DG0388
Demo Guide
SmartFusion2 SoC FPGA Error Detection and
Correction of eSRAM Memory - Libero SoC v11.8 SP1
Contents

1 Revision History ... 1
1.1 Revision 10.0 ... 1
1.2 Revision 9.0 ... 1
1.3 Revision 8.0 ... 1
1.4 Revision 7.0 ... 1
1.5 Revision 6.0 ... 1
1.6 Revision 5.0 ... 1
1.7 Revision 4.0 ... 1
1.8 Revision 3.0 ... 1
1.9 Revision 2.0 ... 1
1.10 Revision 1.0 ... 1

2 SmartFusion2 SoC FPGA - Error Detection and Correction of eSRAM Memory . . 2
2.1 Introduction ... 2
2.2 Demo Requirements ... 3
2.2.1 Design Files ... 3
2.3 Demo Design Description .. 4
2.3.1 Loop Test ... 4
2.3.2 Manual Test ... 4
2.4 Running the Demo .. 6
2.4.1 Demo Setup ... 6
2.4.2 Graphical User Interface .. 7
2.4.3 Running the Design ... 8
2.5 Conclusion ... 11
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Top-Level Block Diagram</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Demo Design Top-Level Structure</td>
<td>3</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Design Flow</td>
<td>5</td>
</tr>
<tr>
<td>Figure 4</td>
<td>USB to UART Bridge Drivers</td>
<td>6</td>
</tr>
<tr>
<td>Figure 5</td>
<td>SmartFusion2 Security Evaluation Kit Board Setup</td>
<td>7</td>
</tr>
<tr>
<td>Figure 6</td>
<td>eSRAM – EDAC Demo GUI</td>
<td>8</td>
</tr>
<tr>
<td>Figure 7</td>
<td>FlashPro Programming Window</td>
<td>9</td>
</tr>
<tr>
<td>Figure 8</td>
<td>1-Bit Error Correction Tab</td>
<td>10</td>
</tr>
<tr>
<td>Figure 9</td>
<td>2-Bit Error Detection Tab</td>
<td>11</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Demo Requirements</td>
<td>3</td>
</tr>
<tr>
<td>Table 2</td>
<td>SmartFusion2 Security Evaluation Kit Jumper Settings</td>
<td>6</td>
</tr>
<tr>
<td>Table 3</td>
<td>eSRAM Memory Addresses Used in Loop Test</td>
<td>10</td>
</tr>
</tbody>
</table>
1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the current publication.

1.1 Revision 10.0
Updated the document for Libero SoC v11.8 SP1 software release.

1.2 Revision 9.0
Updated the document for Libero SoC v11.8 software release.

1.3 Revision 8.0
Updated the document for Libero SoC v11.7 software release (SAR 77402).

1.4 Revision 7.0
Updated the document for Libero SoC v11.6 software release (SAR 72777).

1.5 Revision 6.0
Updated the document for Libero SoC v11.5 software release (SAR 64979).

1.6 Revision 5.0
Updated the document for Libero SoC v11.4 software release (SAR 60476).

1.7 Revision 4.0
Updated the document for Libero SoC v11.3 software release (SAR 56852).

1.8 Revision 3.0
Updated the document for Libero SoC v11.2 software release (SAR 52960).

1.9 Revision 2.0
Updated the document for Libero SoC v11.0 software release (SAR 47858).

1.10 Revision 1.0
Revision 1.0 was the first publication of this document.
2 SmartFusion2 SoC FPGA - Error Detection and Correction of eSRAM Memory

2.1 Introduction

This document describes the error detection and correction (EDAC) capabilities of the SmartFusion®2 devices on the embedded static random access memory (eSRAM).

The EDAC controllers implemented in the SmartFusion2 devices support single-error correction and double-error detection (SECDED). All memories within the microcontroller subsystem (MSS) of the SmartFusion2 are protected by SECDED. The eSRAM memory can be eSRAM_0 or eSRAM_1. The address range of eSRAM_0 is 0x20000000 to 0x20007FFF and the address range of eSRAM_1 is 0x20008000 to 0x2000FFFF.

When SECDED is enabled:

- A write operation computes and adds 8 bits of SECDED code to every 32 bits of data
- A read operation reads and checks the data against the stored SECDED code to support 1-bit error correction and 2-bit error detection

In this demo, the EDAC can be identified by the blinking light-emitting diode (LED) on the board and by graphical user interface (GUI).

Figure 1 • Top-Level Block Diagram

The EDAC of eSRAM supports the following features:

1. SECDED mechanism
2. Provides interrupts to the ARM Cortex-M3 processor and FPGA fabric upon the detection of a 1-bit error or 2-bit error.
3. Stores the number of 1-bit and 2-bit errors to the error counter registers.
4. Stores the address of the last 1-bit or 2-bit error affected memory location.
5. Stores 1-bit or 2-bit error data into the SECDED registers.
6. Provides error bus signals to the FPGA fabric.

Refer to the EDAC chapter of the UG0443: SmartFusion2 and IGLOO2 FPGA Security and Reliability User Guide and the eSRAM chapter of the UG0331: SmartFusion2 Microcontroller Subsystem User Guide.
2.2 Demo Requirements

The following table lists the required hardware and software for running the demo.

<table>
<thead>
<tr>
<th>Table 1 • Demo Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Requirements</td>
</tr>
<tr>
<td>SmartFusion2 Security Evaluation Kit:</td>
</tr>
<tr>
<td>• FlashPro4 programmer</td>
</tr>
<tr>
<td>• USB A to Mini - B USB cable</td>
</tr>
<tr>
<td>12 V Adapter</td>
</tr>
<tr>
<td>Operating System</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Software Requirements</td>
</tr>
<tr>
<td>Libero® system-on-chip (SoC) software</td>
</tr>
<tr>
<td>SoftConsole</td>
</tr>
<tr>
<td>FlashPro programming software</td>
</tr>
<tr>
<td>Host PC Drivers</td>
</tr>
<tr>
<td>For launching demo GUI</td>
</tr>
</tbody>
</table>

2.2.1 Design Files

The demo design files are available for download from the following path in the Microsemi website: http://soc.microsemi.com/download/rsc/?f=m2s_dg0388_liberov11p8_sp1_df

Design files include:

- Libero
- Programming files
- GUI Executable
- Readme file

The following figure shows the top-level structure of the design files. For further details, see the readme.txt file.

Figure 2 • Demo Design Top-Level Structure

```
<download_folder>
  M2S90_eSRAM_EDAC_DF
    GUI Executable
    Libero
    Programming File
    readme.txt
```
2.3 Demo Design Description

Each eSRAM within the MSS is protected by a dedicated EDAC controller. EDAC detects a 1-bit error or 2-bit error when data is read from the memory. If EDAC detects the 1-bit error, the EDAC controller corrects the same error bit. If EDAC is enabled for all the 1-bit and 2-bit errors, corresponding error counters in the system registers are incremented and corresponding interrupts and error bus signals to the FPGA fabric are generated.

In a single event upset (SEU) susceptible environment, random access memory (RAM) is prone to transient errors caused by heavy ions. This happens in real-time. To demonstrate this, an error is introduced manually and detection and correction is observed.

This demo design involves implementation of following tasks:

- Enable EDAC
- Write data to eSRAM
- Read data from eSRAM
- Disable EDAC
- Corrupt one or two bits
- Write data to eSRAM
- Enable EDAC
- Read the data
- In the case of a 1-bit error, the EDAC controller corrects the error, updates the corresponding status registers, and gives the data written in step 2 at the read operation done at step 8.
- In the case of a 2-bit error, a corresponding interrupt is generated and the application must correct the data or take the appropriate action in the interrupt handler. These two methods are demonstrated in this demo.

Two tests are implemented in this demo: loop test and manual test and they are applicable to both 1-bit and 2-bit errors.

2.3.1 Loop Test

Loop Test is executed when the SmartFusion2 receives a loop test command from the GUI. Initially, all the error counters and EDAC related registers are placed in the **RESET** state.

The following steps are executed for each iteration:

1. Enable the EDAC controller.
2. Write the data to the specific eSRAM memory location.
3. Disable the EDAC controller.
4. Write the 1-bit or 2-bit error induced data to the same eSRAM memory location.
5. Enable the EDAC controller.
6. Read the data from the same eSRAM memory location.
7. Send the 1-bit or 2-bit error detection and 1-bit error correction data in case of 1-bit error to the GUI.

2.3.2 Manual Test

This method allows manual testing for enabling or disabling EDAC and write or read operation. Using this method, 1-bit or 2-bit errors can be introduced to any location within the eSRAM. Enable the EDAC and write data to the specified address using the GUI fields. Disable the EDAC and write 1-bit or 2-bit corrupted data to the same address location. Enable the EDAC and read the data from the same address location then the LED on the board toggles to notify the detection and correction of errors. The corresponding error counter is displayed on the GUI. The GUI Serial Console logs all the actions performed in SmartFusion2.
The following figure shows the eSRAM EDAC demo operations.

Figure 3 • Design Flow

- **Messages from GUI**
 - UART Rx Interrupt
 - Receive UART messages and decode as commands
 - EDAC loop test
 - Command for operation?
 - Enable/Disable EDAC
 - Read/Write?
 - Write
 - Read
 - Write data to the specified DDR address
 - 1. Read data from address specified in GUI
 - 2. Send Error counters and address of last error to GUI
 - 3. Clear status register
 - Enable/Disable EDAC
 - Send error detection and correction summary to GUI
 - Loop
- **Reset**
 - Initialize the application
2.4 Running the Demo

This section describes the SmartFusion2 Security Evaluation Kit board setup, the GUI options, and how to execute the demo design.

2.4.1 Demo Setup

The following steps describe how to setup the demo:

1. Connect the FlashPro4 programmer to the J5 connector of SmartFusion2 Security Evaluation Kit board.
2. Connect one end of the USB mini-B cable to the J18 connector provided in the SmartFusion2 Security Evaluation Kit board. Connect the other end of the USB cable to the host PC. Ensure that the USB to UART Bridge drivers are automatically detected (can be verified in the Device Manager), as shown in Figure 4, page 6.

Note: Copy the COM port number for serial port configuration. Ensure that the COM port Location is specified as on USB Serial Converter D, as shown in the following figure.

Figure 4 • USB to UART Bridge Drivers

3. If USB to UART bridge drivers are not installed, download and install the drivers from www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip
4. Connect the jumpers on the SmartFusion2 Security Evaluation Kit board, as shown in the following figure. The power supply switch SW7 must be switched OFF while making the jumper connections.

Table 2 • SmartFusion2 Security Evaluation Kit Jumper Settings

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Pin (From)</th>
<th>Pin (To)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>J22, J23, J24, J8, J3</td>
<td>1 (default)</td>
<td>2</td>
<td>These are the default jumper settings of the SmartFusion2 Security Evaluation Kit board. Ensure that these jumpers are set accordingly.</td>
</tr>
</tbody>
</table>

5. Connect the power supply to J18 connector.
The following figure shows the board setup for running the demo on the SmartFusion2 Security Evaluation Kit.

![SmartFusion2 Security Evaluation Kit Board Setup](image)

Figure 5 SmartFusion2 Security Evaluation Kit Board Setup

2.4.2 Graphical User Interface

The following section describes about eSRAM - EDAC demo GUI.
The GUI supports the following features:
1. Selection of COM port and Baud Rate.
2. Selection of 1-bit error correction tab or 2-bit error detection tab.
3. Selection of eSRAM0 or eSRAM1.
4. Address field to write or read data to or from specified eSRAM address.
5. Data field to write or read data to or from specified eSRAM address.
6. Serial Console section to print the status information received from the application.
7. EDAC ON/OFF: Enables or disables the EDAC.
8. Write: Allows writing data to the specified address.
9. Read: Allows reading data from the specified address.
10. LOOP test ON/OFF: Allows testing the EDAC mechanism in a loop method.

2.4.3 Running the Design

The following steps describe how to run the design:

1. Switch ON the supply switch, SW7.
2. Program the SmartFusion2 device with the programming file provided in the design files (\ProgrammingFiles\eSRAM_0\EDAC_Demo_eSRAM0.stp or \ProgrammingFiles\eSRAM_1\EDAC_Demo_eSRAM1.stp) using FlashPro design software, as shown in Figure 7, page 9.
3. Press **SW6** switch to reset the board after successful programming.
4. Launch the **EDAC_eSRAM Demo** GUI executable file available in the design files (`\GUI Executable\ EDAC_eSRAM.exe`). The GUI window is displayed, as shown in **Figure 6**, page 8.
5. Select the appropriate COM port (to which USB to UART Bridge drivers are pointed) from the **COM Port** drop-down list.
6. Select the **Baud Rate** as 57600 and click **Connect**. After establishing the connection, **Connect** changes to **Disconnect**.
7. Select eSRAM 0 or eSRAM 1 depending upon the programming file selected in step 2.
8. Select the 1-bit **Error Correction** tab or 2-bit **Error Detection** tab, as shown in **Figure 8**, page 10, and **Figure 9**, page 11.
9. Two types of tests can be performed: Manual and Loop.
2.4.3.1 Performing Loop Test

Click **Loop Test ON**. It runs in loop mode where continuous correction and detection of errors is done. The loop runs for 200 iterations. All actions performed in SmartFusion2 are logged in the **Serial Console** section of the GUI. The 2-bit error detection loop test prints the error affected eSRAM address offset in **Serial Console**. Click **Loop Test OFF** after 200 iterations are completed.

<table>
<thead>
<tr>
<th>Memory</th>
<th>1-Bit Error Correction</th>
<th>2-Bit Error Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>eSRAM0</td>
<td>0x20000000</td>
<td>0x20002000</td>
</tr>
<tr>
<td>eSRAM1</td>
<td>0x20008000</td>
<td>0x2000A000</td>
</tr>
</tbody>
</table>

2.4.3.2 Performing Manual Test

In this method, errors are introduced manually using GUI. Use the following steps to execute 1-bit error correction or 2-bit error detection:

1. Input Address and Data fields (use 32-bit Hexadecimal values).
2. Click **EDAC ON**.
3. Click **Write**.
4. Click **EDAC OFF**.
5. Just change 1-bit (in case of 1-bit error correction) or 2 bits (in case of 2-bit error detection) in Data field (introducing error).
6. Click **Write**.
7. Click **EDAC ON**.
8. Click **Read**.
9. Observe **Error Count** display and **Data** field in the GUI. The error count value increases by 1.

All the actions performed in SmartFusion2 are logged in **Serial Console** section of GUI.

Note: To switch from **1-bit Error Correction** tab to **2-bit Error Detection** tab or vice versa in EDAC_eSRAM Demo GUI, reset the hardware board.

Figure 8 • 1-Bit Error Correction Tab
2.5 Conclusion

This demo shows SmartFusion2 SECDED capabilities of the eSRAM.