1 1 High Rising Falling High

Texas
Instruments

0 0 0 Low Falling Rising Low Normal operation
SPI_0_CLK only generated with select
and data bits.

1 Low Falling Rising Low Removes SPI_0_SS0 on consecutive
frames (back-to-back), making them
appear to be big frames.

1 Running Falling Rising Low SPI_0_CLK is free running.
Microchip Proprietary UG0448 Revision 10.0 134

Serial Peripheral Interface Controller
7.2.2.3.1 Motorola SPI Modes
Motorola SPI modes are shown in the following figures.

Single Frame Transfer – Mode 0: SPO = 0, SPH = 0

Figure 78 • Motorola SPI Mode 0

Multiple Frame Transfer – Mode 0: SPO = 0, SPH=0

Figure 79 • Motorola SPI Mode 0 Multiple Frame Transfer

Notes:

• Between frames, the slave select (SPI_SS0) signal is asserted for the duration of the clock pulse.
• Between frames, the clock (SPI_CLK) is Low.
• Data is transferred to most significant bit (MSB) first.
• The output enable (SPI_DOE_N) signal is asserted during the transmission and deasserted at the

end of the transfer (after the last frame is sent).

National
Semiconductor
Microwire

0 0 0 Low Rising Falling High Normal operation
SPI_0_CLK only generated with select
and data bits.

1 Low Rising Falling High Forces IDLE cycles (SPI_0_SS0
deactivated) between back-to-back
frames.

1 Running Rising Falling High SPI_0_CLK is free running.

1 Low Rising Falling High After sending the command part of the
frame, the subsequent frames are
concatenated to create a single large
data frame (master operation only).

Table 92 • Summary of Master SPI Modes (continued)

Mode SPS SPO SPH
Clock in
Idle

Sample
Edge

Shift
Edge

Select in
Idle Select Between Frames

SPI_CLK

SPI_DI

SPI_DO

SPI_DOE_N

SPI_SS0

MSB

LSB

LSB

MSB

4 to 32 Bits

Q

4 to 32 Bits

SPI_CLK

SPI_DI

SPI_DO

SPI_DOE_N

SPI_SS0

MSB MSBLSBLSB
Microchip Proprietary UG0448 Revision 10.0 135

Serial Peripheral Interface Controller
Single Frame Transfer – Mode 1: SPO = 0, SPH = 1

Figure 80 • Motorola SPI Mode 1

Single Frame Transfer – Mode 2: SPO = 1, SPH = 0

Figure 81 • Motorola SPI Mode 2

Single Frame Transfer – Mode 3: SPO = 1, SPH = 1

Figure 82 • Motorola SPI Mode 3

7.2.2.3.2 Output Enable (SPI_0_DOE_N) Timing
Each SPI mode comprises two phases: transmit and receive. It is a requirement that the output enable
(SPI_0_DOE_N) line, which enables the output signal, should be driven so that the following occurs:

• The output signal is ready to transmit when the data is available (setup time).
• The output signal is held on long enough for the recipient to sample the data (hold time).
The minimum setup and hold time is one half SPI_0_CLK. In slave mode, the input clock is withdrawn at
the end of the transfer. For example, consider the waveform for Mode 2 (Single Frame Transfer – Mode
2: SPO = 1, SPH = 0, page 136). In this case, data is sampled on the falling edge of the clock and shifted
on the rising edge of the clock. The data is sampled on the falling edge and must be held for one half
SPI_0_CLK after the last falling edge at the end of the transmission. This means that SPI_0_DOE_N
must be held High for at least one half SPI_0_CLK after the last falling edge to satisfy the hold time
requirement.

SPI_CLK

SPI_DI

SPI_DO

SPI_DOE_N

SPI_SS0

MSB

LSB

LSB

MSB

4 to 32 Bits

QQ

SPI_CLK

SPI_DI

SPI_DO

SPI_DOE_N

SPI_SS0

MSB

LSB

LSB

MSB

4 to 32 Bits

Q

SPI_CLK

SPI_DI

SPI_DO

SPI_DOE_N

SPI_SS0

MSB

LSB

LSB

MSB

4 to 32 Bits

QQ
Microchip Proprietary UG0448 Revision 10.0 136

Serial Peripheral Interface Controller
7.2.2.3.3 Motorola SPI Error Case Scenarios
The SPI protocol does not specify any error recovery strategy. The master and slave require prior
knowledge of clock rates and data-frame layouts. However, there are built-in mechanisms in the SPI
controller to recover from error. If the slave encounters an error, the master can toggle the slave clock
until it comes to a known state. Here are three specific scenarios and error the behavior of the SPI
controller in Motorola protocol mode.

• If the slave select signal is withdrawn in the middle of a transfer, the transfer continues until the end
of the data frame.

• If the input clock is withdrawn, the SPI controller remains paused until the clock is restarted. It picks-
up where it left off.

• If the slave select signal is withdrawn before a transfer occurs, the slave remains in the idle state (no
data transfer having been initiated).

The SPI controller has no built-in timer. For applications where there is a possibility of a slave going to
sleep for a long time, or in the case of very long transfers, the application should use a timer created from
user logic.

7.2.2.3.4 SPI Data Transfer for Large Flash/EEPROM Devices in Motorola SPI Modes
Serial flash and EEPROM devices can be driven using Motorola SPI modes. Following is an outline of
the interfaces to the required flash/EEPROM devices that shows how they can be driven using Motorola
SPI modes. In each of these modes, the SPI controller is configured as a master with the slave select line
connected to the chip select of the memory device.

7.2.2.3.5 Devices Requiring Data Frame Sizes of Up to 32 Bits
Serial flash/EEPROM devices, such as the Atmel 25010/020/040, have a data frame size smaller than 32
bits and can be directly driven from SPI mode.

Table 93 • Behavior of the Output Enable Signal

Mode Master Slave
MOTOROLA SPI_0_DOE_N is asserted with identical timing

to that of SPI_0_SS0. This provides an
additional half SPI_0_CLK cycle of data turn on
and off relative to the data bit valid
requirements.

The incoming SPI__SS0 signal is used to directly
generate the SPI_0_DOE_N. Similar to the master
case, it provides an additional half clock cycle of
data turn on and off.

Texas
Instruments

SPI_0_DOE_N is asserted on the negative
clock edge prior to the MSB (while SPI_0_SS0
is asserted) and if the uninterrupted data is
deasserted on the falling SPI_0_CLK edge
following the LSB. This provides half a clock
cycle of data turn on off time.

SPI_0_DOE_N is asserted on the positive SPI
clock edge as the MSB is the output.
SPI_0_DOE_N is deasserted on the positive SPI
clock edge at the end of the LSB data bit,
assuming no consecutive data.

National
Semiconductor
MICROWIRE

SPI_0_DOE_N is asserted with SPI_0_SS0,
and then removed at the start of the ninth data
bit (turn around cycle).

SPI_0_DOE_N is asserted at the start of the tenth
bit as data becomes valid. SPI_0_DOE_N is
deasserted at the end of the LSB, if a falling clock
edge occurs or when SPI_0_SS0 is deasserted.
Microchip Proprietary UG0448 Revision 10.0 137

Serial Peripheral Interface Controller
7.2.2.3.6 Write Operation for Atmel 25010/20/40 Devices
The following figure shows the write operation timing for Atmel 25010/020/040 devices. The SPI
controller selects the devices using the slave select signal. The data frame size is set to 24 bits. The SPI
is configured with SPO = 0, SPH = 0. The first byte is the instruction. Bit 5 of the instruction is part of the
address (the 9th bit as required by the Atmel part). Bits 8-15 form a byte address. The residual 8 bits
correspond to the data to be written.

Figure 83 • Write Operation Timing

Note: The first byte contains the opcode that defines the operations to be performed. The opcode also contains
address bit A8 in both the READ and WRITE instructions. This is mandated by the Atmel device.

7.2.2.3.7 Read Operation for Atmel 25010/20/40 Devices
The following figure shows the read operation timing for Atmel 25010/20/40 devices. For the read
operation, the data frame size is set to 24 bits and the SPI controller is configured with SPO = 0, SPH =
0. On completing, the least significant byte of the received data frame corresponds to the data read.

Figure 84 • Read Operation Timing

Note: The first byte contains the opcode that defines the operations to be performed. The opcode also contains
address bit A8 in both the read and write instructions. This is mandated by the Atmel device.

SPI_SS0

SPI_CLK

SPI_DO

SPI_DI

Instruction Byte Address Data In

9th Bit of Address

High Impedance

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 2319

02345678 1 0234567 1

1

SPI_SS0

SPI_CLK

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23191

02345678 1

0234567 1

Data Out

MSB

Byte Address

9th Bit of Address

Instruction

High ImpedenceSPI_DI

SPI_DO
Microchip Proprietary UG0448 Revision 10.0 138

Serial Peripheral Interface Controller
7.2.2.3.8 Devices Requiring Data Frame Sizes of More than 32 Bits
Serial flash devices such as the Atmel AT25DF321 which support mode 3 (SPO = 1 and SPH = 1)
require more than 32 bits of frame data in some modes. To drive these devices, continuous transfers are
required from the SPI interface while holding the slave select low continuously (which is connected to the
chip select of the target device). This is accomplished by using the transmit FIFO from the SPI, which
enforces continuous back-to-back transfers, if it is not empty. The slave select continues to be held low
(active) in SPI mode 3 (SPO = 1 and SPH = 1) and not pulsed between data frames.

For example, to send 64 bits to the AT25DF321 (8-bit opcode, 24-bit address, 4 data bytes), the data
frame size (see Table 98, page 153) can be set to 32 and the data frame count (TXRXDFCOUNT, see
Table 97, page 152) set to two.

7.2.2.3.9 TXRXDFCOUNT Register
The SPI peripheral contains a TXRXDFCOUNT counter (found in the CONTROL register) that counts the
number of transmitted and received frames. Its function varies in master and slave modes.

TXRXDFCOUNT in master mode controls the following:

• The Tx and Rx done interrupts
• Terminates the auto fill and empty operations
• Holds slave select active
TXRXDFCOUNT in slave mode controls the following:

• The Tx and Rx done interrupts
• Terminates the auto fill operation
In slave operation it is possible for TXRXDFCOUNT to miscount actual transmitted and received frames
if the transmit FIFO under-run condition occurs. If this is likely in an application, Microchip recommends
that TXRXDFCOUNT not be used and that it be disabled. Instead use the CMDINT and SSEND bits in
the raw interrupt status (RIS) register (see Table 107, page 157) to monitor operation, or simply count
how many frames it is received.

7.2.2.3.10 Page Program for Atmel AT25DF321
The following figure shows the Page Programming Timing for Atmel AT25DF321. In this mode, the
opcode, address, and data require more than 32 clock periods. To drive this device, the chip select (CS)
can be connected to the slave select signal, the data frame size set to 16, and the FIFO repeatedly filled
until the target flash device is programmed. As long as the data is available to transmit in the FIFO, the
chip select signal (connected to slave select on the SPI controller) will be asserted Low.

Figure 85 • Page Program Timing

Data in Byte nData in Byte 1Opcode Address Bits A23-A0

MSB MSB MSB MSB

High Impedance

0

0 0 0 0 0 0 0 A DA DA DA DA DA D D D D DD D D DD D

1

1

2 3 4 5 6 7 8 9 29 30 31 32 33 34 35 37 38 3936

SPI_SS0

SPI_CLK

SPI_DO

SPI_DI
Microchip Proprietary UG0448 Revision 10.0 139

Serial Peripheral Interface Controller
7.2.2.3.11 Devices That Do Not Support Mode 1 (SPO = 0 and SPH = 1) or Mode 3 (SPO = 1
and SPH = 1)
For flash devices that do not support mode 1 (SPO = 0 and SPH = 1) or mode 3 (SPO = 1 and SPH = 1),
it is necessary to use a dedicated GPIO pin to drive the chip select signal.

7.2.2.4 National Semiconductor MICROWIRE Protocol
The National Semiconductor MICROWIRE serial interface is a half-duplex protocol using a master/slave
message passing technique. Each serial transmission begins with an 8-bit control word, during which
time no incoming data is received. After the control word is sent, the external slave decodes it, and after
waiting one serial clock cycle from the end of the control word, responds with the required data, which
may be 4 to 16 bits in length.

7.2.2.4.1 Single Frame Transfer
In single frame transfer mode shown in the following figure, the most significant byte of the FIFO transmit
word is the control byte. The total data frame size supplied must be at least 12 bits long (8 bits for the
control word and a minimum of 4 bits for data payload). Only the output data is sampled and inserted in
the receive FIFO.

Figure 86 • National Semiconductor MICROWAVE Single Frame Transfer

7.2.2.4.2 Multiple Frame Transfer
In the multiple frame transfer shown in the following figure, the slave select signal (SPI_0_SS0) is
continuously asserted (held Low) while SPI_0_DOE_N (output Enable) is also asserted (or held Low) for
the duration of each control byte. The other data transfers proceed in back-to-back manner.

Figure 87 • National Semiconductor MICROWIRE Multiple Frame Transfer

4 to 16 Bits
Output Data

SPI_CLK

SPI_DI

SPI_DOE_N

SPI_DO

SPI_SS0

8-Bit Control

MSB

LSB

LSB

MSB0

8-Bit Control

4 to 16 Bits
Output Data

SPI_CLK

SPI_DI

SPI_DOE_N

SPI_DO

SPI_SS0

MSB

MSBLSB

LSB

LSB

MSB0
Microchip Proprietary UG0448 Revision 10.0 140

Serial Peripheral Interface Controller
7.2.2.5 Texas Instruments Synchronous Serial Protocol
The Texas Instruments (TI) synchronous serial interface is based on a full duplex, four-wire synchronous
transfer protocol. The transmit data pin is put in a high-impedance mode (tristated) when no data is
transmitted.

• The slave select (SPI_0_SS0) signal is pulsed between transfers to guarantee a high-to-low
transition between each frame.

• The slave select output polarity is inverted to become active high. In an idle state, the slave select
(SPI_0_SS0) signal is kept low.

• Data is available on the clock cycle immediately following the slave select (SPI_0_SS0) assertion.
• Both the SPI master and the SPI slave capture each data bit into their serial shift registers on the

falling edge of the clock (SPI_0_CLK). The received data is latched on the rising edge of the clock
(SPI_0_CLK).

• The output enable signal (SPI_0_DOE_N) is asserted (active low) throughout the transfer.
The following figures show the TI synchronous single frame transfer and TI synchronous multiple frame
transfer.

Figure 88 • TI Synchronous Serial Single Frame Transfer

Figure 89 • TI Synchronous Serial Multiple Frame Transfer

7.2.2.5.1 TI Synchronous Serial Error Case Scenarios
When the SPI controller is configured for the TI synchronous serial protocol, while in slave mode, it
responds to failure events. These failure events on slave select (SPI_0_SS0) and the slave clock
(SPI_0_CLK) are described below:

• Withdrawal of SPI_0_CLK: In this case the device pauses and resumes on reasserting the clock.
• Premature pulsing of slave select: If the slave select is pulsed during a data frame transmission, it

will be ignored.
• Disconnecting the slave select before a transfer: The transfer is not initiated unless the pulse is

issued.

4 to 16 Bits

SPI_CLK

SPI_DI

SPI_DOE_N

SPI_DO

SPI_SS0

LSBMSB

4 to 16 Bits

SPI_CLK

SPI_DI

SPI_DOE_N

SPI_DO

SPI_SS0

LSBMSB
Microchip Proprietary UG0448 Revision 10.0 141

Serial Peripheral Interface Controller
7.2.2.6 Slave Protocol Engine
The slave protocol engine (SPE) implements a Microchip-defined hardware protocol that allows the
transfer of command and data from an SPI master to the SPI slave. The SPE controller logically sits
between the SPI transmit/receive logic and the FIFOs. The SPE controller removes the command bytes
and inserts status bytes from the data stream. Only one command byte is defined by Microchip
(POLL command). All other command bytes are user defined. To use the SPE, the BIGFIFO,
AUTOSTATUS, AUTOPOLL, FRAMEURUN, and SPS bits should be set (refer to the SPI CONTROL
register—Table 97, page 152—for bit definitions). The descriptions below assume that the frame size
(TXRXDF_SIZE[TXRXDFS] field) is set to 8 bits, although other frame size settings are acceptable (up to
32 bits).

7.2.2.6.1 SPI Slave Frame Format
The frame format consists of a command frame followed by 0 to 31 data frames. The size of the
command frame and data frame must be equal and is defined by TXRXDFS. A typical use model would
be to define the command frame as 8 bits followed by 31 bytes of data. This assumes BIGFIFO is set to
1 and TXRXDFS is set to 0x08.

The following figure shows the command and data bytes. Transmit and receive refer to the SPI
peripheral as the slave. Data bytes are optional.

Figure 90 • SPE Command/Data Format

The first receive byte of the sequence after SPI_0_SS0 asserts is always a command byte. The slave
always responds with a status byte, which is the contents of the HWSTATUS register (see Table 112,
page 160).

Note: Set two bits in the HWSTATUS register to facilitate additional handshaking schemes between SPI master
and SPI slave.

7.2.2.6.2 POLL Command
All command bytes except the POLL command are stored in the receive FIFO. Once received, the CMD
interrupt is generated. The command size can be set by the CMD_SIZE register (see Table 111,
page 160) and can be 1 to 32 bits wide, although typically commands and data will be 8 bits wide. The
POLL command is encoded as 0xFF and is the only encoded command. All other command byte
encodings are user defined. If a POLL command is received, the contents of the HWSTATUS register are
sent back to the master and the POLL command is discarded. It will not be stored in the FIFO.

7.2.2.6.3 Hardware Status Frame
A hardware status frame is automatically sent back by the SPE in response to every command. It
provides status information back to the master. The byte contains the contents of the HWSTATUS
register.

SPI_SS0

RxDATA

TxDATA

SPI_SS0

RxDATA

TxDATA

Command Byte

Command Byte

Status Byte

Status Byte

Receive Data (1-31 Bytes)

Transmit Data (1-31 Bytes)
Microchip Proprietary UG0448 Revision 10.0 142

Serial Peripheral Interface Controller
7.2.2.6.4 Simple Commands
To send a command with no data to the slave, the master does the following:

1. Sends a POLL command and verifies that the slave is ready (no RXBUSY from HWSTATUS
register).

2. This is repeated until the slave indicates it is ready.
3. The master sends the other command with no data. The command is queued in the receive FIFO for

the slave to process.

7.2.2.6.5 Data Receive Operation
To send data to the slave, the master does the following:

1. Sends a POLL command and verifies that the slave is ready and can accept the data.
2. This is repeated until the slave indicates that it is ready and can accept the data (no RXBUSY from

HWSTATUS register).
3. The master sends the write command and data bytes. On receiving, the slave stores the command

and data bytes in the receive FIFO. After CMDSIZE bits have been received, the CMD interrupt is
generated.

4. The hardware automatically set RxBUSY, if there are less than PKTSIZE (see Table 110, page 160)
storage locations left in the receive FIFO after the sequence completes.

Note: The slave reports under-run events having occurred, if no data is available for transmit.

7.2.2.6.6 Data Transmit Operation
To receive data from the slave, the master does the following:

1. Sends a POLL command and verifies that the slave is ready and can accept the data.
2. This is repeated until the slave indicates it is ready and can accept any associated command data

(no RxBUSY).
3. The master sends a read command and any associated data bytes (for example, a read address).

On receiving the sequence, the slave stores the command byte and data in the receive FIFO. User
logic examines the command and data bytes and puts the requested data in the transmit FIFO. As
soon as it has written PKTSIZE bytes to the transmit FIFO, the TxBUSY status bit in the HWSTATUS
register will be cleared.

4. The master starts polling the device until the TxBUSY bit is cleared, indicating that the data is
available.

5. The master now sends a read command followed by data words. The slave will return the contents
of the HWSTATUS register and required data words.

7.2.2.6.7 Under-Run in Slave Mode
Under normal operating conditions, the SPI slave core in slave mode has a transmit FIFO under-run
condition as the master initiates transfers when the slave transmit FIFO is empty (or attempts to transmit
data faster than the slave processor loads data). The core's operation can be modified by setting
FRAMEURUN (CONTROL register). Once set, the core will ignore the under-run conditions and simply
transmit zero frames when the transmit FIFO is empty at the start of a series of frames. If the first data
frame of a packet is read from the FIFO and transmitted, the under-run detection is enabled such that if
the transmit FIFO fails to provide any of the rest of the data packet (assuming SPI_0_SS0 is active for
the whole packet), an over-run condition is signaled.

7.2.3 Initialization
This section describes the SPI initialization sequence, the SPI status at reset, and clock requirements.
The SPI can be initialized by configuring the SPI CONTROL register and the SOFT_RESET_CR system
registry (see Table 143, page 215).

7.2.3.1 Initialization Sequence
1. Select the type of transfer protocol by using the TRANSFPRTL bit of the SPI CONTROL register.
2. Enable SPI by writing ‘0’ to the RESET bit of the CONTROL register.
3. Reset the transmit/ receive buffers and the data frame size.
Microchip Proprietary UG0448 Revision 10.0 143

Serial Peripheral Interface Controller
7.2.3.2 SPI Status at Reset
After SPI reset, the slave select (SPI_0_SS0) pin is held to the default values of logic High. After
selecting SPI mode and enabling the SPI controller, the SPI_0_SS0 line is changed to the default values
for each protocol. Refer to SPI Control Register (CONTROL), page 152. After reset, the clock out
(SPI_0_CLK) is at logic Low. At reset, the FIFOs are cleared and their respective read and write pointers
are set to zero. Similarly, all the internal registers of the SPI controller are reset to their default values, as
explained in SPI Register Summary, page 151.

An option is provided to reset the SPI peripheral by writing to bit 9 in the system register,
SOFT_RESET_CR. The soft resets are encoded in the following table. At power-up, the reset signals are
asserted 1. It keeps the SPI peripheral in a reset state. The SPI peripheral becomes active when the bit
is set to 0, as shown in the following table.

7.2.3.3 SPI Clock Requirements
The SPI_0 peripherals clocked by APB_0_CLK on APB bus 0. APB_0_CLK is derived from the main
HPMS clock, HPMS_CLK. The APB clock can be programmed individually as HPMS_CLK is divided by
1, 2, 4, or 8. Refer to the UG0449: SmartFusion2 and IGLOO2 Clocking Resources User Guide for more
information.

The SPI clock in master mode is derived from APB_0_CLK. Master mode and slave mode SPI data rates
depend on the APB clock, as given below.

• Master mode SPI data rate
• Programmable from APB_0_CLK/256 to APB_0_CLK/2
• Programmable from APB_0_CLK /65556 to APB_0_CLK /256 in powers of 2
• Maximum data rate is APB_0_CLK/2

• Slave mode SPI data rate operates up to
• APB_0_CLK for frame sizes (frame size ≥ 8)
• APB_0_CLK /2 for frame sizes (frame size 4 to 7)

7.2.4 Details of Operation
This section describes the SPI controller operation including FIFO, modes of data transfer, interrupts,
and error handling.

7.2.4.1 SPI Transmit and Receive FIFO Flags
The SPI controller contains two, 4×32 (depth x width) FIFOs, as shown in Figure 77, page 132. One is for
the receive side and the other is for the transmit side. The TXFIFOFUL and TXFIFOEMP bits of the
STATUS register (see Table 99, page 153) indicate the full or empty status of the transmit FIFO. The
RXFIFOFUL and RXFIFOEMP bits of the STATUS register indicate the full or empty status of the receive
FIFO. User logic can poll these bits to obtain the status of the corresponding FIFO.

For large data transfers, the full depth of the transmit FIFO can be used by setting the number of data
frames (more than one) in a burst (maximum is 64 k frames). When the interrupts are enabled, the
TXDONE bit of the RIS register (see Table 107, page 157) is asserted after all the data frames in the
burst are sent.

For example, if the data frame size is set to 32 and the count is set to 2, the interrupt TXDONE is
generated after every 2 words (each word is 32 bits). The default value for the frame count is one. The
TXUNDERRUN and RXOVERFLOW bits of the STATUS register indicate that a FIFO under-run or FIFO
overflow has occurred.

Table 94 • Soft Reset Bit Definitions for SPI Peripheral

Bit Number Name R/W Reset Value Description
9 SPI0_SOFTRESET R/W 0x1 Controls reset input to SPI _0

0: Release SPI _0 from reset
1: Keep SPI _0 in reset
Microchip Proprietary UG0448 Revision 10.0 144

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microchip_smartfusion2_igloo2_clocking_resources_user_guide_ug0449_v9.pdf

Serial Peripheral Interface Controller
7.2.4.1.1 FIFO Under-Run Condition
If the transmit FIFO is accessed to transfer the data and there is no data in the FIFO, a transmit under-
run error (TXUNDERRUN) is generated. This can be conditionally used to generate an interrupt. In this
case, the transmission is assumed to have been lost and the application must catch the error and restart
the transmission from the beginning. Internally, the transmit logic returns to an idle state and the entire
transmission is deemed lost.

7.2.4.1.2 FIFO Overflow Condition
If the channel attempts to write into a receive FIFO which is already full, a receive overflow error
(RXOVERFLOW) is generated. This can be conditionally used to generate an interrupt. In this case, the
transmission continues but the data is now corrupted because the data frame is missing. It is assumed
that the software clears the interrupt and recover; possibly by reading from the receive FIFO to clear the
source of the interrupt, allowing more data to be received, or even by halting the transmission and
resetting the SPI controller.

7.2.4.2 SPI Controller Modes of Data Transfer
There are two basic modes of transfer.

• Fabric logic controlled mode: The data transfers are controlled by a fabric logic that either polls the
STATUS register or responds to interrupts.

• PDMA controlled mode: The data transfers are autonomously controlled by the PDMA engine.

7.2.4.2.1 Fabric Logic Controlled Mode
In this mode, the size of the data frames (set in register TXRXDF_SIZE) and their numbers (set in the
CONTROL[TXRXDFCOUNT] field) are specified. The data frame size specifies the number of bits being
shifted out or being received per-frame. On completing each transfer, after a specified number of data
frames (1 by default) are sent, an optional interrupt is generated. The SPI controller keeps track of the
number of data frames so that special signals, like output enable, can be deactivated at the end of a
transfer.

For example, to transmit one 17-bit word, the data frame size is set to 17, and the number of data frames
is set to 1. Then depending on the operating mode, the 17 bits are transferred and the TXDATSENT
STATUS register bit (0) is set. If enabled, an interrupt is also generated.

For example, consider the transmission of 64 kb of data to an external EEPROM from the fabric logic
controlled SPI controller. The data frame size is set to eight and the number of data frames per-transfer is
set to one. After each transfer, the fabric master must respond to the interrupt-transmit done-and-reload
the FIFO until the 64 kb of data is sent. To improve throughput, the number of data frames per each
transfer can be set to 4, in order to utilize the full depth of the transmit FIFO.

7.2.4.2.2 PDMA Controlled Mode
In PDMA mode, the interrupts are turned off and the PDMA controller uses SPI_0_TXRFM and
SPI_0_RXAVAIL signals to govern the filling and emptying of the FIFOs. The SPI_0_RXAVAIL signal
indicates that the data is available to be read and SPI_0_TXRFM indicates that the transmit is done and
it is ready to receive more data.

For example, consider the transmission of 64 kb of data to an external EEPROM from a
PDMA controlled SPI controller. The data frame size is set to eight and the number of data frames per-
transfer is set to one. The transmit FIFO is repeatedly filled and emptied by the PDMA engine, using the
SPI_0_TXRFM and SPI_0_RXAVAIL signals. In PDMA mode, the transmit done and receive data
available interrupts are masked, and the PDMA engine is used to notify the application on completion.

7.2.4.3 Interrupts
Interrupts can be set up to signal the completion of a data frame transmission or reception. There is one
interrupt signal from SPI_0 peripheral. The SPI_0_INT signal is generated by SPI_0 and is handled by
the fabric master. SPI_0_INT can be routed to the FPGA fabric through the FIIC.
Microchip Proprietary UG0448 Revision 10.0 145

Serial Peripheral Interface Controller
7.2.4.4 SPI Error Recovery and Handling
The SPI protocol defines only the packet formats for data transmission and does not include any error
recovery strategy for physical layer protocols. Specifically, if an error occurs on a slave, such as failing to
respond to the chip select or being overwhelmed with incoming data, the master will not necessarily be
aware of it. The master and slave must therefore have prior knowledge of each other's capabilities before
the transmission begins.

7.2.4.4.1 RX Overflow
An Rx overflow condition arises when the receive FIFO has not been emptied in time. As a result, the last
write to the receive FIFO from the channel, overwrites the data that is received earlier and which is not
read by the host processor. Eventually, the FIFO fills up and subsequent writes by the channel cause the
Rx to overflow. The corrective action for the bus master is to read from the FIFO until the FIFO is empty.
This can be checked by reading the FIFO status in the STATUS register.

7.2.4.4.2 TX Under-Run
A Tx under-run condition arises when a channel requests to send data while no data is available in the
transmit FIFO. For example: when the SPI controller is operating in slave mode and receives a request to
send data, when no data is available in transmit FIFO. The corrective action for the bus master is to write
data into the transmit FIFO. The status flags (TXFIFOEMP or TXFIFOEMPNXT of the STATUS register)
indicate whether the FIFO is empty or will be empty after the next read operation.

7.3 How to Use the SPI Controller
This section describes how to use the SPI controller in the IGLOO2 devices. To configure the IGLOO2
device features and then build a complete system, use the System Builder graphical design wizard in
the Libero Software.

The following figure shows the initial System Builder window where the required device features can be
selected. For details on how to launch the System Builder wizard and a detailed information on how to
use it, refer the IGLOO2 System Builder User Guide.

Figure 91 • System Builder Window
Microchip Proprietary UG0448 Revision 10.0 146

https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf

Serial Peripheral Interface Controller
The following steps describe how to enable SPI controller in an application using System Builder.

1. Check the Serial Peripheral Interface (SPI) box under the Device Features tab and leave the
other check boxes unchecked. The following figure shows the System Builder - Device Features
tab.

Figure 92 • System Builder - Device Features Tab
Microchip Proprietary UG0448 Revision 10.0 147

Serial Peripheral Interface Controller
2. Navigate to the Memory Map tab giving the required data in the rest of the System Builder tabs. The
following figure shows the System Builder - Memory Map tab. Click Finish to proceed with creating
the subsystem.

Figure 93 • System Builder - Memory Map Tab

7.3.1 HPMS Subsystem
The following figure shows an example HPMS subsystem with SPI controller enabled.

Figure 94 • HPMS Subsystem
Microchip Proprietary UG0448 Revision 10.0 148

Serial Peripheral Interface Controller
7.3.2 HPMS Subsystem Connected to the FPGA Fabric Master
The following figure shows the FPGA fabric master connected to AHB master port.

Figure 95 • HPMS Interconnection with FPGA Fabric Master

7.3.3 Accessing the External SPI Flash Using HPMS SPI_0
The external SPI flash memory can be interfaced with the HPMS SPI_0 of the IGLOO2 device. The
HPMS SPI_0 is configured as a master with the slave select line (SPI_0_SS0) connected to the
chip select (CS) of the external SPI Flash. The following figure shows interfacing the external SPI flash to
HPMS SPI_0.

Figure 96 • Fabric Master Accessing the External SPI Flash Using HPMS SPI_0

SI

SCK

External Flash Memory

IGLOO 2

CS

SO

S
P

I_0

SPI_0_DO

SPI_0_DI

SPI_0_CLK

SPI_0_SS0

HPMS

FPGA Fabric

AHB Bus Matrix

FIC_0/FIC_1

Fabric Master

APB_0
Microchip Proprietary UG0448 Revision 10.0 149

Serial Peripheral Interface Controller
The following steps describe how to initialize and configure the SPI controller in master mode, write to
and read from SPI flash.

7.3.3.1 Initializing and Configuring the SPI Controller in Master Mode
1. Configure the SPI Control Register (see Table 97, page 152).

• Enable the SPI controller.
• Select FIFO depth, Clock mode, number of data frames to be sent or received and SPI master

mode.
2. Configure SPI TxRx Data Frame Register (TXRXDF_SIZE) with transmit and receive data size.
3. Configure SPI SCLK Generation Register to calculate the SPICLK divider.
4. Configure SPI Slave Select Register to specify the slave.

7.3.3.2 Writing to SPI Flash
1. Set the slave using SPI Slave Select Register.
2. Send Write Enable Command (0x06) to slave (SPI flash).
3. Send Unprotected Sector Opcode(Ox39) with the SPI flash memory address to the slave.
4. Send Write Enable Command (0x06) to the slave.
5. Send program page command (0x02) with the target flash memory address to the slave.
6. Send the actual data to write to the SPI flash.
7. Reset the slave using SPI SLAVE_SELECT Register (see Table 105, page 156).

7.3.3.3 Reading from SPI Flash
1. Set the slave using SPI Slave Select Register.
2. Send Read Array Opcode (0x1B) with the SPI flash address to read the data from the SPI flash.
The following steps describe how to send data or command to the SPI flash for read/write operations:

1. Disable the ENABLE bit of SPI Control Register.
2. Set the frame count by writing to TXRXDFCOUNT of SPI CONTROL register.
3. Set the frame size TXRXDF_SIZE to 8 bits.
4. Set the ENABLE bit of SPI CONTROL register.
5. Wait until the Rx FIFO is cleared by monitoring the SPI STATUS register and read the data from SPI

RX_DATA register (see Table 101, page 155) if Rx FIFO is not empty.
6. Set the SPI TX_DATA register (see Table 101, page 155) with the data byte to send to the slave.

Ensure that the Tx FIFO is not full by monitoring the SPI STATUS register to send the next byte of
the data.

7. Repeat steps 5 and 6 until read and write transactions get completed depending upon the length of
the data transfer.

Note: The HPMS SPI does not support full-behavioral simulation models.

7.4 SPI Register Map
This section provides SPI registers along with the address offset, functionality, and bit definitions.

7.4.1 SYSREG Configuration Register Summary
The registers in the following table control the behavior of the SPI peripheral. Refer to System Register
Block, page 197 for a detailed description of each register and bit.

Table 95 • SYSREG Control Registers

Register Name
Register
Type

Flash Writer
Protect Reset Source Description

SOFT_RESET_CR RW-P Bit SYSRESET_N Soft reset control. For more information,
see Table 143, page 215.

PERIPH_CLK_MUX_SEL_CR RW-P Register PORESET_N Peripheral clock MUX select. For more
information, see Table 146, page 217.
Microchip Proprietary UG0448 Revision 10.0 150

Serial Peripheral Interface Controller
7.4.2 SPI Register Summary
The following table summarizes each of the SPI registers described in this document. The SPI_0 base
address resides at 0x40001000 and extends to address 0x40001FFF in the fabric memory map.

Table 96 • SPI Register Summary

Register Name Address Offset R/W
Reset
Value Description

CONTROL 0x00 R/W 0x8000010
2

Control Register

TXRXDF_SIZE 0x04 R/W 0x04 Transmit and receive data frame size

STATUS 0x08 R 0x2440 Status Register

INT_CLEAR 0x0C W 0x0 Interrupt clear register

RX_DATA 0x10 R 0x0 Receive data register

TX_DATA 0x14 W 0x0 Transmit data register

CLK_GEN 0x18 R/W 0x07 Output clock generator (master mode)

SLAVE_SELECT 0x1C R/W 0x0 Specifies slave selected (master mode)

MIS 0x20 R 0x0 Masked interrupt status

RIS 0x24 R 0x0 Raw interrupt status

CONTROL2 0x28 R/W 0x0 Control bits for enhanced modes

COMMAND 0x2C R/W 0x0 Command register

PKTSIZE 0x30 R/W 0x0 Packet size

CMD_SIZE 0x34 R/W 0x0 Command size

HWSTATUS 0x38 R/W 0x0 Slave hardware status

STAT8 0x3C R 0x44 Status Register

CTRL0 0x40 R/W 0x02 Aliased CONTROL register bits 7:0. This register
allows byte operations from an 8-bit processor in the
fabric.

CTRL1 0x44 R/W 0x01 Aliased CONTROL register bits 15:8. This register
allows byte operations from an 8-bit processor in the
fabric.

CTRL2 0x48 R/W 0x0 Aliased CONTROL register bits 23:16. This register
allows byte operations from an 8-bit processor in the
fabric.

CTRL3 0x4C R/W 0x0 Aliased CONTROL register bits 25:24. This register
allows byte operations from an 8-bit processor in the
fabric.
Microchip Proprietary UG0448 Revision 10.0 151

Serial Peripheral Interface Controller
7.4.3 SPI Register Details
This section describes the SPI registers in detail.

7.4.3.1 SPI Control Register (CONTROL)
The following table gives the details regarding the SPI Control Register. Using this register, the SPI mode
(master/slave), the type of the protocol it uses, and the data frame count can be set.

Table 97 • CONTROL

Bit
Number Name R/W

Reset
Value Description

31 RESET R/W 1 0: SPI is enabled
1: SPI is held in Power reset state.

30 OENOFF R/W 0 0: SPI output enable active as required
1: SPI output enable is not asserted. Allows multiple slaves to share a
single slave select signal with a single master.

29 BIGFIFO R/W 0 Alters FIFO depth when frame size is [4-8] bits.
0: FIFO depth is 4 frames.
1: FIFO depth is 32 frames when frame size is [9-16] bits FIFO depth is
16; and when frame size is [17-32] bits FIFO depth is 8.

28 CLKMODE R/W 0 Specifies the methodology used to calculate the SPICLK divider.
0: SPICLK = 1 / (2 CLK_GEN + 1) where CLK_GEN = 0 to 15.
1: SPICLK = 1 / (2 × (CLK_GEN + 1)) where CLK_GEN = 0 to 255.

27 FRAMEURUN R/W 0 0: The under-runs are generated whenever a read is attempted from an
empty transmit FIFO.
1: The under-run condition will be ignored for the complete frame, if the
first data frame read resulted in a potential overflow; that is, the slave
was not ready to transmit any data. If the first data frame is read from
the FIFO and transmitted, an under-run will be generated, when the
FIFO becomes empty for any of the remaining packet frames (that is,
while SSEL is active). Master operation does not create a transmit FIFO
under-run condition.

26 SPS R/W 0 Defines slave select behavior. See Table 92, page 134.

25 SPH R/W 0 Clock phase

24 SPO R/W 0 Clock polarity

[23:8] TXRXDFCOUNT R/W 0001 Number of data frames to be sent or received. Counts from 1.
Maximum value is 0XFFFF.

7 INTTXTURUN R/W 0 Interrupt on transmit the under-run
0: Interrupt disabled
1: Interrupt enabled

6 INTRXOVRFLO R/W 0 Interrupt on receive overflow
0: Interrupt disable
1: Interrupt enabled

5 INTTXDATA R/W 0 Interrupt on transmit data
0: Interrupt disabled
1: Interrupt enabled

4 INTRXDATA R/W 0 Interrupt on receive data
0: Interrupt disabled
1: Interrupt enabled
Microchip Proprietary UG0448 Revision 10.0 152

Serial Peripheral Interface Controller
7.4.3.2 SPI TxRx Data Frame Register (TXRXDF_SIZE)
The following table gives details regarding the Transmit Receive Data Frame register. The width of the
data frame is set using this register.

7.4.3.3 SPI Status Register (STATUS)
The following table gives the SPI Status Register details. This register indicates the state of SPI such as
Tx/Rx FIFO, Tx under-run, and Rx overflow.

[3:2] TRANSFPRTL1 R/W 0 Transfer protocol
Decode:
0b00: Motorola SPI
0b01: TI synchronous serial
0b10: National Semiconductor MICROWIRE
0b11: Reserved

1 MODE R/W 1 SPI implementation
0: Slave
1: Master (default)

0 ENABLE R/W 0 Core enable
0: Disable (default)
1: Enable
The core will not respond to external signals (SPI_0_DI, SPI_0_DO)
until this bit is enabled. SPI_0_CLK is driven low and SPI_0_DOE_N
and SPI_0_SS (slave select) are driven inactive.

1. The transfer protocol cannot be changed while the SPI is enabled.

Table 98 • TXRXDF_SIZE

Bit
Number Name R/W

Reset
Value Description

[31:6] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

[5:0] TXRXDFS1

1. This register must be set before SPI is enabled. Writes to this register are ignored after the SPI is enabled.

R/W 0x04 Transmit and receive data size. Maximum value is 32. Number of bits
shifted out and received per frame (count starts from 1).
In National Semiconductor MICROWIRE mode, this is the number of
shifts to be done after the control byte is sent.

Table 99 • STATUS

Bit
Number Name R/W

Reset
Value Description

[31:15] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

14 ACTIVE R SPI is still transmitting or receiving data.

13 SSEL R Current state of SPI_0_SS0

Table 97 • CONTROL (continued)

Bit
Number Name R/W

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 153

Serial Peripheral Interface Controller
Notes:

• Bits [11:4] correspond to FIFO status.
• None of these status bits are sticky. During run-time, the status of these bits reflects the current

status of SPI.
• To determine the cause of an interrupt, the masked interrupt status (MIS) register must be read.

7.4.3.4 SPI Interrupt Clear Register (INT_CLEAR)
The following table describes the Interrupt Clear register. A read to this register has no effect. It returns
all zeroes.

12 FRAMESTART 0: SPI output enable is active as required.
1: SPI output enable is not asserted. Allows multiple slaves to share a
single slave select signal with a single master.

11 TXFIFOEMPNXT R 0 Transmit FIFO empty on next read

10 TXFIFOEMP R 1 Transmit FIFO is empty

9 TXFIFOFULNXT R 0 Transmit FIFO full on next write

8 TXFIFOFUL R 0 Transmit FIFO is full

7 RXFIFOEMPNX
T

R 0 Receive FIFO empty on next read

6 RXFIFOEMP R 1 Receive FIFO empty

5 RXFIFOFULNXT R 0 Receive FIFO full on next write

4 RXFIFOFUL R 0 Receive FIFO is full

3 TXUNDERRUN RO 0 No data available for transmission. The channel cannot read data from
the transmit FIFO because the transmit FIFO is empty. Certainly this can
only be raised in slave mode because the master will not attempt to
transmit unless there is data in FIFO.

2 RXOVERFLOW RO 0 Channel is unable to write to receive FIFO as it is full. Applies to master
and slave modes.

1 RXDATRCED RO 0 When set, it indicates that the number of frames specified by
TXRXDFCOUNT has been received and can be read. Applies to master
and slave modes.

0 TXDATSENT RO 0 When set, it indicates that the numbers of frames specified by
TXRXDFCOUNT has been sent. Applies to master and slave modes.

Table 100 • INT_CLEAR

Bit
Number Name R/W

Reset
Value Description

[31:6] Reserved W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

5 SSEND W Write one to clear the interrupt

4 CMDINT W Write one to clear the interrupt

3 TXCHUNDRUN W 0 Transmit channel under-run

2 RXCHOVRFLW W 0 Receive channel over flow

Table 99 • STATUS (continued)

Bit
Number Name R/W

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 154

Serial Peripheral Interface Controller
7.4.3.5 SPI Receive Data Register (RX_DATA)
The following table describes the Receive Data register.

7.4.3.6 SPI Transmit Data Register (TX_DATA)
The following table describes the Transmit Data register.

7.4.3.7 SPI SCLK Generation Register (CLK_GEN)
The following table describes the clock modes used to calculate the SPICLK divider.

The following table describes the SPICLK rates in different modes.

1 RXRDYCLR W 0 Clears receive ready (RX_RDY)

0 TXDONECLR W 0 Clears transmit done (TX_DONE)

Table 101 • RX_DATA

Bit
Number Name R/W

Reset
Value Description

[31:0] RXDATA R 0 Received data. Reading this clears the register of the received data.

Table 102 • TX_DATA

Bit
Number Name R/W

Reset
Value Description

[31:0] TXDATA W 0 Data to be transmitted. Writing to this clears the last data
transmitted.

Table 103 • CLK_GEN

Bit
Number Name R/W

Reset
Value Description

[31:8] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

[7:0] CLK_GEN R/W 0 Specifies the methodology used to calculate the SPICLK divider.
CLK_MODE = 0:
SPICLK = 1 / (2 CLK_GEN + 1) where CLK_GEN = 0 to 15.
CLK_MODE = 1:
SPICLK = 1 / (2 × (CLK_GEN + 1)) where CLK_GEN = 0 to 255.

Table 104 • CLK_MODE Example, APB Clock = 153.8 MHz

CLK_MODE=0 CLK_MODE=1
SPICLK = 1 / (2 CLKRATE + 1)
where CLKRATE = 0 to 15

SPICLK = 1 / (2 × (CLKRATE + 1))
where CLKRATE = 0 to 255

CLKRATE SPI Clock CLKRATE SPI Clock
0 76,900,000 0 76,900,000

1 38,450,000 1 38,450,000

Table 100 • INT_CLEAR (continued)

Bit
Number Name R/W

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 155

Serial Peripheral Interface Controller
7.4.3.8 SPI Slave Select Register
The following table describes the register that specifies the slave that has been selected.

Note: The slave select output polarity is active low. In TI mode the slave select output is inverted to become
active high.

2 19,225,000 2 25,633,333.33

3 9,612,500 3 19,225,000

4 4,806,250 4 15,380,000

5 2,403,125 5 12,816,666.67

6 1,201,562.5 6 10,985,714.29

7 600,781.25 7 9,612,500

8 300,390.625 8 8,544,444.444

9 150,195.312 9 7,690,000

10 75,097.656 10 6,990,909.091

11 37,548.828 11 6,408,333.333

12 18,774.414 12 5,915,384.615

13 9,387.207 13 5,492,857.143

14 4,693.603 14 5,126,666.667

15 2,346.801 15 4,806,250

255 300,390.625

Table 105 • SLAVE_SELECT

Bit
Number Name R/W

Reset
Value Description

[31:1] Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a
read-modify-write operation.

0 SLAVE SELECT R/W 0 Specifies the slave selected. Writing one to a bit position
selects the corresponding slave.
SLAVESELECT[0] is available at the SPI_0_SS0 pin.

Table 104 • CLK_MODE Example, APB Clock = 153.8 MHz (continued)

CLK_MODE=0 CLK_MODE=1
SPICLK = 1 / (2 CLKRATE + 1)
where CLKRATE = 0 to 15

SPICLK = 1 / (2 × (CLKRATE + 1))
where CLKRATE = 0 to 255

CLKRATE SPI Clock CLKRATE SPI Clock
Microchip Proprietary UG0448 Revision 10.0 156

Serial Peripheral Interface Controller
7.4.3.9 SPI Masked Interrupt Status Register
The following table describes the Masked Interrupt Status (MIS) register. It is a read-only register. On a
read this register gives the current masked status value of the corresponding interrupt. A write has no
effect.

7.4.3.10 SPI Raw Interrupt Status Register
The following table describes the Raw Interrupt Status (RIS) register. This register returns the current raw
status value, prior to masking, of the corresponding interrupt.

Table 106 • MIS

Bit
Number Name R/W

Reset
Value Description

[31:6] Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

5 SSEND R Indicates that SPI_0_SS0 has gone inactive. When this is high,
the interrupt is active.

4 CMDINT R Indicates that the number of frames set by the CMDSIZE
register has been received as a single packet of frames
(SPI_0_SS0 held active). When this is high, the interrupt is
active.

3 TXCHUNDDMSKIN
T

R 0 Masked interrupt status. Reading this returns interrupt status.
Masked interrupt status = Raw interrupt status and interrupt
mask
(CONTROL Register).
MIS = RIS and CONTROL[7:4].
Masked status of transmit channel under-run
TXCHUNDMSKINT=TXCHUNDRINT and INTTXUNRRUN

2 RXCHOVRFMSKIN
T

R 0 Masked status of receive channel overflow.
RXCHOVRFMSKINT = RXCHOVRFINT and INTRXOVRFLO

1 RXRDYMSKINT R 0 Masked status of receive data ready (data received in FIFO).
RXRDYMSKINT = RXRDY and INTRXDATA

0 TXDONEMSKINT R 0 Masked status of transmit done (data shifted out)
TXDONEMSKINT = TXDONE and INTTXDATA

Table 107 • RIS

Bit
Number Name R/W

Reset
Value Description

[31:6] Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

5 SSEND R/W Indicates that SPI_0_SS0 has gone inactive.

4 CMDINT R/W Indicates that the number of frames set by the CMDSIZE
register has been received as a single packet of frames
(SPI_0_SS0 held active).

3 TXCHUNDR R 0 RAW interrupt status. Reading this returns raw interrupt status.
Raw status of transmit channel under-run

2 RXCHOVRF R 0 Raw status of receive channel overflow
Microchip Proprietary UG0448 Revision 10.0 157

Serial Peripheral Interface Controller
7.4.3.11 SPI Control2 Register
The following table describes the Control2 register details as the terminal frame counter, SPI slave
select, and auto status of SPI.

1 RXRDY R 0 Receive data ready (data received in FIFO)

0 TXDONE R 0 Raw status of transmit done (data shifted out)

Table 108 • CONTROL2

Bit
Number Name R/W

Reset
Value Description

[31:6] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

5 INTEN_SSEND R/W Indicates that SPI_0_SS0 has gone inactive.

4 INTEN_CMD R/W Indicates that the number of frames set by the CMDSIZE register
have been received as a single packet of frames (SPI_0_SS0 held
active).

3 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

2 DISFRMCNT R/W 0 0: The internal frame counter is active. When the counter reaches
the programmed limit, it will pause the current SPI transfer inserting
idle cycles and generate the appropriate interrupts.
1: The internal frame counter is not active. The core transmits data
until the transmit FIFO empties. The FRAMECNT (CONTROL
register) should also be programmed to zero.

1 AUTOPOLL R/W 0 0: No effect
1: The first receive frame after SPI_0_SS0 is active. It is discarded
(not written to the FIFO) and supports the POLL function.

0 AUTOSTATUS R/W 0 0: No effect
1: The first transmitted frame (slave mode) contains the hardware
status, not data from the transmit FIFO.

Table 107 • RIS (continued)

Bit
Number Name R/W

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 158

Serial Peripheral Interface Controller
7.4.3.12 SPI Command Register
The following table describes the Command register..

Table 109 • COMMAND

Bit
Number Name R/W

Reset
Value Description

[31:7] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

6 TXNOW R/W 0 0: No effect
1: Writing one clears the TxBUSY bit in slave mode immediately
rather than waiting for PKTSIZE frames to be available, telling the
master that there is data available. This is intended to use when
less than the programmed PKTSIZE data frames are being
transmitted, removing the requirement to transmit PKTSIZE
frames. This bit stays set until the first data frame is transmitted.

5 AUTOSTALL R/W 0: No effect
1: Writing one will cause the master to delay transmission until the
transmit FIFO contains the number of frames specified by the
PKTSIZE register (see Table 110, page 160). This guarantee that
the frames are transmitted with no idle cycles or time gaps between
them. This bit will be automatically cleared as soon as the core
starts transmitting the frames.

4 CLRFRAMECNT R/W 0: No effect
1: Writing one clears the internal frame counter. This bit always
reads as zero. The counter is also cleared when the core is
disabled, CTL1, or CTL2 are written (that is, the frame count limit
changed).

3 TXFIFORST R/W 0 0: No effect
1: Writing one resets the Tx FIFO. This bit always reads as zero.

2 RXFIFORST R/W 0 0: No effect
Writing one resets the Rx FIFO. This bit always reads as zero.

1 AUTOEMPTY R/W 0 0: No effect
1: Writing one causes the SPI core to automatically discard any
further received data until the number of frames requested in the
FRAMECNT register has been received or (in slave mode) SSEL
goes inactive. This bit will stay set until all the frames are complete
or it is cleared.

0 AUTOFILL R/W 0 0: No effect
1: Writing one causes the SPI core to automatically fill the transmit
FIFO with zeros to match the number of frames requested in the
FRAMECNT register. Typically, the five command bytes must be
written to the TxDATA register and then this bit must be set. Data
can be read from the receive FIFO until the complete set of frames
has been read. This bit will stay set until all the frames are
complete or it is cleared.
Microchip Proprietary UG0448 Revision 10.0 159

Serial Peripheral Interface Controller
7.4.3.13 SPI Packet Size Register
The following table provides the details of the Packet Size registers that are used to set the SPI
CMD/data frame size.

7.4.3.14 SPI Command Size Register
The following table describes the Command size register.

7.4.3.15 SPI Hardware Status Register
The following table describes the Hardware Status Register. This register allows the Fabric master to
control the hardware Status Register used in the slave protocol controller.

Table 110 • PKTSIZE

Bit
Number Name R/W

Reset
Value Description

[31:8] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

[7:0] PKTSIZE R/W 0 Sets the size of the SPI CMD/data frame. PKTSIZE cannot be
greater than the FIFO size.

Table 111 • CMD_SIZE

Bit
Number Name R/W

Reset
Value Description

[31:8] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

[7:0] CMDSIZE1

1. This controls the RxCMD interrupt. The internal counters count frames from SPI_SS0 going low. It automatically resets and starts
counting again once SSEL goes inactive. In TI mode, back- to-back frames are counted, any gaps in data causes the counter to
start counting again.

R/W 0 Number of frames after SPI_SS0 going active that the CMD
interrupt should be generated.

Table 112 • HWSTATUS

Bit
Number Name R/W

Reset
Value Description

[31:4] Not used R/W 0 These bits are undefined. The value that the slave transmits
depends on the data that is queued in the transmit FIFO.

[3:2] USER R/W 0 These bits are set by the Fabric master. Their function is undefined
but could be used to send additional status or request information
to the master.

1 TXBUSY R/W 0 0: Master may request the requested data. There are PKTSIZE
frames of data in the transmit FIFO (when AUTOPOLL is set to
PKTSIZE - 1)
1: Indicates not ready to transmit data.

0 RXBUSY R/W 0 1: Indicates that the receive buffer is busy (not empty).
0: Indicates that up to PKTSIZE frames of command followed by
data may be sent to the slave.
Microchip Proprietary UG0448 Revision 10.0 160

Serial Peripheral Interface Controller
7.4.3.16 SPI Status 8 Register
The following table describes the SPI status 8 (STAT8) register. This register allows the important status
bits to be read as a single 8-bit value. This reduces the overhead of checking the Status Register bits
when an 8-bit processor is being used.

Table 113 • STAT8

Bit
Number

Equivalent STATUS
Register Bit
Position Name R/W

Reset
Value Description

[31:8] Reserved R/W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with future
products, the value of a reserved bit should be
preserved across a read-modify-write operation.

7 14 ACTIVE R 0 SPI is still transmitting the data

6 13 SSEL R 0 Current state of SPI_0_SS0

5 3 TXUNDERRUN R 0 Transmit FIFO underflowed

4 2 RXOVERFLOW R 0 Receive FIFO overflowed

3 8 TXFIFOFUL R 0 Transmit FIFO is full

2 6 RXFIFOEMP R 0 Receive FIFO is empty

1 0 and 1 DONE R 0 The number of request frames have been
transmitted and received.

0 12 FRAMESTART R 0 Next frame in receive FIFO was received after
SPI_0_SS0 went active (command frame).
Microchip Proprietary UG0448 Revision 10.0 161

Communication Block
8 Communication Block

The communication block (COMM_BLK) provides a bi-directional message passing facility between the
FPGA fabric master and the system controller, similar to a mailbox communication channel.

8.1 Features
The COMM_BLK peripheral includes the following features:

• Bi-directional byte-wide message path
• Supports serial data rate up to 50 Mbytes/sec.
• Asynchronous clock support

• Data clock (50 MHz RC oscillator) is different from advanced peripheral bus (APB) clock
• 8 byte transmit FIFO
• 8 byte receive FIFO
• Flow control

• RX to TX channels between High Performance Memory Subsystem (HPMS) COMM_BLK and
system controller COMM_BLK

• HPMS COMM_BLK to peripheral direct memory access (PDMA) channel
• Frame and/or command marker

• 9th bit used as frame start or command marker
• Allows command and data sequences to be distinguished
• Allows incomplete sequences to be detected
• Separate command interrupt received with programmable match logic

• Allows WORD transfers into FIFO in a single APB cycle
• Interrupts

• RX FIFO non-empty
• TX FIFO non-full
• TX overflow
• RX Underflow
Microchip Proprietary UG0448 Revision 10.0 162

Communication Block
The following figure depicts the connectivity of COMM_BLK to the advanced high-performance bus
(AHB) matrix.

Figure 97 • Interfacing of COMM_BLK with AHB Bus Matrix

8.2 Functional Description
This section provides the details of the COMM_BLK subsystem.

8.2.1 Architecture Overview
The COMM_BLK consists of an APB interface, 8 byte transmit FIFO, and an 8 byte receive FIFO. There
is one COMM_BLK instantiated in the HPMS and one in the system controller; each can communicate
with the other. Whenever the FPGA fabric master writes a character into the COMM_BLK, it is
transmitted to the receiving side of the COMM_BLK and an interrupt is asserted to the system controller.

In the other direction, the interrupt (COMM_BLK_INT) goes to the FPGA fabric through the fabric
interface interrupt controller (FIIC). This communication link is used as a message passing mailbox by
FPGA fabric master and system controller.

AHB Bus Matrix

MS5

eSRAM_1 eSRAM_0 eNVM_0HPDMADDR Bridge

MS1 MS0MS2MM3MS6MM7

AHB To AHB Bridge with Address Decoder

APB_0SYSREGFIC_1

MM4 MS4 MM5

SPI

PDMA
Configuration

FIIC COMM_BLK

MS5_FIC MS5_SR MS5_APB0 MS5_APB1

High Performance Memory Subsystem
DDR

PDMASystem
Controller

MM9

APB_1FIC_0

eNVM_1

MS3

HPDMA
Configuration

FIC_2 (Peripheral
Initialization)

MS5_FIC2
Microchip Proprietary UG0448 Revision 10.0 163

Communication Block
The following figure shows how COMM_BLKs are connected to create a communication channel
between the FPGA fabric master and the system controller.

Figure 98 • Interfacing of COMM_BLK with System Controller

The COMM_BLK supports PDMA operation. The peripheral ready signals, RxRDY and TxRDY, are
directly connected to the PDMA, and are used for flow control between the HPMS COMM_BLK and
PDMA channel. Data from the COMM_BLK receive FIFO going to any HPMS memory mapped locations,
and the data from any HPMS memory mapped locations going to the COMM_BLK transmit FIFO can be
transferred without using the FPGA fabric master or the system controller.

8.2.2 Frame/Command Marker
The COMM_BLK allows the data that is being transferred to be marked as a command or data byte. To
allow the receiver to correctly identify the start of a packet, the COMM_BLK block uses a 9th bit (Bit 8 of
DATA_IN and DATA_OUT as shown in Figure 98, page 164).

When FRAME_START8/FRAME_START32 register (see Table 120, page 175/Table 121, page 176) is
written, the 9th bit is set. When DATA8/DATA32 register (see Table 118, page 175/Table 119, page 175)
is written, the 9th bit is not set.

The STATUS register (see Table 116, page 174) bit 7 gives indication to the receiver whether the next
byte that will be read out of the FIFO has the 9th bit set, and therefore indicating that it is the start of a
packet.

This mechanism allows the receiver to verify that no bytes have been lost and stops it from accidentally
interpreting data overruns as command. The RCVOKAY and TXTOKAY status bits must be checked in
the STATUS register before reading and writing data or command.

AHB Bus Matrix

APB_1

PDMA

RxRDY
&TxRDY

APB_0

CO
M

M
S_

IN
T

TX FIFO

RX FIFO

SII Interface

Control &
Status

APB
Interface

COMM_BLK

AHB
SII Master

SII Bus

FPGA Fabric

FIC

DATA_IN [8:0]*

DATA_OUT [8:0]*

9 9

* 9th bit is used as a start of
frame (command) marker

TX FIFO RX FIFO

COMM_BLK

System Controller

Fabric Master

High Performance Memory Subsystem
PD

MA
 IN

TE
RU

PP
T

Microchip Proprietary UG0448 Revision 10.0 164

Communication Block
8.2.3 Clocks
APB Interface, Control and Status block, and SII Interface are clocked by PCLK1 from the APB1 bus. RX
FIFO and TX FIFO are clocked by data clock (50 MHz RC oscillator). PCLK is derived from the fabric
aligned clock controller (FACC) output. Refer to the UG0449: SmartFusion2 and IGLOO2 Clocking
Resources User Guide.

8.2.4 Resets
The COMM_BLK resets to zero on power-up and is held in reset until it is enabled. There is an option to
reset the COMM_BLK by writing to the system register. Specifically, this system register is
SOFT_RESET_CR (see System Register Block, page 197). The COMBLK_SOFTRESET control bit is
encoded in bit location 15 as follows:

0: COMM_BLK reset released

1: COMM_BLK held in reset (reset value)

At power-up, the reset signal is asserted 1. This keeps the COMM_BLK peripheral in a reset state. If this
bit is set to 0, the COMM_BLK peripheral is allowed to become active.

8.2.5 Interrupts
There is one interrupt signal from the COMM_BLK peripheral. The COMMS_INT signal goes to the
FPGA fabric through the FIIC. The interrupt in the COMM_BLK peripheral must be enabled by setting the
appropriate bits in the interrupt enable register. Clear the appropriate bit in the Interrupt Enable Register
(see Interrupt Enable Register, page 174) when servicing the COMMS_INT to prevent a reassertion of
the interrupt.

COMM_BLK Initialization
The COMM_BLK peripheral can be initialized by configuring the COMM_BLK Control Register and
SOFT_RESET_CR system register. The initialization sequence is as follows:

1. Release the COMM_BLK from reset by using SOFT_RESET_CR system register (refer to Resets,
page 165 for further details)

2. Enable COMM_BLK by writing 1 to the ENABLE bit of Control Register.
3. Disable the loopback by writing '0' to the LOOPBACK bit in the Control Register.

8.2.6 CoreSysServices Soft IP
COMM_BLK is used to call the following system services:

• Device and Design Information Services
• Flash*Freeze Service
• Cryptographic Services
• DPA-Resistant Key-Tree Services
• Non-Deterministic Random Bit Generator (NRBG) Services
• Zeroization Service
• Programming Service
• NVM Data Integrity Check Service
Microchip provides CoreSysServices soft IP to access the system services implemented by the System
Controller. The CoreSysServices soft IP provides a user interface for each of the system services and an
advanced high-performance bus (AHB)-Lite master interface on the fabric interface controller (FIC) side.
The core communicates with the COMM_BLK through the FIC_0 interface.

CoreSysServices soft IP decodes the command received from the user logic and translates the user
logic transactions to the AHB-Lite master transactions. For more information on CoreSysServices soft IP,
refer to the CoreSysServices Handbook.

Refer to the How to Use System Services section in the System Services chapter in the UG0450:
SmartFusion2 SoC FPGA and IGLOO2 FPGA System Controller User Guide to know how to implement
the system services.
Microchip Proprietary UG0448 Revision 10.0 165

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microchip_smartfusion2_igloo2_clocking_resources_user_guide_ug0449_v9.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microchip_smartfusion2_igloo2_clocking_resources_user_guide_ug0449_v9.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_igloo2_system_controller_user_guide.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_igloo2_system_controller_user_guide.pdf

Communication Block
8.3 How to Use COMM_BLK
This section describes how to use COMM_BLK in the IGLOO2 devices. To configure the IGLOO2 device
features and then build a complete system, use the System Builder graphical design wizard in the
Libero Software.

The following figure shows the initial System Builder window where the required device features can be
selected. For details on how to launch the System Builder wizard and a detailed information on how to
use it, refer the IGLOO2 System Builder User Guide.

Figure 99 • System Builder Window
Microchip Proprietary UG0448 Revision 10.0 166

https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf

Communication Block
8.3.1 Configuring COMM_BLK
The following steps describe how to configure COMM_BLK.

1. Check the HPMS System Services check box in the Device Features tab and leave the other
check boxes unchecked. The following figure shows the System Builder - Device Features Tab.

Figure 100 • System Builder - Device Features Tab
Microchip Proprietary UG0448 Revision 10.0 167

Communication Block
2. Checking the HPMS System Services check box establishes a path for connecting the
CoreSysServices soft IP to the COMM_BLK though the FIC_0 interface. The enabling is indicated
with a change of color in the CoreSysServices block in the System Builder. The following figure
shows the path between the COMM_BLK and the CoreSysServices soft IP.

Note: The System Builder does not automatically instantiate the CoreSysServices soft IP but allows the user
to connect it with the FIC_0 master interface port.

Figure 101 • CoreSysServices IP to COMM_BLK Path
Microchip Proprietary UG0448 Revision 10.0 168

Communication Block
3. Go to Clocks tab and configure the required FIC_0 clock frequency. The following figure shows the
System Builder - Clocks tab.

Figure 102 • Clocks Configuration
Microchip Proprietary UG0448 Revision 10.0 169

Communication Block
4. Navigate to the Memory Map tab giving the required data in the rest of the System Builder tabs.
The following figure shows the System Builder - Memory Map tab. Click Finish to proceed with
creating the subsystem.

Figure 103 • System Builder - Memory Map Tab

5. Instantiate the CoreSysServices soft IP in SmartDesign canvas and configure it for the required
System Services features.
Microchip Proprietary UG0448 Revision 10.0 170

Communication Block
6. Connect:
• The CoreSysServices master interface port to the system builder generated top-level

component master interface port.
• The COMM_BLK_INT signal of CoreSysServices to the COMM_BLK_INT signal of the system

builder generated top-level component.
The following figure shows the COMM_BLK connection to the CoreSysServices IP.

Figure 104 • COMM_BLK Connection with CoreSysServices IP
Microchip Proprietary UG0448 Revision 10.0 171

Communication Block
7. Right click on the CoreSysServices IP and select Configure. The following figure shows the
Configuration dialog.

Figure 105 • COMM_BLK Configuration Dialog

8.4 COMM_BLK Configuration Registers
The COMM_BLK base address resides at 0x40016000 and extends to address 0x40016FFF in the
memory map. The following table summarizes the control and Status Registers for the COMM_BLK.

Table 114 • COMM_BLK Register Map

Register Name Address Offset R/W Reset Value Description
CONTROL 0x00 R/W 0x00 Control Register. See Table 115, page 173.

STATUS 0x04 R/W 0x00 Status Register. See Table 116, page 174.

INT_ENABLE 0x08 R/W 0x00 Interrupt Enable. See Table 117, page 174.

DATA8 0x10 R/W 0x00 Byte Data register. See Table 118, page 175.
Microchip Proprietary UG0448 Revision 10.0 172

Communication Block
8.5 COMM_BLK Register Interface Details
This section describes the COMM_BLK registers in detail.

8.5.1 Control Register

DATA32 0x14 R/W 0x00000000 Word Data register. See Table 119, page 175.

FRAME_START8 0x18 R/W 0x00 Frame/Command Byte register. See
Table 120, page 175.

FRAME_START32 0x1c R/W 0x00000000 Frame/Command Word register. See
Table 121, page 176.

Table 115 • CONTROL

Bit
Number Name R/W

Reset
Value Description

[7:6] RESERVED R 00

5 LOOPBACK R/W 1 After system reset the COMM_BLK is in Loopback mode. Set
LOOPBACK bit to ‘0’ to disable the loopback (Normal operation). It is
used for factory test.

4 ENABLE R/W 0 Configure the COMM_BLK interface.
0: Disables COMM_BLK
1: Enables COMM_BLK
Enable COMM_BLK before writing to the FIFO and leave it enabled if it
is being used.

3 SIZERX R/W 0 Sets the number of bytes that each APB transfer reads from the RX
FIFO.
0: 1 Byte
1: 4 Bytes (32-bits)
This setting effects the behavior of the RxRDY signal and RCVOKAY
flags. When set to 0 the flags indicate that a byte can be read and when
set to 1 it indicates that a word can be read.

2 SIZETX R/W 0 Sets the number of bytes that each APB transfer writes into the TX
FIFO.
0: 1 Byte
1: 4 Bytes (32-bits)
This setting effects the behavior of TxRDY signal and TXTOKAY. When
set to 0 the flags indicate that a byte can be written and when set to 1 it
indicates that a word can read be written.

1 FLUSHIN R 0 Indicates FIFO flush status. 1 indicates flush process is in progress.
0 indicates that flush process is completed.

0 FLUSHOUT R/W 0 Flush all FIFO’s. Writing 1 to this bit starts the flush process. When the
flush process is complete this bit returns to 0 automatically. The flush
process takes several clock cycles to complete, depending on the
various clock rates. Writing 0 has no effect.

Table 114 • COMM_BLK Register Map (continued)
Microchip Proprietary UG0448 Revision 10.0 173

Communication Block
8.5.2 Status Register
This register provides status information. R/W bits are cleared by writing 1. FIFO empty full flags will
automatically clear as FIFO is full and empty.

8.5.3 Interrupt Enable Register
This register enables the COMMS_INT to be set whenever the corresponding bit is set in the STATUS
register.

Table 116 • STATUS

Bit
Number Name R/W

Reset
Value Description

7 COMMAND R 0 First byte queued in receive FIFO has the command marker set

6 SIIERROR R/W 0 When an SII transfer1 (HPMS to SII) is in progress, the start of frame
marker is set on one or more of the bytes.
Write 1 to clear

1. The system IP interface (SII) master connects the System Controller with all the internal elements. It is used to transfer
data to and from the HPMS memory space by the System Controller for System Services. It is also used for factory test
but not available for customer.

5 FLUSHRCVD R/W 0 Indicates that a FLUSH has been received.
Write 1 to clear

4 SIIDONE R/W 0 Indicated that the transfer to SII Bus is complete.
Write 1 to clear

3 UNDERFLOW R/W 0 Receive Overflow. Indicates that the receive FIFO was read when
empty.
Write 1 to clear

2 OVERFLOW R/W 0 Transmit Overflow. Indicates that the Transmit FIFO was written
when full.
Write 1 to clear

1 RCVOKAY R 0 RCV FIFO non empty. Indicates that 1 or 4 bytes may be read based
on SIZERX.

0 TXTOKAY R 1 TXT FIFO non full. Indicates that 1 or 4 bytes may be written
depending on SIZETX.

Table 117 • INT_ENABLE

Bit
Number Name R/W

Reset
Value Description

[7:0] ENABLE R/W 0x00 Matches corresponding bit in Status Register
0: Disables Interrupt
1: Enables Interrupt
Microchip Proprietary UG0448 Revision 10.0 174

Communication Block
8.5.4 Byte Data Register
This register writes a byte to the Transmit FIFO or reads a byte from the Receive FIFO. If the Transmit
FIFO is full at the time of a write, an OVERFLOW will be set in the STATUS Register. Similarly, if Receive
FIFO is empty at the time of a read, an UNDERFLOW will be generated.

When the DATA8 register is written, the command bit (Bit 8 on DATA) is set to 0, indicating that it is data.
Writes to this register automatically set the SIZETX to 0 (1 byte), and reads set the SIZERX to 0 (1 byte).

8.5.5 Word Data Register
This register writes a word (32 bits) to the Transmit FIFO or reads a word from the Receive FIFO. If the
Transmit FIFO has less than 4 spaces available at the time of a write, an OVERFLOW will be set in the
STATUS register.

Similarly, if Receive FIFO has less than 4 bytes available at the time of a read, an UNDERFLOW will be
generated.

The LSB is transferred on the DATA bus first. When the DATA32 register is written, the command bit
(Bit 8 on DATA) is set to 0, indicating that it is data. Writes to this register automatically set the SIZETX to
1 (4 bytes) and reads set the SIZERX to 1 (4 bytes).

8.5.6 Frame/Command Byte Register
This register writes a byte to the Transmit FIFO or reads a byte from the Receive FIFO. If the Transmit
FIFO is full at the time of a write, an OVERFLOW will be set in the STATUS register. Similarly, if receive
FIFO is empty at the time of a read, an UNDERFLOW will be generated.

When the FRAME_START8 register is written, the command bit (Bit 8 on DATA) is set to 1, indicating the
start of a frame, that is, the command byte. Writes to this register automatically set the SIZETX to 0 (1
byte), and reads set the SIZERX to 0 (1 byte). The STATUS register bit 7 indicates that this byte is a
command.

Table 118 • DATA8

Bit
Number Name R/W

Reset
Value Description

[7:0] DATA8 R/W 0x00 Write: Writes a byte to the HPMS COMM_BLK Transmit FIFO
Read: Reads a byte from the HPMS COMM_BLK Receive FIFO

Table 119 • DATA32

Bit
Number Name R/W Reset Value Description
[31:0] DATA32 R/W 0x00000000 Write: Writes a word to the HPMS COMM_BLK Transmit FIFO

Read: Read a word from the HPMS COMM_BLK Receive FIFO

Table 120 • FRAME_START8

Bit
Number Name R/W Reset Value Description
[7:0] FRAME_START8 R/W 0x00 Write: Writes byte to the HPMS COMM_BLK transmit FIFO

Read: Read a byte from the HPMS COMM_BLK receive FIFO
Microchip Proprietary UG0448 Revision 10.0 175

Communication Block
8.5.7 Frame/Command Word Register
This register writes a word (32-bits) to the Transmit FIFO or reads a word from the Receive FIFO. If the
Transmit FIFO has less than four spaces available at the time of a write, an OVERFLOW will be set in
STATUS register. Similarly, if Receive FIFO has less than four bytes available at the time of a read, an
UNDERFLOW will be generated.

The least significant bit (LSB) is transferred on the DATA bus first. When the FRAME_START32 register
is written, the command bit is set to 1, indicating the start of a frame, that is, command byte. The
command bit (Bit 8 on DATA) will be set on the first byte for writes.

Writes to this register automatically sets the SIZETX to 1 (4 bytes) and reads set the SIZERX to 1
(4 bytes). The STATUS register bit 7 indicates that this word is a command.

Table 121 • FRAME_START32

Bit
Number Name R/W Reset Value Description
[31:0] FRAME_START32 R/W 0x00000000 Write: Writes a word to the HPMS COMM_BLK transmit FIFO

Read: Reads a word from the HPMS COMM_BLK receive FIFO
Microchip Proprietary UG0448 Revision 10.0 176

Reset Controller
9 Reset Controller

The reset controller manages the asynchronous reset requests coming from various sources and
generates a synchronous reset for the entire High Performance Memory Subsystem (HPMS) or
individual resets to the HPMS sub-blocks and user logic in the FPGA fabric.

The reset controller drives resets to various modules of the IGLOO2 devices, such as the MDDR
subsystem, FPGA fabric, clock controller, SYSREG, and peripherals. The following figure shows the
reset controller block diagram with various reset inputs/outputs from/to various HPMS blocks.

Figure 106 • Reset Signals Distribution in IGLOO2 Devices

Microchip recommends to use the CoreResetP IP for initializing the user design in IGLOO2 devices. The
CoreResetP handles sequencing of reset signals. It is available in the Libero SoC IP catalog.

System Builder is a powerful design tool within the Libero SoC Design Environment that helps the user
capture the system-level requirements and produces a design implementing those requirements. A very
important function of the System Builder is the automatic creation of the initialization sub-system (all
required cores are instantiated, and connections are made automatically).

Reset Controller

Peripherals
XXX_RESET_N

SC_HPMS_RESET_N

MDDR
MDDR_DDR_AXI_S_CORE_RESET_N

MDDR_APB_S_RESET_N
FPGA
fabric

HPMS_RESET_N_F2M

HPMS_RESET_N_M2F

SysReg

SYSRESET_N

PORESET_N

SOFT_RESET_CR Bits

PO_RESET_N

CC_RESET_NFACC

FIC_2_APB_M_PRESET_N

System
Controller

DEVRST_N

MDDR_APB_RESET_N

MDDR_AXI_RESET_N
POWER_ON_RESET_N
Microchip Proprietary UG0448 Revision 10.0 177

Reset Controller
9.1 Functional Description
9.1.1 Power-On Reset Generation Sequence

The following figure shows the conceptual block diagram of power-on reset generation. The POR
generator block in System Controller generates a power-on reset signal, PO_RESET_N.

Figure 107 • Power-On Reset Generation Block Diagram

Figure 110, page 181 shows the power up to functional time sequence diagram. On power-up, the VDD
and VPP monitor blocks in the POR generator block assert a power-on reset signal, PO_RESET_N. If
the VDD and VPP supplies reach their threshold point (VDD ~ 0.9 V, VPP ~0.9 V), the 1 MHz RC
Oscillator is turned-on, which provides the clock to the programmable delay counter.

HPMS

SC
Reset Controller

PO_RESET_N

System Controller

1 MHz
RC Oscillator

IGLOO2

Reset Controller

VDD and VPP
Monitor

Programmable
Delay Counter

POR
Generator

PO_RESET_N

FPGA Fabric

DEVRST_N

POWER_ON_RESET_N

HPMS_RESET_N_M2F
Microchip Proprietary UG0448 Revision 10.0 178

Reset Controller
The delay can be configured to 50 µs, 1 ms, 10 ms, or 100 ms in the New Project window (Device
Settings) while creating the Libero SoC project as shown in the following figure. You can also access and
change this setting after the project has been created from the Project Settings window (Project > Project
Settings…).

Figure 108 • Power-On Reset Delay Configuration

Note: Power-on Reset Delay is also referred as VDD Supply Ramp Time in the latest version of Libero SoC.

The delay counter is used to generate the power supply rise time. VDDand VPP power supplies must be
stable within the configured Power on Reset Delay. When the counter reaches its maximum value, the
PO_RESET_N signal is de-asserted. Upon de-assertion of the PO_RESET_N signal, the 1 MHz RC
oscillator is gated off and the 50 MHz RC oscillator is enabled and the System Controller starts operating
at 50 MHz clock. Then System Controller starts the initialization sequence of I/O banks, HPMS, and
FPGA Fabric Subsystem.

The POWER_ON_RESET_N signal is generated from the PO_RESET_N signal and can be used in the
user design as a reset for the FPGA fabric logic. It is an active low output signal. It is made available by
instantiating the SYSRESET macro from the Libero SoC IP catalog in SmartDesign or by instantiating the
SYSRESET macro directly in the HDL file.

The following figure shows a block symbol of the SYSRESET macro that exposes the
POWER_ON_RESET_N signal.

Figure 109 • SYSRESET Macro

Note: When DEVRST_N is low, all user I/Os are fully tri-stated. However, if the JTAG I/Os are still enabled,
they cannot be used as the TAP controller in reset.

POWER_ON_RESET_N asserts on the following events:

• Power-up event
Microchip Proprietary UG0448 Revision 10.0 179

Reset Controller
• Assertion of DEVRST_N
• Completion of programming
• Completion of zeroization
A dedicated input-only reset pad (DEVRST_N) is present on all the IGLOO2 devices, which cause
assertion to the PO_RESET_N signal. If an external reset circuit is connected to the DEVRST_N pin, it
increases the power up to functional time due to the delays that the external reset device does add.

DEVRST_N is an asynchronous reset pin and must be asserted only when the device is unresponsive
due to some unforeseen circumstances. It is not recommended to assert the DEVRST_N pin during
programming operation, which might cause severe consequences including corrupting the device
configuration. For more details on DEVRST_N timing information, refer to the DS0128: IGLOO2 and
SmartFusion2 Datasheet.

Asserting DEVRST_N does not enable the delay counter (Power on Reset Delay) in the POR circuitry.

The delay counter is operational only at power-up. When DEVRST_N is low, all user I/Os are fully
tri-stated. Although, the JTAG I/Os are still enabled, they cannot be used as the TAP controller is in reset.
The SYSRESET macro is not required to be instantiated to enable the DEVRST_N pin in the user
design. DEVRST_N is a dedicated input-only reset pad available on all the IGLOO2 devices.
Microchip Proprietary UG0448 Revision 10.0 180

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_and_igloo2_datasheet_ds0128_v12.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microsemi_smartfusion2_and_igloo2_datasheet_ds0128_v12.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042

Reset Controller
9.1.2 Power-Up to Functional Time Sequence
The following figure shows the power-up to functional time sequence diagram.

Figure 110 • Power-Up to Functional Time Sequence Diagram

The power up to functional sequence is as follows:

• Supply Ramp (VDD, VPP, VDDI, and VDDAPLL) - There is no specific power up or power down
sequencing requirement for IGLOO2 devices. The I/O banks can be brought-up in any order, before
or after the core voltage. All mandatory I/O bank supplies must be powered-up. For all the IGLOO2
devices, some of the bank supplies (VDDIx) must always be powered, even if associated bank I/Os
are in unused condition. For the list of mandatory I/O bank supplies, refer to Table 2 and Table 3 in
the AC393: SmartFusion2 and IGLOO2 Board Design Guidelines Application Note.

Supply Ramp
(VDD,VPP,VDDI,

VDDAPLL)

1 MHz RC Oscillator Turns
On

Die Ramp
Power on Reset Delay

Configuration
(Libero SoC)

Power-on Reset
(PO_RESET_N) Released

1 MHz RC Oscillator Gated
Off and

50 MHz RC Oscillator
Turns On

Input Buffer Enable

Fabric PLL Lock Asserted
(Fabric CCC)

MPLL Lock Asserted
(HPMS CCC)

HPMS to Fabric Reset
(HPMS_Reset_N_M2F)

Released

DEVRST_N

Libero Setting

FPGA Fabric (LSRAM,
uSRAM, and MATH), FDDR

and SERDES
Turns on

Are all mandatory I/O bank
supplies powered?

YES

NO
Output Buffer Enable

POWER_ON_RESET_N
Signal Released
Microchip Proprietary UG0448 Revision 10.0 181

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129979

Reset Controller
• On power-up, the POR generator block asserts the PO_RESET_N signal, which is not accessible for
users. This PO_RESET_N signal which is not visible to the user is used for switching the oscillators.
This PO_RESET_N signal is visible to fabric after checking the power supplies.

• The 1 MHz RC Oscillator is turned-on, which provides the clock to the programmable delay counter.
When the counter reaches its maximum value, the PO_RESET_N signal is de-asserted.

• The 1 MHz RC oscillator is gated off and the 50 MHz RC oscillator is enabled and the System
Controller starts operating at 50 MHz clock.

• FPGA fabric (LSRAM, uSRAM, and MATH), FDDR, and SerDes are turned-on.
• Input buffer is enabled.
• POWER_ON_RESET_N signal (generated from the PO_RESET_N signal) is released. This signal

can be used in the design as a reset for the FPGA fabric logic.
• Fabric PLL (Fabric CCC) Lock is asserted.
• MPLL (HPMS CCC) Lock is asserted.
• HPMS to Fabric Reset (HPMS_RESET_N_M2F) is released.
• Output buffer is enabled.

9.1.3 Power-Up to Functional Time Data
This section describes power-up to functional time data based on DEVRST_N assertion and VDD ramp
up.

9.1.3.1 Parameters Used for Obtaining Power-Up to Functional Time Data
This section describes the parameters used for obtaining power-up to functional time data. Following are
the test conditions:

• Power-on-reset delay setting: 1 ms
• Supply ramp rate: 5 µs
• Measurement temperature: 25 °C
Power-on-reset delay setting indicates how long VDD takes to ramp up. The programmable delay
counter starts counting based on the power-on-reset delay setting, oscillator frequency, and period
variability to ensure that the supplies have reached their minimum operating levels.

Supply ramp rate indicates the ramp up rate of the on-board VDD core voltage, VPP charge pump
voltage, and VDDA phase-locked loop (PLL) analog voltage supplies.

Note: In all the test cases, I/Os are configured as LVCMOS25, which is the default I/O standard in Libero along
with the other default I/O attribute settings.

9.1.3.2 VDD Power-Up to Functional Time Data
The core supply voltage VDD is connected to the appropriate source and VDD is monitored by the
power-on-reset circuitry to check if it reaches the minimum threshold value and initiates the system
controller to release the device from reset. This scenario provides with the power-up to functional time
data only when the FPGA fabric and the FPGA I/O are used with all supplies ramped up except VDD,
which is ramped up at the last. The required power-on-reset delay is set using the Libero tool.

A fabric counter is operated when POWER_ON_RESET_N is de-asserted, as shown in the following
figure. The least significant bit (LSB) of the counter output is connected to a latch and given to an output
buffer, which is then connected to an input buffer of the fabric using an external loopback. This input is
used for stopping the counter from incrementing. The counter stops as soon as the counter's LSB bit
transitions to logic high. The power-up to functional time is measured from the VDD supply ramp to
transition of the fabric buffer output.
Microchip Proprietary UG0448 Revision 10.0 182

Reset Controller
The following figure shows the characterization test design setup used for obtaining the VDD power-up to
functional timing values.

Figure 111 • VDD Power-Up to Functional Time Design Setup

The following figure shows the behavior of different signals when VDD is ramped up with a power-on-
reset delay of 1 ms from 0 V to minimum threshold level and HPMS is not used with VDD = 1.2 V,
VDDI = 2.5 V, Tj = 25 °C, and power on reset delay setting = 1 ms.

Figure 112 • VDD Power-Up to Functional Timing Diagram

Counter Logic

SYSRESET COUNTER

OSC_50MHz_CLK

Latch

IGLOO2

Power_on_reset_n LSB CNT_UP

Stop

RC Oscillator
50 MHz

External Feedback

DEVRST_N

VPP/VDDIx

VDD

INBUF

INBUF WEAK PULL
(MSIO/MSIOD/DDRIO)

POWER_ON_RESET_N

OUTBUF

2.418 ms

2.486 ms

2.6 ms

114 μs

RCOSC_50MHz

Case 3

Case 2

Case 1

Case 4

High-Z

High-Z

Tri-state

Tri-state

M2GL010
Microchip Proprietary UG0448 Revision 10.0 183

Reset Controller
The following table lists the power-up to functional time of M2GL005, M2GL010, M2GL025, M2GL050,
M2GL060, M2GL090, and M2GL150 devices.

Note: The above timing numbers are for the worst case conditions.

Note: Time taken for different power on reset delay settings can be calculated as shown in the following
equation.

For example, if the power-on reset delay setting of 100 ms is used in an M2S010 device, then the VDD at
its minimum threshold level to output is calculated as follows:

(2600 – 2000 us) + 2 x 100ms = 200.6ms

Table 122 • VDD Power-Up to Functional Time

Test
Cases Start Point End Point Description

Power-Up to Functional Time (µs)
005 010 025 050 060 090 150

Case1 POWER_ON_
RESET_N

Output available
at I/O

Fabric to output 114 114 114 113 114 114 114

Case 2 VDD Output available
at I/O

VDD at its minimum
threshold level to
output

2587 2600 2607 2558 2591 2600 2699

Case 3 VDD POWER_ON_
RESET

VDD at its minimum
threshold level to
fabric

2474 2486 2493 2445 2477 2486 2585

Test case 2000 μs–() 2 Power on Reset Delay Setting×+
Microchip Proprietary UG0448 Revision 10.0 184

Reset Controller
The following figure shows the stages that contribute to VDD power-up to functional time for IGLOO2.

Figure 113 • VDD Power-Up to Functional Time Flow

Note: Power-up to functional time depends on power-on-reset delay settings, 1 MHz oscillator frequency, and
period variability. At times, it is approximately equal to twice the power-on-reset delay settings. If PLL is
used, power-up to functional time also depends on the PLL lock time.DEVRST_N Power-Up to
Functional Time

This scenario provides you with power-up to functional time data with respect to DEVRST_N when the
FPGA fabric, the FPGA I/O, and external oscillator are used. The design setup is same as the VDD
power-up to functional time shown in Figure 112, page 183.

Note: Assert DEVRST_N pin during programming (including eNVM), as it corrupts the device configuration. For
more information on proper usage of the DEVRST_N pin, see the AC393: Board Design Guidelines for
SmartFusion2 SoC and IGLOO2 FPGAs Application Note.

Supply Ramp
(VDD, VPP)

Power-on Reset
(PO_RESET_N)

released

1 MHz RC Oscillator gated off
and 50 MHz RC oscillator

turns ON

NO

YES

Input Buffer Enable

FPGA Fabric (LSRAM, μSRAM,
MATH) turns ON

POWER_ON_RESET_N signal
is released

Are all mandatory I/O
bank supplies powered?

1 MHz RC oscillator
turns on

Power on reset delay
configuration (1 ms)

Output Buffer Enable
(Output available at

I/O)
Microchip Proprietary UG0448 Revision 10.0 185

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ApplicationNotes/ApplicationNotes/Microchip_SmartFusion2_and_IGLOO2_Board_and_Layout_Design_Guidelines_AN4153_VC.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ApplicationNotes/ApplicationNotes/Microchip_SmartFusion2_and_IGLOO2_Board_and_Layout_Design_Guidelines_AN4153_VC.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129979

Reset Controller
The following figure shows the behavior of different signals when DEVRST_N is asserted and HPMS is
not used with VDD = 1.2 V, VDDI = 2.5 V, and Tj = 25 °C.

Figure 114 • DEVRST_N Power-Up to Functional Timing Diagram

The following table lists the power-up to functional time of M2GL005, M2GL010, M2GL025, M2GL050,
M2GL060, M2GL090, and M2GL150 devices without HPMS clock ranging from 3 MHz to 166 MHz.

Note: The above timing numbers are for the worst case conditions.

Table 123 • DEVRST_N Power-Up to Functional Time

Test
Cases Start Point End Point Description

Power-Up to Functional Time (µs)
005 010 025 050 060 090 150

Case1 POWER_ON_R
ESET_N

Output available at
I/O

Fabric to output 114 116 113 113 115 115 114

Case 2 DEVRST_N Output available at
I/O

DEVRST_N
to Output

314 353 314 307 343 341 341

Case 3 DEVRST_N POWER_ON
_RESET_N

DEVRST_N
to fabric

200 238 201 195 230 229 227

VDD/VPP/VDDIx

RCOSC_50MHz

DEVRST_N

INBUF

INBUF WEAK PULL
(MSIO/MSIOD/DDRIO)

POWER_ON_RESET_N

OUTBUF

210 μs

238 μs

353 μs
116 μs

Case 1

Case 2

Case 3

High-Z
Tri-state

High-Z
Tri-state

M2GL010
Microchip Proprietary UG0448 Revision 10.0 186

Reset Controller
The following figure shows the stages that contribute to DEVRST_N power-up to functional time for
IGLOO2.

Figure 115 • DEVRST_N Power-Up to Functional Time Flow

Note: If PLL is used, power-up to functional time also depends on the PLL lock time. In order to simplify the
task of initializing a user design in IGLOO2 devices, Microchip provides a CoreResetP soft reset
controller IP. The CoreResetP handles sequencing of reset signals in IGLOO2 devices. The CoreResetP
generates a fabric reset signal whenever POWER_ON_RESET_N is asserted or
HPMS_RESET_N_M2F is asserted. It is available in the Libero SoC IP catalog. Refer to CoreResetP
Soft Reset Controller for more information.

Note: Microchip recommends using the System Builder which automatically creates the initialization
sub-system (all required cores are instantiated, and connections are made automatically).

The reset controller receives three types of reset requests:

• Power-on reset request from system controller
• System reset request from system controller, and FPGA fabric
• Block reset requests from FPGA fabric and SYSREG

DEVRST_N

Power-on-Reset
(PO_RESET_N)

Released

1 MHz RC Oscillator
gated off and 50 MHz
RC oscillator turns ON

NO

YES

Input Buffer Enable

FPGA Fabric (LSRAM,
μSRAM, MATH) turns

ON

POWER_ON_RESET_N
signal is released

Are all mandatory I/O
bank supplies powered?

Output Buffer Enable
(Output available at

I/O)
Microchip Proprietary UG0448 Revision 10.0 187

Reset Controller
9.1.4 Power-On Reset
The Reset Controller receives a power-on reset signal, PO_RESET_N, from the System Controller,
which is a cold reset signal. Its assertion initializes the IGLOO2 device to its default reset state.

PO_RESET_N signal is fed to the System Register block (SYSREG). The PO_RESET_DETECT bit of
the RESET_SOURCE_CR register (defined in Table 124, page 196) in the SYSREG block is set or reset
depending on the PORESET_N signal.

The PORESET_N signal is a synchronized version of the PO_RESET_N signal on HPMS_CLK.

The reset controller generates different synchronized resets to the HPMS and the FPGA fabric on the
assertion of PO_RESET_N, as shown in the following figure.

Figure 116 • Reset Controller During Power-On Reset

The CC_RESET_N is generated on the assertion of PO_RESET_N. This is a power-on reset signal to
the fabric aligned clock controller (FACC).

9.1.5 System Reset
The system reset (SYSRESET_N) is generated if any of the following conditions are true:

• SC_HPMS_RESET_N is asserted from the System Controller during the start-up sequence after
power-up.

• HPMS_RESET_N_F2M is asserted from the FPGA fabric interface.
The generation of SYSRESET_N is shown in the following figure.

Figure 117 • SYSRESET_N Generation

The inputs SC_HPMS_RESET_N, and HPMS_RESET_N_F2M are first synchronized on HPMS_CLK
and then combined. The HPMS_RESET_N_F2M signal can be used to reset the HPMS, independently
of any resets coming from the HPMS itself. For example it may be asserted as a result of an external
reset event from an off-chip reset controller, using an I/O pad to bring the reset input into the fabric.

Reset Controller

Peripherals

MDDR

SYSREG
PORESET_NCC_RESET_N

FACC

MDDR_APB_RESET_N

MDDR_AXI_RESET_N

Block resets /System
Controller

PO_RESET_NDEVRST_N

FFs
HPMS_CLK

1 SYSRESET_N

R

HPMS_RESET_N_F2M

SC_HPMS_RESET_N
Microchip Proprietary UG0448 Revision 10.0 188

Reset Controller
The following figure shows the various reset signals to the HPMS blocks which are generated from reset
controller on assertion of SYSRESET_N. It also shows the reset inputs to the reset controller, which
cause the generation of SYSRESET_N.

Figure 118 • Reset Controller During SYSRESET_N

SYSRESET_N resets all modules in the HPMS. Some of the register bits within the SYSREG block are
reset by SYSRESET_N.

9.1.6 Block Resets
The reset controller generates block level resets for all modules except the AHB bus matrix, fabric
interface interrupt controller (FIIC), and SYSREG.

These blocks will be reset at power-on reset or system reset. The reset controller receives block enable
bits and soft reset requests (SOFT_RESET_CR bits) for various blocks within the HPMS from SYSREG
to control the block level reset generation.

The following figure shows the block level resets from the reset controller along with the source of the
resets.

Figure 119 • Reset Controller With Only Block Level Resets

Reset Controller

Peripherals

SYSREG
SYSRESET_N

MDDR

MDDR_AXI_RESET_N

MDDR_APB_RESET_N

Block ResetsSC_HPMS_RESET_N

FPGA
Fabric

HPMS_RESET_N_F2M
HPMS_RESET_N_M2F

System
Controller

Reset Controller

MDDR
MDDR_DDR_AXI_S_CORE_RESET_N

MDDR_APB_S_RESET_NFPGA
fabric

MDDR_AXI_RESET_N

MDDR_APB_RESET_N

/SYSREG
SOFT_RESET_CRbits

Peripherals
Block resets

/

Microchip Proprietary UG0448 Revision 10.0 189

Reset Controller
9.1.6.1 MDDR Resets
9.1.6.1.1 MDDR_AXI_RESET_N

MDDR_AXI_RESET_N is generated from FPGA fabric reset input (MDDR_DDR_CORE_RESET_
N), SYSRESET_N, and the MDDR soft reset (MDDR_CTLR_SOFTRESET) from SYSREG.

The following figure shows the generation of MDDR_AXI_RESET_N.

Figure 120 • MDDR_AXI_RESET_N Generation

The reset controller drives a synchronized reset to AXI logic in the MDDR.

9.1.6.1.2 MDDR_APB_RESET_N
MDDR_APB_RESET_N is generated from FPGA fabric PRESET input (MDDR_APB_S_RESET_N) or
SYSRESET_N, based on the selection of MDDR_CONFIG_LOCAL in SYSREG. The
MDDR_CONFIG_LOCAL bit is in the MDDR Configuration Register (MDDR_CR as defined in Table 124,
page 196) of SYSREG. The following figure shows the generation of MDDR_APB_RESET_N.

Figure 121 • MDDR_APB_RESET_N Generation

The reset controller drives a synchronized reset to the APB logic of the MDDR subsystem.

9.1.6.2 Reset Generation to HPMS Peripherals
The reset controller generates block level resets for the peripherals present within the HPMS. The block
level reset generation is shown in the following figure.

Figure 122 • Block Level Reset Generation

The reset signal is asserted if any of the following conditions is true:

• SYSRESET_N asserted
• Block level Soft reset (SOFT_RESET_CR) request asserted from SYSREG module.
The reset controller can generate the reset to ENVM_0, ENVM_1(if present), ESRAM_0, ESRAM_1,
PDMA, HPDMA, COMM_BLK, FIC_0, FIC_1 (if present), and the FPGA fabric (HPMS_RESET_N_M2F
reset).

MDDR_AXI_RESET_NMDDR_DDR_CORE_RESET_N

SYSRESET_N

MDDR_CTRL_SOFTRESET

1

0

MDDR_APB_S_RESET_N

SYSRESET_N

MDDR_CONFIG_LOCAL

MDDR_APB_RESET_N

BLOCK_RESET_N

SYSRESET_N

BLOCK_SOFTRESET
Microchip Proprietary UG0448 Revision 10.0 190

Reset Controller
9.2 CoreResetP Soft Reset Controller
The following Reset sub-systems in IGLOO2 devices must be sequenced properly for the overall system
to function correctly.

• Chip Boot (System Controller)
• Fabric
• HPMS
• FIC sub-systems (HPMS to Fabric and Fabric to HPMS)
• Peripherals - MDDR, FDDR and SERDES_IF
CoreResetP Soft Reset Controller gathers various reset signals from System Controller, HPMS, and
FPGA fabric and generates new synchronized reset signals to handle the sequencing of reset signals of
various subsystems in IGLOO2 devices. CoreResetP helps managing the following:

• FIC sub-systems resets: Both HPMS and FPGA fabric should be out of reset to establish the
communication between them. CoreResetP generates HPMS_READY signal which indicates that
both HPMS and FPGA fabric are out of reset and ready for communication.

• Peripherals initialization: It generates reset signals to initialize MDDR, FDDR, and SERDES_IF
peripheral blocks.

• Peripherals reconfiguration: Individual reset controls via CoreConfigP Soft core.
• PCIe L2/P2 (in-band) and PRST# (out-band): Low power modes for all devices, except M2GL090.

9.2.1 Reset Topology
This section describes the reset topology that needs to be applied to the user design.

9.2.1.1 HPMS_READY Generation
Any design which consists of HPMS and a fabric subsystem must be synchronized to establish the
communication between them. When HPMS is doing any transaction, the fabric should be ready.
Similarly, when fabric is doing any transaction, the HPMS should be ready. The following figure illustrates
the typical FIC subsystem with CoreResetP connectivity. CoreResetP generates HPMS_READY signal,
which indicates that HPMS is ready for communication. HPMS_READY signal is generated whenever a
cold reset (power-up event or assertion of DEVRST_N) occurs or due to HPMS reset like assertion of
HPMS_RESET_N_F2M. CoreResetP relies on HPMS_RESET_N_M2F and
FIC_2_APB_M_PRESET_N signal to generate HPMS_READY signal.

Figure 123 • HPMS_READY Signal Generation

HPMS

FIC_2_APB_M_PRESET_N INIT_DONE

POWER_ON_RESET_N

RCOSC_25_50MHZ

CoreResetP

EXT_RESET_IN_N

USER_FAB_RESET_N

USER_FAB_RESET_IN_N

RESET_N_F2M

RESET_N_M2F

FIC_2_APB_M_PRESET_N

SYSRESET

RCOSC_50MHZ

VCC

User Reset
HPMS_READY

HPMS_RESET_N_F2M
HPMS_RESET_N_M2F
Microchip Proprietary UG0448 Revision 10.0 191

Reset Controller
If the System Builder is used to generate the Libero project, all required cores are instantiated, and
connections are made automatically. If the user logic consists of any of the two DDR controllers (FDDR
or MDDR) or Serial High speed controller (SERDES_IF), the INIT_DONE signal should be used to reset
the fabric subsystem. The following figure shows the system builder generated design with MDDR and a
SERDES_IF interfaces.

Figure 124 • System Builder-Generated Design with MDDR and SERDESIF Interfaces

If none of MDDR/FDDR/SerDes is used, the HPMS_READY signal should be used to reset the fabric
subsystem. The following figure shows the system builder generated design without
MDDR/FDDR/SerDes interface.

Figure 125 • System Builder-Generated Design without MDDR/FDDR/SerDes Interface
Microchip Proprietary UG0448 Revision 10.0 192

Reset Controller
9.2.1.2 Peripheral Initialization
CoreResetP generates reset signals to initialize MDDR, FDDR, and SERDES_IF peripheral blocks. The
following figure shows the CoreResetP connectivity with peripheral resets. For each SERDES_IF block,
the CoreResetP generates SDIFx_PHY_RESET_N and SDIFx_CORE_RESET_N signals that need to
be connected to SERDES_IF macro on PHY_RESET_N and CORE_RESET_N respectively. For FDDR
and MDDR, the CoreResetP generates CORE reset signals (FDDR_CORE_RESET_N and
MDDR_DDR_AXI_S_CORE_RESET_N).

Figure 126 • CoreResetP Connectivity with Peripheral Resets

9.2.1.3 SerDes L2/P2, PRST#
L2 and P2 are Low power states for the Link and PHY interface in a PCI express (PCIe) system. A power
management component in a PCIe system will control exit from the L2/P2 state. Part of the sequence
when emerging from the Low power state involves assertion and release of the PCI Express Reset
(PERST# or SDIFx_PERST_N in our implementation). CoreResetP monitors SDIFx_PERST signals and
L2/P2 states, and generates CORE reset and PHY reset to fulfill the Low power mode reset requirement.

The following figure shows the CoreResetP connectivity with SERDES_IF block. If the System Builder is
used to generate the Libero project, all required cores are instantiated, and connections are made
automatically.

Figure 127 • CoreResetP Connectivity with SERDES_IF Block

MDDR_DDR_AXI_S_CORE_RESET_N

CoreResetP

SDIFx_CORE_RESET_N

SDIFx_PHY_RESET_N

FDDR_CORE_RESET_N

HPMS

MDDR_DDR_CORE_RESET_N

CORE_RESET_N

FDDR

SERDES_IF_x
CORE_RESET_N

PHY_RESET_N

SERDES_IF_x

CORE_RESET_N

PHY_RESET_N

APB_PRESET_N

APB_PCLK

APB_SLAVECoreResetP
SDIFx_CORE_RESET_N

SDIFx_PHY_RESET_N

SDIFx_PERST_N

SDIFx_PERST_N

CoreConfigP

INIT_DONE

CONFIG_DONE

INIT_DONE

CONFIG_DONE

SDIFx_PRDATA[31:0]

SDIFx_APB_SLAVE
Microchip Proprietary UG0448 Revision 10.0 193

Reset Controller
9.2.2 Implementation
If the System Builder tool is used within the Libero SoC software to construct a design targeted at an
IGLOO2 device, CoreResetP will automatically be instantiated and connected within the design if
required. The user can manually instantiate and configure CoreResetP within a SmartDesign design if
required. Refer to the CoreResetP Handbook for connecting and configuring CoreResetP in
SmartDesign.

Note: CoreConfigP soft IP facilitates configuration of peripheral blocks (MDDR, FDDR, and SERDES_IF
blocks) in IGLOO2 devices. CoreConfigP is available in the Libero SoC IP Catalog. Refer to the
CoreConfigP Handbook for port lists and their descriptions, design flows, memory maps, and Control
and Status Register details.

9.2.3 Timing Diagrams
The following figures show the timing of reset signals for reset sequences initiated by the assertion of
POWER_ON_RESET_N, FIC_2_APB_M_PRESET_N, EXT_RESET_IN_N, and
USER_FAB_RESET_IN_N signals.

Figure 128 • Timing Diagram for Reset Signals Initiated by the Assertion of POWER_N_RESET_N

Figure 129 • Timing Diagram for Reset Signals Initiated by the Assertion of FIC_2_APB_M_PRESET_N

POWER_ON_RESET_N

FAB_RESET_N

USER_FAB_RESET_N

RESET_N_F2M

M3_RESET_N

EXT_RESET_OUT

MDDR_DDR_AXI_S_CORE_RESET_N

FDDR_CORE_RESET_N

FPLL_LOCK

SDIFx_SPLL_LOCK

SDIFx_PHY_RESET_N

SDIFx_CORE_RESET_N

INIT_DONE

CONFIG_DONE

130 us

DDR
settling time

FIC_2_APB_M_PRESET_N

FAB_RESET_N

USER_FAB_RESET_N

RESET_N_F2M

M3_RESET_N

EXT_RESET_OUT

MDDR_DDR_AXI_S_CORE_RESET_N

FDDR_CORE_RESET_N

FPLL_LOCK

SDIFx_SPLL_LOCK

SDIFx_PHY_RESET_N

SDIFx_CORE_RESET_N

INIT_DONE

CONFIG_DONE

130 us

DDR
settling time
Microchip Proprietary UG0448 Revision 10.0 194

Reset Controller
Figure 130 • Timing for Reset Signals Initiated by the Assertion of EXT_RESET_IN_N

Figure 131 • Timing for Reset Signals Initiated by the Assertion of USER_FAB_RESET_IN_N

EXT_RESET_IN_N

FAB_RESET_N

USER_FAB_RESET_N

RESET_N_F2M

M3_RESET_N

EXT_RESET_OUT

MDDR_DDR_AXI_S_CORE_RESET_N

FDDR_CORE_RESET_N

FPLL_LOCK

SDIFx_SPLL_LOCK

SDIFx_PHY_RESET_N

SDIFx_CORE_RESET_N

INIT_DONE

CONFIG_DONE

130 us

DDR
settling time

USER_FAB_RESET_IN_N

FAB_RESET_N

USER_FAB_RESET_N

RESET_N_F2M

M3_RESET_N

EXT_RESET_OUT

MDDR_DDR_AXI_S_CORE_RESET_N

FDDR_CORE_RESET_N

FPLL_LOCK

SDIFx_SPLL_LOCK

SDIFx_PHY_RESET_N

SDIFx_CORE_RESET_N

INIT_DONE

CONFIG_DONE

130 us

DDR
settling time
Microchip Proprietary UG0448 Revision 10.0 195

Reset Controller
9.3 SYSREG Control Registers
The following table lists the system control registers. Refer to System Register Block, page 197 for a
detailed description of each register and bit.

Table 124 • Switch Register Map

Register Name
Register

Type
Flash Write

Protect Reset Source Description
SOFT_RESET_CR RW-P Bit SYSRESET_N Generates the software control

resets to the HPMS peripherals. For
more information, see Table 143,
page 215.

MDDR_CR RW-P Register PORESET_N MDDR Configuration Register. For
more information, see Table 145,
page 216.

HPMS_FACC1_CR RW-P Field CC_RESET_N HPMS DDR Bridge fabric alignment
clock controller 1 Configuration
Register. For more information, see
Table 145, page 216.
Microchip Proprietary UG0448 Revision 10.0 196

System Register Block
10 System Register Block

The System Register (SYSREG) block is an array of system-level registers that contain user
configuration information used to configure the high performance memory subsystem (HPMS). The
contents of these registers are initially set based on the information entered using the HPMS configurator
in the Libero software. The power-up initialized state of these registers, as well as write protection bits
are controlled by flash configuration bits. The configuration bits are set during device programming.

The SYSREG block is connected to the AHB bus matrix and can be accessed by all bus masters. Refer
to Figure 42, page 62. Write access to these registers provides the capability to modify the initialized
SYSREG block register contents by the user application. There are seven types of System Registers as
described in Table 125, page 199 which provide different levels of read/write access by bus masters.

10.1 SYSREG Block Register Write Protection
Each SYSREG block register has dedicated write protect bits to control write access from bus masters.
Write protect bits are flash configuration bits that are set based on user inputs to the HPMS configurator.
These bits are defined during the device design phase and can only be modified by reprogramming the
device. Users have the ability to set protection levels for the entire register, independent fields within
each register, or individual bits within each register.

10.1.1 Register Write Protect
One Register Write Protect bit is used to write protect entire register contents as shown in the following
figure. On power-up, the register contents are initialized based on the flash configuration bits set from the
HPMS configurator. If the Register Write Protect bit is set in the HPMS configurator, the initialized value
of the entire register cannot be modified by the user application. If the Register Write Protect bit is not
set, the contents of the register can be modified by any bus master. Register Write Protect bits can only
be modified by reprogramming the FPGA and is therefore protected by the standard FPGA programming
security features.

Figure 132 • Register Write Protect

32 Flash Bits for Initialization

32-Bit Control RegisterWrite
Protect BIt

On Power-Up, Initialize
DFFs with Flash Bits

The write protect bits keep bus masters from changing the contents of
the Control Register.
Microchip Proprietary UG0448 Revision 10.0 197

System Register Block
10.1.2 Field Write Protect
Many System Registers contain fields of multiple bits. A Field Write Protect bit provides write protection
for an entire field within a single register as shown in the following figure. Field Write Protect bits follow
the same rules as Register Write Protect bits described in Register Write Protect, page 197, but are
instead applied to each individual field within the register. There is a Field Write Protect bit allocated for
each field within the register.

Figure 133 • Field Write Protect

10.1.3 Bit Write Protect
A Bit Write Protect bit provides write protection for each individual bit within a single register as shown in
the following figure. Bit Write Protect bits follow the same rules as Register Write Protect bits described in
Register Write Protect, page 197, but are instead applied to each individual bit within the register. There
is a Bit Write Protect bit allocated for each bit within the register.

Figure 134 • Bit Write Protect

Refer to Register Lock Bits Configuration, page 201 for locking and unlocking registers.

32 Flash Bits for Initialization

Write
Protect Bit

Write
Protect Bit

Write
Protect Bit

On Power-Up, Initialize
DFFs with Flash Bits

The write protect bits keep bus masters from changing the contents
of the Control Register.

FLD 1 FLD 2 FLD N

One Write Protect Bit for Each Field

32-Bit Control Register
with Fields

32 Flash Bits for Initialization

32 Write Protect Bits

On Power-Up, Initialize
DFFs with Flash Bits

The write protect bits keep bus masters from changing the contents of
the Control Register.

One Write Protect Bit for Each Bit

32-Bit Control Register
Microchip Proprietary UG0448 Revision 10.0 198

System Register Block
10.2 Register Types
There are several register types in the SYSREG block as defined in the following table.

The following figures illustrate schematically a few of the register types of the SYSREG registers.

Figure 135 • RW-P Type

Table 125 • Register Types

Type Function
RW-P Supports read and write accesses via AHB bus matrix. Refer to Figure 135, page 199.

Register contents are initialized from flash configuration bits at power-up and the assertion of
SYS_RESET_N. Typically used for HPMS Control Registers.

RW Supports read and write accesses via AHB bus matrix. Refer to Figure 136, page 200.
Register contents are not initialized from flash configuration bits at power-up. The reset state
is determined by the user HW design following assertion of SYS_RESET_N. Typically used
for HPMS Control Registers.

RO Supports read only accesses via AHB bus matrix. Refer to Figure 137, page 200.
Register contents are not initialized from flash configuration bits at power-up or the assertion
of SYS_RESET_N. Typically used for HPMS Control Registers.

RO-P Supports read only accesses via AHB bus matrix. Refer to Figure 138, page 201.
Register contents are initialized from flash configuration bits at power-up and the assertion of
SYS_RESET_N. Typically used to return HPMS status information.

RO-U Does not support read or write access via AHB bus matrix. Refer to Figure 139, page 201.
Register contents are initialized from flash configuration bits at power-up and the assertion of
SYS_RESET_N. Typically used for HPMS Control Registers.

W1P Write '1' to clear the register. This register is Write-Only.

SW1C Individual register bits are set ('1') when related input is asserted. Bits are individually cleared
when corresponding register bit is written high.

R

QD S

SY
S_

R
ES

ET
_N

REG_BIT

1 0

W
D

AT
A[

n]
R

D
AT

A[
n]

AHB Bus Matrix

W
R

IT
E

Reset
Controller

LOADENABLE FLOP

DYN_REG (per register)

HPMS_P[] (per bit)

Fl
as

h
C

on
fig

ur
at

io
n

Bi
t

H
PM

S

Microchip Proprietary UG0448 Revision 10.0 199

System Register Block
Figure 136 • RW Type

Figure 137 • RO Type

R

QD S

SY
SR

ES
EN

T_
N

REG_BIT

Reset
Controller

H
PM

S

Hardware Default (per-bit)

R
D

AT
A[

n]

1 0

W
D

AT
A[

n]

AHB Bus Matrix

W
R

IT
E

LOADENABLEFLOP

H
PM

S

R
D

AT
A[

n]

AHB Bus Matrix
Microchip Proprietary UG0448 Revision 10.0 200

System Register Block
Figure 138 • RO-P Type

Figure 139 • RO-U Type

10.3 Register Lock Bits Configuration
The Register Lock Bits Configuration tool is used to lock HPMS, SerDes, and FDDR configuration
registers of IGLOO2 devices in order to prevent them from being overwritten by masters that have
access to these registers. Register lock bits are set in a text (*.txt) file, which is then imported into a
IGLOO2 project.

From the Design Flow window, click Configure Register Lock Bits to open the configurator. Then, click
Browse... to navigate to a text file (*.txt) that contains the Register Lock Bit settings.

Figure 140 • Register Lock Bit Settings

R

QD S

Fl
as

h
C

on
fig

ur
at

io
n

Bi
t

SYSRESET_N

REG_BIT

HPMS_P[] (per-bit)

1 0

W
D

AT
A[

n]

R
D

AT
A[

n]

AHB Bus Matrix

LOADENABLEFLOP

Reset
Controller

H
PM

S

R

QD S

Fl
as

h
C

on
fig

ur
at

io
n

B
it

S
Y

S
R

E
S

E
T

_N

REG_BIT

Reset
Controller

H
PM

S

HPMS_P[] (per-bit)-

LOADENABLEFLOP
Microchip Proprietary UG0448 Revision 10.0 201

System Register Block
10.3.1 Lock Bit File
An initial, default lock bit file can be generated by clicking Generate FPGA Array Data in the Design
Flow window.

The default file located at <proj_location>/designer/<root>/<root>_init_config_lock_bits.txt
can be used to make the required changes.

Note: Save the file in a different name to modify the text file to set lock bits.

10.3.2 Lock Bit File Syntax
A valid entry in the lock bit configuration file is defined as <lock_parameters> <lock bit value> pair format.

The lock parameters are structured as follows:

• Lock bit syntax for a register: <Physical block name>_<register name>_LOCK
• Lock bit syntax for a specific field: <Physical block name>_<register name>_<field

name>_LOCK
The following are the physical block names (varies with the device family and die):

• HPMS
• FDDR
• SERDES_IF_x (where x is 0,1,2,3 to indicate the physical SerDes location) for IGLOO2

(M2GL010/M2GL025/M2GL050/M2GL150) devices
• SERDES_IF2 for IGLOO2 (M2GL/M2GL090) devices (only one SerDes block per device)
Set the lock bit value to 1 to indicate that the register can be written to (unlocked) and to 0 to indicate that
the register cannot be written to (locked).

Lines starting with # or; are comments. Empty lines are allowed in the lock bit configuration file.

Figure 141 • Lock Bit Configuration File
Microchip Proprietary UG0448 Revision 10.0 202

System Register Block
10.3.3 Locking and Unlocking a Register
A register can be locked or unlocked by setting the appropriate lock bit value in the lock bit configuration
.txt file.

1. Browse to locate the lock bit configuration.txt file.
2. Do one or both of the following:

• Set the lock bit value to 0 for the registers to lock.
• Set the lock bit value to 1 for the registers to unlock.

3. Save the file, and import the file into the project (Design Flow window > Configure Register Lock
Bits), see Figure 140, page 201.

4. Regenerate the bitstream.

10.4 Register Map
The following table lists all the registers in the SYSREG block. The SYSREG block is located at address
0x40038000.

Table 126 • SYSREG

Register Name
Addr.
Offset

Register
Type

Flash
Write
Protect Reset Source Description

Reserved 0x0

ESRAM_MAX_LAT 0x4 RW-P Register SYSRESET_N eSRAM0 and eSRAM1
maximum latency

Reserved 0x8

ENVM_CR 0XC RW-P Register SYSRESET_N eNVM Configuration Register

Reserved 0x10

ENVM_REMAP_FAB_CR 0x14 RW-P Register SYSRESET_N eNVM remap Configuration
Register

Reserved 0x18
to
0x24

DDRB_BUF_TIMER_CR 0x28 RW-P Register SYSRESET_N DDR write buffer timeout

DDRB_NB_ADDR_CR 0x2C RW-P Register SYSRESET_N DDR non-bufferable address
region base address

DDRB_NB_SIZE_CR 0x30 RW-P Register SYSRESET_N Size of non- bufferable address
region

DDRB_CR 0x34 RW-P Register SYSRESET_N HPMS DDR bridge
Configuration Register

EDAC_CR 0x38 RW-P Register SYSRESET_N EDAC Configuration Register for
eSRAM0 and eSRAM1

MASTER_WEIGHT0_CR 0x3C RW-P Register SYSRESET_N Master Weight Configuration
Register 0

MASTER_WEIGHT1_CR 0x40 RW-P Register SYSRESET_N Master Weight Configuration
Register 1

SOFT_IRQ_CR 0x44 RW-P Register SYSRESET_N Enables software interrupt

SOFT_RESET_CR 0x48 RW-P Bit SYSRESET_N Generates software control
interrupts to the HPMS
peripherals

Reserved 0x4C
Microchip Proprietary UG0448 Revision 10.0 203

System Register Block
FAB_IF_CR 0x50 RW-P Register SYSRESET_N Controls fabric interface

Reserved 0x54
to
0x5C

MDDR_CR 0x60 RW-P Register PORESET_N MDDR Configuration Register

Reserved 0x64

PERIPH_CLK_MUX_SEL_CR 0x68 RW-P Register PORESET_N Peripheral Clock MUX Select
Control Register

Reserved 0x6C

MDDR_IO_CALIB_CR 0x70 RW-P Register PORESET_N MDDR I/O Calibration Control
Register

Reserved 0x74

EDAC_IRQ_ENABLE_CR 0x78 RW-P Register SYSRESET_N Enables/disables 1-bit error,
2-bit error status for eSRAM0
and eSRAM1

Reserved 0x7C

ESRAM_PIPELINE_CR 0x80 RW-P Register SYSRESET_N Controls the pipeline present in
the memory read path of eSRAM
memory

Reserved 0x84
to
0x8C

HPMS_PLL_STATUS_LOW_CR 0x90 RW-P Register CC_RESET_N Controls the configuration input
of MPLL register

HPMS_PLL_STATUS_HIGH_CR 0x94 RW-P Register CC_RESET_N Controls the configuration input
of the MPLL register

HPMS_FACC1_CR 0x98 RW-P Field CC_RESET_N HPMS DDR bridge FACC1
Configuration Register

HPMS_FACC2_CR 0x9C RW-P Field CC_RESET_N HPMS DDR bridge FACC2
Configuration Register

HPMS_CLK_CALIB_CR 0xA4 RW-P Register SYSRESET_N Starts FPGA fabric calibration
test circuit

PLL_DELAY_LINE_SEL_CR 0xA8 RW-P Register SYSRESET_N PLL Delay Line Select Control
Register

Reserved 0xAC

RESET_SOURCE_CR 0xB0 RW Reset Source Control Register.
The reset values are mentioned
in the bit definitions

Reserved 0xB4
to
0xDC

SYSRESET_N

Table 126 • SYSREG (continued)

Register Name
Addr.
Offset

Register
Type

Flash
Write
Protect Reset Source Description
Microchip Proprietary UG0448 Revision 10.0 204

System Register Block
DDRB_HPD_ERR_ADR_SR 0xE0 RO SYSRESET_N HPMS DDR Bridge High
Performance DMA Master Error
Address Status Register

DDRB_SW_ERR_ADR_SR 0xE4 RO SYSRESET_N HPMS DDR Bridge AHB Bus
Error Address Status Register

DDRB_BUF_EMPTY_SR 0xE8 RO SYSRESET_N HPMS DDR Bridge Buffer Empty
Status Register

DDRB_DSBL_DN_SR 0xEC RO SYSRESET_N HPMS DDR Bridge Disable
Buffer Status Register

ESRAM0_EDAC_CNT 0xF0 RO SYSRESET_N 1-bit error and 2-bit error count
of eSRAM0

ESRAM1_EDAC_CNT 0xF4 RO SYSRESET_N 1-bit error and 2-bit error count
of eSRAM1

Reserved 0xF8
to
0x108

ESRAM0_EDAC_ADR 0x10C RO SYSRESET_N Address from eSRAM0 on which
1-bit and 2-bit SECDED error
has occurred

ESRAM1_EDAC_ADR 0x110 RO SYSRESET_N Address from eSRAM1 on which
1-bit and 2-bit SECDED error
has occurred

Reserved 0x114
to
0x124

MM4_5_DDR_FIC_SECURITY/
MM4_5_FIC64_SECURITY

0x128 RO-U SYSRESET_N Read and write security for
masters 4, 5, and DDR_FIC to
eSRAM0, eSRAM1, eNVM1,
eNVM0, and HPMS DDR bridge

MM3_7_SECURITY 0x12C RO-U SYSRESET_N Read and write security for
masters 3 and 7 to eSRAM0,
eSRAM1, eNVM1, eNVM0, and
HPMS DDR bridge

MM9_SECURITY 0x130 RO-U SYSRESET_N Read and write security for
master 9 to eSRAM0, eSRAM1,
eNVM1, eNVM0, and HPMS
DDR bridge

Reserved 0x134
to
0x13C

DEVICE_SR 0x140 RO SYSRESET_N Device Status Register

ENVM_PROTECT_USER 0x144 RO-U SYSRESET_N Configuration for accessibility of
protect regions of eNVM0 and
eNVM1 by different masters on
the AHB bus matrix, updated by
user flash bits

Table 126 • SYSREG (continued)

Register Name
Addr.
Offset

Register
Type

Flash
Write
Protect Reset Source Description
Microchip Proprietary UG0448 Revision 10.0 205

System Register Block
For detailed information about each of the registers, see Table 128, page 207 through Table 186,
page 239.

ENVM_STATUS 0x148 RO-U PORESET_N Code shadow Status Register

DEVICE_VERSION 0x14C RO Configures device version

HPMS_PLL_STATUS 0x150 RO HPMS DDR PLL Status Register

Reserved 0x154

ENVM_SR 0x158 RO SYSRESET_N Busy status eNVM0 and eNVM1

Reserved 0x15C

DDRB_STATUS 0x160 RO SYSRESET_N HPMS DDR bridges status

MDDR_IO_CALIB_STATUS 0x164 RO PORESET_N DDR I/O Calibration Status
Register

HPMS_CLK_CALIB_STATUS 0x168 RO SYSRESET_N HPMS DDR Clock Calibration
Status Register

Reserved 0x16C
to
0x180

FAB_PROT_SIZE 0x184 RO-P SYSRESET_N Size of memory protected from
fabric master

FAB_PROT_BASE 0x188 RO-P SYSRESET_N Base address which is protected
from fabric master

Reserved 0x18C

EDAC_SR 0x190 SW1C SYSRESET_N Status of 1-bit SECDED error
detection and correction, 2-bit
SECDED error detection for
eSRAM0 and eSRAM1

HPMS_INTERNAL_SR 0x194 SW1C SYSRESET_N HPMS Internal Status Register

HPMS_EXTERNAL_SR 0x198 SW1C SYSRESET_N HPMS External Status Register

Reserved 0x19C
to
0x1A0

CLR_EDAC_COUNTERS 0x1A4 W1P SYSRESET_N Clears 16-bit counter value in
eSRAM0 and eSRAM1,
corresponding to count value of
EDAC 1-bit and 2-bit errors

FLUSH_CR 0x1A8 W1P SYSRESET_N Flush Control Register

Reserved 0x1AC
to
0x290

Table 126 • SYSREG (continued)

Register Name
Addr.
Offset

Register
Type

Flash
Write
Protect Reset Source Description
Microchip Proprietary UG0448 Revision 10.0 206

System Register Block
10.5 System Registers Behavior for M2GL005/010 devices
Application traffic across the FIC_0 interface can cause certain bits in the SYSREG block to change
state, if these bits are dynamically modified from their default values during runtime.This impacts all
IGLOO2 005 and 010 devices.

The following table lists the subset of system registers and specific bit definitions that are affected. The
registers/bits listed in the following table must be configured once, on power-up.Dynamically altering the
contents of these registers can result in their values to be reset to the power on reset state.

10.6 Register Details
10.6.1 eSRAM Latency Configuration Register

Table 127 • Subset of System Registers

System Register Fields
SOFT_RESET_CR All bits

FAB_IF_CR FAB0_AHB_BYPASS, FAB1_AHB_BYPASS, FAB0_AHB_MODE,
FAB1_AHB_MODE, SW_FIC_REG_SEL

MDDR_CR MDDR_CONFIG_LOCAL,F_AXI_AHB_MODE, PHY_SELF_REF_EN

PERIPH_CLK_MUX_SEL_CR SPI_SCK_FAB_SEL

EDAC_IRQ_ENABLE_CR All bits

HPMS_PLL_STATUS_LOW_CR FACC_PLL_DIVR, FACC_PLL_DIVF, FACC_PLL_DIVQ,
FACC_PLL_RANGE, FACC_PLL_LOCKWIN, FACC_PLL_LOCKCNT

HPMS_PLL_STATUS_HIGH_CR FACC_PLL_BYPASS, FACC_PLL_MODE_1V2, FACC_PLL_MODE_3V3,
FACC_PLL_FSE, FACC_PLL_PD, FACC_PLL_SSE, FACC_PLL_SSMD,
FACC_PLL_SSMF

HPMS_FACC1_CR DIVISOR_A, APB0_DIVISOR, APB1_DIVISOR, DDR_CLK_EN,
HPMS_CLK_DIVISOR, FACC_GLMUX_SEL, FIC_0_DIVISOR,
FIC_1_DIVISOR

Table 128 • ESRAM_MAX_LAT

Bit
Number Name

Reset
Value Description

[31:6] Reserved 0

[5:3] SW_MAX_LAT_ESRAM1 0x1 Defines the maximum number of cycles the fixed priority master
waits for eSRAM1 when it is being accessed by a master with a
WRR priority scheme.

[2:0] SW_MAX_LAT_ESRAM0 0x1 Defines the maximum number of cycles the fixed priority master
waits for eSRAM0 when it is being accessed by a master with a
WRR priority scheme. It is configurable from 1 to 8 (8 by default).
Microchip Proprietary UG0448 Revision 10.0 207

System Register Block
The following table gives eSRAM maximum latency values, where x is either 0 or 1.

10.6.2 eNVM Configuration Register

Table 129 • eSRAM Maximum Latency Values

SW_MAX_LAT_ESRAM<X> Latency
0 8 (default)

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Table 130 • ENVM_CR

Bit
Number Name

Reset
Value Description

[31:17] Reserved 0

16 ENVM_SENSE_ON 0 Turns on or off the sense amps for both NVM0 and NVM1

15 ENVM_PERSIST 0 Reset control for NVM0 and NVM1.
0: Reset on SYSRESET_N and PORESET_N
1: Reset on PORESET_N

14 NV_DPD1 0 Deep power-down control for the NVM1.
0: Normal operation
1: NVM deep power-down

13 NV_DPD0 0 Deep power-down control for the NVM0.
0: Normal operation
1: NVM deep power-down
Microchip Proprietary UG0448 Revision 10.0 208

System Register Block
[12:5] NV_FREQRNG 0x7 Setting of NV_FREQRNG[8:5] or NV_FREQRNG[12:9] determines
the behavior of eNVM BUSY_B with respect to the AHB Bus
interface clock. It can be used to accommodate various frequencies
of the external interface clock, HPMS_CLK, or it can be used to
advance or delay the data capture due to variation of read access
time of the NVM core. It sets the number of wait states to match with
the Fabric master operating frequency for read operations. The
small counter in the NVM Controller uses this value to advance or
delay the data capture before sampling data.
0000: NOT SUPPORTED
0001: NOT SUPPORTED
0010: Page Read = 3, All other modes (Page program and Page
verify) = 2
0011: Page Read = 4, All other modes (Page program and Page
verify) = 2
0100: Page Read = 5, All other modes (Page program and Page
verify) = 2
0101: Page Read = 6, All other modes (Page program and Page
verify) = 3
0110: Page Read = 7, All other modes (Page program and Page
verify) = 3
0111: Page Read = 8, All other modes (Page program and Page
verify) = 4
1000: Page Read = 9, All other modes (Page program and Page
verify) = 4
1001: Page Read = 10, All other modes (Page program and Page
verify) = 4
1010: Page Read = 11, All other modes (Page program and Page
verify) = 5
1011: Page Read = 12, All other modes (Page program and Page
verify) = 5
1100: Page Read = 13, All other modes (Page program and Page
verify) = 6
1101: Page Read = 14, All other modes (Page program and Page
verify) = 6
1110: Page Read = 15, All other modes (Page program and Page
verify) = 6
1111: Page Read = 16, All other modes (Page program and Page
verify) = 7
NV_FREQRNG[8:5] is used for NVM0 and NV_FREQRNG[12:9] is
used for NVM1.

4:0 SW_ENVMREMAPSIZE 0x11 Size of the segment in eNVM, which is to be remapped to location
0x00000000. This logically splits eNVM into a number of segments.
The region sizes are shown in Table 131 on page 210.

Table 130 • ENVM_CR
Microchip Proprietary UG0448 Revision 10.0 209

System Register Block
10.6.2.1 SW_ENVMREMAPSIZE Bit Combinations

10.6.3 eNVM FPGA Fabric Remap Base Address Register

Table 131 • SW_ENVMREMAPSIZE

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Remap Size
0 0 0 0 0 Reserved

0 0 0 0 1 Reserved

0 0 0 1 0 Reserved

0 0 0 1 1 Reserved

0 0 1 0 0 Reserved

0 0 1 0 1 Reserved

0 0 1 1 0 Reserved

0 0 1 1 1 Reserved

0 1 0 0 0 Reserved

0 1 0 0 1 Reserved

0 1 0 1 0 Reserved

0 1 0 1 1 Reserved

0 1 1 0 0 Reserved

0 1 1 0 1 16 Kbytes

0 1 1 1 0 32 Kbytes

0 1 1 1 1 64 Kbytes

1 0 0 0 0 128 Kbytes

1 0 0 0 1 256 Kbytes

1 0 0 1 0 512 Kbytes, reset value

Table 132 • ENVM_REMAP_FAB_CR

Bit
Number Name

Reset
Value Description

[31:19] Reserved 0

[18:1] SW_ENVMFABREMAPBASE 0 Offset within eNVM address space of the base address of
the segment in eNVM, which is to be remapped to location
0x00000000 for use by a soft processor in the FPGA
fabric.

0 SW_ENVMFABREMAPENABLE 0 0: eNVM fabric remap not enabled for accesses by fabric
master. The portion of eNVM visible in the eNVM window
at location 0x00000000 of a soft processor’s memory
space corresponds to the memory locations at the bottom
of eNVM.
1: eNVM fabric remap enabled. The portion of eNVM
visible at location 0x00000000 of a soft processor’s
memory space of is a remapped segment of eNVM.
Microchip Proprietary UG0448 Revision 10.0 210

System Register Block
Bits [18:N] of this bus indicate the base address of the remapped segment. The value of N depends on
the eNVM remap section size, so that the base address is aligned according to an even multiple of
segment size. The power of 2 size specified by SW_ENVMREMAPSIZE[4:0] (Table 131 on page 210)
defines how many bits of base address are used. For example, if the SW_ENVMREMAPSIZE[4:0] is
01111, this corresponds to a segment size of 64KB. 64KB is 2 to the power of 16. Therefore, the value of
N in this case, is 16. So the base address of the region, in this case, is specified by
SW_ENVMREMAPSIZE[18:16].

This register should only be written by using 32-bit accesses. The behavior of the system is undefined if
other size accesses are used.

10.6.4 HPMS DDR Bridge Buffer Timer Control Register

10.6.5 HPMS DDR Bridge Non-Bufferable Address Control Register

10.6.6 HPMS DDR Bridge Non-Bufferable Size Control Register

Table 133 • DDRB_BUF_TIMER_CR

Bit
Number Name

Reset
Value Description

[31:10] Reserved 0

[9:0] DDRB_TIMER 0x3FF 10-bit timer interface used to configure the timeout register in the
write buffer module. Once timer reaches the timeout value, a flush
request is generated by the flush controller and if response has
been received for previous write request from write arbiter, this
request is posted to the write arbiter. This register is common for all
buffers. The value in this register will be in terms of number of
HPMS_CLK clocks.

Table 134 • DDRB_NB_ADDR_CR

Bit
Number Name

Reset
Value Description

[31:16] Reserved 0

[15:0] DDRB_NB_ADDR 0xA000 Base address of a non-bufferable address region.
Bits [15:(N – 1)] of this signal are compared with AHB address
[31:(N + 15)] to check whether address is in non-bufferable region.
The value of N depends on the non-bufferable region size, so the
base address is defined according to DDRB_NB_SZ.

Table 135 • DDRB_NB_SIZE_CR

Bit
Number Name

Reset
Value Description

[31:16] Reserved 0

[3:0] DDRB_NB_SZ 0x1 Size of non-bufferable address region [(2N – 1x64) KB]. The region
sizes are as shown in Table 136, page 212.
Microchip Proprietary UG0448 Revision 10.0 211

System Register Block
The following table gives the size of the non-bufferable region, given by the formula [(2N – 1x64)] KB.

10.6.7 HPMS DDR Bridge Configuration Register

Table 136 • Non-Bufferable Region

Bit 0 Bit 1 Bit 2 Bit 3 N Non-Bufferable Region
0 0 0 0 0 No non-bufferable region

0 0 0 1 1 64 KB = (21 – 1 x 64) KB

0 0 1 0 2 128 KB = (22 – 1 x 64) KB

0 0 1 1 3 256 KB = (23 – 1 x 64) KB

0 1 0 0 4 512 KB = (24 – 1 x 64) KB

0 1 0 1 5 1 MB = (25 – 1 x 64) KB

0 1 1 0 6 2 MB = (26 – 1 x 64) KB

0 1 1 1 7 4 MB = (27 – 1 x 64) KB

1 0 0 0 8 8 MB= (28 – 1 x 64) KB

1 0 0 1 9 16 MB = (29 – 1 x 64) KB

1 0 1 0 10 32 MB = (210 – 1 x 64) KB

1 0 1 1 11 64 MB = (211 – 1 x 64) KB

1 1 0 0 12 128 MB = (212 – 1 x 64) KB

1 1 0 1 13 256 MB = (213 – 1 x 64) KB

1 1 1 0 14 512 MB = (214 – 1 x 64) KB

1 1 1 1 15 1 GB = (215 – 1 x 64) KB: Entire region is non-bufferable

Table 137 • DDRB_CR

Bit
Number Name

Reset
Value Description

[31:20] Reserved 0

[19:16] DDR_SW_MAP 0 Sets the AHB bus master to DDR address space mapping mode 0–15.

[15:12] DDR_HPD_MAP 0 Sets the HPDA master to DDR address space mapping mode 0–15.

[11:8] Reserved 0

7 DDRB_BUF_SZ 0x1 Configures the write buffer and read buffer size as per DDR burst size. This
port is common for all buffers.
0: Buffer size is configured to 16 bytes
1: Buffer size is configured to 32 bytes

6 Reserved 0

5 DDRB_SW_REN 0x1 Allows the read buffer for AHB BUS master in HPMS DDR bridge to be
disabled. Allowed values:
0: Disabled
1: Enabled
Microchip Proprietary UG0448 Revision 10.0 212

System Register Block
10.6.8 EDAC Configuration Register

10.6.9 Master Weight Configuration Register 0

The weight values are as given in Table 141, page 214.

4 DDRB_SW_WEN 0x1 Allows the write combining buffer for AHB bus master in HPMS DDR bridge
to be disabled. Allowed values:
0: Disabled
1: Enabled

3 DDRB_HPD_REN 0x1 Allows the read buffer for high performance DMA master in HPMS DDR
bridge to be disabled. Allowed values:
0: Disabled
1: Enabled

2 DDRB_HPD_WEN 0x1 Allows the write combining buffer for high performance DMA master in
HPMS DDR bridge to be disabled. Allowed values:
0: Disabled
1: Enabled

[1:0] Reserved 0

Table 138 • EDAC_CR

Bit
Number Name

Reset
Value Description

[31:2] Reserved 0

1 ESRAM1_EDAC_EN 0 Allows the EDAC for eSRAM1 to be disabled. Allowed values:
0: Disabled
1: Enabled

0 ESRAM0_EDAC_EN 0 Allows the EDAC for eSRAM0 to be disabled. Allowed values:
0: Disabled
1: Enabled

Table 139 • MASTER_WEIGHT0_CR

Bit
Number Name

Reset
Value Description

[31:30] Reserved 0

[29:25] SW_WEIGHT_PDMA 0 Configures the round robin weight for peripheral DMA master. It is
configurable from 1 to 32 (32 by default).

[24:20] SW_WEIGHT_FAB_1 0 Configures the round robin weight for fabric (FIC_1) master. It is
configurable from 1 to 32 (32 by default).

[19:15] SW_WEIGHT_FAB_0 0 Configures the round robin weight for fabric (FIC_0) master. It is
configurable from 1 to 32 (32 by default).

[14:0] Reserved 0

Table 137 • DDRB_CR (continued)
Microchip Proprietary UG0448 Revision 10.0 213

System Register Block
10.6.10 Master Weight Configuration Register 1

The following table lists weight values, where <master> is FIC_0, FIC_1, PDMA, HPDMA, or G.

10.6.11 Software Interrupt Register

Table 140 • MASTER_WEIGHT1_CR

Bit
Number Name

Reset
Value Description

[31:15] Reserved 0

[14:10] SW_WEIGHT_G 0 Configures the round robin weight for G master. It is configurable from
1 to 32 (32 by default). The weight values are as given in Table 141
on page 214.

[9:5] Reserved 0

[4:0] SW_WEIGHT_HPDMA 0 Configures the round robin weight for HPDMA master. It is
configurable from 1 to 32 (32 by default). The weight values are as
given in Table 141 on page 214.

Table 141 • Programmable Weight Values

SW_WEIGHT_<master> Weight
0 32

1 1

2 2

3 3

. .

. .

. .

28 28

29 29

30 30

31 31

Table 142 • SOFT_IRQ_CR

Bit Number Name Reset Value Description
[31:1] Reserved 0

0 SOFTINTER
RUPT

0 1: FIIC SOFTINTERRUPT is asserted
0: SOFTINTERRUPT signal is cleared
Microchip Proprietary UG0448 Revision 10.0 214

System Register Block
10.6.12 Software Reset Control Register
Table 143 • SOFT_RESET_CR

Bit
Number Name

Reset
Value Description

[31:27] Reserved 0

26 MDDR_DDRFIC_SOFTRESET 0x1 0: Releases DDR_FIC controller from reset
1: Keeps DDR_FIC controller in reset.

25 MDDR_CTLR_SOFTRESET 0x1 0: Releases MDDR controller from reset
1: Keeps MMDR controller in reset.

[24:20] Reserved 0

19 FIC_1_SOFTRESET 0x1 0: Releases FIC _1 from reset
1: Keeps FIC_1 in reset

18 FIC_0_SOFTRESET 0x1 0: Releases FIC _0 from reset
1: Keeps FIC_0 in reset

17 HPDMA_SOFTRESET 0x1 0: Releases HPDMA from reset
1: Keeps HPDMA n reset

16 FPGA_SOFTRESET 0x1 0: Releases FPGA from reset
1: Keeps FPGA in reset

15 COMBLK_SOFTRESET 0 0: Releases COMM_BLK from reset
1: Keeps COMMUNICATION BLOCK
(COMM_BLK) in reset

[14:10] Reserved 0

9 SPI_SOFTRESET 0x1 0: Releases SPI from reset
1: Keeps SPI in reset

[8:6] Reserved 0

5 PDMA_SOFTRESET 0x1 0: Releases the PDMA from reset
1: Keeps the PDMA in reset

4 Reserved 0

3 ESRAM1_SOFTRESET 0 0: Releases the eSRAM_1 memory controller
from reset
1: Keeps the eSRAM_1 memory controller in
reset

2 ESRAM0_SOFTRESET 0 0: Releases the eSRAM_0 memory controller
from reset.
1: Keeps the eSRAM_0 memory controller in
reset.

1 ENVM1_SOFTRESET 0 0: Releases the eNVM_1memory controller
from reset
1: Keeps the eNVM_1 memory controller in
reset

0 ENVM0_SOFTRESET 0 0: Releases the eNVM_0 memory controller
from reset
1: Keeps the eNVM_0 memory controller in
reset
Microchip Proprietary UG0448 Revision 10.0 215

System Register Block
Reset values mentioned in the preceding table are the default values of the bits, when peripherals are
not configured using the software. If the peripheral is enabled using the software, then the default reset
value for that bit is 0x0.

Note: The register fields for 005 and 010 devices must not be dynamically altered. See System Registers
Behavior for M2GL005/010 devices, page 207

10.6.13 Fabric Interface Control (FIC) Register

Note: The register fields for 005 and 010 devices must not be dynamically altered. See System Registers
Behavior for M2GL005/010 devices

10.6.14 MDDR Configuration Register

Table 144 • FAB_IF_CR

Bit
Number Name

Reset
Value Description

[31:10] Reserved 0

[9:4] SW_FIC_REG_SEL 0x38 Indicates whether a specific fabric region is accessible by FIC_0 or
FIC_1. This register should not be changed during operation.
0: Fabric region associated with FIC_0
1: Fabric region associated with FIC_1
By default, fabric region 0, 1, 2 are accessible through FIC_0 and
regions 3, 4, 5 are accessible through FIC_1.
These bits are driven into the AHB bus in order to allocate a
specific memory region to either FIC_0 or FIC_1.

3 FAB1_AHB_MODE 0 Controls whether the FIC_1 fabric interface supports AHB mode or
APB Mode. Allowed values:
0: Supports APB mode
1: Supports AHB mode

2 FAB0_AHB_MODE 0 Controls whether FIC_0 fabric interface supports AHB mode or
APB mode. Allowed values:
0: Supports APB mode
1: Supports AHB mode

1 FAB1_AHB_BYPASS 0 0: FIC_1 is configured for synchronous bridging
1: FIC_1 is configured in bypass mode, if clock ratio is 1:1 and if in
AHB mode

0 FAB0_AHB_BYPASS 0 0: FIC_0 is configured for synchronous bridging
1: FIC_0 is configured in bypass mode, if clock ratio is 1:1 and if in
AHB mode

Table 145 • MDDR_CR

Bit
Number Name

Reset
Value Description

[31:4] Reserved 0

3 PHY_SELF_REF_EN 0 Indicates that the DRAM has been put into self-refresh. This is
used for automatic locking of the codes during intermediate runs
for DDRC. Not used in non-DDRIO modes.

2 F_AXI_AHB_MODE 0 Used by the DDR_FIC and DDR CTL to select the AXI/AHB
interface in the fabric. Allowed values:
0: AHB interface is selected.
1: AXI interface is selected.
Microchip Proprietary UG0448 Revision 10.0 216

System Register Block
Note: The register fields for 005 and 010 devices must not be dynamically altered. See System Registers
Behavior for M2GL005/010 devices, page 207

10.6.15 Peripheral Clock MUX Select Control Register

Note: The register fields for 005 and 010 devices must not be dynamically altered. See System Registers
Behavior for M2GL005/010 devices, page 207.

10.6.16 MDDR I/O Calibration Control Register

1 Reserved 0

0 MDDR_CONFIG_LOCAL 0x1 Configures whether the HPMS AHBTOAPB2 bridge can directly
access the APB slave within the MDDR subsystem or whether the
APB slave is connected to the fabric. Allowed values:
0: AHBTOAPB2 bridge cannot access MDDR APB slave
1: AHBTOAPB2 bridge can access MDDR APB slave
Reset signal for this bit is CC_RESET_N.

Table 146 • PERIPH_CLK_MUX_SEL_CR

Bit
Number Name

Reset
Value Description

[31:1] Reserved 0

0 SPI_SCK_FAB_SEL 0 Selects the SPI_SCK from the fabric or I/O pads. Allowed values:
0: SPI_SCK clock from I/O pads is selected and fed to SPI.
1: SPI_SCK clock from fabric is selected and fed to SPI.

Table 147 • MDDR_IO_CALIB_CR

Bit
Number Name

Reset
Value Description

[31:15] Reserved 0

14 CALIB_LOCK 0 Used in the DDRIO calibration block as an override to lock the
codes during intermediate runs. When the fabric logic receives
CALIB_INTRPT, it may choose to assert this signal by prior
knowledge of the traffic without going through the process of
putting the DDR into self refresh. This bit is only read/write.

13 CALIB_START 0 Used in the DDRIO calibration block and indicates that rerun of
the calibration state machine is required.

12 CALIB_TRIM Used in the DDRIO calibration block and indicates the override of
the calibration value from the PC code/programmed code values.

[11:6] NCODE 0 Used in the DDRIO calibration block and indicates DPC override
NCODE from flash. This can also be overwritten from the fabric
logic.

[5:0] PCODE 0 Used in the DDRIO calibration block and indicates PC override
PODE from flash. This can also be overwritten from the fabric
logic.

Table 145 • MDDR_CR (continued)
Microchip Proprietary UG0448 Revision 10.0 217

System Register Block
10.6.17 EDAC Interrupt Enable Control Register

Note: The register fields for 005 and 010 devices must not be dynamically altered. See System Registers
Behavior for M2GL005/010 devices, page 207.

10.6.18 eSRAM PIPELINE Configuration Register

Table 148 • EDAC_IRQ_ENABLE_CR

Bit
Number Name

Reset
Value Description

[31:15] Reserved 0

14 MDDR_ECC_INT_EN 0 Allows the error EDAC for MDDR status update to be
disabled. Allowed values:
0: Disabled
1: Enabled

[13:6] Reserved 0

5 Reserved 0

4 Reserved 0

3 ESRAM1_EDAC_2E_EN 0 Allows the 2-bit error EDAC for eSRAM1 status update to be
disabled. Allowed values:
0: Disabled
1: Enabled

2 ESRAM1_EDAC_1E_EN 0 Allows the 1-bit error EDAC for eSRAM1 status update to be
disabled. Allowed values:
0: Disabled
1: Enabled

1 ESRAM0_EDAC_2E_EN 0 Allows the 2-bit error EDAC for eSRAM0 status update to be
disabled. Allowed values:
0: Disabled
1: Enabled

0 ESRAM0_EDAC_1E_EN 0 Allows the 1-bit error EDAC for eSRAM0 status update to be
disabled. Allowed values:
0: Disabled
1: Enabled

Table 149 • ESRAM_PIPELINE_CR

Bit
Number Name

Reset
Value Description

[31:1] Reserved 0

0 ESRAM_PIPELINE_ENABLE 0x1 Controls the pipeline in the read path of eSRAM memory.
Allowed values:
0: Pipeline is bypassed
1: Pipeline is in the memory read path
Microchip Proprietary UG0448 Revision 10.0 218

System Register Block
10.6.19 HPMS DDR PLL Status Low Configuration Register
This register is to be configured by flash bits only and the user should not write to it while the source
clock is active.

Note: The register fields for 005 and 010 devices must not be dynamically altered. See System Registers
Behavior for M2GL005/010 devices, page 207.

Table 150 • HPMS_PLL_STATUS_LOW_CR

Bit
Number Name

Reset
Value Description

[31:30] Reserved 0

[29:26] FACC_PLL_LOCKCNT 0 Configures the MPLL LOCK counter value given by
(2^ binary value + 5). For example, if the binary value is 0000, the
LOCK counter value is 32, and if binary value is 1111, then its value
is 1,048,576.

[25:23] FACC_PLL_LOCKWIN 0 Configures the MPLL phase error window for LOCK assertion as a
fraction of the divided reference period. Values are at typical PVT
only and are not PVT compensated.
000: 500 ppm
100: 8000 ppm
001: 1000 ppm
101: 16000 ppm
010: 2000 ppm
110: 32000 ppm
011: 4000 ppm
111: 64000 ppm

[22:19] FACC_PLL_RANGE 0 Configures the MPLL filter range. The bit definitions are in
Table 151, page 220.

[19:16] FACC_PLL_DIVQ 0x2 Configures MPLL output divider value in order to generate the DDR
clock. Output divider values are given by:
000: Divided by 1
001: Divided by 2
010: Divided by 4
011: Divided by 8
100: Divided by 16
101: Divided by 32
While it is possible to configure the MPLL output divider as ÷ 1, this
setting must not be used when the DDR is operational. This is to
ensure that the clock to the DDR has an even mark:space ratio.

[15:6] FACC_PLL_DIVF 0x2 Configures the MPLL feedback divider value, which is given by the
binary value + 1.
The binary value ranges from 0000000000, which is the divisor
value of 1, to 1111111111, which is the divisor value of 1,024.

[5:0] FACC_PLL_DIVR 0x1 Configures the MPLL reference divider value, which is given by
binary value + 1. For example, if the value is 00000, then the divisor
value is 1 (00000 + 1). Both REFCLK and post-divide REFCLK
must be within the range specified in the IGLOO2 datasheet.
Microchip Proprietary UG0448 Revision 10.0 219

System Register Block
10.6.19.1 FACC_PLL_RANGE

10.6.20 HPMS DDR PLL Status High Configuration Register

Table 151 • FACC_PLL_RANGE

Bits[23:19] PLL Range
0000 Bypass

0111 18 – 29 MHz

0001 1 – 1.6 MHz

1000 29 – 46 MHz

0010 1.6 – 2.6 MHz

1001 46 – 75 MHz

0011 2.6 – 4.2 MHz

1010 75 – 120 MHz

0100 4.2 – 6.8 MHz

1011 120 – 200 MHz

0101 6.8 – 11 MHz

0110 11 – 18 MHz

Table 152 • HPMS_PLL_STATUS_HIGH_CR

Bit Number Name
Reset
Value Description

[31:5] Reserved 0

[12:8] FACC_PLL_SSMF 0 Drives the spread spectrum modulation frequency (SSMF)
input of the MPLL. The only allowable value to be programmed
in this field is 0, as spread spectrum mode is not supported for
the MPLL.

[7:6] FACC_PLL_SSMD 0 Drives the spread spectrum modulation depth (SSMD) input of
the MPLL. The only allowable value to be programmed in this
field is 0, as spread spectrum mode is not supported for the
MPLL.

5 FACC_PLL_SSE 0 Drives the SSE input of the MPLL. The only allowable value to
be programmed in this field is 0, as spread spectrum mode is
not supported for the MPLL.

4 FACC_PLL_PD 0 A PD signal is provided for the lowest quiescent current. When
PD is asserted, the MPLL powers down and outputs will be
Low. PD has precedence over all other functions.

3 FACC_PLL_FSE 0 Configures PLL internal and external feedback paths. The only
allowed value to be programmed in this field is 1.

2 FACC_PLL_MODE_3V3 0x1 Configures MPLL analog operational voltage.
0: 3.3 V
1: 2.5 V

1 FACC_PLL_MODE_1V2 0x1 Configures the PLL core voltage.
1: 1.2 V
Do not write to this field
Microchip Proprietary UG0448 Revision 10.0 220

System Register Block
Note: The register fields for 005 and 010 devices must not be dynamically altered. See System Registers
Behavior for M2GL005/010 devices, page 207.

10.6.21 HPMS DDR Fabric Alignment Clock Controller (FACC)
Configuration Register 1

0 FACC_PLL_BYPASS 0 Powers down the MPLL core and bypasses it such that
PLLOUT tracks REFCLK.

Table 153 • HPMS_FACC1_CR

Bit Number Name
Reset
Value Description

[31:28] Reserved 0

27 FACC_FAB_REF_SEL 0 Selects the source of the reference clock to be supplied to the
MPLL. Allowed values are:
0: 50 MHz RC oscillator
1: Fabric clock (CLK_BASE)

26 CONTROLLER_PLL_INIT 0x1 Indicates whether the FACC is to be configured for PLL
initialization mode. The user can write to it when it detects that
the MPLL has lost lock and it wants to switch to a known good
clock source until the MPLL comes back into lock. This causes
the 50 MHz clock to be selected through to the HPMS. It also
interrupts the System Controller, which then waits for the MPLL
to come into lock before clearing this bit and thereby selecting
the MPLL output as the HPMS clock source again. The allowed
values of this bit are:
0: The corresponding FACC multiplexer select lines or clock
gate control line comes from the normal run-time configuration
signals (from relevant HPMS system register bits).
1: The corresponding FACC multiplexer select lines or clock
gate control line are overridden by hardwired PLL initialization
selection, as described below:
– Override the four no-glitch multiplexers related to the aligned
clocks, so that they select CLK_STANDBY as the source of
HPMS_CLK, APB_0_CLK, APB_1_CLK and DDR_FIC_CLK.
– Override the selection of the FACC standby multiplexer, so
that it selects the RCOSC_25_50MHZ clock as the source of
CLK_STANDBY.
– Override the selection of the FACC reference multiplexer, so
that it selects CLK_BASE clock as the source of
MPLL_REF_CLK.
– Override the value of the PLL bypass configuration signal, so
that it forces the MPLL bypass path not to be used.
– Force MDDR_CLK to be gated off.

Table 152 • HPMS_PLL_STATUS_HIGH_CR (continued)

Bit Number Name
Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 221

System Register Block
25 PERSIST_CC 0 Feeds into the HPMS Reset Controller. Based on the value of
PERSIST_CC, the Reset Controller asserts a reset
(CC_RESET_N) to the FACC (which inverts it and passes it on
to the PLL as HPMS_PLL_RESET), either on every HPMS
system reset or just on power-up reset.
Configure using flash bits. Do not write to this field. The only
allowable value for this bit is 1. The reset signal for this register
is PORESET_N.

[24:22] BASE_DIVISOR 0 Indicates the ratio between CLK_A and the re-generated
version of CLK_BASE, called CLK_BASE_REGEN. Do not
write to this field.
The allowed values are listed in Table 154, page 223.

[21:19] DDR_FIC_DIVISOR 0 Indicates the ratio between CLK_A and DDR_FIC_CLK. The
user can write to this field dynamically during run time, even
when the source clock is active. The allowed values are listed in
Table 154, page 223.

[18:16] FIC_1_DIVISOR 0 Indicates the ratio between CLK_A and the clock being used in
the fabric, to clock the soft IP block which is interfacing to FIC_1
of the HPMS. The user can write to this field dynamically during
run time, even when the source clock is active. The allowed
ratios for CLK_A:fabric clock (FIC_1) is listed in Table 154,
page 223.

[15:13] FIC_0_DIVISOR 0 Indicates the ratio between CLK_A and the clock being used in
the fabric, to clock the soft IP block which is interfacing to FIC_0
of the HPMS. The user can write to this field dynamically during
run time, even when the source clock is active. The allowed
ratios for CLK_A:fabric clock (FIC_0) are listed in Table 154,
page 223.

12 FACC_GLMUX_SEL 0 Contains the select line for the four no-glitch multiplexers within
the FACC, which are related to the aligned clocks. All four of
these multiplexers are switched by one signal. Allowed values:
1: HPMS_CLK, APB_0_CLK, APB_1_CLK, DDR_FIC_CLK all
driven from CLK_STANDBY
0: HPMS_CLK, APB_0_CLK, APB_1_CLK, DDR_FIC_CLK all
driven from stage B dividers
Configure this field using flash bits. Do not write to this field.

[11:9] HPMS_CLK_DIVISOR 0 Indicates the ratio between CLK_A and HPMS_CLK. The user
can write to this field dynamically during run time, even when
the source clock is active.

8 DDR_CLK_EN 0 Determines whether or not the clock to the MDDR block is to be
gated off. Allowed values:
0: MDDR_CLK is gated off
1: MDDR_CLK is allowed to propagate through to MDDR block
Do not write to this field dynamically while the source clock is
active.

[7:5] APB1_DIVISOR 0 Indicates the ratio between CLK_A and APB_1_CLK. The user
can write to this field dynamically during run time, even when
the source clock is active. The allowed values are described in
Table 154, page 223.

Table 153 • HPMS_FACC1_CR (continued)

Bit Number Name
Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 222

System Register Block
Note: The register fields for 005 and 010 devices must not be dynamically altered. See System Registers
Behavior for M2GL005/010 devices, page 207.

10.6.21.1 Clock Ratio

10.6.22 HPMS DDR Fabric Alignment Clock Controller Configuration
Register 2

[4:2] APB0_DIVISOR 0 Indicates the ratio between CLK_A and APB_0_CLK. The user
can write to this field dynamically during run time, even when
the source clock is active. The allowed values are described in
Table 154, page 223.

[1:0] DIVISOR_A 0 Indicates the ratio between CLK_SRC and CLK_A. Allowed
values:
00: 1:1
01: 2:1
10: 3:1
11: Reserved
Configure this field statically. Do not write to this field while the
source clock is active.

Table 154 • Clock Ratio

Bits Clock Ratio
000 1:1

001 2:1

010 4:1

100 8:1

101 16:1

110 32:1

Other values Reserved

Table 155 • HPMS_FACC2_CR

Bit
Number Name

Reset
Value Description

[31:13] Reserved 0

12 HPMS_XTAL_EN 0x1 Enables the signal for the main crystal oscillator. If the main crystal
oscillator is selected as the HPMS Flash*Freeze clock source, this bit
must be asserted at all times (even when not in Flash*Freeze mode).
1: Enable
0: Disable

11 HPMS_CLK_ENVM_EN 0x1 Enables internal eNVM RC oscillator. Configure this field statically. Do
not write to this field while the source clock is active.

Table 153 • HPMS_FACC1_CR (continued)

Bit Number Name
Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 223

System Register Block
10 HPMS_1MHZ_EN 0x1 Enables the signal for the 1 MHz RC oscillator. If the 1 MHz RC
oscillator is selected as the HPMS Flash*Freeze clock source, this bit
must be asserted at all times (even when not in Flash*Freeze mode).
1: Enable
0: Disable

9 HPMS_25_50MHZ_EN 0x1 Enables the signal for the 50 MHz RC oscillator. If the 50 MHz RC
oscillator is selected as the HPMS Flash*Freeze clock source, this bit
must be asserted at all times (even when not in Flash*Freeze mode).
1: Enable
0: Disable

[8:6] FACC_STANDBY_SEL 0 Contains the select lines for the three 2 to 1 no-glitch multiplexers,
which implement the 4 to 1 no-glitch standby MUX function. This is
used to allow one of 4 possible clocks to proceed through to the HPMS
during FACC PLL Initialization Time. There are two MUXes in the first
rank and these feed into a third MUX in the second rank.
Bit 6 feeds into one of the first rank 2 to 1 MUXes (Standby MUX 0) and
is defined as follows:
0: MUX 0 output comes from RCOSC_25_50MHZ
1: MUX 0 output comes from XTLOSC_CLK
Bit 7 feeds into one of the first rank 2 to 1 MUXes (Standby MUX 1) and
is defined as follows:
0: MUX 1 output comes from RCOSC_1MHZ
Bit 8 feeds into the second rank 2 to 1 MUX (Standby MUX 2) and is
defined as follows:
0: MUX 2 output comes from MUX 0
1: MUX 2 output comes from MUX 1
Do not write to this field while the standby clock is active.

5 FACC_PRE_SRC_SEL 0 Must always be 0. Allowed values:
0: RCOSC_1MHZ is fed through to the source no-glitch clock
multiplexer.

[4:2] FACC_SRC_SEL 0 Contains the select lines for the three 2 to 1 no-glitch multiplexers,
which implement a 4 to 1 no-glitch source MUX function. There are two
MUXes in the first rank and these feed into a third MUX in the second
rank.
Bit 2 feeds into one of the first rank 2 to 1 MUXes (Source MUX 0) and
is defined as follows:
0: MUX 0 output comes from RCOSC_25_50MHZ
1: MUX 0 output comes from XTLOSC_CLK
Bit 3 feeds into one of the first rank 2 to 1 MUXes (Source MUX 1) and
is defined as follows:
0: MUX 1 output comes from RCOSC_1MHZ
1: MUX 1 output comes from MPLL_OUT_CLK
Bit 4 feeds into the second rank 2 to 1 MUX (Source MUX 2) and is
defined as follows:
0: MUX 2 output comes from MUX 0
1: MUX 2 output comes from MUX 1
When switching any of the no-glitch MUXes, both the clock being
switched from and the clock being switched to must be running. Do not
write to this field while the source clock is active.

[1:0] Reserved 0

Table 155 • HPMS_FACC2_CR (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 224

System Register Block
10.6.23 HPMS Clock Calibration Control Register

10.6.24 PLL Delay Line Select Control Register

10.6.25 Reset Source Control Register

Table 156 • HPMS_CLK_CALIB_CR

Bit
Number Name

Reset
Value Description

[31:1] Reserved 0

0 FAB_CALIB_START 0 Writing to this bit causes a one clock tick pulse to be
generated on FABCALIBSTART. This is used to start an FPGA
fabric calibration test circuit.

Table 157 • PLL_DELAY_LINE_SEL_CR

Bit
Number Name

Reset
Value Description

[31:4] Reserved 0

[3:2] PLL_FB_DEL_SEL 0 Must be programmed to a specific value by Libero SoC and
never modified after that.

[1:0] PLL_REF_DEL_SEL 0 Must be programmed to a specific value by Libero SoC and
never modified after that.

Table 158 • RESET_SOURCE_CR

Bit
Number Name

Reset
Value Description

[31:7] Reserved 0

6 USER_RESET_DETECT 0x1 Indicates that an HPMS user reset has occurred. During
the device boot sequence, this register should be
cleared to arm it to detect the next reset event. Reset
signal: HPMS_RESET_F2M_HPMS_CLK_N

[5:2] Reserved 0

1 CONTROLLER_RESET_DETECT 0x1 Indicates that an HPMS controller reset has occurred.
During the device boot sequence, this register should
be cleared to arm it to detect the next reset event.
Reset signal: SC_HPMS_RESET_HPMS_CLK_N.

0 PO_RESET_DETECT 0x1 Indicates that a power-up reset has occurred. During
the device boot sequence, this register should be
cleared to arm it to detect the next reset event. The
reset signal for this bit is PO_RESET_HPMS_CLK_N.
Microchip Proprietary UG0448 Revision 10.0 225

System Register Block
10.6.26 HPMS DDR Bridge High Performance DMA Master Error Address
Status Register

10.6.27 HPMS DDR Bridge AHB Bus Error Address Status Register

10.6.28 HPMS DDR Bridge Buffer Empty Status Register

Table 159 • DDRB_HPD_ERR_ADR_SR

Bit
Number Name

Reset
Value Description

[31:0] DDRB_HPD_ERR_ADD 0 If a write transfer initiated at the HPMS DDR bridge arbiter
interface to empty data present in the write buffer of the HPDMA
master which receives an error response, the address for which
the error response is received is placed in this register. Address
indicates TAG value for which error response is received. The
following values are updated in this register as per buffer size:
16 bytes: DDRB_HPD_ERR_ADR[31:4] = TAG,
DDRB_HPD_ERR_ADR[3:0] = 0000
32 bytes: DDRB_HPD_ERR_ADR[31:5] = TAG[27:1],
DDRB_HPD_ERR_ADR[4:0] = 0000.

Table 160 • DDRB_SW_ERR_ADR_SR

Bit
Number Name

Reset
Value Description

[31:0] DDRB_SW_ERR_ADD 0 If a write transfer initiated at the HPMS DDR bridge arbiter
interface to empty data present in the write buffer allocated for the
AHB bus, which receives an error response, the address for which
the error response is received is placed in this register. Address
indicates TAG value for which the error response is received. The
following values are updated in this register as per buffer size:
16 bytes: DDRB_SW_ERR_ADR[31:4] = TAG,
DDRB_SW_ERR_ADR [3:0] = 0000
32 bytes: DDRB_SW_ERR_ADR [31:5] = TAG[27:1],
DDRB_SW_ERR_ADR [4:0] = 0000.

Table 161 • DDRB_BUF_EMPTY_SR

Bit
Number Name

Reset
Value Description

[31:7] Reserved 0

6 Reserved 0

5 DDRB_HPD_RBEMPTY 0 When set to ‘1’, indicates that the read buffer of the HPDMA
master does not have valid data

4 DDRB_HPD_WBEMPTY 0 When set to ‘1’, indicates that the write buffer of the HPDMA
master does not have valid data

3 DDRB_SW_RBEMPTY 0 When set to ‘1’, indicates that the read buffer of the AHB bus
matrix master does not have valid data

2 DDRB_SW_WBEMPTY 0 When set to ‘1’, indicates that the write buffer of the AHB bus
matrix master does not have valid data
Microchip Proprietary UG0448 Revision 10.0 226

System Register Block
10.6.29 HPMS DDR Bridge Disable Buffer Status Register

10.6.30 eSRAM0 EDAC Count

10.6.31 eSRAM1 EDAC Count

1 Reserved 0

0 Reserved 0

Table 162 • DDRB_DSBL_DN_SR

Bit
Number Name

Reset
Value Description

[31:7] Reserved 0

6 Reserved 0

5 DDRB_HPD_RDSBL_DN 0 Is set to ‘1’ once the HPDMA read buffer is disabled after
getting a read buffer disable command from fabric logic.

4 DDRB_HPD_WDSBL_DN 0 Is set to ‘1’ once the HPDMA write buffer is disabled after
getting a write buffer disable command from fabric logic.

3 DDRB_SW_RDSBL_DN 0 Is set to ‘1’ once the AHB bus matrix read buffer is disabled
after getting a read buffer disable command from fabric logic.

2 DDRB_SW_WDSBL_DN 0 Is set to ‘1’ once the AHB bus matrix write buffer is disabled
after getting a write buffer disable command from fabric logic.

1 Reserved 0

0 Reserved 0

Table 163 • ESRAM0_EDAC_CNT

Bit
Number Name

Reset
Value Description

[31:16] ESRAM0_EDAC_CNT_2E 0 16-bit counter value in eSRAM0 incremented by eSRAM0
EDAC 2-bit error. The counter will not roll back and will stay at
its maximum value.

[15:0] ESRAM0_EDAC_CNT_1E 0 16-bit counter value in eSRAM0 incremented by eSRAM0
EDAC 1-bit error. The counter will not roll back and will stay at
its maximum value.

Table 164 • ESRAM1_EDAC_CNT

Bit
Number Name

Reset
Value Description

[31:16] ESRAM1_EDAC_CNT_2E 0 16-bit counter value in eSRAM1 incremented by eSRAM1
EDAC 2-bit error. The counter will not roll back and will stay at
its maximum value.

[15:0] ESRAM1_EDAC_CNT_1E 0 16-bit counter value in eSRAM1 incremented by eSRAM1
EDAC 1-bit error. The counter will not roll back and will stay at
its maximum value.

Table 161 • DDRB_BUF_EMPTY_SR (continued)
Microchip Proprietary UG0448 Revision 10.0 227

System Register Block
10.6.32 eSRAM0 EDAC Address Register

10.6.33 eSRAM1 EDAC Address Register

10.6.34 Security Configuration Register for Masters 4, 5, and DDR_FIC

Table 165 • ESRAM0_EDAC_ADR

Bit
Number Name

Reset
Value Description

[31:25] Reserved 0

[25:13] ESRAM0_EDAC_2E_AD 0 Stores the address from eSRAM0 on which a 2-bit SECDED
error has occurred.

[12:0] ESRAM0_EDAC_1E_AD 0 Stores the address from eSRAM0 on which a 1-bit SECDED
error has occurred.

Table 166 • ESRAM1_EDAC_ADR

Bit
Number Name

Reset
Value Description

[31:25] Reserved 0

[25:13] ESRAM1_EDAC_2E_AD 0 Stores the address from eSRAM1 on which a 2-bit SECDED
error has occurred.

[12:0] ESRAM1_EDAC_1E_AD 0 Stores the address from eSRAM1 on which a 1-bit SECDED
error has occurred.

Table 167 • MM4_5_DDR_FIC_SECURITY/MM4_5_FIC64_SECURITY

Bit
Number Name

Reset
Value Description

[31:10] Reserved 0

9 MM4_5_DDR_FIC_MS6_ALLOWED_
W

1 Write security bits for masters 4, 5, and DDR_FIC to slave
6 (HPMS DDR bridge). If not set, masters 4, 5 and
DDR_FIC will not have write access to slave 6.

8 MM4_5_DDR_FIC_MS6_ALLOWED_
R

1 Read security bits for masters 4, 5, and DDR_FIC to
slave 6 (HPMS DDR bridge). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 6.

7 MM4_5_DDR_FIC_MS3_ALLOWED_
W

1 Write security bits for masters 4, 5, and DDR_FIC to slave
3 (eNVM1). If not set, masters 4, 5, and DDR_FIC will not
have write access to slave 3.

6 MM4_5_DDR_FIC_MS3_ALLOWED_
R

1 Read security bits for masters 4, 5, and DDR_FIC to
slave 3 (eNVM1). If not set, masters 4, 5, and DDR_FIC
will not have read access to slave 3.

5 MM4_5_DDR_FIC_MS2_ALLOWED_
W

1 Write Security Bits for masters 4, 5, and DDR_FIC to
slave 2 (eNVM0). If not set, masters 4, 5, and DDR_FIC
will not have write access to slave 2.

4 MM4_5_DDR_FIC_MS2_ALLOWED_
R

1 Read security bits for masters 4, 5, and DDR_FIC to
slave 2 (eNVM0). If not set, masters 4, 5, and DDR_FIC
will not have read access to slave 2.
Microchip Proprietary UG0448 Revision 10.0 228

System Register Block
10.6.35 Security Configuration Register for Masters 3 and 7

3 MM4_5_DDR_FIC_MS1_ALLOWED_
W

1 Write security bits for masters 4, 5, and DDR_FIC to slave
1 (eSRAM1). If not set, masters 4, 5, and DDR_FIC will
not have write access to slave 1.

2 MM4_5_DDR_FIC_MS1_ALLOWED_
R

1 Read security bits for masters 4, 5, and DDR_FIC to
slave 1 (eSRAM1). If not set, masters 4, 5, and DDR_FIC
will not have read access to slave 1.

1 MM4_5_DDR_FIC_MS0_ALLOWED_
W

1 Write security bits for masters 4, 5, and DDR_FIC to slave
0 (eSRAM0). If not set, masters 4, 5, and DDR_FIC will
not have write access to slave 0.

0 MM4_5_DDR_FIC_MS0_ALLOWED_
R

1 Read security bits for masters 4, 5, and DDR_FIC to
slave 0 (eSRAM0). If not set, masters 4, 5, and DDR_FIC
will not have read access to slave 0.

Table 168 • MM3_7_SECURITY

Bit
Number Name

Reset
Value Description

[31:10] Reserved 0

9 MM3_7_MS6_ALLOWED_W 1 Write security bits for masters 3, 7 to slave 6 (HPMS DDR
bridge). If not set, masters 3 and 7 will not have write access
to slave 6.

8 MM3_7_MS6_ALLOWED_R 1 Read security bits for masters 3, 7 to slave 6 (HPMS DDR
bridge). If not set, masters 3 and 7 will not have read access
to slave 6.

7 MM3_7_MS3_ALLOWED_W 1 Write security bits for masters 3, 7to slave 3 (eNVM1). If not
set, masters 3 and 7 will not have write access to slave 3.

6 MM3_7_MS3_ALLOWED_R 1 Read security bits for masters 3, 7to slave 3 (eNVM1). If not
set, masters 3 and 7 will not have read access to slave 3.

5 MM3_7_MS2_ALLOWED_W 1 Write security bits for masters 3, 7 to slave 2 (eNVM0). If not
set, masters 3 and 7 will not have write access to slave 2.

4 MM3_7_MS2_ALLOWED_R 1 Read security bits for masters 3, 7 to slave 2 (eNVM0). If not
set, masters 3 and 7 will not have read access to slave 2.

3 MM3_7_MS1_ALLOWED_W 1 Write security bits for masters 3, 7 to slave 1 (eSRAM1). If
not set, masters 3 and 7, will not have write access to slave
1.

2 MM3_7_MS1_ALLOWED_R 1 Read security bits for masters 3, and 7 to slave 1
(eSRAM1). If not set, masters 3 and 7 will not have read
access to slave 1.

1 MM3_7_MS0_ALLOWED_W 1 Write security bits for masters 3, 7 to slave 0 (eSRAM0). If
not set, masters 3 and 7 will not have write access to slave
0.

0 MM3_7_MS0_ALLOWED_R 1 Read security bits for masters 3, 7 to slave 0 (eSRAM0). If
not set, masters 3 and 7 will not have read access to slave
0.

Table 167 • MM4_5_DDR_FIC_SECURITY/MM4_5_FIC64_SECURITY (continued)
Microchip Proprietary UG0448 Revision 10.0 229

System Register Block
10.6.36 Security Configuration Register for Master 9

10.6.37 Device Status Register

Table 169 • MM9_SECURITY

Bit
Number Name

Reset
Value Description

[31:10] Reserved 0

9 MM9_MS6_ALLOWED_W 1 Write security bits for master 9 to slave 6 (HPMS DDR bridge).
If not set, master 9 will not have write access to slave 6.

8 MM9_MS6_ALLOWED_R 1 Read security bits for master 9 to slave 6 (HPMS DDR bridge).
If not set, master 9 will not have read access to slave 6.

7 MM9_MS3_ALLOWED_W 1 Write security bits for master 9 to slave 3 (eNVM1). If not set,
master 9 will not have write access to slave 3.

6 MM9_MS3_ALLOWED_R 1 Read security bits for master 9 to slave 3 (eNVM1). If not set,
master 9 will not have read access to slave 3.

5 MM9_MS2_ALLOWED_W 1 Write security bits for master 9 to slave 2 (eNVM0). If not set,
master 9 will not have write access to slave 2.

4 MM9_MS2_ALLOWED_R 1 Read security bits for master 9 to slave 2 (eNVM0). If not set,
master 9 will not have read access to slave 2.

3 MM9_MS1_ALLOWED_W 1 Write security bits for master 9 to slave 1 (eSRAM1]) If not set,
master 9 will not have write access to slave 1.

2 MM9_MS1_ALLOWED_R 1 Read security bits for master 9 to slave 1 (eSRAM1). If not set,
master 9 will not have read access to slave 1.

1 MM9_MS0_ALLOWED_W 1 Write security bits for master 9 to slave 0 (eSRAM0). If not set,
master 9 will not have write access to slave 0.

0 MM9_MS0_ALLOWED_R 1 Read security bits for master 9 to slave 0 (eSRAM0). If not set,
master 9 will not have read access to slave 0.

Table 170 • DEVICE_SR

Bit
Number Name

Reset
Value Description

[31:7] Reserved 0

6 Reserved 0

5 Reserved 0

4 FLASH_VALID_SYNC 0 Asserted when FPGA fabric is valid. There is no reset signal
for this bit.
0: FPGA fabric flash bits are valid and operational
1: FPGA fabric flash bits are not operational

3 Reserved 0

2 FF_IN_PROGRESS_SYNC 0 Indicates the FF_IN_PROGRESS STATE. There is no reset
signal for this bit.
Microchip Proprietary UG0448 Revision 10.0 230

System Register Block
10.6.38 eNVM Protect User Register

1 VIRGIN_PART 0x1 Indicates the device as virgin or non-virgin type. There is no
reset signal for this bit.
0: Device is not a virgin part. It has been through a
programming cycle to at least configure the factory settings
1: Device is a virgin part. It has never been through any
programming cycle and all internal flash bits are invalid

0 CORE_UP_SYNC 0 Indicates the status of the synchronized CORE_UP input from
the system controller. There is no reset signal for this bit.

Table 171 • ENVM_PROTECT_USER

Bit
Number Name

Reset
Value Description

[31:16] Reserved 0

15 NVM1_UPPER_WRITE_ALLOWED 0x1 When set, indicates that the masters who have read
access can have write access to the upper protection
region of eNVM1. This is updated by the user flash row bit.

14 NVM1_UPPER_OTHERS_ACCESS 0x1 When set, indicates that the other masters can access the
upper protection region of eNVM1.This is set by the user
flash row bit.

13 NVM1_UPPER_FABRIC_ACCESS 0x1 When set, indicates that the fabric can access the upper
protection region of eNVM1. This is set by the user flash
row bit.

12 Reserved 0

11 NVM1_LOWER_WRITE_ALLOWED 0x1 When set, indicates that the masters who have read
access can have write access to the lower protection
region of eNVM1. This is set by the user flash row bit.

10 NVM1_LOWER_OTHERS_ACCESS 0x1 When set, indicates that the other masters can access the
lower protection region of eNVM1. This is set by the user
flash row bit.

9 NVM1_LOWER_FABRIC_ACCESS 0x1 When set, indicates that the fabric can access the lower
protection region of eNVM1. This is set by user flash row
bit.

8 Reserved 0

7 NVM0_UPPER_WRITE_ALLOWED 0x1 When set, indicates that the masters who have read
access can have write access to the upper protection
region of eNVM0. This will be set by the user flash row bit.

6 NVM0_UPPER_OTHERS_ACCESS 0x1 When set, indicates that the other masters can access the
upper protection region of eNVM0.

5 NVM0_UPPER_FABRIC_ACCESS 0x1 When set, indicates that the fabric can access the upper
protection region of eNVM0. This will be set by the user
flash row bit.

4 Reserved 0

Table 170 • DEVICE_SR (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 231

System Register Block
10.6.39 IGLOO2 eNVM Status Register

10.6.40 Device Version Register

10.6.41 HPMS PLL Status Register

3 NVM0_LOWER_WRITE_ALLOWED 0x1 When set, indicates that the masters who have read
access can have write access to the lower protection
region of eNVM0. This will be set by the user flash row bit.

2 NVM0_LOWER_OTHERS_ACCESS 0x1 When set, indicates that the other masters can access the
lower protection region of eNVM0. This will be set by the
user flash row bit.

1 NVM0_LOWER_FABRIC_ACCESS 0x1 When set, indicates that the fabric can access the lower
protection region of eNVM0. This will be set by the user
flash row bit.

0 Reserved 0

Table 172 • ENVM_STATUS

Bit
Number Name

Reset
Value Description

[31:1] Reserved 0

0 CODE_SHADOW_EN 0 Read by the system controller during device start-up, to
indicate whether the user has configured the device such
that code shadowing is to be performed by system
controller fabric logic.

Table 173 • DEVICE_VERSION

Bit
Number Name

Reset
Value Description

[31:20] Reserved 0

[19:16] IDV 0 Internal device version.

[15:0] IDP 0 Internal device product.

Table 174 • HPMS_PLL_STATUS

Bit
Number Name

Reset
Value Description

[31:3] Reserved 0

2 RCOSC_DIV2 Input from the System Controller, indicating whether the 50 MHz RC
oscillator is running at 25 MHz or 50 MHz.
0: Running at 25MHz
1: Running at 50MHz

Table 171 • ENVM_PROTECT_USER (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 232

System Register Block
10.6.42 eNVM Status Register

1 MPLL_LOCK 0 MPLL lock status.
A LOCK signal is provided to indicate that the MPLL has locked on to the
incoming signal. LOCK asserts High to indicate that the MPLL has
achieved frequency and phase lock. Allowed values are:
0: MPLL is not in lock
1: MPLL is in lock
Microchip recommends that LOCK is only used for test and system
status information, and is not used for critical system functions without
thorough characterization in the host system. The precision of the LOCK
discrimination can be adjusted using the LOCKWIN[2:0] controls. The
integration of the LOCK period can be adjusted using the LOCKCNT[3:0]
controls.

0 FAB_PLL_LOCK 0 If CLK_BASE is generated from a PLL in the fabric, this signal must be
connected from the LOCK output of that PLL. When the FACC is going
through its PLL initialization stage (either under system controller control
or HPMS master control), this signal is ANDed with the LOCK output of
the MPLL. Only when both PLLs are in lock, is the system considered to
be ready for switching to PLL-derived clock. If CLK_BASE is not derived
from a fabric PLL, then the user must ensure that this signal is tied High
at the fabric interface. Allowed values:
0: Fabric PLL is not in lock
1: Fabric PLL is in lock or CLK_BASE is not derived from a fabric PLL

Table 175 • ENVM_SR

Bit
Number Name

Reset
Value Description

[31:2] Reserved 0

[1:0] ENVM_BUSY 0 Active high signals indicate a busy state per eNVM for CLK-driven
operations and for internal operations triggered by the
write/program/erase/transfer command.
ENVM_BUSY[1] = Busy indication from eNVM1
ENVM_BUSY[0] = Busy indication from eNVM0

Table 174 • HPMS_PLL_STATUS (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 233

System Register Block
10.6.43 DDRB Status Register

10.6.44 MDDR IO Calibration Status Register

Table 176 • DDRB_STATUS

Bit
Number Name

Reset
Value Description

[31:0] DDRB_DEBUG_STATUS 0x1 Status of the internal ports of DDRBRIDGE. The bit definitions
are as follows:
Debug ports of the HPMS DDR bridge:
SYR_DDRB_DP[31:30] = Reserved
SYR_DDRB_DP[29:28] = AHB bus write buffer mode status
SYR_DDRB_DP[27:26] = HPDMA write buffer mode status
SYR_DDRB_DP[25:23] = Reserved
SYR_DDRB_DP[22:20] = Reserved
SYR_DDRB_DP[19:17] = AHB bus read buffer mode status
SYR_DDRB_DP[16:14] = HPDMA read buffer mode status
SYR_DDRB_DP[13] = Reserved
SYR_DDRB_DP[12] = AHB bus write request to arbiter
SYR_DDRB_DP[11] = HPDMA write request to arbiter
SYR_DDRB_DP[10] = Reserved
SYR_DDRB_DP[9] = Reserved
SYR_DDRB_DP[8] = AHB bus read req to arbiter
SYR_DDRB_DP[7] = HPDMA read request to arbiter
SYR_DDRB_DP[6] = Reserved
SYR_DDRB_DP[5] = AXI write address channel acknowledge to
AHB bus write request
SYR_DDRB_DP[4] = AXI write address channel acknowledge to
HPDMA write request
SYR_DDRB_DP[3] = Reserved
SYR_DDRB_DP[2] = AXI write data channel acknowledge to
AHB bus write request
SYR_DDRB_DP[1] = AXI write data channel acknowledge to
HPDMA write request
SYR_DDRB_DP[0] = Lock input to arbiter from AHB bus WCB

Table 177 • MDDR_IO_CALIB_STATUS

Bit
Number Name

Reset
Value Description

[31:15] Reserved 0

14 CALIB_PCOMP 0x1 State of the P analog comparator

13 CALIB_NCOMP 0x1 State of the N analog comparator

[12:6] CALIB_PCODE 0x3F Current PCODE value set on the MDDR DDR I/O bank

[5:1] CALIB_NCODE 0x3F Current NCODE value set on the MDDR DDR I/O bank

0 CALIB_STATUS 0 1 when the codes are actually locked. For the first run after
reset, this would be asserted 1 cycle after CALIB_INTRPT. For
in-between runs, this would be asserted only when the DRAM
is put into self-refresh or there is an override from the fabric
logic (CALIB_LOCK).
Microchip Proprietary UG0448 Revision 10.0 234

System Register Block
10.6.45 HPMS Clock Calibration Status

10.6.46 Fabric Protected Size Register

10.6.46.1 Region Size

Table 178 • HPMS_CLK_CALIB_STATUS

Bit
Number Name

Reset
Value Description

[31:1] Reserved 0

0 FAB_CALIB_FAIL 0 0: The currently selected CCC delay values for the
HPMS_CLK and fabric Clock are such that the FPGA fabric
clock calibration circuit is running correctly.
1: The FPGA fabric clock calibration circuit is failing to operate
correctly. This indicates incorrectly configured delay values for
HPMS_CLK and/or fabric clock in the CCC.

Table 179 • FAB_PROT_SIZE

Bit
Number Name

Reset
Value Description

[31:6] Reserved 0

[5:0] SW_PROTREGIONSIZE 11110 The size of the memory region inaccessible to the FPGA fabric
master is determined by the value of this bus. The region sizes
are listed in Table 180 on page 235.

Table 180 • Region Size

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Size
0 0 0 0 0 Reserved

0 0 0 0 1 Reserved

0 0 0 1 0 Reserved

0 0 0 1 1 Reserved

0 0 1 0 0 Reserved

0 0 1 0 1 Reserved

0 0 1 1 0 128 Bytes

0 0 1 1 1 Reserved

0 1 0 0 0 Reserved

0 1 0 0 1 Reserved

0 1 0 1 0 2 Kbytes

0 1 0 1 1 Reserved

0 1 1 0 0 Reserved

0 1 1 0 1 16 Kbytes

0 1 1 1 0 32 Kbytes
Microchip Proprietary UG0448 Revision 10.0 235

System Register Block
10.6.47 Fabric Protected Base Address Register

The value of N depends on the protected region size, so that the base address is aligned according to an
even multiple of region size. The power of 2 size specified by SW_PROTREGIONSIZE[4:0] defines how
many bits of base address are used. For example, if the SW_PROTREGIONSIZE[4:0] is 01111, this
corresponds to a protected region of 64 KB. 64 KB is 2 to the power of 16. Therefore the value of N in this
case is 16. So the base address of the region, in this case, is specified by SW_PROTREGIONBASE[31:16].

10.6.48 EDAC Status Register

0 1 1 1 1 64 Kbytes

1 0 0 0 0 128 Kbytes

1 0 0 0 1 256 Kbytes

1 0 0 1 0 512 Kbytes

1 0 0 1 1 Reserved

1 0 1 0 0 Reserved

1 0 1 0 1 Reserved

1 0 1 1 0 8 Mbytes

1 0 1 1 1 Reserved

1 1 0 0 0 Reserved

Table 181 • FAB_PROT_BASE

Bit
Number Name

Reset
Value Description

[31:0] SW_PROTREGIONBASE 0 The base address of the memory region inaccessible to the
FPGA fabric master is determined by the value of this bus. Bit 0
of this bus is defined as SW_PROTREGIONENABLE. This has
the following meaning:
0: Protected region not enabled. This means that a master in the
FPGA fabric may access any location in the memory map, as
long as the fabric master port is enabled.
1: Protected region enabled. Any accesses attempted by a
fabric master to this region of memory return an error in the bus
transaction.
Bits [31:N] of this bus indicate the base address of the protected
region.

Table 182 • EDAC_SR

Bit
Number Name

Reset
Value Description

[31:6] Reserved 0

5 Reserved 0

4 Reserved 0

3 ESRAM1_EDAC_2E 0 Updated by the eSRAM_1 controller when a 2-bit SECDED error has
been detected for eSRAM1 memory.

Table 180 • Region Size (continued)
Microchip Proprietary UG0448 Revision 10.0 236

System Register Block
10.6.49 HPMS Internal Status Register

10.6.50 HPMS External Status Register

2 ESRAM1_EDAC_1E 0 Updated by the eSRAM_1 Controller when a 1-bit SECDED error has
been detected and is corrected for eSRAM1 memory.

1 ESRAM0_EDAC_2E 0 Updated by the eSRAM_0 controller when a 2-bit SECDED error has
been detected for eSRAM0 memory.

0 ESRAM0_EDAC_1E 0 Updated by the eSRAM_0 controller when a 1-bit SECDED error has
been detected and is corrected for eSRAM0 memory.

Table 183 • HPMS_INTERNAL_SR

Bit
Number Name

Reset
Value Description

[31:7] Reserved 0

6 DDR_FIC_INT 0 Indicates an interrupt from DDR_FIC.

5 MDDR_ECC_INT 0 Indicates when an SECDED interrupt from the MDDR
subsystem is asserted.

4 MDDR_IO_CALIB_INT 0 Interrupt is generated when the MDDR calibration is finished.

3 FAB_PLL_LOCKLOST_INT 0 Indicates that a falling edge event occurred on the
FAB_PLL_LOCK signal. This indicates that the fabric PLL lost
lock.

2 FAB_PLL_LOCK_INT 0 Indicates that a rising edge event occurred on the
FAB_PLL_LOCK signal. This indicates that the fabric PLL came
into lock.

1 MPLL_LOCKLOST_INT 0 Indicates that a falling edge event occurred on the MPLL_LOCK
signal. This indicates that the MPLL lost lock.

0 MPLL_LOCK_INT 0 Indicates that a rising edge event occurred on the MPLL_LOCK
signal. This indicates that the MPLL came into lock.

Table 184 • HPMS_EXTERNAL_SR

Bit
Number Name

Reset
Value Description

[31:18] Reserved 0

17 DDRB_LOCK_MID 0 Indicates which master (AHB bus or HPDMA) is responsible for lock
timeout condition.
0: AHB bus master
1: HPDMA

16 DDRB_LCKOUT 0 Asserted when lock timeout counter reaches its maximum value. Lock
time out counter (20-bit) is maintained in the HPMS DDR bridge,
which starts counting when a locked transfer obtains access to the
AXI bus. When the counter reaches maximum value, a
DDRB_LCKOUT interrupt is generated and stays asserted until
cleared by the fabric logic.

Table 182 • EDAC_SR (continued)
Microchip Proprietary UG0448 Revision 10.0 237

System Register Block
10.6.51 Clear EDAC Counters

15 DDRB_HPD_WR_ERR 0 Asserted when the HPMS DDR bridge gets an error response from
the DDR slave for an HPDMA write request. Address of write
transaction for which error response is received is provided by
DDRB_HPD_ERR_ADD.

14 DDRB_SW_WR_ERR 0 Asserted when the HPMS DDR bridge gets an error response from
the DDR slave for an AHB bus master write request. Address of write
transaction for which error response is received is provided by
DDRB_SW_ERR_ADD.

13 Reserved 0

[12:7] DDRB_RDWR_ERR_REG 0 Provides the read/write address match error status generated during
the following accesses:
Bit 0 = 1: AHB bus and HPDMA are trying to access same address
Bit [5:1] = 0

[6:0] SW_ERRORSTATUS 0 Indicates whether any accesses by the corresponding master on the
AHB bus resulted in either HRESP assertion by the slave to the AHB
bus, HRESP assertion by the AHB bus to that master (in the case of
blocked fabric master), or was decoded by the AHB bus as being to
“unimplemented” address space. The bit definitions are as follows:
Bit 0: Corresponds to an HRESP assertion being issued to the
HPDMA interface
Bit 1: Corresponds to an HRESP assertion being issued to FIC_0
interface
Bit 2: Corresponds to an HRESP assertion being issued to FIC_1
interface
Bit 4: Corresponds to an HRESP assertion being issued to the
peripheral DMA engine
Bit 6: Corresponds to an HRESP assertion being issued to the
System Controller

Table 185 • CLR_EDAC_COUNTERS

Bit
Number Name

Reset
Value Description

[31:4] Reserved 0

3 ESRAM1_EDAC_CNTCLR_2E 0 Pulse generated to clear the 16-bit counter value in eSRAM1
corresponding to the count value of EDAC 2-bit errors. This in
turn clears the upper 16 bits of the eSRAM1_EDAC_CNT
Register.

2 ESRAM1_EDAC_CNTCLR_1E 0 Pulse generated to clear the 16-bit counter value in eSRAM1
corresponding to count value of EDAC 1-bit errors. This in turn
clears the lower 16 bits of the eSRAM1_EDAC_CNT Register.

1 ESRAM0_EDAC_CNTCLR_2E 0 Pulse generated to clear the 16-bit counter value in eSRAM0
corresponding to count value of EDAC 2bit Errors. This in turn
clears the upper 16 bits of eSRAM0_EDAC_CNT the register.

Table 184 • HPMS_EXTERNAL_SR (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 238

System Register Block
10.6.52 Flush Configuration Register

0 ESRAM0_EDAC_CNTCLR_1E 0 Pulse generated to clear the 16-bit counter value in eSRAM0
corresponding to the count value of EDAC 1-bit errors. This in
turn clears the lower 16 bits of the ESRAM0_EDAC_CNT
Register.

Table 186 • FLUSH_CR

Bit
Number Name

Reset
Value Description

[31:8] Reserved 0

7 DDRB_INVALID_HPD 0 Allows the read buffer allocated for the AHB bus in the HPMS
DDR bridge to be invalidated.
0: No effect
1: Invalidate HPD read buffer

6 DDRB_INVALID_SW 0 Allows the read buffer for the high performance master in the
HPMS DDR bridge to be invalidated.
0: No effect
1: Invalidate AHB Bus read buffer

5 Reserved 0 Reserved

4 DDRB_FLSHSW 0 Allows the write buffer for the AHB bus in the HPMS DDR
bridge to be flushed. Data present in the write buffer is
transferred to the HPMS DDR bridge write arbiter interface
when this pulse is detected.
0: No effect
1: Flush AHB bus write buffer

3 DDRB_FLSHHPD 0 Allows the write buffer for the HPD master in the HPMS DDR
bridge to be flushed. Data present in the write buffer is
transferred to the HPMS DDR bridge write arbiter interface
when this pulse is detected.
0: No effect
1: Flush HPD write buffer

[2:0] Reserved 0

Table 185 • CLR_EDAC_COUNTERS (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 239

Fabric Interface Interrupt Controller
11 Fabric Interface Interrupt Controller

The fabric interface interrupt controller (FIIC) gathers interrupt signals from within the high performance
memory subsystem (HPMS) and makes them available to the FPGA fabric. There are a number of
peripherals and other blocks within the HPMS that generate interrupt signals. These interrupt signals can
be used as a potential interrupt sources to a user logic within the FPGA fabric.

11.1 Features
• FIIC receives 24 interrupts from the HPMS as inputs
• 16 individually configurable HPMS to fabric interrupt ports
The following figure depicts the connectivity of FIIC to the AHB bus matrix.

Figure 142 • FIIC Connection to AHB Bus Matrix

AHB Bus Matrix

MS5

eSRAM_1 eSRAM_0 eNVM_0HPDMADDR Bridge

MS1 MS0MS2MM3MS6MM7

AHB To AHB Bridge with Address Decoder

APB_0SYSREGFIC_1

MM4 MS4 MM5

SPI

PDMA
Configuration

FIIC COMM_BLK

MS5_FIC MS5_SR MS5_APB0 MS5_APB1

High Performance Memory Subsystem
DDR

PDMASystem
Controller

MM9

APB_1FIC_0

eNVM_1

MS3

HPDMA
Configuration

FIC_2 (Peripheral
Initialization)

MS5_FIC2
Microchip Proprietary UG0448 Revision 10.0 240

Fabric Interface Interrupt Controller
11.2 Functional Description
This section provides the detailed description of the FIIC subsystem.

11.2.1 Architecture Overview
The following figure shows the interfacing of the FIIC with HPMS peripheral interrupts and FPGA fabric.
The FIIC receives 24 level-sensitive active high interrupts from the HPMS as inputs. These HPMS
peripheral interrupts are combined, in a predetermined fashion, into 16 M2F interrupts
(HPMS_INT_M2F[15:0]) routed to the fabric. There is also a COMM_BLK interrupt, COMM_BLK_INT.

Figure 143 • Block Diagram for Fabric Interface Interrupt Controller

There are 16 circuits, as shown in the following figure. Each circuit corresponds to a row in Table 187,
page 242. The dedicated interrupts coming from the HPMS peripherals are always connected to the 16
M2F interrupt signals.

Figure 144 • Combinational Circuit for Mapping HPMS Interrupts to a HPMS_INT_M2F

Each fabric HPMS_INT_M2F signal can be triggered from one of two possible scenarios:

• Dedicated interrupts
• Multiplexed group of interrupts

AHB Bus Matrix

APB_0

H
P

M
S

_I
N

T_
M

2F
[1

5:
0]

C
O

M
M

_B
LK

_I
N

T

Fabric Interface Interrupt
Controller (FIIC)

FPGA Fabric

HPMS Peripheral
Interrupts

24 HPMS Peripheral
Interrupts

HPMS_INT_M2F

Dedicated

Select Group 1

Select Group 0

SELECT_MODE
Microchip Proprietary UG0448 Revision 10.0 241

Fabric Interface Interrupt Controller
The selection of the HPMS interrupt to a specific HPMS_INT_M2F signal and making it available to the
FPGA fabric is done in two stages:

• Select the group of interrupts - It can be done by setting the Select_Mode bit of the M2F Interrupt
Mode Register.

• Enable the interrupt - It can be done by writing to the appropriate FIIC INTERRUPT_ENABLE0 and
INTERRUPT_ENABLE1 Interrupt Enable Registers.

It is possible to overlay one interrupt signal with two interrupt sources. For example, enable a dedicated
interrupt and a group 0/1 interrupt. User logic in the fabric is responsible for determining the actual
source of the interrupt by reading the appropriate peripheral interrupt Status Registers and determining
which interrupt has occurred. Interrupts In and Out of the FIIC are asynchronous.

All interrupts originating from HPMS blocks and fed into the FIIC are active high level sensitive signals.
Once asserted, the interrupt remains asserted until the user logic clears the appropriate HPMS
peripheral interrupt clear register. HPMS_INT_M2F interrupt signals are serviced by the FPGA fabric.

Table 187 • Interrupt Line Signal Distribution

M2F Interrupt Signal Dedicated Select Group 0 Select Group 1
HPMS_INT_M2F[15] HPMSDDR_PLL_LOCKLOST_

INT
COMBLK_INTR FIC64_INT

HPMS_INT_M2F[14] Reserved SOFTINTERRUPT FAB_PLL_LOCKLOST_INT

HPMS_INT_M2F[13] Reserved Reserved FAB_PLL_LOCK_INT

HPMS_INT_M2F[12] Reserved ECCINTR Reserved

HPMS_INT_M2F[11] Reserved DDRB_INTR MDDR_IO_CALIB_INT

HPMS_INT_M2F[10] Reserved SW_ERRORINTERRUPT Reserved

HPMS_INT_M2F[9] HPD_XFR_CMP_INT HPMSDDR_PLL_LOCK_IN
T

Reserved

HPMS_INT_M2F[8] PDMAINTERRUPT HPD_XFR_ERR_INT Reserved

HPMS_INT_M2F[7] Reserved Reserved COMM_BLK_INTR

HPMS_INT_M2F[6] Reserved Reserved SOFTINTERRUPT

HPMS_INT_M2F[5] Reserved Reserved Reserved

HPMS_INT_M2F[4] Reserved Reserved ECCINTR

HPMS_INT_M2F[3] Reserved Reserved DDRB_INTR

HPMS_INT_M2F[2] Reserved Reserved SW_ERRORINTERRUPT

HPMS_INT_M2F[1] Reserved ENVM_INT1 HPMSDDR_PLL_LOCK_INT

HPMS_INT_M2F[0] SPIINT0 ENVM_INT0 HPD_XFR_ERR_INT
Microchip Proprietary UG0448 Revision 10.0 242

Fabric Interface Interrupt Controller
11.2.2 FIIC Port List

11.3 How to Use FIIC
FIIC is enabled by default while creating the Libero Project using System Builder. The following figure
shows a basic HPMS with the HPMS_INT_M2F[15:0] bus highlighted.

Figure 145 • FIIC Bus

11.3.0.1 HPMS to the Fabric Interrupt
The following figure shows the HPMS FIIC connected to user logic. The user logic can monitor the
HPMS_INT_M2F[15:0] signals and process according to the application requirement.

For the usage of HPMS interrupting the fabric in conjunction with PDMA, refer to HPMS Subsystem
Connected to the FPGA Fabric Master, page 119.

Figure 146 • HPMS to Fabric Interrupts

Table 188 • FIIC Port List

Port name Direction Polarity Description
HPMS_INT_M2F[15:0] Out High HPMS to fabric interrupts. The FIIC routes the

HPMS peripheral interrupts to the fabric.

COMM_BLK_INT Out COMMS block interrupt.

AHB Bus Matrix

eNVMeSRAM

FIC_X FIIC

User LogicHPMS_INT_M2F

HPMS

Fabric
Microchip Proprietary UG0448 Revision 10.0 243

Fabric Interface Interrupt Controller
11.4 FIIC Controller Registers
The register set contains two interrupt enable registers, two interrupt Status Registers and an interrupt
mode register.

The following table summarizes each of the registers covered by this chapter. The base address of the
FIIC block is 0x40006000.

For more information on these registers, see Table 190, page 244 through Table 194, page 249.

11.5 FIIC Controller Register Bit Definitions
The following tables give the bit definitions for registers in the FIIC.

Table 189 • IGLOO2 FPGA FIIC Register Map

Register Name
Address
Offset

Register
Type

Reset
Value Description

INTERRUPT_ENABLE0 0x00 R/W 0x0 Enables HPMS to fabric interrupts

INTERRUPT_ENABLE1 0x04 R/W 0x0 Enables HPMS to fabric interrupts

INTERRUPT_REASON0 0x08 RO 0x0 Indicates which interrupts are active

INTERRUPT_REASON1 0x0C RO 0x0 Indicates which interrupts are active

INTERRUPT_MODE 0x10 R/W 0x0 Indicates select group 0 or select group1

Table 190 • INTERRUPT_ENABLE0

Bit
Number Name

Reset
Value Description

[31:30] Reserved 0

29 COMBLK_INTR_ENBL 0 COMBLK_INTR interrupt from the
COMM_BLK block to fabric
1: Enable
0: Mask

28 SOFTINTERRUPT_ENBL 0 SOFTINTERRUPT interrupt from the
SYSREG block to fabric
1: Enable
0: Mask

27 Reserved 0

26 ECCINTR_ENBL 0 ECCINTR interrupt from ESRAM0, ESRAM1,
CAN, and MDDR to fabric
1: Enable
0: Mask
The ECCINTR interrupt is asserted when an
SECDED error has been detected in
ESRAM0, ESRAM1, CAN, or MDDR
memories.
Microchip Proprietary UG0448 Revision 10.0 244

Fabric Interface Interrupt Controller
25 DDRB_INTR_ENBL 0 HPMS DDR bridge DDRB_INTR to fabric
1: Enable
0: Mask
DDRB_INTR input indicates that either of the
following interrupts are asserted from the
HPMS DDR bridge.
–DDRB_ERROR interrupts
–DDRB_DISABLEDONE interrupts
–DDRB_LOCKTIMEOUT interrupts

24 SW_ERRORINTERRUPT_ENBL 0 SW_ERRORINTERRUPT interrupt from the
SYSREG block to fabric
1: Enable
0: Mask
HRESP from AHB bus matrix assertion to the
master in case of blocked fabric master or for
the unimplemented address space results in
SW_ERRORINTERRUPT signal.
In case of above error condition the following
signals are ORed together in SYSREG to
create the SW_ERRORINTERRUPT signal.
1. HRESP assertion being issued to the
HPDMA.
2. HRESP assertion being issued to FIC_0.
3. HRESP assertion being issued to FIC_1.
4. HRESP assertion being issued to the
peripheral DMA engine.
5. HRESP assertion being issued to the
system controller.

23 HPMSDDR_PLL_LOCK_INT_ENBL 0 HPMSDDR_PLL_LOCK_INT interrupt from
the MPLL block to fabric
1: Enable
0: Mask

22 HPD_XFR_ERR_INT_ENBL 0 HPD_XFR_ERR_INT interrupt from the
HPMS HPDMA block to fabric
1: Enable
0: Mask

[21:18] Reserved 0

17 ENVM_INT1_ENBL 0 ENVM_INT1 interrupt from HPMS ENVM1
block to fabric
1: Enable
0: Mask

16 ENVM_INT0_ENBL 0 ENVM_INT0 interrupt from the HPMS ENVM0
block to fabric
1: Enable
0: Mask

15 HPMSDDR_PLL_LOCKLOST_INT
_ENBL

0 HPMSDDR_PLL_LOCKLOST_INT interrupt
from MPLL to the fabric
1: Enable
0: Mask

[14:10] Reserved 0

Table 190 • INTERRUPT_ENABLE0 (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 245

Fabric Interface Interrupt Controller
9 HPD_XFR_CMP_INT_ENBL 0 HPD_XFR_CMP_INT interrupt from the
HPMS HPDMA block to fabric
1: Enable
0: Mask

8 PDMAINTERRUPT_ENBL 0 PDMAINTERRUPT interrupt from the HPMS
peripheral DMA block to fabric
1: Enable
0: Mask

[7:1] Reserved 0

0 SPIINT0_ENBL 0 SPIINT0 interrupt from the HPMS SPI_0
block to fabric
1: Enable
0: Mask

Table 191 • INTERRUPT_ENABLE1

Bit
Number Name

Reset
Value Description

[31:8] Reserved 0

7 FIC64_INT_ENBL 0 1: Enables the FIC64_INT interrupt from the
DDR_FIC block.
0: Mask the FIC64_INT interrupt from the
DDR_FIC block.

6 FAB_PLL_LOCKLOST_INT_ENBL 0 1: Enables the FAB_PLL_LOCKLOST_INT
interrupt from FAB_PLL.
0: Mask the FAB_PLL_LOCKLOST_INT
interrupt from FAB_PLL.

5 FAB_PLL_LOCK_INT_ENBL 0 1: Enables the FAB_PLL_LOCK_INT interrupt
from FAB_PLL.
0: Masks the FAB_PLL_LOCK_INT interrupt
from FAB_PLL.

4 Reserved 0

3 MDDR_IO_CALIB_INT_ENBL 0 1: Enables the MDDR_IO_CALIB_INT
interrupt from the MDDR block to fabric.
0: Masks the MDDR_IO_CALIB_INT interrupt
from the MDDR block to fabric.

[2:0] Reserved 0

Table 192 • INTERRUPT_REASON1

Bit
Number Name

Reset
Value Description

[31:8] Reserved 0

7 FIC64_INT_STATUS 0 Set if the interrupt source for FIC64_INT is
asserted and the FIC64_INT_ENBL interrupt
enable bit in INTERRUPT_ENABLE1 is High.

Table 190 • INTERRUPT_ENABLE0 (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 246

Fabric Interface Interrupt Controller
6 FAB_PLL_LOCKLOST_INT_STATUS 0 Set if the interrupt source for
FAB_PLL_LOCKLOST_INT is asserted and
the FAB_PLL_LOCKLOST_INT_ENBL
interrupt enable bit in INTERRUPT_ENABLE1
is High.

5 FAB_PLL_LOCK_INT_STATUS 0 Set if the interrupt source for
FAB_PLL_LOCK_INT is asserted and the
FAB_PLL_LOCK_INT_ENBL interrupt enable
bit in INTERRUPT_ENABLE1 is High.

4 Reserved 0

3 MDDR_IO_CALIB_INT_STATUS 0 Set if the interrupt source for
MDDR_IO_CALIB_INT is asserted and the
MDDR_IO_CALIB_INT_ENBL interrupt enable
bit in INTERRUPT_ENABLE1 is High.

[2:0] Reserved 0

Table 193 • INTERRUPT_REASON0

Bit
Number Name

Reset
Value Description

[31:30] Reserved 0

29 COMBLK_INTR_STATUS 0 Set if the interrupt source for
COMBLK_INTR is asserted and the
COMBLK_INTR_ENBL interrupt enable
bit in INTERRUPT_ENABLE0 is High.

28 SOFTINTERRUPT_STATUS 0 Set if the interrupt source for
SOFTINTERRUPT is asserted and the
SOFTINTERRUPT_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is
High.

27 Reserved 0

26 ECCINTR_STATUS 0 Set if the interrupt source for ECCINTR
is asserted and the ECCINTR_ENBL
interrupt enable bit in
INTERRUPT_ENABLE0 is High.

25 DDRB_INTR_STATUS 0 Set if the interrupt source for
DDRB_INTR is asserted and the
DDRB_INTR_ENBL interrupt enable bit
in INTERRUPT_ENABLE0 is High.

24 SW_ERRORINTERRUPT_STATUS 0 Set if the interrupt source for
SW_ERRORINTERRUPT is asserted
and the
SW_ERRORINTERRUPT_ENBL
interrupt enable bit in
INTERRUPT_ENABLE0 is High.

Table 192 • INTERRUPT_REASON1 (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 247

Fabric Interface Interrupt Controller
23 HPMSDDR_PLL_LOCK_INT_STATUS 0 Set if the interrupt source for
HPMSDDR_PLL_LOCK_INT is
asserted and the
HPMSDDR_PLL_LOCK_INT_ENBL
interrupt enable bit in
INTERRUPT_ENABLE0 is High.
HPMSDDR_PLL_LOCK_INT interrupt
is asserted when MPLL achieves lock.

22 HPD_XFR_ERR_INT_STATUS 0 Set if the interrupt source for
HPD_XFR_ERR_INT is asserted and
the HPD_XFR_ERR_INT_ENBL
interrupt enable bit in
INTERRUPT_ENABLE0 is High.

[21:18] Reserved 0

17 ENVM_INT1_STATUS 0 Set if the interrupt source for
ENVM_INT1 is asserted and the
ENVM_INT1_ENBL interrupt enable bit
in INTERRUPT_ENABLE0 is High.

16 ENVM_INT0_STATUS 0 Set if the interrupt source for
ENVM_INT0 is asserted and the
ENVM_INT0_ENBL interrupt enable bit
in INTERRUPT_ENABLE0 is High.

15 HPMSDDR_PLL_LOCKLOST_INT_STATU
S

0 Set if the interrupt source for
HPMSDDR_PLL_LOCKLOST_INT is
asserted and the
HPMSDDR_PLL_LOCKLOST_INT_EN
BL interrupt enable bit in
INTERRUPT_ENABLE0 is High.

[14:10] Reserved 0

9 HPD_XFR_CMP_INT_STATUS 0 Set if the interrupt source for
HPD_XFR_CMP_INT is asserted and
the HPD_XFR_CMP_INT_ENBL
interrupt enable bit in
INTERRUPT_ENABLE0 is High.

8 PDMAINTERRUPT_STATUS 0 Set if the interrupt source for
PDMAINTERRUPT is asserted and the
PDMAINTERRUPT_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is
High.

[7:1] Reserved 0

0 SPIINT0_STATUS 0 Set if the interrupt source for SPIINT0 is
asserted and the SPIINT0_ENBL
interrupt enable bit in
INTERRUPT_ENABLE0 is High.

Table 193 • INTERRUPT_REASON0 (continued)

Bit
Number Name

Reset
Value Description
Microchip Proprietary UG0448 Revision 10.0 248

Fabric Interface Interrupt Controller
Table 194 • INTERRUPT_MODE

Bit
Number Name

Reset
Value Description

[31:1] Reserved 0

0 SELECT_MODE 0 The following are the valid values for this bit:
0: Select group 0
1: Select group 1
Microchip Proprietary UG0448 Revision 10.0 249

Fabric Interface Controller
12 Fabric Interface Controller

The HPMS fabric interface controller (FIC) performs a bridging function for AHB-Lite to APB3 or APB3 to
AHB-Lite between the AHB bus matrix and the FPGA fabric. There are up to two 32-bit FIC blocks in
IGLOO2 devices, referred to as FIC_0 and FIC_1. Each FIC block provides a master interface (AHB-Lite
or APB3) and a slave interface (AHB-Lite or APB3). But both master and slave interfaces need to
operate in the same bus protocol, either AHB-Lite or APB3. However, it is possible to have master and
slave at the same time. Each FIC block can operate on a different clock frequency, defined as a ratio of
the HPMS main clock, HPMS_CLK.

The IGLOO2 architecture imposes a certain number of rules related to clocking domains between the
fabric interfaces and the FPGA fabric. This document provides guidance on how to properly construct
such systems. The following figure depicts the connectivity of FIC_0 and FIC_1 to the AHB bus matrix.

Figure 147 • The FIC Connection to the AHB Bus Matrix

The following table lists the number of FICs available for use in each device.

Table 195 • Number of FICs Available for Use in Each Device

Device FIC Blocks
M2GL005 11

1. Only FIC_0 is available.

M2GL010
M2GL025
M2GL050 2
M2GL060 11

M2GL090
M2GL150 2

AHB Bus Matrix

MS5

eSRAM_1 eSRAM_0 eNVM_0HPDMADDR Bridge

MS1 MS0MS2MM3MS6MM7

AHB To AHB Bridge with Address Decoder

APB_0SYSREGFIC_1

MM4 MS4 MM5

SPI

PDMA
Configuration

FIIC COMM_BLK

MS5_FIC MS5_SR MS5_APB0 MS5_APB1

High Performance Memory Subsystem
DDR

PDMASystem
Controller

MM9

APB_1FIC_0

eNVM_1

MS3

HPDMA
Configuration

FIC_2 (Peripheral
Initialization)

MS5_FIC2
Microchip Proprietary UG0448 Revision 10.0 250

Fabric Interface Controller
12.1 Functional Description
This section provides a detailed description of the FIC subsystem.

The following figure shows a block diagram for the FIC. The FIC is a hard block; enabling or disabling it
will not use any user logic.

Figure 148 • Fabric Interface Controller Block Diagram

12.1.1 Configuring FIC for Master or Slave Interface
FIC_0 and FIC_1 can be configured independently from each other by using System Builder in the Libero
SoC Software. There are two options:

• The HPMS is the master and the fabric has the slave (HM - hard master)
• The fabric has the master and the HPMS is the slave (FM - fabric master)
Since FIC_0 and FIC_1 have an AMBA interface, user logic should implement the AMBA AHB-Lite or
APB3 protocol in order to communicate with the FIC. Microchip provides numerous AHB and APB v 3.0
compliant cores in the Libero SoC IP catalog for easy instantiation into the FPGA fabric. Instantiate
CoreAHBLite and CoreAPB3 soft IP into the fabric to allow further instantiation of soft AHB-Lite and
APB3 masters and slaves.

HPMS

AHB Bus Matrix

AHB-Lite Mirrored
Master Interface

AHB-Lite Mirrored
Slave Interface

Fabric Interface Controller (FIC)

AHB-LIte Master
Interface

AHB-LIte Slave
Interface

AHB-Lite / APB3
Master Interface

AHB-Lite / APB3
Slave Interface

FPGA Fabric
Microchip Proprietary UG0448 Revision 10.0 251

Fabric Interface Controller
12.2 FIC Interface Port List
The following figure shows FIC top-level view. The bridge from the HPMS master to the fabric slave
translates the AHB-Lite to AHB-Lite or APB3; and the bridge from the fabric master to the HPMS slave
translates AHB-Lite or APB3 to AHB-Lite.

Figure 149 • Fabric Interface Controller Top-Level View

The following table lists the FIC ports.

Table 196 • Fabric Interface Controller Port List

Port Name Direction Description
FIC_X_MASTER_ID [1:0] Out Current master performing the transfer.

FIC_X_APB_S_PRDATA [31:0] Out APB3 read data to the fabric master.

FIC_X_APB_S_PADDR [31:0] In APB3 address initiated by the fabric master.

FIC_X_APB_S_PREADY Out APB3 ready signal to the fabric master.

FIC_X_APB_S_PSEL In APB3 slave select signal from the fabric master.

FIC_X

Bridge from
HPMS Master to

Fabric Slave

Bridge from Fabric
Master to HPMS Slave

AHB-Lite Signals from
AHB Bus Matrix Master
Interface to FIC_X

AHB-Lite Signals from
FIC_X to AHB Bus Matrix
Slave Interface

FIC_X_APB_M_PRDATA
FIC_X_APB_M_PADDR
FIC_X_APB_M_PREADY
FIC_X_APB_M_PSEL
FIC_X_APB_M_PWRITE
FIC_X_APB_M_PENABLE
FIC_X_APB_M_PWDATA
FIC_X_APB_M_PSLVERR

FIC_X_AHB_M_HRDATA
FIC_X_AHB_M_HADDR
FIC_X_AHB_M_HREADY
FIC_X_AHB_M_HWRITE
FIC_X_AHB_M_HSIZE
FIC_X_AHB_M_HWDATA
FIC_X_AHB_M_HRESP
FIC_X_AHB_M_HTRANS

FIC_X_MASTER_ID

FIC_X_APB_S_PRDATA
FIC_X_APB_S_PADDR
FIC_X_APB_S_PREADY
FIC_X_APB_S_PSEL
FIC_X_APB_S_PWRITE
FIC_X_APB_S_PENABLE
FIC_X_APB_S_PWDATA
FIC_X_APB_S_PSLVERR

FIC_X_AHB_S_HRDATA
FIC_X_AHB_S_HADDR
FIC_X_AHB_S_HREADY
FIC_X_AHB_S_HSEL
FIC_X_AHB_S_HWRITE
FIC_X_AHB_S_HSIZE
FIC_X_AHB_S_HWDATA
FIC_X_AHB_S_HRESP
FIC_X_AHB_S_HTRANS
FIC_X_AHB_S_HMASTER
FIC_X_AHB_S_HREADYOUT
Microchip Proprietary UG0448 Revision 10.0 252

Fabric Interface Controller
FIC_X_APB_S_PWRITE In APB3 write control signal from the fabric master.

FIC_X_APB_S_PENABLE In APB3 enable from the fabric master.

FIC_X_APB_S_PWDATA [31:0] In APB3 write data from the fabric master.

FIC_X_APB_S_PSLVERR Out Error condition on an APB3 transfer to the fabric
master.

FIC_X_APB_M_PRDATA [31:0] In APB3 read data from the fabric slave.

FIC_X_APB_M_PADDR [31:0] Out APB3 address to the fabric slave.

FIC_X_APB_M_PREADY In APB3 ready signal from the fabric slave.

FIC_X_APB_M_PSEL Out APB3 slave select signal to the fabric slaves.

FIC_X_APB_M_PWRITE Out APB3 write control signal to the fabric slaves.

FIC_X_APB_M_PENABLE Out APB3 enable to the fabric slave.

FIC_X_APB_M_PWDATA [31:0] Out APB3 write data to the fabric slave.

FIC_X_APB_M_PSLVERR In Error condition on an APB3 transfer from the
fabric slave.

FIC_X_AHB_S_HRDATA [31:0] Out AHB read data to the fabric master.

FIC_X_AHB_S_HADDR [31:0] In AHB address initiated by the fabric master.

FIC_X_AHB_S_HREADY In Transfer has completed on the bus. The fabric
master can drive this signal Low to extend a
transfer.

FIC_X_AHB_S_HWDATA [31:0] In AHB write data from the fabric master.

FIC_X_AHB_S_HWRITE In AHB write control signal from the fabric master.

FIC_X_AHB_S_HRESP Out AHB transfer response to the fabric master.

FIC_X_AHB_S_HSIZE [1:0] In AHB transfer size from the fabric master.

FIC_X_AHB_S_HTRANS [1:0] In AHB transfer type from the fabric master.

FIC_X_AHB_S_HMASTLOCK In AHB master lock signal from the fabric master.

FIC_X_AHB_S_HSEL In AHB slave select signal from the fabric master.

FIC_X_AHB_S_HREADYOUT Out Transfer has completed on the bus. The signal is
asserted Low to extend a transfer. Input to the
fabric master.

FIC_X_AHB_M_HWRITE Out AHB write control signal to the fabric slave.

FIC_X_AHB_M_HADDR [31:0] Out AHB address to the fabric slave.

FIC_X_AHB_M_HREADY In Transfer has completed on the bus. The fabric
slave can drive this signal Low to extend a
transfer.

FIC_X_AHB_M_HWDATA [31:0] Out AHB-Lite write data to the fabric slave.

FIC_X_AHB_M_HRDATA [31:0] In AHB-Lite read data from the fabric slave.

FIC_X_AHB_M_HRESP In AHB-Lite transfer response from the fabric slave.

Table 196 • Fabric Interface Controller Port List (continued)

Port Name Direction Description
Microchip Proprietary UG0448 Revision 10.0 253

Fabric Interface Controller
12.3 Timing Diagrams
The following timing diagrams illustrate AHB-Lite non-sequential transfers with 32 bits as the transfer
size.

The following figure illustrates the AHB-Lite bus signals from the fabric master to the fabric interface
controller for write transactions. Generation of pipelined requests depends on the efficiency of the master
in the fabric to generate it.

Figure 150 • Timing Diagram for AHB-Lite Bus Signals from Fabric Master to FIC for a Write Transaction

The following figure illustrates the AHB-Lite bus signals from the fabric master to the fabric interface
controller for read transactions. Generation of pipelined requests depends on the efficiency of the master
in the fabric to generate it.

Figure 151 • Timing Diagram for AHB-Lite Bus Signals from Fabric Master to FIC for a Read Transaction

FIC_X_AHB_M_HSIZE [1:0] Out AHB-Lite transfer size to the fabric slave.

FIC_X_AHB_M_HTRANS [1:0] Out AHB-Lite transfer type to the fabric slave.

Table 196 • Fabric Interface Controller Port List (continued)

Port Name Direction Description

T1 T2 T3 T4 T5 T6 T7 T8

A A + 4

00

00 10

10

10

10

FIC_X_AHB_S_HCLK

FIC_X_AHB_S_HADDR[31:0]

FIC_X_AHB_S_HTRANS

FIC_X_AHB_S_HSIZE

FIC_X_AHB_S_HWRITE

FIC_X_AHB_S_HSEL

FIC_X_AHB_S_HWDATA[31:0]

FIC_X_AHB_S_HREADY

Data (A) Data (A+4)

T1 T2 T3 T4 T5 T6 T7 T8

A A + 4

00

00 10

10

10

10

FIC_X_AHB_S_HCLK

FIC_X_AHB_S_HADDR[31:0]

FIC_X_AHB_S_HTRANS

FIC_X_AHB_S_HSIZE

FIC_X_AHB_S_HWRITE

FIC_X_AHB_S_HSEL

FIC_X_AHB_S_HRDATA[31:0]

FIC_X_AHB_S_HREADY

Data (A)
Microchip Proprietary UG0448 Revision 10.0 254

Fabric Interface Controller
The following figure illustrates the AHB-Lite bus signals from the fabric interface controller to the fabric
slave for write transaction.

Figure 152 • Timing Diagram for AHB-Lite Bus Signals from FIC to the Fabric Slave for a Write Transaction

The following figure illustrates the AHB-Lite bus signals from the fabric interface controller to the fabric
slave for read transaction.

Figure 153 • Timing Diagram for AHB-Lite Bus Signals from FIC to the Fabric Slave for a Read Transaction

The following timing diagrams illustrate the APB3 write and read transfers.

Figure 154, page 256 and Figure 156, page 257 show an example of basic write transfer with no wait
states. The APB3 write transfer starts with the address, PADDR
(FIC_X_APB_M_PADDR/FIC_X_APB_S_PADDR), write data, PWDATA
(FIC_X_APB_M_PWDATA/FIC_X_APB_S_PWDATA), write signal, PWRITE
(FIC_X_APB_M_PWRITE/FIC_X_APB_S_PWRITE), and select signal PSEL
(FIC_X_APB_M_PSEL/FIC_X_APB_S_PSEL) - all changing after the rising edge of the PCLK
(FIC_X_APB_M_PCLK/FIC_X_APB_S_PCLK). In the next clock edge, the enable signal is asserted.

T1 T2 T3 T4 T5 T6 T7 T8

A A + 4

00

00 00

0010

10

10

10

FIC_X_AHB_M_HCLK

FIC_X_AHB_M_HADDR[31:0]

FIC_X_AHB_M_HTRANS

FIC_X_AHB_M_HSIZE

FIC_X_AHB_M_HWRITE

FIC_X_AHB_M_HSEL

FIC_X_AHB_M_HWDATA[31:0]

FIC_X_AHB_M_HREADY

Data (A) Data (A+4)

FIC_X_AHB_M_HCLK

FIC_X_AHB_M_HADDR[31:0]

FIC_X_AHB_M_HTRANS

FIC_X_AHB_M_HSIZE

FIC_X_AHB_M_HWRITE

FIC_X_AHB_M_HSEL

FIC_X_AHB_M_HRDATA[31:0]

FIC_X_AHB_M_HREADY

T1 T2 T3 T4 T5 T6 T7 T8

A A + 4

00

00 00

0010

10

10

10

Data (A)
Microchip Proprietary UG0448 Revision 10.0 255

Fabric Interface Controller
PENABLE (FIC_X_APB_M_PENABLE/FIC_X_APB_S_PENABLE) indicates that the Access phase is
taking place. The address, data, and control signals all remain valid throughout this Access phase. The
transfer completes at the end of this cycle and PENABLE is deasserted at the end of the transfer. PSEL
also goes Low unless the transfer is to be followed immediately by another transfer to the same
peripheral. During an Access phase, when PENABLE is High, the transfer can be extended by driving
PREADY (FIC_X_APB_M_PREADY/FIC_X_APB_S_PREADY) Low.

Figure 154 • Timing Diagram for APB3 Bus Signals from Fabric Master to FIC for a Write Transaction

Figure 155 • Timing Diagram for APB3 Bus Signals from Fabric Master to FIC for a Read Transaction

During a read transfer, the timing of PADDR, PWRITE, PSEL, and PENABLE signals are as described in
Write transfers. The slave must provide the data before the end of the read transfer. The transfer is
extended if PREADY is driven Low during an Access phase. Figure 155, page 256 and Figure 157,
page 257 show an example of basic read transfer with no wait states.

FIC_X_APB_S_PREADY

T0 T1 T2 T3 T4

FIC_X_APB_S_PCLK

FIC_X_APB_S_PADDR

FIC_X_APB_S_PWRITE

FIC_X_APB_S_PSEL

FIC_X_APB_S_PENABLE

FIC_X_APB_S_PWDATA

Addr 1

Data 1

FIC_X_APB_S_PREADY

T0 T1 T2 T3 T4

FIC_X_APB_S_PCLK

FIC_X_APB_S_PADDR

FIC_X_APB_S_PWRITE

FIC_X_APB_S_PSEL

FIC_X_APB_S_PENABLE

FIC_X_APB_S_PRDATA

Addr 1

Data 1
Microchip Proprietary UG0448 Revision 10.0 256

Fabric Interface Controller
Figure 156 • Timing Diagram for APB3 Bus Signals from FIC to the Fabric Slave for a Write Transaction

Figure 157 • Timing Diagram for APB3 Bus Signals from FIC to the Fabric Slave for a Read Transaction

12.4 Implementation Considerations
In AHB mode, the user may perform byte, half word, and word accesses from the fabric to HPMS.
However, in APB16 mode, the user can only cause a word access to occur to an HPMS slave. This is
done by two accesses over the APB16, one of which is to write a 16-bit holding register (in the case of
writes) or to read a 16-bit holding register in the case of reads.

12.5 Fabric Interface Clocks
The HPMS clocks should be aligned with fabric clock to establish the synchronous communication
between the HPMS peripheral and the user logic. The fabric alignment clock controller (FACC) within the
HPMS CCC generates the various aligned clocks required by the HPMS sub-blocks, and controlling the
alignment of the FPGA fabric interface clocks. The following rules of the IGLOO2 architecture must be
followed for synchronous communication between the HPMS and FPGA fabric FIC subsystems.

• The HPMS and FPGA fabric FIC clocks must have matching frequencies for each FIC subsystem.
• The FPGA fabric FIC subsystem clock with the smallest frequency must drive the HPMS

CLK_BASE.
• Align all the FPGA fabric FIC subsystem clocks precisely; the clocks could be of different

frequencies, but align the rising-edges of the slower clocks to the rising-edges of the faster clocks.
Refer to the UG0449: SmartFusion2 SoC FPGA and IGLOO2 FPGA Clocking Resources User Guide for
more details on the alignment of fabric clocks and derived clocks in the HPMS.

FIC_X_APB_M_PREADY

T0 T1 T2 T3 T4

FIC_X_APB_M_PCLK

FIC_X_APB_M_PADDR

FIC_X_APB_M_PWRITE

FIC_X_APB_M_PSEL

FIC_X_APB_M_PENABLE

FIC_X_APB_M_PWDATA

Addr 1

Data 1

FIC_X_APB_M_PREADY

T0 T1 T2 T3 T4

FIC_X_APB_M_PCLK

FIC_X_APB_M_PADDR

FIC_X_APB_M_PWRITE

FIC_X_APB_M_PSEL

FIC_X_APB_M_PENABLE

FIC_X_APB_M_PRDATA

Addr 1

Data 1
Microchip Proprietary UG0448 Revision 10.0 257

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/microchip_smartfusion2_igloo2_clocking_resources_user_guide_ug0449_v9.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012

Fabric Interface Controller
12.6 How to Use FIC
This section describes how to use the FIC subsystem in the design. To configure the IGLOO2 device
features and then build a complete system, use the System Builder graphical design wizard in the
Libero Software.

12.6.1 FIC_1 Configuration
The following figure shows the initial System Builder window where the required device features can be
selected. For details on how to launch the System Builder wizard and detailed information on how to
use it, refer the IGLOO2 System Builder User Guide.

Figure 158 • System Builder Window
Microchip Proprietary UG0448 Revision 10.0 258

https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf

Fabric Interface Controller
1. Click Next in the Device Features tab to navigate to the Peripherals tab.
2. In the Peripherals tab, drag and drop the Fabric AMBA Slave and Fabric AMBA Master on to

HPMS FIC_1 - Fabric Master Subsystem. The following figure shows the Peripherals tab with the
master and slave components configured in the HPMS FIC_1 - Fabric Master Subsystem.

Figure 159 • System Builder- Peripherals Tab

3. To select the interface type for the fabric master, right-click on the master and select Configure. The
following figure shows the Configure option.

Figure 160 • Peripherals Tab - Configure Option for AMBA_MASTER_0
Microchip Proprietary UG0448 Revision 10.0 259

Fabric Interface Controller
4. From the Configuring AMBA Master dialog, select the Interface Type according to your
requirement, as shown in the following figure.
Repeat step 3 and step 4 to configure fabric slave interface type.

Figure 161 • Interface Type Configuration

5. Click Next to navigate to the Clocks tab.
6. Select the ratio of the FIC_1_CLK against the HPMS_CLK. The following figure shows the Clocks

tab with the FIC_1_CLK configuration option highlighted.
Figure 162 • Clocks Tab - Fabric Interface Clocks

7. Click Next to navigate to the HPMS Options tab.
Microchip Proprietary UG0448 Revision 10.0 260

Fabric Interface Controller
8. Enter the weight value for the Round Robin Weight for FIC_1 Master as shown in the following
figure.

Figure 163 • HPMS Options Tab with Round Robin Weight for FIC_1 Master

9. Navigate to the Memory Map tab giving the required data in the rest of the System Builder tabs.
10. Click Finish to create the subsystem as shown in the following figure.

Figure 164 • Memory Map Tab
Microchip Proprietary UG0448 Revision 10.0 261

Fabric Interface Controller
12.6.2 FIC_0 Configuration
The System Builder configures FIC_0 as master interface based on the following user selection:

• If one of the eNVM, eSRAM, PDMA, or HPDMA is selected, the System Builder configures FIC_0 as
AHB-Lite slave. A Fabric AHB-Lite master can be connected to do the data transfer.

• If HPMS System Services is selected, the system builder configures FIC_0 as AHB-Lite slave. But it
is meant to connect the CoreSysServices IP only.

If the user has enabled PDMA or HPDMA and wants to transfer data to/from the HPMS DDR/eNVM
/eSRAM to/from Fabric AMBA slaves, drag-and-drop a fabric AMBA slave core from the available cores
panel to FIC_0 - HPMS master subsystem. The System Builder then configures FIC_0 slave interface as
well.

For more information on configuring Peripherals refer to “IGLOO2 Design Subsystems” section of
IGLOO2 System Builder User Guide.

For more information on configuring FIC interface signals refer to “Generating Your System” section of
IGLOO2 System Builder User Guide.

12.6.3 Use Model 1: Connecting APB3 Master and Slave to FIC_1
1. Navigate to the Peripherals tab in the System Builder wizard. Add AMBA master and slave to

FIC_1 subsystem.
2. Select the interface type as APB3 for FIC_1 master and slave.
3. Proceed with the rest of the configurations in the System Builder wizard and create the subsystem.
4. Instantiate the user APB3 master logic and slave logic in the SmartDesign canvas and connect them

to FIC_1 master and slave interfaces as shown in the following figure.
Figure 165 • Top-Level Smart Design View for Use Model 1

12.6.4 Use Model 2: Connecting AHB-Lite Master and Slave to FIC_1
1. Navigate to the Peripherals tab in the System Builder wizard. Add AMBA master and slave to

FIC_1 subsystem.
2. Select the interface type as AHB-Lite for FIC_1 master and slave.
3. Proceed with the rest of the configurations in the System Builder wizard and create the subsystem.
Microchip Proprietary UG0448 Revision 10.0 262

https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf
https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf
http://coredocs.s3.amazonaws.com/.../SysBuilder/igl2_system_builder_ug_1.pdf
http://coredocs.s3.amazonaws.com/.../SysBuilder/igl2_system_builder_ug_1.pdf

Fabric Interface Controller
4. Instantiate user AHB-Lite master logic and slave logic in the Smart Design canvas and connect them
to FIC_1 master and slave interfaces as shown in the following figure.

Figure 166 • Top-Level Smart Design View for Use Model 2

Note: The HPMS FIC supports full behavioral simulation models.

12.7 SYSREG Control Registers for FIC_0 and FIC_1
Refer to the System Register Block, page 197 for a detailed description of each register and bit.The
following table gives the Control Registers for FIC_0 and FIC_1 from the SYSREG block.

12.8 Reference Documents
AMBA 3 AHB-Lite Protocol Specification:
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0033a/index.html

AMBA 3 APB Protocol Specification:
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0024b/index.html

Table 197 • FAB_IF Register in the SYSREG Block

Register name
Register
Type

Flash
Write
Protect Reset Source Description

FAB_IF_CR RW-P Register SYSRESET_N Control Register for fabric interface.

SOFT_RESET_CR RW-P Bit SYSRESET_N Generates software control
interrupts to the HPMS peripherals.

HPMSDDR_FACC1_CR RW-P Field CC_SYSRESET_N HPMS DDR fabric alignment clock
controller 1 Configuration Register

HPMSDDR_CLK_CALIB_STATUS RO SYSRESET_N HPMS DDR clock calibration Status
Register
Microchip Proprietary UG0448 Revision 10.0 263

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0024b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0033a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0033a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0033a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0024b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0033a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0024b/index.html

FIC_2 (APB Configuration Interface)
13 FIC_2 (APB Configuration Interface)

The SerDes interface (SERDESIF), fabric double data rate system (FDDR), and microcontroller
subsystem DDR (MDDR) controller have to be initialized properly during bootup. Each of these
subsystems contain a large number of internal registers for initialization and run-time operation. These
registers are accessed through a dedicated peripheral initialization bus, APB configuration bus, so FIC_2
is also referred to as APB Configuration Interface. The APB configuration interface is compliant with
AMBA 3 APB protocol specification.

13.1 Functional Description
This section provides the detailed description of the FIC_2 (APB configuration bus) subsystem.

Figure 167 • APB Configuration Interface and Subsystems Connections with HPMS Master

AHB Bus Matrix

FIC_2

SERDESIF0

CoreConfigP

FPGA Fabric

HPMS

DDR IO

D
D

R
 IO

La
ne

 0

La
ne

 1

La
ne

 2

La
ne

 3

La
ne

 0

La
ne

 1

La
ne

 2

La
ne

 3

LPDDR

APBAPB
FDDR
APB

IGLOO2 FPGA

MDDR
APB

HPMS DDR
Bridge

HPDMA

HPMS_CCC

Reset
Controller

HPMS_CLK

FIC_2_APB_MASTER

FI
C

_2
_A

P
B

_M
_P

R
E

S
E

T_
N

M
D

D
R

_A
P

B
_S

LA
V

E

A
P

B
_S

_P
R

E
S

E
T_

N

A
P

B
_S

_P
C

LK

S
D

IF
0_

A
P

B
_S

LA
V

E

A
P

B
_S

_P
R

E
S

E
T_

N

A
P

B
_S

_P
C

LK

FD
D

R
_A

P
B

_S
LA

V
E

A
P

B
_S

_P
R

E
S

E
T_

N

A
P

B
_S

_P
C

LK

S
D

IF
1_

A
P

B
_S

LA
V

E

M
D

D
R

_A
P

B
_P

C
LK

M
D

D
R

_A
P

B
_S

_P
R

E
S

E
T_

N

FI
C

_2
_A

P
B

_M
_P

C
LK

/4

SERDESIF1

DDR 2
DDR 3

LPDDR
DDR 2

DDR 3
Microchip Proprietary UG0448 Revision 10.0 264

FIC_2 (APB Configuration Interface)
13.1.1 Architecture Overview
The preceding figure shows the APB configuration interfaces and SerDes and DDR subsystems
connections with the HPMS master. The FIC_2 port in the AHB bus matrix routes the APB configuration
interface to the FPGA fabric. The SerDes and DDR subsystems are connected through CoreConfig IP.
CoreConfig IP must be instantiated in the FPGA fabric to allow configuration of FDDR, SERDESIF, and
MDDR.

The following tables (Table 198, page 265 through Table 201, page 266) lists the APB configuration
interface signals and descriptions.

The APB configuration space is divided into multiple partitions; each partition is reserved to a specific
module or type of functionality. The APB addresses are word aligned.

The base address of FDDR, SERDESIF0, and SERDESIF1 configuration address space resides at
0x40020400 and extends to address 0x4002FFFF in the memory map.

• Refer to the “Fabric DDR Subsystem” chapter in the UG0446: SmartFusion2 SoC FPGA and
IGLOO2 FPGA High Speed DDR Interfaces User Guide for FDDR register map details and address
space partition.

• Refer to the “Serializer/Deserializer” chapter of the UG0447: IGLOO2 FPGA and SmartFusion2 SoC
FPGA High Speed Serial Interfaces User Guide for SerDes register map details and address space
partition.

The base address of the MDDR configuration address space resides at 0x40020000 and extends to
address 0x400203FF in the memory map.

• Refer to the “MDDR Subsystem” chapter of the UG0446: SmartFusion2 SoC FPGA and IGLOO2
FPGA High Speed DDR Interfaces User Guide for MDDR register map details and address space
partition.

13.1.2 Port List
Table 198 • FDDR APB Slave Configuration Interface Port List

Port Name Direction Polarity Description
APB_S_PSEL In High Indicates APB slave select

APB_S_PENABLE In High Indicates APB enable

APB_S_PWRITE In High APB write control signal. Indicates read when Low
and write when High.

APB_S_PADDR [10:2] In Indicates APB address. Addresses are word aligned.

APB_S_PWDATA [15:0] In Indicates APB write data

APB_S_PRDATA [15:0] Out Indicates APB read data

APB_S_PREADY Out Indicates APB PREADY signal and is used to extend
an APB transfer.

APB_S_PSLVERR Out High Indicates a transfer failure

APB_S_PCLK In Indicates APB clock

APB_S_PRESET_N In Low Indicates APB active low reset

Table 199 • MDDR APB Slave Configuration Interface Port List

Port Name Direction Polarity Description
MDDR_APB_S_PSEL In High Indicates APB slave select

MDDR_APB_S_PENABLE In High Indicates APB enable

MDDR_APB_S_PWRITE In High APB write control signal. Indicates read when Low and
write when High.
Microchip Proprietary UG0448 Revision 10.0 265

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/SmartFusion2_IGLOO2_DDR_UG0446_V8.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/SmartFusion2_IGLOO2_DDR_UG0446_V8.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/UserGuides/Microchip_SmartFusion2_IGLOO2_High_Speed_Serial_Interfaces_User_Guide_UG0447_V10.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/UserGuides/Microchip_SmartFusion2_IGLOO2_High_Speed_Serial_Interfaces_User_Guide_UG0447_V10.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/SmartFusion2_IGLOO2_DDR_UG0446_V8.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/SoC/SmartFusion2_IGLOO2_DDR_UG0446_V8.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132040
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132040

FIC_2 (APB Configuration Interface)
MDDR_APB_S_PADDR [10:2] In Indicates APB address. Addresses are word aligned.

MDDR_APB_S_PWDATA [15:0] In Indicates APB write data

MDDR_APB_S_PRDATA [15:0] Out Indicates APB read data

MDDR_APB_S_PREADY Out Indicates APB PREADY signal and is used to extend
an APB transfer.

MDDR_APB_S_PSLVERR Out High Indicates a transfer failure

MDDR_APB_S_PCLK In Indicates APB clock

MDDR_APB_S_PRESET_N In Low Indicates APB active low reset

Table 200 • SERDERIF APB Slave Configuration Interface Port List

Port Name Direction Polarity Description
APB_S_PSEL In High Indicates APB slave select

APB_S_PENABLE In High Indicates APB enable

APB_S_PWRITE In High Indicates APB write control signal. Indicates read
when Low and write when High.

APB_S_PADDR [13:2] In Indicates APB address. Addresses are word aligned.

APB_S_PWDATA [31:0] In Indicates APB write data

APB_S_PRDATA [31:0] Out Indicates APB read data

APB_S_PREADY Out Indicates APB PREADY signal and is used to extend
an APB transfer.

APB_S_PSLVERR Out High Indicates a transfer failure

APB_S_PCLK In Indicates APB clock

APB_S_PRESET_N In Low Indicates APB active low reset

Table 201 • HPMS APB Master Configuration Interface Port List

Port Name Direction Polarity Description
FIC_2_APB_M_PSEL Out High Indicates APB slave select

FIC_2_APB_M_PENABLE Out High Indicates APB enable

FIC_2_APB_M_PWRITE Out High APB write control signal. Indicates read when Low
and write when High.

FIC_2_APB_M_PADDR [15:2] Out Indicates APB address. Addresses are word aligned.

FIC_2_APB_M_PWDATA [31:0] Out Indicates APB write data

FIC_2_APB_M_PRDATA [31:0] In Indicates APB read data

FIC_2_APB_M_PREADY In Indicates APB PREADY signal and used to extend an
APB transfer.

FIC_2_APB_M_PSLVERR In High Indicates a transfer failure

FIC_2_APB_M_PCLK In Indicates APB clock

FIC_2_APB_M_PRESET_N In Low Indicates APB active low reset

Table 199 • MDDR APB Slave Configuration Interface Port List (continued)

Port Name Direction Polarity Description
Microchip Proprietary UG0448 Revision 10.0 266

FIC_2 (APB Configuration Interface)
13.1.3 CoreConfig IP
CoreConfig IP facilitates configuration of peripheral blocks (MDDR, FDDR, and SERDESIF blocks) in an
IGLOO2 device. The CoreConfig IP has a mirrored master APB port and several mirrored slave APB
ports. The mirrored master port must be connected to the FIC_2_APB_MASTER port of the HPMS and
the mirrored slave ports must be connected to the APB slave ports of the blocks to be configured.

CoreConfig IP can be configured using the Libero Software and is available in the IP Catalog of the
Libero Software. Refer to the CoreConfig Handbook for port lists and their descriptions, design flows,
memory maps, and Control and Status Register details.

13.2 How to Use FIC_2
This section describes how to use the FIC_2 (Peripheral Initialization) subsystem in the IGLOO2 devices.
To configure the IGLOO2 device features and then build a complete system, use the System Builder
graphical design wizard in the Libero Software.

13.2.1 Configuring FIC_2 (Peripheral Initialization) Using Libero SoC
The following figure shows the initial System Builder window where the required device features can be
selected. For details on how to launch the System Builder wizard and a detailed information on how to
use it, refer to the IGLOO2 System Builder User Guide.

Figure 168 • System Builder Window
Microchip Proprietary UG0448 Revision 10.0 267

https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf
https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf

FIC_2 (APB Configuration Interface)
The following steps describe how to configure the FIC_2 (Peripheral Initialization) in Libero SoC.

1. Check the HPMS External DDR Memory (MDDR), Fabric External DDR Memory (FDDR), and/or
High Speed Serial Interfaces (SERDESIF_0 and/or SERDESIF_1) check boxes under the Device
Features tab. Checking the check boxes instantiate IPs like CoreConfigMaster, CoreConfig IP, and
CoreReset that initializes MDDR, FDDR, and SerDes. Check or uncheck the rest of the check boxes
according to your requirement. The following figure shows the System Builder - Device Features
tab.

Figure 169 • System Builder - Device Features Window
Microchip Proprietary UG0448 Revision 10.0 268

FIC_2 (APB Configuration Interface)
2. Navigate to the Memory Map tab. The following figure shows the System Builder - Memory Map tab. Click
Finish to proceed with creating the HPMS Subsystem.

Figure 170 • System Builder - Memory Map Tab

13.2.2 FIC_2 Interfaces for MDDR
1. Enable MDDR in the System Builder wizard and create a subsystem.
2. Instantiate user AXI master logic in the SmartDesign canvas to access the MDDR subsystem

through the AXI interface.
The following figure shows the AXI fabric master connected to AXI master port.

Figure 171 • FIC_2 Interfaces for MDDR
Microchip Proprietary UG0448 Revision 10.0 269

FIC_2 (APB Configuration Interface)
The CoreConfig APB slave signals and CoreConfig IP mirrored APB slave port are connected internally
to MDDR by System Builder.

CoreReset handles sequencing reset signals in IGLOO2 devices. It focus on resets related to the
peripheral blocks, MDDR, FDDR, and SERDESIF. CoreReset soft IP is available in the Libero SoC IP
Catalog. Refer to the CoreReset Handbook for port lists, their descriptions and design flow.

13.2.3 FIC_2 Interfaces for SerDes
1. Enable SERDESIF_0 in the System Builder wizard and create a subsystem. The following figure

shows the HPMS subsystem.
Figure 172 • HPMS Subsystem with APB Configuration Interface Signals

The preceding figure shows the CoreConfig APB slave signals and the CoreConfig IP mirrored APB
slave port that should be connected to the APB slave port of the SerDes block to be configured.
Microchip Proprietary UG0448 Revision 10.0 270

FIC_2 (APB Configuration Interface)
2. Instantiate the high-speed serial interface (SERDES_IF) macro in SmartDesign, and connect the
CoreConfig IP mirrored APB slave port with APB slave port of the SERDES_IF block, as shown in
the following figure.

Figure 173 • Interfacing of CoreConfig IP Mirrored APB Slave with SERDES_IF Block
Microchip Proprietary UG0448 Revision 10.0 271

	1 Revision History
	1.1 Revision 10.0
	1.2 Revision 9.0
	1.3 Revision 8.0
	1.4 Revision 7.0
	1.5 Revision 6.0
	1.6 Revision 5.0
	1.7 Revision 4.0
	1.8 Revision 3.0
	1.9 Revision 2.0
	1.10 Revision 1.0
	1.11 Revision 0.0

	2 Embedded NVM (eNVM) Controllers
	2.1 Features
	2.2 Functional Description
	2.2.1 Memory Organization
	2.2.2 Data Retention Time
	2.2.3 eNVM Access Time
	2.2.4 Theory of Operation
	2.2.5 eNVM Command Register
	2.2.6 Error Response
	2.2.7 Interrupt to Fabric Master

	2.3 Security
	2.3.1 User-Protectable 4K Regions
	2.3.2 eNVM Pages for Special Purpose Storage

	2.4 How to Use eNVM
	2.4.1 Data Storage in eNVM Using the Libero eNVM Client
	2.4.2 HPMS Subsystem
	2.4.3 HPMS Subsystem Connected to the FPGA Fabric Master
	2.4.4 Reading the eNVM Block
	2.4.5 Writing to the eNVM Block

	2.5 SYSREG Control Registers
	2.6 eNVM Control Registers
	2.6.1 Status Register Bit Definitions

	3 Embedded SRAM (eSRAM) Controllers
	3.1 Features
	3.2 Functional Description
	3.2.1 Memory Organization
	3.2.2 Modes of Operation
	3.2.3 Pipeline Modes and Wait States for Read and Write Operations

	3.3 How to Use eSRAM
	3.3.1 Accessing eSRAM Using FPGA Fabric Master
	3.3.2 HPMS Subsystem
	3.3.3 HPMS Subsystem Connected to the FPGA Fabric Master

	3.4 SYSREG Control Registers

	4 AHB Bus Matrix
	4.1 Functional Description
	4.1.1 Architecture Overview
	4.1.2 Timing Diagrams
	4.1.3 Details of Operation
	4.1.4 System Memory Map

	4.2 How to Use AHB Bus Matrix
	4.3 Register Map

	5 High Performance DMA Controller
	5.1 Features
	5.2 Functional Description
	5.2.1 Architecture Overview
	5.2.2 Initialization
	5.2.3 Details of Operation

	5.3 How to Use HPDMA
	5.3.1 Configuring HPDMA
	5.3.2 HPMS Subsystem
	5.3.3 HPMS Subsystem Connected to the FPGA Fabric Master
	5.3.4 MDDR to eSRAM

	5.4 HPDMA Controller Register Map
	5.4.1 HPDMA Register Bit Definitions

	5.5 SYSREG Control Register

	6 Peripheral DMA
	6.1 Features
	6.2 Functional Description
	6.2.1 Architecture Overview
	6.2.2 PDMA Port List
	6.2.3 Initialization
	6.2.4 Details of Operations

	6.3 How to Use PDMA
	6.3.1 HPMS Subsystem
	6.3.2 HPMS Subsystem Connected to the FPGA Fabric Master
	6.3.3 SPI_0 to eSRAM_0
	6.3.4 eNMV_0 to eSRAM_0

	6.4 PDMA Register Map
	6.4.1 PDMA Configuration Register Bit Definitions

	6.5 SYSREG Control Registers

	7 Serial Peripheral Interface Controller
	7.1 Features
	7.2 Functional Description
	7.2.1 Architecture Overview
	7.2.2 Interface
	7.2.3 Initialization
	7.2.4 Details of Operation

	7.3 How to Use the SPI Controller
	7.3.1 HPMS Subsystem
	7.3.2 HPMS Subsystem Connected to the FPGA Fabric Master
	7.3.3 Accessing the External SPI Flash Using HPMS SPI_0

	7.4 SPI Register Map
	7.4.1 SYSREG Configuration Register Summary
	7.4.2 SPI Register Summary
	7.4.3 SPI Register Details

	8 Communication Block
	8.1 Features
	8.2 Functional Description
	8.2.1 Architecture Overview
	8.2.2 Frame/Command Marker
	8.2.3 Clocks
	8.2.4 Resets
	8.2.5 Interrupts
	8.2.6 CoreSysServices Soft IP

	8.3 How to Use COMM_BLK
	8.3.1 Configuring COMM_BLK

	8.4 COMM_BLK Configuration Registers
	8.5 COMM_BLK Register Interface Details
	8.5.1 Control Register
	8.5.2 Status Register
	8.5.3 Interrupt Enable Register
	8.5.4 Byte Data Register
	8.5.5 Word Data Register
	8.5.6 Frame/Command Byte Register
	8.5.7 Frame/Command Word Register

	9 Reset Controller
	9.1 Functional Description
	9.1.1 Power-On Reset Generation Sequence
	9.1.2 Power-Up to Functional Time Sequence
	9.1.3 Power-Up to Functional Time Data
	9.1.4 Power-On Reset
	9.1.5 System Reset
	9.1.6 Block Resets

	9.2 CoreResetP Soft Reset Controller
	9.2.1 Reset Topology
	9.2.2 Implementation
	9.2.3 Timing Diagrams

	9.3 SYSREG Control Registers

	10 System Register Block
	10.1 SYSREG Block Register Write Protection
	10.1.1 Register Write Protect
	10.1.2 Field Write Protect
	10.1.3 Bit Write Protect

	10.2 Register Types
	10.3 Register Lock Bits Configuration
	10.3.1 Lock Bit File
	10.3.2 Lock Bit File Syntax
	10.3.3 Locking and Unlocking a Register

	10.4 Register Map
	10.5 System Registers Behavior for M2GL005/010 devices
	10.6 Register Details
	10.6.1 eSRAM Latency Configuration Register
	10.6.2 eNVM Configuration Register
	10.6.3 eNVM FPGA Fabric Remap Base Address Register
	10.6.4 HPMS DDR Bridge Buffer Timer Control Register
	10.6.5 HPMS DDR Bridge Non-Bufferable Address Control Register
	10.6.6 HPMS DDR Bridge Non-Bufferable Size Control Register
	10.6.7 HPMS DDR Bridge Configuration Register
	10.6.8 EDAC Configuration Register
	10.6.9 Master Weight Configuration Register 0
	10.6.10 Master Weight Configuration Register 1
	10.6.11 Software Interrupt Register
	10.6.12 Software Reset Control Register
	10.6.13 Fabric Interface Control (FIC) Register
	10.6.14 MDDR Configuration Register
	10.6.15 Peripheral Clock MUX Select Control Register
	10.6.16 MDDR I/O Calibration Control Register
	10.6.17 EDAC Interrupt Enable Control Register
	10.6.18 eSRAM PIPELINE Configuration Register
	10.6.19 HPMS DDR PLL Status Low Configuration Register
	10.6.20 HPMS DDR PLL Status High Configuration Register
	10.6.21 HPMS DDR Fabric Alignment Clock Controller (FACC) Configuration Register 1
	10.6.22 HPMS DDR Fabric Alignment Clock Controller Configuration Register 2
	10.6.23 HPMS Clock Calibration Control Register
	10.6.24 PLL Delay Line Select Control Register
	10.6.25 Reset Source Control Register
	10.6.26 HPMS DDR Bridge High Performance DMA Master Error Address Status Register
	10.6.27 HPMS DDR Bridge AHB Bus Error Address Status Register
	10.6.28 HPMS DDR Bridge Buffer Empty Status Register
	10.6.29 HPMS DDR Bridge Disable Buffer Status Register
	10.6.30 eSRAM0 EDAC Count
	10.6.31 eSRAM1 EDAC Count
	10.6.32 eSRAM0 EDAC Address Register
	10.6.33 eSRAM1 EDAC Address Register
	10.6.34 Security Configuration Register for Masters 4, 5, and DDR_FIC
	10.6.35 Security Configuration Register for Masters 3 and 7
	10.6.36 Security Configuration Register for Master 9
	10.6.37 Device Status Register
	10.6.38 eNVM Protect User Register
	10.6.39 IGLOO2 eNVM Status Register
	10.6.40 Device Version Register
	10.6.41 HPMS PLL Status Register
	10.6.42 eNVM Status Register
	10.6.43 DDRB Status Register
	10.6.44 MDDR IO Calibration Status Register
	10.6.45 HPMS Clock Calibration Status
	10.6.46 Fabric Protected Size Register
	10.6.47 Fabric Protected Base Address Register
	10.6.48 EDAC Status Register
	10.6.49 HPMS Internal Status Register
	10.6.50 HPMS External Status Register
	10.6.51 Clear EDAC Counters
	10.6.52 Flush Configuration Register

	11 Fabric Interface Interrupt Controller
	11.1 Features
	11.2 Functional Description
	11.2.1 Architecture Overview
	11.2.2 FIIC Port List

	11.3 How to Use FIIC
	11.4 FIIC Controller Registers
	11.5 FIIC Controller Register Bit Definitions

	12 Fabric Interface Controller
	12.1 Functional Description
	12.1.1 Configuring FIC for Master or Slave Interface

	12.2 FIC Interface Port List
	12.3 Timing Diagrams
	12.4 Implementation Considerations
	12.5 Fabric Interface Clocks
	12.6 How to Use FIC
	12.6.1 FIC_1 Configuration
	12.6.2 FIC_0 Configuration
	12.6.3 Use Model 1: Connecting APB3 Master and Slave to FIC_1
	12.6.4 Use Model 2: Connecting AHB-Lite Master and Slave to FIC_1

	12.7 SYSREG Control Registers for FIC_0 and FIC_1
	12.8 Reference Documents

	13 FIC_2 (APB Configuration Interface)
	13.1 Functional Description
	13.1.1 Architecture Overview
	13.1.2 Port List
	13.1.3 CoreConfig IP

	13.2 How to Use FIC_2
	13.2.1 Configuring FIC_2 (Peripheral Initialization) Using Libero SoC
	13.2.2 FIC_2 Interfaces for MDDR
	13.2.3 FIC_2 Interfaces for SerDes

