

PiP-EC02 Embedded Controller
TM Pre-integrated IP

PiP-EC02

Embedded Controller
with Multi-Master

AMBA AHB/APB Architecture

© 2000-2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

Copyright Notice
Copyright © 2000-2006 SoC Solutions L.L.C. All rights reserved

Disclaimer
SOC SOLUTIONS L.L.C. AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

and Pre-Integrated IP are trademarks of SoC Solutions, L.L.C.

Bugs and Suggestions
Please report bugs and suggestions about this document by sending electronic mail to info@socsolutions.com.

Change Log
Revision Date Author Change

1.0 09/26/2006 Jim Avant None

Version 1.0 –Sept. 26, 2006 Page 2 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

TABLE OF CONTENTS

COPYRIGHT NOTICE... 2
DISCLAIMER... 2
TRADEMARKS .. 2
BUGS AND SUGGESTIONS ... 2
CHANGE LOG... 2

1 SYSTEM OVERVIEW .. 6
1.1 THE PRE-INTEGRATED IP EMBEDDED CONTROLLER WITH AMBA INTERFACE 6
1.2 PERIPHERAL OVERVIEW... 8
1.3 CLOCK AND RESET SIGNALS.. 9
1.4 DATA AND ADDRESS BUS .. 10
1.5 MEMORY MAPS ... 11
1.6 TOP-LEVEL SIGNAL DESCRIPTIONS.. 13
1.7 INTERRUPT SOURCE BIT ASSIGNMENTS ... 14
1.8 SYSTEM CONFIGURATION .. 14
1.9 TIMING CONSIDERATIONS.. 14

2 MULTI-MASTER AHB... 15

2.1 AHB ARBITER... 15
2.2 PROCESSOR INTERFACE ... 15

2.2.1 Overview... 15
2.2.2 Timing... 16

2.3 OTHER MASTERS ... 17

3 AHB PERIPHERALS .. 18
3.1 ADDRESS DECODER ... 18

3.1.1 Overview... 18
3.1.2 Block Diagram.. 18
3.1.3 Remap Logic... 19
3.1.4 AHB Peripheral Memory Map.. 19
3.1.5 Programming Interface ... 19

3.2 INTERNAL MEMORY AND INTERFACE .. 20
3.2.1 Overview... 20
3.2.2 BlockDiagram... 21
3.2.3 Signal Descriptions (memory interface) ... 21

3.3 INTERRUPT CONTROLLER... 22
3.3.1 Overview... 22
3.3.2 Block Diagram.. 22
3.3.3 Signal Descriptions ... 23
3.3.4 Programming Interface ... 23
3.3.5 Functional Description.. 25

3.4 EXTERNAL BUS INTERFACE (EBI) ... 26
3.4.1 Overview... 26
3.4.2 Block Diagram.. 27
3.4.3 Signal Descriptions ... 28

Version 1.0 –Sept. 26, 2006 Page 3 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.4.4 Programming Interface ... 29
3.4.5 Instantiation Parameters.. 30
3.4.6 Functional Description.. 31
3.4.7 Timing Diagrams .. 32

3.5 SDRAM CONTROLLER.. 33
3.6 APB BRIDGE ... 33

3.6.1 Overview... 33
3.6.2 APB Peripheral Memory Map .. 33
3.6.3 Timing... 34

4 APB PERIPHERALS ... 35
4.1 GENERAL PURPOSE INPUT/OUTPUT (GPIO)... 35

4.1.1 Overview... 35
4.1.2 Block Diagram.. 35
4.1.3 Signal Descriptions ... 36
4.1.4 Programming Interface ... 36
4.1.5 Functional Description.. 39

4.2 UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTERS (UARTS) .. 39
4.2.1 Overview... 39
4.2.2 Block Diagram.. 40
4.2.3 Signal Descriptions ... 41
4.2.4 Programming Interface ... 42
4.2.5 Functional Description.. 45
4.2.6 Timing Diagrams .. 54

4.3 PARALLEL PORT... 56
4.3.1 Overview... 56
4.3.2 Block Diagram.. 56
4.3.3 Signal Descriptions ... 57
4.3.4 Programming Interface ... 58
4.3.5 Functional Description.. 60

4.4 TIMER .. 63
4.4.1 Overview... 63
4.4.2 Block Diagram.. 63
4.4.3 Signal Descriptions ... 63
4.4.4 Programming Interface ... 64
4.4.5 Functional Description.. 65

4.5 WATCHDOG TIMER .. 66
4.5.1 Overview... 66
4.5.2 Block Diagram.. 66
4.5.3 Signal Descriptions ... 67
4.5.4 Programming Interface ... 67
4.5.5 Functional Description.. 68

4.6 PWM... 69
4.6.1 Block Diagram.. 69
4.6.2 Timing Diagram.. 70
4.6.3 Programming Interface ... 71

4.7 STEALTH MODE ... 72

Version 1.0 –Sept. 26, 2006 Page 4 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.7.1 Overview... 72
4.7.2 Signal Descriptions ... 72
4.7.3 Programming Interface ... 73
4.7.4 Functional Description.. 74

APPENDIX A: EXAMPLE EXTERNAL MEMORY CONFIGURATION .. 75

APPENDIX B: VERILOG TESTBENCH.. 76

APPENDIX C: ARM SIGNAL NAME MAPPING .. 78

Version 1.0 –Sept. 26, 2006 Page 5 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

1 System Overview
1.1 The Pre-integrated IP Embedded Controller with AMBA interface

Processor

External
Memory I/F

Timers

Interrupt
Controller

AH
B

FLASHFLASHFLASHFLASH

SRAMSRAMSRAMSRAM

AHB
I/F

APB
Bridge

GPIO

Parallel
Watchdog

SRAM
Controller

SRAMSRAMSRAMSRAM

Address
Decoder

UARTs

EBI

AP
B

AHB
Arbiter

Version 1.0 –Sept. 26, 2006 Page 6 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

The PiP-EC02 is an integrated ARM7TDMI™ based Verilog SoC. The PiP-EC02 provides the basic
infrastructure for most of the popular SoC applications such as mobile phones, PDAs, personal navigators, as
well as other electronic devices.

The architecture of the PiP-EC02 is based on the AMBA AHB & APB buses. It supports multiple masters on
the AHB bus.

Version 1.0 –Sept. 26, 2006 Page 7 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

1.2 Peripheral Overview

Peripheral Name Verilog Module
Name

Format Bus Description

Processor Interface socProcIf source AHB Interfaces processor to AMBA AHB bus
AHB Arbiter socAhbArb source AHB AHB Arbiter for up to three bus masters

Address Decoder socAddrDecRemap source AHB Generates block select signals for each system
block and provides an address remap utility.
Additional address decoding for APB
peripherals is done in the APB Bridge.

Interrupt Controller socIntrCtrl netlist AHB Monitors all system interrupts and issues
interrupt requests to the processor

Internal Memory
Interface

socIntMemIf source AHB Interface to zero wait-state internal
synchronous SRAM

External Bus Interface
(EBI)

socEbi netlist AHB Provides a configurable interface to external
devices such as FLASH and RAM

External Memory
Interface

socExtMemIf source MEM Collects and distributes generic byte enables to
your specific external memory configuration
(back-end glue logic to EBI module)

SDRAM Controller
(optional)

socSdrCtrl netlist AHB Synchronous Dynamic RAM Controller.

Real Time Clock
(optional)

socRTC netlist AHB Real Time Clock module provides time-of-day
and other data.

APB Bridge socApbBridge source AHB Bridge from AHB to APB
Timer socTimer netlist APB Time base generator for the system and

general-purpose counter. Two used in PiP-
EC02.

UART socUart netlist APB Provides a means of asynchronous serial
communication with external devices. Two
used in PiP-EC02.

Parallel Port socParPort netlist APB PC compatible parallel port which can be used
for general purpose I/O

GPIO socGpio netlist APB Configurable general purpose parallel I/O
module

Watchdog Timer socWDTimer netlist APB Resets the system in case of an unrecoverable
error and provides reset signal control
(optional at no additional cost)

PWM SocPwm netlist APB Generates a Pulse-Width-Modulated output

Several of the IP modules are delivered with full Verilog source to facilitate integration into your custom
design. In addition to those listed above, the top-level module, a clock divider module, and header files with
definitions of all registers are provided as verilog source. The rest of the modules are provided in a pair of
netlist files: socAhbCore.edf & socApbCore.edf.

Version 1.0 –Sept. 26, 2006 Page 8 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

1.3 Clock and Reset Signals

The following diagram illustrates the path of all clock and reset signals within the Embedded Controller with
AMBA interface.

Watchdog Timer (with reset control)

External
Clock

Generation
Circuitry

Processor

Delay

Glitch
Reduction

External Devices
(FLASH)

earlyRstN

delayedRstN

extRstN

flashRstN

sysClkN

All Other
Synchronous LogicExternal Reset

(Pushbutton)

sysClk

sysRstN

procRstNprocClk

Internal Memory
& EBI Logic

resetInN

Watchdog wdRstN

PCLK

HCLK

PRESETn

HRESETn

Most of the synchronous AMBA Embedded Controller Platform logic is driven from sysClk (which is the same
as HCLK & PCLK), however the synchronous internal SRAM, some of the External Bus Interface (EBI) logic,
and the processor is driven by sysClkN (or HCLKn).

The Watchdog Timer is an optional module. Even when it is not included, its reset logic is still present. This
reset logic is responsible for generating reset signals for the internal logic, processor, and external devices. In
the event of an external reset, any devices connected to flashRstN will be reset first, and then after some delay
the rest of the system (including the processor) will be reset. This is done in order to allow external devices
(such as FLASH) enough time to ensure their outputs are valid before the processor attempts to access the
device.

Version 1.0 –Sept. 26, 2006 Page 9 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

1.4 Data and Address Bus

The EC02 provides a bus splitter to split the bi-directional data bus from the processor (procData) into two
unidirectional data buses (HWDATA and HRDATA). The “din” and “dout” suffixes are named with respect to
the processor, i.e. HWDATA is an output from the processor but an input to the peripherals while HRDATA is
an input to the processor but an output of the peripherals (through the data mux). The AHB address bus
(HADDR) is connected to each AHB slave peripheral as well.

Each peripheral has its own data output bus that is connected through a mux to HRDATA. In the EC02, these
buses are named “HRDATAn”, where n is an integer. The implementation of the data mux prevents the need for
several tristate buffers deep within the design hierarchy. This keeps all tristate logic at the top level of the
design in order to facilitate integration with many ASIC and FPGA architectures.

The External Bus Interface (EBI) takes HADDR as an input and drives the external address bus (extAddr) for
external devices such as FLASH and RAM. Optionally, the EBI can drive an external bi-directional data bus
(extData) for external devices, however this logic is omitted when external devices share the processor data bus.
Note that ALL “din” and “dout” signals are consistently named with respect to the processor.

Version 1.0 –Sept. 26, 2006 Page 10 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

1.5 Memory Maps

Version 1.0 –Sept. 26, 2006 Page 11 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

This memory map corresponds to the memory resources on various boards from SoC Solutions. There is up to
16 Mbyte FLASH available, 1 Mbyte external SRAM available, and internal SSRAM available (size depends
on FPGA & its contents).

Version 1.0 –Sept. 26, 2006 Page 12 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

1.6 Top-Level Signal Descriptions
The following table lists the top-level signals of the PiP-EC02 platform as targeted to the SoC Solutions Brain
board. Note that all signals ending with an uppercase ‘N’ are active low.

Signal Name I/O Description
pbRstN I external reset (power-on w/ pushbutton)
poRstN I external reset (no pushbutton)
flashRstN O flash reset
procRstN O processor reset (nRESET)
sysClk I clock driving almost main synchronous EC02 logic (from PLL)
refClk I Reference clock to external PLL
procClk O Clock to processor
procAddr[31:0] I address bus from processor (a.k.a. A)
procData[31:0] I/O bi-directional data bus connected to processor (a.k.a. D)
fiqOutN O fast interrupt request (a.k.a. nFIQ)
irqOutN O interrupt request (a.k.a. nIRQ)
procWrRdN I processor write/read not (1=write 0=read) (a.k.a. nRW)
procWaitN O processor wait (a.k.a. nWAIT)
procApe O processor address pipeline enable signal
procAccType[1:0] I processor access type (a.k.a. SEQ & nMREQ)
procByteLatch[3:0] O processor byte latch (a.k.a. BL; used only for ARM7 test chip))
procTestChipSel
[1:0]

O data bus routing signal for processor test chip (a.k.a. SEL;
used only for ARM7 test chip)

procDsize[1:0] I processor data size (8/16/32 bit) (a.k.a. MAS)
procLock I processor LOCK signal
procTransN I processor nTRANS signal
procAbort O processor abort (a.k.a. ABORT)
rs232Atx O serial channel A, transmit line
rs232Arx I serial channel A, receive line
rs232Btx O serial channel B, transmit line
rs232Brx I serial channel B, receive line
rs232BctsN I serial channel B, clear to send
rs232BdsrN I serial channel B, data set ready
rs232BdtrN O serial channel B, data terminal ready
rs232BrtsN O serial channel B, request to send
extAddr[25:2] O external address to FLASH, SRAM, driven by EBI
extData[31:0] I/O (optional) bi-directional data bus connected to external

devices
hiFlashCeN O chip enable for device driving upper 16 bits of FLASH data
loFlashCeN O chip enable for device driving lower 16 bits of FLASH data
sramCeN O chip enable for device driving SRAM chips
SramBsN[3:0] O byte enables for SRAM
extOeN O external output enable
extWeN O external write enable
gpio[31:0] I/O general purpose input/output
ledOut[9:0] O output to drive user-defined LEDs
switchIn[9:0] I input from DIP switches on board
pwmOut1 O Pulse Width Modulator # 1 Output
pwmOut2 O Pulse Width Modulator # 2 Output

Version 1.0 –Sept. 26, 2006 Page 13 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

1.7 Interrupt Source Bit Assignments

Interrupt
Source Bit

Source of Interrupt

[0] Programmable Interrupt
[1] unused
[2] unused
[3] unused
[4] Timer 1
[5] Timer 2
[6] unused
[7] unused
[8] UART A
[9] UART B
[10] Parallel Port
[11] unused
[12] unused
[13] unused
[14] unused
[15] unused
[16] Watchdog Timer
[17] General Purpose I/O

[31:18] unused

1.8 System Configuration

A header file (socSysDefs.hv) contains system-level definitions for configuring options such as:

• Whether the EC02 is connected to an ARM7TDMI core or to a test chip
• Whether or not to allow clocks in combinational logic (for optimizing EBI)
• Whether or not to use a clock divider module to divide down the clock for the UART baud rate clock
• Whether external memories’ data buses are connected directly to the processor or thru the EBI
• Internal memory sizes
• External memory sizes
• Data widths of parameterizable modules

Note that some of these definitions have already been used to compile the AHB & APB core files into EDIF
netlists; therefore, changes in the definitions will not affect these modules.

1.9 Timing Considerations
The two areas most likely to be critical paths for timing are in the areas of address decoding and read data bus
multiplexing. The current implementation favors lower area over system clock speed.

Version 1.0 –Sept. 26, 2006 Page 14 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

2 Multi-Master AHB
2.1 AHB Arbiter

The AHB Arbiter block processes bus requests (HBUSREQ) from the various AHB masters and grants the
AHB bus to one master at a time. The arbiter was designed for 3 bus masters. Only one is present in this
design: the processor.

The arbitration algorithm is round-robin. Each master takes a turn at being highest priority. The processor
interface is the default bus master when no masters are requesting the bus.

The arbiter block also takes care of data and control bus muxing and demuxing.

2.2 Processor Interface

2.2.1 Overview
The processor interface module provides an AHB Master interface from the processor to the AMBA AHB bus.
This module contains the processor-specific logic. The processor interface for the ARM7TDMI is documented
here.

A header file associated with this module (socProcIf.hv) contains processor- and AHB-specific definitions.

The Processor Interface consists of a state machine and some glue logic. Note that the data and control muxing
is done in the Arbiter block and not here.

The processor interface glue logic performs the following functions:

• The processor address, write data, and control signals are sampled (if APE=1)
• Block byte latch signals are muxed to the processor
• The wait state request to the processor is inhibited for 2 clocks after reset
• The procAbort signal is generated
• The HTRANS signal is generated for the AHB bus

Note that this interface does not provide for the following AHB features:

• Split bus transactions
• Burst operation
• Transfer sizes (HSIZE) larger than 32 bits
• Protection Control

Version 1.0 –Sept. 26, 2006 Page 15 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

2.2.2 Timing

An AHB bus master begins a transaction by asserting its HBUSREQ signal. After one or more clock cycles, it
will see its HGRANT signal asserted. From here, the bus master’s state machine controls the access. Each
AHB bus transaction consists of a single cycle address phase followed by one or more cycles of a data phase.
The processor-to-AHB interface asserts the first two or more cycles of the wait state signal (nWAIT) during
arbitration and the AHB address phase. After that, any AHB peripheral needing more than a single cycle must
assert its HREADYOUT signal to sustain the wait.

Version 1.0 –Sept. 26, 2006 Page 16 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

2.3 Other Masters
Other IP blocks are available with AHB master interfaces for this platform such as Ethernet MAC, SDRAM
Controller, & LCD Controller blocks. These interfaces usually have an AHB slave interface for control &
status and an AHB master interface for DMAing data to and from system memory. These IP blocks are not part
of the EC02 platform but are available separately from SoC Solutions.

Version 1.0 –Sept. 26, 2006 Page 17 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3 AHB Peripherals
3.1 Address Decoder

3.1.1 Overview
The Address Decoder logic consists of the following blocks:

• address decoder case statement
• remap logic

The case statement in the address decoder is pretty simple, but generates a large amount of combinational logic
that can easily contribute to the worst-case timing path in the design.

The address decoder case statement generates block selects for the various AHB blocks in the design and the
control for the data mux located in the Processor Interface (socProcIf) module. Additional address decoding for
APB peripherals is done in the APB Bridge (socApbBridge) module.

In the following discussions of memory mapping, a default memory map is used as an example. Please keep in
mind that memory and registers can be placed anywhere in memory by changing the address decoder module.

3.1.2 Block Diagram

Version 1.0 –Sept. 26, 2006 Page 18 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.1.3 Remap Logic

The remap logic provides for two different memory maps. The reset memory map is used to put the ROM or
FLASH at memory address 0 at power-on reset so the device can boot from non-volatile memory. (See the
system overview section.) After the code has been initialized, a remap register is written and the normal
(remapped) mode is entered where SRAM appears at address 0. During system development, the EC02 can be
booted in the normal (remapped) mode with volatile memory at address 0 where an in-circuit emulator or
similar device handles memory initialization.

These memory maps are controlled by the extRemapN input to the EC02 and by the remap configuration
register. The extRemapN signal comes from bit 9 (MSB) of the switchIn inputs. It is an active low signal which
when driven low puts the EC02 into its normal (remapped) mode with SSRAM at address 0. When extRemapN
is driven high, the EC02 is put into its reset mode with ROM or FLASH at address 0. This signal is driven low
when booting from volatile memory is necessary (e.g. using an in-circuit emulator), in this case the remap
configuration register has no effect on the memory map.

When the system needs to be booted from non-volatile memory (when operating without an in-circuit emulator)
the extRemapN signal should be driven high so that the ROM or FLASH appears at address 0. In this case, the
programmer has the option to remap the system after all necessary initializations by writing to the remap
configuration register. Once this register has been written, the reset memory map cannot be restored without a
system reset.

3.1.4 AHB Peripheral Memory Map

Peripheral/Device Base Address Address Range Address Space (bytes)
Remap (Address Decoder) 0x08000000 0x08000000 – 0x080FFFFF 64
Interrupt Controller 0x08100000 0x08100000 – 0x081FFFFF 256
External Bus Interface 0x08300000 0x08300000 – 0x083FFFFF 16
APB Peripherals 0x0C000000 0x0C000000 – 0x0C0FFFFF 64K

The address decoder asserts an AHB block select signal (HSEL) any time an address present on the address bus
(HADDR) falls within the address range of the respective peripheral. These addresses are valid in both reset and
normal (remapped) mode.

3.1.5 Programming Interface

3.1.5.1 Register Summary

Register Name Offset Description
remapStatus 0x00 Indicates state of related remap signals.
clearResetMap 0x20 This register changes the memory map from the reset memory

map to the remapped (normal) memory map.

Version 1.0 –Sept. 26, 2006 Page 19 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.1.5.2 Register Descriptions

3.1.5.2.1 remapStatus
Offset: 0x00

Bits Access Default Description
[2] Read depends on

state of
extRemapN

Indicates whether or not the system is in its remapped state
or its reset state (regardless of whether from extRemapN or
from the clearResetMap register). This bit is simply the OR
of bits 0 and 1.

[1] Read depends on
state of
extRemapN

Indicates state of extRemapN signal. When 1, extRemapN==0.
When 0, extRemap==1.

[0] Read 0x0 Indicates whether or not the system has been remapped by
writing to the clearResetMap register. When 1, system has
been remapped, when 0, system is still under the reset
memory map.

3.1.5.2.2 clearResetMap
Offset: 0x20

Bits Access Default Description
[0] Write 0x0 When this register is written to, the reset memory map with

ROM at address 0 will be cleared and the memory will be
remapped to the normal memory map with RAM at address 0. Any
value written to this register will cause the remap to
occur.

3.2 Internal Memory and Interface

3.2.1 Overview

The EC02 internal memory consists of Synchronous Static Random Access Memory (SSRAM) and some
memory interface logic. The SSRAM is configured as 8 Kwords where each word is 32 bits wide (8K x 32) for
a total of 32 KB. Physically, the SSRAM consists of 4 banks of 8 Kbytes each. This allows the memory
interface to offer word, half-word, or byte wide addressing. When writing to half-word or byte width addresses,
it is assumed that the processor replicates the data across the entire input data bus. Similarly, when reading, it is
assumed that the processor knows where the data should appear (no byte steering is done). If byte steering is
required, the Processor Interface may be ordered with this option or byte steering may be done externally. The
connections for the default configuration are illustrated below.

The amount of SSRAM is easily configurable to meet your system requirements. Your ASIC SRAM blocks
can easily replace the existing Xilinx SRAM instantiations.

The write enable decoder shown in the block diagram uses HSIZE & the LSBs of the address (HADDR) to
produce write enables to the SRAM blocks whenever an SSRAM address is selected (HSEL) for writing
(HWRITE).

Version 1.0 –Sept. 26, 2006 Page 20 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.2.2 BlockDiagram

3.2.3 Signal Descriptions (memory interface)

Signal Name I/O Description
HWRITE I write from AHB (0 = read, 1 = write)
HADDR[1:0] I LS bits of address bus from AHB, used to decode write enables
HSIZE[2:0] I AHB data size
HSEL I AHB Block select
HREADY I Combined AHB ready signal from all AHB slaves
ramDout[31:0] I Data output from SSRAM
HRDATA[31:0] O AHB read data
writeEn[3:0] O Write enable signals to each byte wide SSRAM

Version 1.0 –Sept. 26, 2006 Page 21 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.3 Interrupt Controller

3.3.1 Overview
The interrupt controller monitors interrupts from all other modules within the system and issues interrupt
requests to the processor when necessary. The interrupt controller is scalable to support from 1 to 32 interrupt
sources. It also provides enable set and enable clear mechanisms to prevent dangerous read-modify-write
operations. It provides active high & active low IRQ & FIQ interrupt request outputs. Multiple interrupt
controllers may be cascaded if more than 32 interrupts are required.

3.3.2 Block Diagram

prgInt
irqOutN

Interrupt Controller

enable set
register

programmable
interrupt
register

Bus
Interface

enable clr
register

status
register

enable logic

enable
register

request logic

request
register

interrupt
mapping

fiqOut

mapping
register

fiqOutN

irqOut

HCLK

HRSTn

HWRITE

HTRANS

HADDR
HWDATA

HRDATA

intrSource

HREADYOUT

HSEL

HREADY

Version 1.0 –Sept. 26, 2006 Page 22 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.3.3 Signal Descriptions

Signal Name I/O Description
HRESETn I Active low system reset
HCLK I System clock
HWRITE I AHB write (0=read 1=write)
HWDATA[31:0] I AHB write data
HADDR[2:0] I AHB Address bus
HSEL I AHB Block select, enables the interrupt controller
HTRANS[1:0] I AHB Transfer type
HREADY I Combined AHB ready signal from all AHB slaves
intrSource[NUM_INTS-1:0] I Interrupt source bus (all interrupts connect to this bus)
HREADYOUT O Ready output to AHB
HRDATA[31:0] O AHB read data bus
progInt O State of the programmable interrupt register
irqOutN O IRQ Interrupt request line (active low)
irqOut O IRQ Interrupt request line (active high)
fiqOutN O FIQ Interrupt request line (active low)
fiqOut O FIQ Interrupt request line (active high)

3.3.4 Programming Interface

3.3.4.1 Register Summary

Register Name Offset Description
request 0x0 State of enabled interrupt sources
status 0x4 State of all interrupt sources (enabled or disabled)
enable 0x8 Mask register to enable/disable individual interrupts
enableSet 0x8 Used to set bits in the enable register
enableClr 0xC Used to clear bits in the enable register
progIntr 0x10 Programmable interrupt register
mapping 0x14 Map interrupt to FIQ or IRQ

3.3.4.2 Register Descriptions

3.3.4.2.1 request
Offset: 0x0

Bits Access Default Description
[31:0] Read 0x0 Each bit that is set indicates that the corresponding

interrupt source is active and enabled.

3.3.4.2.2 status
Offset: 0x4

Bits Access Default Description
[31:0] Read 0x0 Each bit that is set indicates that the corresponding

interrupt source is active.

Version 1.0 –Sept. 26, 2006 Page 23 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.3.4.2.3 enable
Offset: 0x8

Bits Access Default Description
[31:0] Read 0x0 Each bit that is set indicates that the corresponding

interrupt source is enabled.

3.3.4.2.4 enableSet
Offset: 0x8

Bits Access Default Description
[31:0] Write 0x0 Each bit that is set causes the corresponding bit in the

enable register to be set. This is a self-clearing
register.

3.3.4.2.5 enableClr
Offset: 0xC

Bits Access Default Description
[31:0] Write 0x0 Each bit that is set causes the corresponding bit in the

enable register to be cleared. This is a self-clearing
register.

3.3.4.2.6 progIntr
Offset: 0xC

Bits Access Default Description
[31:2] Write 0x0 Unused, these bits have no effect on the interrupt

controller.
[1] Write 0x0 This is the programmable interrupt. Setting this bit

activates the programmable interrupt and drives the
programmable interrupt output signal high. Clearing this
bit clears the interrupt request and drives the
programmable interrupt output signal low.

[0] Write 0x0 Unused, this bit has no effect on the interrupt
controller.

3.3.4.2.7 mapping
Offset: 0x14

Bits Access Default Description
[31:0] R/W 0x0 Each bit that is set causes the corresponding enabled

interrupt to activate the FIQ interrupt output. Cleared
bits map interrupts to the IRQ interrupt output. This
register should only be set up once at system
initialization; therefore, there are not separate set and
clear registers.

Version 1.0 –Sept. 26, 2006 Page 24 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.3.5 Functional Description

All signals connected to the interrupt source input bus (intrSource) must be registered at their source since these
signals are not registered within the interrupt controller. The interrupt sources are expected to be active high and
level sensitive. Each interrupt source corresponds to a single bit within the enable, enableSet, enableClr, status,
and request register. For example, the interrupt source connected to bit 5 of the intrSource bus is enabled by
writing to bit 5 of the enableSet register and disabled by writing to bit 5 of the enableClr register. If this
interrupt source is enabled, then bit 5 of the enable register will be set. If this interrupt source is active and
enabled, then bit 5 of the request register will be set.

The status register reflects the state of the interrupt sources connected to the interrupt controller. The values in
this register are the same as what the interrupt controller sees on its interrupt source input bus (intrSource) since
no registering is done within the interrupt controller. The enable register has no effect on this register. The
status register is read only.

The enable register provides information as to which interrupts are enabled. Upon reset, all sources are disabled
(all bits in this register are cleared). The enable register is read only and can only be modified by writing to the
enableSet and enableClr registers.

The request register reflects the state of enabled interrupt sources. Any set bit in this register indicates that the
corresponding interrupt source is active and enabled. If a particular source is disabled, the corresponding bit in
the request register will be clear regardless of the current state of the source. The request register is read only.

The enable set and enable clear registers provide a mechanism to modify the enable register directly without the
need for a potentially dangerous read-modify-write operation. Since these registers are self-clearing, only a
single register write is required to set or clear a bit in the enable register. Each bit that is set in the enable set
register causes that same bit to be set in the enable register. Each bit that is set in the enable clear register causes
the same bit to be cleared in the enable register. The enable set and enable clear registers are write only.

The interrupt controller provides four interrupt request outputs, irqOut, irqOutN, fiqOut, and fiqOutN, where
the ‘N’ suffix signifies an active low signal. The mapping register is used to map an enabled interrupt to either
the IRQ or FIQ outputs. An active interrupt request output means that there is at least one enabled pending
interrupt request that is mapped to that output. These signals will not be deasserted until all mapped interrupt
sources are inactive.

The interrupt controller also provides an option to force an interrupt by writing to a programmable interrupt
register. This option is enabled by connecting the programmable interrupt output (progInt) to one of the
interrupt source inputs. The progInt output simply reflects the current state of the programmable interrupt
register, therefore any time that the programmable interrupt is set, it can generate an interrupt request just like
any other interrupt source. This configuration is illustrated in the appendices.

Version 1.0 –Sept. 26, 2006 Page 25 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.4 External Bus Interface (EBI)

3.4.1 Overview

The external bus interface (EBI) allows the processor to transmit and receive data to and from external devices,
one or more of which may be memory. External memory can be SRAM, Flash, etc. (see limitations below).
The user programs the number of read & write wait states and the memory size and the EBI allows the proper
communication. The EBI allows word, half-word, and byte width addressing to 32-bit, 16-bit, and 8-bit
external devices.

3.4.1.1 Limitations

3.4.1.1.1 Timing

Note that at least one wait state is always generated to the processor for each bus transaction. This is done in
the AHB master state machine in the socProcIf module. So from the external memory’s point of view, the
access is performed with the number of wait states selected in the EBI configuration register, but from a system
point of view, there is an additional wait state due to the AMBA architecture. This penalty can be minimized by
using a cached version of the ARM7 such as an ARM720 or ARM740.

3.4.1.1.2 Configurability
Ideally the user would be able to specify the number of external devices when the EBI is instantiated; however,
the Verilog language does not fully support this. The Verilog 2000 spec. supports this so this capability may be
added in the future.

Version 1.0 –Sept. 26, 2006 Page 26 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.4.2 Block Diagram

Version 1.0 –Sept. 26, 2006 Page 27 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

The EBI interfaces the processor with up to 4 external devices. Each device has a configuration register. The
HSEL signal is generated by the address decoder and is used in conjunction with some lower address bits to
read and write the configuration registers. The extDeviceEn signals also come from the address decoder (and
optionally through a remapper). When one of these is active, its corresponding configuration register is
selected. The 2 LSBs of the processor address bus are modified depending on the type of access specified by
the processor and the capabilities of the device (as programmed into the configuration register). The EBI logic
performs this and other tasks such as:

• breaks down device enables into upper, upper middle, lower middle, & lower bank chip enables
• steers data bytes or halfwords onto appropriate data bits
• sequences multi-byte or multi-halfword read and write operations
• puts the processor in a wait state until the access completes

3.4.3 Signal Descriptions

Signal Name I/O Description
HCLK I AHB clock
HRESETn I AHB reset (active low)
HADDR[31:0] I AHB address bus
HWDATA[31:0] I 32-bit data bus from AHB
HWRITE I write select from AHB (0 = read, 1 = write)
HSIZE[2:0] I memory access size select signal from AHB
HSEL I AHB block select signal for configuration registers
extDeviceEn[3:0] I Device enables from address decoder
extDin[31:0] I 32-bit data bus from external devices
extCeLbN[3:0]
extCeLmbN[3:0]
extCeUmbN[3:0]
extCeMbN[3:0]

O chip enables for 4 external devices – Lower Bank
chip enables for 4 external devices – Lower Middle Bank
chip enables for 4 external devices – Upper Middle Bank
chip enables for 4 external devices – Upper Bank

extOeN O output enable for external devices
extWeN O write enable for external devices
HREADY I Combined AHB ready signal from all AHB slaves
HREADYOUT O ready signal produced by EBI, used to hold AHB while

memory access completes
HRDATA[31:0] O 32-bit data bus to processor
extDout[31:0] O 32-bit data bus to external devices
extAddr[N_EXT_ADDR-1:0] O address bus to external devices
blkByteLatch[3:0] O byte latch controls to processor
procTestChipSel[1:0] O SEL inputs to ARM test chip

Version 1.0 –Sept. 26, 2006 Page 28 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.4.4 Programming Interface

3.4.4.1 Register Summary

Register Name Address Description
ebiCfgN Base+4n Configuration register corresponding to extCe…N[n] for:

• bus width
• inhibit writes
• read wait states
• write wait states

3.4.4.2 Register Descriptions

3.4.4.2.1 ebiCfg0
offset: 0x0

Bits Signal Access Default Description
[15:12] reserved R/W 0000 reserved
[11:8] writeWaits R/W 0111 number of wait states in clock cycles required for

a write
[7:4] readWaits R/W 0111 number of wait states in clock cycles required for

a read
[3] reserved R/W 0 reserved
[2] inhibitWrit

e
 0 Prevent writes to this device

[1:0] busWidth R/W 10 Data bus width of device used:
0 = 8 bits (byte)
1 = 16 bits (half word)
2 = 32 bits (word)
3 = reserved

3.4.4.2.2 ebiCfg1
offset: 0x4

Bits Signal Access Default Description
15:12 reserved R/W 0000 reserved
11:8 writeWaits R/W 0011 number of wait states in clock cycles required for

a write
7:4 readWaits R/W 0010 number of wait states in clock cycles required for

a read
3 reserved R/W 0 reserved
2 inhibitWrite 0 Prevent writes to this device
1:0 busWidth R/W 10 Data bus width of device used:

0 = 8 bits (byte)
1 = 16 bits (half word)
2 = 32 bits (word)
3 = reserved

Version 1.0 –Sept. 26, 2006 Page 29 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.4.4.2.3 ebiCfg2
offset: 0x8

Bits Signal Access Default Description
15:12 reserved R/W 0000 reserved
11:8 writeWaits R/W 0011 number of wait states in clock cycles required for

a write
7:4 readWaits R/W 0010 number of wait states in clock cycles required for

a read
3 reserved R/W 0 reserved
2 inhibitWrite 0 Prevent writes to this device
1:0 busWidth R/W 10 Data bus width of device used:

0 = 8 bits (byte)
1 = 16 bits (half word)
2 = 32 bits (word)
3 = reserved

3.4.4.2.4 ebiCfg3
offset: 0xC

Bits Signal Access Default Description
15:12 reserved R/W 0000 reserved
11:8 writeWaits R/W 0010 number of wait states in clock cycles required for

a write
7:4 readWaits R/W 0010 number of wait states in clock cycles required for

a read
3 reserved R/W 0 reserved
2 inhibitWrite 0 Prevent writes to this device
1:0 busWidth R/W 10 Data bus width of device used:

0 = 8 bits (byte)
1 = 16 bits (half word)
2 = 32 bits (word)
3 = reserved

3.4.4.3 Common Setups

The following setup represents the requirements of the SoC Brain board:

Device # Memory Size Bus

Width
Config.

0 FLASH 2Mx16
2Mx16

32 0x0772

1 SRAM 256Kx16
256Kx16

32 0x0322

3.4.5 Instantiation Parameters

The following are options that can be selected when the EBI is instantiated:

Version 1.0 –Sept. 26, 2006 Page 30 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

1. N_EXT_ADDR – modify this definition to specify number of external address bits.

3.4.6 Functional Description

The external bus interface (EBI) allows memory to be written to in word, half-word, and byte
width; 32-bit, 16-bit, and 8-bit memories are acceptable. To do this, all bits are sent by the
processor (thru the AHB) along with the HSIZE signal. The data is replicated across the entire
data bus by the processor when writing in any width other than 32-bit. The EBI uses the HSIZE
signal generated by the processor to determine whether the data is to be written as word, half-
word, or byte width.

When writing to memories which are smaller than the data bus width, the EBI uses the HSIZE
signal as well as the last 2-bits of the processor address (HADDR) signal to determine which
byte(s) to write. For example if one wants to write the first half-word to an 8-bit memory, the two
least significant bits of HADDR are assigned 00 for the least significant byte and 01 for the other.
This allows a half-word to be written to an 8-bit memory.

For reading, a similar process is used. The data is always be shifted into the least significant bits.
The processor uses the HSIZE signal to determine which byte or bytes it needs to read. The data is
always presented to the processor in the least significant bits.

All addressing is assumed to be little-endian.

Version 1.0 –Sept. 26, 2006 Page 31 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.4.7 Timing Diagrams

Note that a single-cycle write can only be accomplished by using the clock in combinational logic to generate
the write enable pulse. This is disabled by default but may be enabled in socSysDefs.hv.

Version 1.0 –Sept. 26, 2006 Page 32 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.5 SDRAM Controller

This module is optional and is documented separately.

3.6 APB Bridge

3.6.1 Overview
The APB Bridge implements the following functions:

• Adaptation of APB bus signals to AHB bus signals
• APB address decoding
• APB read data bus multiplexing

3.6.2 APB Peripheral Memory Map

Peripheral/Device Base Address Address Range Address Space (bytes)
Timer 1 0x0C000000 0x0C000000 – 0x0C00FFFF 16
Timer 2 0x0C010000 0x0C010000 – 0x0C01FFFF 16
Watchdog Timer 0x0C020000 0x0C020000 – 0x0C02FFFF 32
UART Channel A 0x0C030000 0x0C030000 – 0x0C03FFFF 32
UART Channel B 0x0C040000 0x0C040000 – 0x0C04FFFF 32
Parallel Port 0x0C050000 0x0C050000 – 0x0C05FFFF 32
General Purpose I/O 0x0C060000 0x0C060000 – 0x0C06FFFF 64
PWM1 0x0C070000 0x0C070000 – 0x0C07FFFF 16
PWM2 0x0C080000 0x0C080000 – 0x0C08FFFF 16

Version 1.0 –Sept. 26, 2006 Page 33 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

3.6.3 Timing

The APB Bridge implements the timing of the APB Bus. APB peripherals are not allowed to request wait
states. The APB Bridge asserts a single wait state (HREADYOUT=0) back to the AHB bus in the 1st cycle of
the AHB Data Phase. This is APB cycle C1. Data is sampled at the end of the next clock cycle, which is APB
cycle C2.

Version 1.0 –Sept. 26, 2006 Page 34 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4 APB Peripherals
4.1 General Purpose Input/Output (GPIO)

4.1.1 Overview

The GPIO is a configurable module allowing the use of up to 32 scalable I/O lines. If more than 32 I/Os are
required, more than one GPIO module may be instantiated.

Each line can be configured independently resulting in a very useful I/O application. The GPIO module
supports a wide variety of options concerning synchronization logic and interrupt signal, which can be triggered
by either a low level, high level, positive or negative edge. The GPIO is also fully compatible with a standard
µP bus interface.

4.1.2 Block Diagram

Version 1.0 –Sept. 26, 2006 Page 35 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.1.3 Signal Descriptions

Signal Name I/O Description
PRESETn I Active low APB reset
PCLK I APB clock
PWRITE I APB Write (0=read 1=write)
PWDATA[31:0] I Write Data from the APB (32 bits)
PADDR[3:0] I Lower bits of APB Address bus (4 bits)
PSEL I APB Block select, enables the GPIO
PENABLE I APB signal indicating 2nd cycle of APB transfer
PRDATA[31:0] O Read data to the APB (32 bits)
blockInt O Block Interrupt
ioLinesOut[NUM_LINES-1:0] O Lines used if IO port is outbound (32 bits)
ioLinesIn[NUM_LINES-1:0] I Lines used if IO port is inbound (32 bits)
gpioOeN[NUM_LINES-1:0] O Direction of all I/O lines (1 = input, 0 = output) (32

bits)

4.1.4 Programming Interface

4.1.4.1 Register Summary
Register Name Offset Description
State 0x00 Read to see current state of I/O signals
Set 0x00 Write 1’s to set output signals
Clear 0x04 Write 1’s to clear output signals
Interrupts 0x04 Read to see current state of interrupts
Out 0x08 write 1's to set direction to output
In 0x0c write 1's to set direction to input
Enable Set 0x10 write 1's to set enable interrupt
Enable Clear 0x14 write 1's to set disable interrupt
Edge 0x18 write 1's to set interrupt to edge-sensitive
Level 0x1c write 1's to set interrupt to level-sensitive
Set Level 0x20 write 1's to set interrupts to active high or

rising edge
Clear Level 0x24 write 1's to set interrupts to active low or

falling edge
Any Edge Set 0x28 write 1's to override interrupt edge selection &

interrupt on any edge
Any Edge Clear 0x2c write 1's to clear edge selection override
Interrupt Clear 0x30 write 1's to clear edge-sensitive interrupts

4.1.4.2 Register Descriptions

4.1.4.2.1 State Register
Offset: 0x0

Bits Access Default Description
[31:0] Read 0x00000000 Read to see current state of I/O signals. For each I/O,

the synchronized input signal is read, regardless of
whether I/O is configured as input or output.

Version 1.0 –Sept. 26, 2006 Page 36 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.1.4.2.2 Set Register
Offset: 0x0

Bits Access Default Description
[31:0] Write 0x00000000 Each bit that is set to 1 sets the corresponding output

signal.

4.1.4.2.3 Clear Register
Offset: 0x4

Bits Access Default Description
[31:0] Write 0x00000000 Each bit that is set to 1 clears the corresponding output

signal.

4.1.4.2.4 Interrupts Register
Offset: 0x4

Bits Access Default Description
[31:0] Read 0x00000000 This register is read to see the current state of

interrupts.

4.1.4.2.5 Out Register
Offset: 0x8

Bits Access Default Description
[31:0] R/W 0xFFFFFFFF Each bit that is set to 1 configures the corresponding

signal as an output. Read for current state of all active
low output enable signals. All signals default to inputs.

4.1.4.2.6 In Register
Offset: 0xC

Bits Access Default Description
[31:0] R/W 0xFFFFFFFF Each bit that is set to 1 configures the corresponding

signal as an input. Read for current state of all active
low output enable signals. All signals default to inputs.

4.1.4.2.7 Enable Set Register
Offset: 0x10

Bits Access Default Description
[31:0] Write 0x00000000 Each bit that is set to 1 enables an interrupt for the

corresponding signal.

4.1.4.2.8 Enable Clear Register

Version 1.0 –Sept. 26, 2006 Page 37 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

Offset: 0x14
Bits Access Default Description

[31:0] Write 0x00000000 Each bit that is set to 1 disables an interrupt for the
corresponding signal.

4.1.4.2.9 Edge Register
Offset: 0x18

Bits Access Default Description
[31:0] Write 0x00000000 Each bit that is set to 1 indicates that the interrupt has

been set to edge-sensitive.

4.1.4.2.10 Level Register
Offset: 0x1C

Bits Access Default Description
[31:0] Write 0x00000000 Each bit that is set to 1 indicates that the interrupt has

been set to level-sensitive.

4.1.4.2.11 Set Level Register
Offset: 0x20

Bits Access Default Description
[31:0] Write 0x00000000 write 1's to set interrupts to active high or rising edge

4.1.4.2.12 Clear Level Register
Offset: 0x24

Bits Access Default Description
[31:0] Write 0x00000000 write 1's to set interrupts to active low or falling edge

4.1.4.2.13

4.1.4.2.14 Any Edge Set Register
Offset: 0x28

Bits Access Default Description
[31:0] Write 0x00000000 write 1's to override interrupt edge selection & instead

interrupt on ANY edge

4.1.4.2.15 Any Edge Clear Register
Offset: 0x2C

Bits Access Default Description
[31:0] Write 0x00000000 write 1's to clear edge sensitive override

4.1.4.2.16

Version 1.0 –Sept. 26, 2006 Page 38 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.1.4.2.17 Interrupt Clear Register
Offset: 0x30

Bits Access Default Description
[31:0] Write 0x00000000 write 1's to clear edge sensitive interrupts

4.1.5 Functional Description
Each GPIO line can be independently programmed as an input or an output. Separate set and clear registers are
provided since it is likely that different software tasks may be servicing different I/O signals. The separate set
and clear registers make read-modify-write operations with interrupts disabled unnecessary.

It is also possible to use a single I/O as a dedicated output AND a separate dedicated input. For instance,
ioLinesOut[3] can drive an LED while ioLinesIn[3] reads a switch. In this case, gpioOenN[3] would be unused.

Inputs are synchronized to the system clock through a pair of flip-flops. Each input can be programmed to
cause an interrupt to be generated. The interrupt can be programmed to be a level or edge-sensitive and the
level or edge that causes the interrupt can be selected. Interrupts can be individually enabled or disabled.
Level-sensitive interrupts stay asserted until the interrupting condition is cleared. Edge-triggered interrupts are
cleared by writing to the GPIO interrupt clear register.

4.2 Universal Asynchronous Receiver/Transmitters (UARTs)

4.2.1 Overview
This is a complete implementation of a 16550 UART. The UART contains the following main sections:

• Configuration Registers
• Baud Rate Generator
• Transmitter
• Receiver
• Interrupt Generation Logic
• Modem Control Logic

Configuration registers are written and read by the processor. The baud rate generator produces timing strobes
at the baud rate (for the transmitter) and at 16 times the selected baud rate (for the receiver). The receiver
examines the incoming data and uses the first edge of the start bit to determine the bit timing. The transmit and
receive paths can be configured to use a single register for data or to use FIFOs. Finite State Machines (FSMs)
control the transmit and receive sections. Various error conditions can cause an interrupt to be generated.

Version 1.0 –Sept. 26, 2006 Page 39 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.2.2 Block Diagram

Version 1.0 –Sept. 26, 2006 Page 40 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.2.3 Signal Descriptions
Signal Name I/O Description
PRESETn I APB reset (active low)
PCLK I APB clock
PWRITE I APB write, 0=Read and 1=Write.
PWDATA[31:0] I APB write data bus

PADDR[2:0] I

APB address bus, if the registers are expected to be on word
boundaries, then PADDR[4:2] are connected to this input,
otherwise the registers are located on byte boundaries and
PADDR[2:0] is connected to this input.

PSEL I APB Block select; this signal must be set to access any of the
UART’s registers.

PENABLE I APB signal indicating 2nd cycle of APB transfer
PRDATA[31:0] O APB read data bus

blkInt O

Block interrupt, this signal is set when any of the following
interrupt sources become active: receiver line status,
received data available, character timeout, transmitter
holding register empty, or modem status.

baudClkEn I Baud clock enable: series of 1-clock wide pulses for dividing
down PCLK to get 16X baud clock

ctsN I Clear to send
dcdN I Data carrier detect
dsrN I Data set ready
riN I Ring indicator
dtrN O Data terminal ready
rtsN O Request to send
rxrdyN O Receiver ready
txrdyN O Transmitter ready
sin I Serial data in
sout O Serial data out

clkBaud O Baud clock, can be used by external receivers as a sampling
clock, the frequency is (baud rate x 16).

out1N O General purpose output controlled by MCR[2].
out2N O General purpose output controlled by MCR[3].
pwrDnEn O Enable powerdown mode when this bit is set.

bsMCR3isIntEn I Bootstrap input, when this input is tied high, MCR[3] enables
interrupts.

bsMSR2isDelta I

Bootstrap signal, when this input is tied low, MSR[2] is set
on the trailing edge (low to high transition) of the active
low ring indicator input (aka “TERI” or Trailing Edge Ring
Indicator mode). When this input is tied high, MSR[2] is set
on any edge of the ring indicator input (aka “DRI” or Delta
Ring Indicator mode).

Version 1.0 –Sept. 26, 2006 Page 41 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.2.4 Programming Interface

4.2.4.1 Register Summary

Register Name Abbreviation Offset Description
Receiver Buffer RBR 0x0 Received Data (Read Only)
Transmitter
Holding

THR 0x0 Data to be transmitted (Write Only)

Interrupt
Enable

IER 0x4 Enables the five types of UART interrupts.

Interrupt
Identification

IIR 0x8 Four interrupts levels identified here in order
of priority – Receiver Line Status, Received
Data Ready, Transmitter Holding Register Empty,
and MODEM Status (Read Only)

FIFO Control FCR 0x8 Enable FIFOs, clear FIFOs, set RCVR FIFO trigger
level (Write Only)

Line Control LCR 0xC Specifies asynchronous data communications
exchange format and sets the Divisor Latch
Access Bit

MODEM Control MCR 0x10 Controls interface with MODEM (or peripheral
device emulating a MODEM)

Line Status LSR 0x14 Data Transfer Status information
MODEM Status MSR 0x18 Current state of control lines from MODEM (or

peripheral device) to CPU
Scratch SCR 0x1C Register can be used to hold temporary data
Divisor Latch
(LS)

DLL 0x0 DLAB = 1. Least significant byte for input to
baud rate generator

Divisor Latch
(MS)

DLM 0x4 DLAB = 1. Most significant byte for input to
baud rate generator

4.2.4.2 Register Descriptions

4.2.4.2.1 Receiver Buffer Register
offset: 0x0

Bits Access Default Description
[7:0] Read 0x00 Received Data

4.2.4.2.2 Transmitter Holding Register
offset: 0x0

Bits Access Default Description
[7:0] Write 0x00 Data To be transmitted

4.2.4.2.3 Interrupt Enable Register

Version 1.0 –Sept. 26, 2006 Page 42 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

offset: 0x4
Bits Access Default Description
[7:4] Read/Write 0x0 Unused
[3] Read/Write 0x0 Enable MODEM Status Interrupt
[2] Read/Write 0x0 Enable Receiver Line Status Interrupt
[1] Read/Write 0x0 Enable Transmitter Holding Register Interrupt
[0] Read/Write 0x0 Enable Received Data Available Interrupt

4.2.4.2.4 Interrupt Identification Register
offset: 0x8

Bits Access Default Description
[7:6] Read 0x0 FIFOs Enabled
[5:4] Read 0x0 Unused – value is set to 0
[3:1] Read 0x0 Interrupt Identification Bits – see “Interrupt

Identification” section
[0] Read 0x1 Interrupt Pending – ‘0’ if interrupt pending

4.2.4.2.5 FIFO Control Register
offset: 0x8

Bits Access Default Description
[7:6] Write 0x0 Receiver Trigger Level – see “FIFO Control” section
[5:4] Write Undefined Reserved
[3] Write 0x0 DMA Mode Select
[2] Write 0x0 Transmit FIFO reset (self-clearing)
[1] Write 0x0 Receive FIFO reset (self-clearing)
[0] Write 0x0 FIFO Enable

4.2.4.2.6 Line Control Register
Offset: 0xC

Bits Access Default Description
[7] Read/Write 0x0 Divisor Latch Access (DLAB)
[6] Read/Write 0x0 Set Break
[5] Read/Write 0x0 Stick Parity
[4] Read/Write 0x0 Even Parity Select
[3] Read/Write 0x0 Parity Enable
[2] Read/Write 0x0 Number of Stop Bits
[1:0] Read/Write 0x0 Word Length Select – see “Line Control” section

4.2.4.2.7 Modem Control Register

Version 1.0 –Sept. 26, 2006 Page 43 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

Offset: 0x10
Bits Access Default Description
[7:5] Read/Write 0x0 Reserved
[4] Read/Write 0x0 Loopback mode select
[3:2] Read/Write 0x0 Auxiliary user designated output
[1] Read/Write 0x0 Request to Send (RTS)
[0] Read/Write 0x0 Data Terminal Ready (DTR)

4.2.4.2.8 Line Status Register
Offset: 0x14

Bits Access Default Description
[7] Read 0x0 Error in Receiver FIFO
[6] Read 0x0 Transmitter Empty
[5] Read 0x0 Transmitter Holding Register Empty
[4] Read 0x0 Break Interrupt
[3] Read 0x0 Framing Error
[2] Read 0x0 Parity Error
[1] Read 0x0 Overrun Error
[0] Read 0x0 Data Ready (DR)

4.2.4.2.9 Modem Status Register
Offset: 0x18

Bits Access Default Description
[7] Read 0x0 Data Carrier Detect (DCD)
[6] Read 0x0 Ring Indicator (RI)
[5] Read 0x0 Data Set Ready (DSR)
[4] Read 0x0 Clear To Send (CTS)
[3] Read 0x0 Delta Data Carrier Detect (DDCD)
[2] Read 0x0 Trailing Edge Ring Indicator (TERI)
[1] Read 0x0 Delta Data Set Ready (DDSR)
[0] Read 0x0 Delta Clear To Send (DCTS)

4.2.4.2.10 Scratch Register
Offset: 0x1C

Bits Access Default Description
[7:0] Read/Write 0x00 Scratchpad register

4.2.4.2.11 Divisor Latch (LS)
Offset: 0x0

Bits Access Default Description
[7:0] Read/Write 0x01 Divisor Latch [7:0]

4.2.4.2.12 Divisor Latch (MS)

Version 1.0 –Sept. 26, 2006 Page 44 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

Offset: 0x4
Bits Access Default Description
[7:0] Read/Write 0x00 Divisor Latch [15:8]

4.2.5 Functional Description

4.2.5.1 Transmitter Operation
The UART Transmitter section is relatively simple. It consists of the transmit holding register (THR), the
transmit FIFO, a shift register, a state machine, and a multiplexor. When in FIFO mode, writing to the THR
causes the THR value to be written into the FIFO. If there is no transmission in progress, transmission is
started. The state machine controls the shift register and mux to insure the bits get transmitted in the proper
sequence. The baud rate generator controls the pacing of the transmission. Parity is calculated if required and
inserted into the bit stream.

4.2.5.2 Receiver Operation
As in most systems, the receiver is a bit more complicated than the transmitter. Since another independent
UART is transmitting the signal, timing has to be recovered from the incoming serial bit stream. The falling
edge of the start bit starts a counter that counts into the middle of the bit time programmed into the baud rate
generator. Thereafter, midBit strobes are generated which occur in the middle of the bit time and control the
timing for the duration of the received word. The timing of the far end transmitter can be substantially different
from that of the receiver and the word will be successfully received as long as the cumulative error across the
word (including start and stop bits) does not exceed one half of the bit time.

A state machine sequences the receive operation. When all bits are received, parity is calculated and compared
to the expected parity. Parity errors, framing errors, and break conditions are associated with a received data
word and are written into the FIFO along with the data. A framing error is defined as the absence of an
expected stop bit. A break condition is declared when too many space symbols occur in a row, that is when the
serial input stays in the logic 0 state for a number of bit times greater than the sum of the number of start, stop,
parity and data bits.

4.2.5.3 Baud Rate Generator

The baud rate generator can be configured to generate a wide range of baud rates, depending on the system
clock frequency and the divisor latch. The divisor latch and the system clock frequency are related to the baud
rate by the following expression:

chDivisorLat

kFrequencySystemClocBaudRate
×

=
16

For example, to configure the UART for a baud rate of 2400 with a system clock frequency of 18.432 MHz, the
Divisor Latch would need to be decimal 480 (0x01E0), so the most significant byte of the divisor latch would
be programmed 0x01 and the least significant byte of the divisor latch would be programmed 0xE0. To access
the divisor latch, the Divisor Latch Access Bit (DLAB) must be set in the LCR.

The baud rate generator also generates the clkBaud output signal that can be used to provide a timing reference
to external receivers. The clkBaud output frequency is 16 times the baud rate.

Version 1.0 –Sept. 26, 2006 Page 45 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

chDivisorLat
kFrequencySystemClocquencyclkBaudFre =

See the Timing Diagrams section for a detailed description of the clkBaud output.

The divisor latch can be programmed values ranging 0x0001 to 0xFFFF.

4.2.5.3.1 Optional Divisor for Baud Rate Generator
There is an optional divisor that can be implemented within the system to approximate a 1.8432MHz “UART”
oscillator to the UART when the system clock frequency is 16.000MHz. This divisor is implemented when the
USE_UART_BAUD_CLK_DIV has been defined in socSysDefs.hv. This divisor yields an extra factor of 8.5
(since 16.000/1.8432 ~= 8.5) in the BaudRate and clkBaudFrequency equations. Please use the following
equations to determine the appropriate value to program the divisor latches when using this optional divisor.

chDivisorLat
kFrequencySystemClocBaudRate

××
=

165.8

chDivisorLat
kFrequencySystemClocquencyclkBaudFre

×
=

5.8

For example, to achieve 2400 baud with a 16.368MHz oscillator, a divisor latch of 0x0032 (decimal 50) would
be necessary since (16368000/(8.5 * 16 * 50) = 2407, which approximates 2400).

4.2.5.4 Interrupts
The UART can generate five types of interrupts: receiver line status, received data available, character timeout,
transmitter holding register empty, and modem status. Any of these interrupts can active the UART block
interrupt (blkInt) if they are enabled.

4.2.5.4.1 Enabling Interrupts
The enabling of these interrupts is controlled by the setting and clearing of bits in the IER. A set bit in the IER
corresponds to an enabled interrupt while a clear bit in the IER corresponds to a disabled interrupt.

Bit 3 of the MCR can be optionally used as a global interrupt enable for the UART when the bootstrap input
bsMCR3isIntEn is tied to a logic ‘1’. When bsMCR3isIntEn is tied to a logic ‘1’, MCR[3] acts as a global
interrupt enable for the UART. If MCR[3] is clear while configured as an interrupt enable, the UART will not
activate its interrupt signal (blkInt) under any condition. If MCR[3] is set while configured as an interrupt
enable, the UART will activate its interrupt signal only if one of the five interrupt sources is active and enabled
by the appropriate bit in the IER. When bsMCR3isIntEn is tied to a logic ‘0’, MCR[3] has no effect on the
UART interrupt logic and the UART will activate its interrupt signal any time one of the five interrupt sources
is active and enabled by the appropriate bit in the IER.

Version 1.0 –Sept. 26, 2006 Page 46 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

IER Bit Number Corresponding Interrupt Enabled
0 Received Data Available
0 Character Timeout (only when FIFOs are enabled)
1 Transmitter Holding Register Empty
2 Receiver Line Status
3 Modem Status

4.2.5.4.2 Interrupt Types

4.2.5.4.3 Receiver Line Status
This interrupt occurs when any one of the following conditions exist: framing error, parity error, overrun
error, or break interrupt. This interrupt is cleared by reading the line status register.

4.2.5.4.4 Received Data Available
When FIFOs are disabled, this interrupt occurs when the RBR contains received data. Reading the RBR
clears this interrupt.

When FIFOs are enabled, this interrupt occurs when the amount of data in receiver FIFO exceeds the
trigger level (controlled by FCR[7:6]). This interrupt is cleared when the amount of data in the receiver
FIFO drops below the trigger level. This may require multiple reads from the RBR.

4.2.5.4.5 Character Timeout
This interrupt only occurs when FIFOs are enabled and no characters have been written to or read from
the FIFO in the last 4 character times. Each character time consists of the start bit, data bits, parity bit (if
enabled), and stop bit(s). This interrupt is cleared by reading the RBR.

4.2.5.4.6 Transmitter Holding Register Empty
When FIFOs are disabled, this interrupt occurs when a character from the THR is loaded into the
transmitter shift register, indicating that the THR is ready to accept a new character.

When FIFOs are enabled, this interrupt occurs when the transmitter FIFO becomes empty.

In either case, this interrupt is cleared when the THR is read, or when the IIR was read when THRE was
the source of the interrupt.

Note that reading the IIR clears the THRE interrupt, however the THRE bit in the LSR will remain set
until a character has been loaded into the THR or transmitter FIFO.

4.2.5.4.7 Modem Status
The modem status interrupt occurs when any of the following bits in the LSR is set: delta clear to send
(DCTS), delta data set ready (DDSR), trailing edge ring indicator (TERI), or delta data carrier detect
(DDCD). This interrupt is cleared by reading the MSR.

Be aware that in loopback mode these “delta” bits are not controlled by the modem inputs but rather by
the lower four bits of the MCR. See the section on Loopback Operation for a more detailed description
of generating modem status interrupts in loopback mode.

Version 1.0 –Sept. 26, 2006 Page 47 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.2.5.4.8 Interrupt Identification
Interrupts generated by the UART are distinguished by the value in the least significant nibble of the interrupt
identification register. Bit 0 of the IIR can be tested to determine if there is an interrupt pending.

Priority IIR [3:0] Interrupt Type
n/a 0001 No Interrupt Pending
first 0110 Receiver Line Status

second 0100 Received Data Available
second 1100 Character Timeout
third 0010 Transmitter Holding Register Empty

fourth 0000 Modem Status

4.2.5.5 FIFO Control
FIFOs are enabled by setting bit 0 in the FCR. When FIFOs are enabled, bits 7 and 6 of the IIR are set,
otherwise these bits are clear.

4.2.5.5.1 Receiver FIFO
The receiver FIFO is used to store received data until it is read by software. Up to 16 bytes can be stored in the
receiver FIFO. Once the programmed trigger level has been reached within the FIFO, the data ready bit (and
received data available interrupt if enabled) will be set. Bits 7 and 6 of the FCR register control the receiver
trigger level.

FCR[7:6] Receiver FIFO
Trigger Level (Bytes)

00 1
01 4
10 8
11 14

The receiver FIFO can be reset by setting bit 1 in the FCR. This bit is self-clearing.

4.2.5.5.2 Transmitter FIFO
The transmitter FIFO is used to store data that is intended to be transmitted. The transmitter FIFO can store up
to 16 bytes. Each byte written to the THR location is loaded into the transmitter FIFO. The transmitter FIFO can
be reset by setting bit 2 in the FCR. This bit is self-clearing.

4.2.5.6 Line Control

4.2.5.6.1 Asynchronous Serial Data Format
The line control register (LCR) specifies the format of the asynchronous data that is transmitted and received by
the UART. The number of data bits in each serial character is specified by bits 1 and 0 of the LCR.

Version 1.0 –Sept. 26, 2006 Page 48 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

LCR[1:0] Character Length
00 5 Bits
01 6 Bits
10 7 Bits
11 8 Bits

The number of stop bits in each serial character is specified by bit 2 of the LCR along with the current character
length selected by bits 1 and 0 of the LCR.

LCR[2] Number of Stop Bits
0 1
1 2 *

* Note that this is a difference from a standard 16550 implementation in that when the character length is 5 bits,
the number of stop bits is supposed to be 1.5. For simplicity, this implementation generates 2 stop bits.

Parity bit generation is controlled by bits 4 and 3 of the LCR. Bit 3 enables parity and bit 4 selects even or odd
parity.

LCR[4:3] Type of Parity
X0 No Parity
01 Odd Parity
11 Even Parity

Even parity sets the parity bit to a logic ‘1’ when there are an even number of ‘1’s in the serial character and
sets the parity bit to a logic ‘0’ when there are an odd number of ‘1’s in the serial character. Odd parity sets the
parity bit to a logic ‘1’ when there are an odd number of ‘1’s in the serial character and sets the parity bit to a
logic ‘0’ when there are an even number of ‘1’s in the serial character.

4.2.5.6.2 Diagnostic Mechanisms
The line control register also provides mechanisms to force break conditions, as well as parity and framing error
conditions. Utilizing these mechanisms while in loopback mode allow for diagnostic checking of receiver line
logic.

Bit 5 of the LCR is the Stick Parity bit. Stick Parity causes the transmitter to force the parity bit of a transmitted
serial character to a logic ‘1’ or logic ‘0’ regardless of the calculated parity of the transmitted serial character.
Stick Parity also causes the receiver to check the parity bit of a received serial character against either a logic
‘1’ or logic ‘0’ regardless of the calculated parity of the received serial character. It is the Stick Parity bit in
conjunction with bits 4 and 3 of the LCR which determine how the parity bit is affected.

The following table summarizes all possible combinations of parity functionality:

LCR[5] LCR[4:3] Type of Parity
0 00 parity disabled, no parity bit generated/checked
0 01 odd parity generated/checked
0 10 parity disabled, no parity bit generated/checked
0 11 even parity generated/checked

Version 1.0 –Sept. 26, 2006 Page 49 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

1 00 parity disabled, no parity bit generated/checked
1 01 stick parity, generated/checked as logic ‘1’
1 10 parity disabled, no parity bit generated/checked
1 11 stick parity, generated/checked as logic ‘0’

Bit 6 of the LCR is the Set Break bit. Setting this bit forces sout low (spacing) condition. The sout line will
remain in the spacing condition until this bit is cleared.

Bit 7 of the LSR is the Divisor Latch Access Bit (DLAB). Please see the section on the Baud Rate Generator for
a description of the use of this bit.

4.2.5.7 Line Status
Bit 0 of the LSR is the Data Ready (DR) bit. This bit is set when an incoming character is completely received
into the RBR or receiver FIFO and cleared once the character from the RBR is read or once the receiver FIFO
has been emptied.

Bit 1 of the LSR is the overrun error indicator. Overrun errors occur in 16450 mode when both the RBR and
receiver shift register contain data, and another incoming character is received, destroying the character in the
receiver shift register. The character in the RBR is not corrupted.

In 16550 mode, overrun errors occur when the receiver FIFO is completely full, the receiver shift register
contains a character, and another incoming character is received, destroying the character in the receiver shift
register. The data in the receiver FIFO is not corrupted.

In both modes, the overrun error indicator bit is set as soon as the start bit of the character causing the overrun is
detected.

Bit 2 of the LSR is the parity error indicator. This bit is set when a received character’s parity (as calculated by
the receiver) does not match the value of its received parity bit. In 16550 mode, this bit is set only when the
offending character is at the top of the FIFO. Reading the LSR clears this bit.

Bit 3 of the LSR is the framing error indicator. This bit is set when the receiver does not detect a valid stop bit
for an incoming character, i.e. the serial input signal was low during the baud time in which a stop bit (high)
was expected. In 16550 mode, this bit is set only when the offending character is at the top of the FIFO.
Reading the LSR clears this bit.

Bit 4 of the LSR is the break interrupt indicator. This bit is set whenever the serial input is held in the space
(logic 0) state for more time than a complete character transfer (i.e. the time it takes to transmit a start bit, the
data bits, the parity bit if enabled, and any stop bits). If a break is detected in 16550 mode, only one break
character (0x00) is loaded into the receiver FIFO. Reading the LSR clears this bit.

Bit 5 of the LSR is the Transmitter Holding Register Empty bit. When FIFOs are disabled, this bit is set when a
character from the THR is loaded into the transmitter shift register, indicating that the THR is ready to accept a
new character. It is cleared when a new character is written to the THR.

Version 1.0 –Sept. 26, 2006 Page 50 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

When FIFOs are enabled, this bit is set when the transmitter FIFO becomes empty and is cleared after at least
one character is loaded into the transmitter FIFO.

Bit 6 of the LSR is the Transmitter Empty Bit. This bit is set when both the THR and the transmitter shift
register are empty. This bit is clear when either the THR contains a character or the transmitter shift register has
not completed shifting out a character being transmitted.

Bit 7 of the LSR indicates that there is at least one error in the receiver FIFO. In 16450 mode this bit is always
clear. In 16550 mode, this bit is set when there is at least one framing error, parity error, or break indication in
the receiver FIFO. Reading the LSR clears this bit.

4.2.5.8 Modem Control / Status
The Modem Control and Modem Status Registers (MCR and MSR) are used to control and monitor the modem
related I/O: Clear to Send, Data Set Ready, Ring Indicator, Data Carrier Detect, Data Terminal Ready, and
Request to Send.

4.2.5.8.1 Modem Control
Bits 0 and 1 of the MCR directly affect the state of the Data Terminal Ready and Request to Send outputs (dtrN
and rtsN). Setting bit 0 of the MCR causes the dtrN output to be asserted (low) while clearing bit 0 of the MCR
causes dtrN to be deasserted (high). In a similar manner, setting bit 1 of the MCR causes the rtsN output to be
asserted (low) while clearing bit 1 of the MCR causes rtsN to be deasserted (high).

4.2.5.8.2 Modem Status
Bits 4-7 of the MSR indicate the current state of the Clear to Send, Data Set Ready, Ring Indicator, and Data
Carrier Detect input signals, respectively (ctsN, dsrN, riN, dcdN). On the condition that any of these input
signals are active (low), then the corresponding bits in the MSR will be set. When any of these inputs are in
their inactive (high) state, then the corresponding bits in the MSR will be clear.

Bits 0-3 of the MSR are known as the “delta” bits which indicate whether the state of the modem input signals
have changed since a previous read of the MSR. The Delta Clear to Send (DCTS), Delta Data Set Ready
(DDSR), and Delta Data Carrier Detect (DDCD) bits in the MSR are asserted any time one of the corresponding
modem inputs (ctsN, dsrN, dcdN) changes state.

The “delta” bit for the Ring Indicator can be configured as a Delta Ring Indicator (DRI) or as a Trailing Edge
Ring Indicator (TERI) based on the state of the bootstrap input bsMSR2isDelta. When this bootstrap is tied high
(configured for DRI), bit 2 of the MSR will be asserted any time the state of the riN input changes.
Alternatively, bsMSR2isDelta input can be tied low (configured for TERI), and bit 2 of the MSR will only be
asserted under the condition that there is a low to high transition (active low trailing edge) of the riN input.

4.2.5.9 DMA modes
There are two modes of DMA operation. These modes affect the operation of the active low txrdyN and rxrdyN
signals. In 16450 mode, only Mode 0 is supported. In 16550 mode, both Mode 0 and Mode 1 are supported and
are selected by bit 3 in the FCR.

4.2.5.9.1 Mode 0 (16450 and 16550)

Version 1.0 –Sept. 26, 2006 Page 51 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

In this mode, rxrdyN will be asserted (low) when there is at least one character in either the RBR or the receiver
FIFO and will be deasserted (high) when the RBR or the receiver FIFO are empty. The txrdyN signal will be
asserted (low) when the THR or the transmitter FIFO are empty and will be deasserted (high) immediately after
a character has been loaded into the THR or the transmitter FIFO.

4.2.5.9.2 Mode 1 (16550 only)
In this mode, rxrdyN will be asserted (low) when the amount of characters in the receiver FIFO reaches the
receiver FIFO trigger level. A character timeout will also cause rxrdyN to be asserted (low). The rxrdyN signal
will be deasserted (high) once the receiver FIFO has been emptied. The txrdyN signal will be asserted (low)
when the transmitter FIFO is empty and will be deasserted (high) once the transmitter FIFO has been
completely filled.

4.2.5.10 Loopback Operation
The UART provides loopback operation for transmitter, receiver, and modem status diagnostics. The UART
operates in loopback mode when bit 4 of the MCR is set.

In loopback mode, the serial data input (sin) is disconnected, and the serial data output (sout) is driven high
(marking state). The transmitter is internally connected to the receiver so that any data transmitted is also
received within the UART.

The ctsN, dsrN, riN, and dcdN modem inputs are disconnected, and the dtrN, rtsN, out1N, and out2N outputs
are driven high (inactive state). The modem control and general purpose outputs (dtrN, rtsN, out1N, out2N) are
internally connected to the modem status inputs (dsrN, ctsN, riN, dcdN).

The modem status interrupt can still be generated, although in loopback mode it is controlled through the least
four significant bits in the MCR.

Version 1.0 –Sept. 26, 2006 Page 52 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

For example, writing 0x11 to the MCR (asserting DTR bit and maintaining loopback bit) will cause the DSR bit
to go active in the MSR (since DTR is connected to DSR in loopback mode). The “delta” edge detection logic
then detects the change from low to high of the DSR bit in the MSR, therefore causing the modem status
interrupt (any asserted “delta” bit in the MSR causes the modem status interrupt). Reading the MSR will clear
this interrupt.

Be aware that the option to have trailing edge or delta edge detection on the ring indicator also applies in
loopback mode. However, in this mode, the “delta” or trailing edge will be detected on the out1 bit in the MCR
since this is connected to the Ring Indicator bit in the MSR when operating in loopback mode. This
configuration allows diagnostic testing of the Trailing Edge Ring Indicator (TERI) and Delta Ring Indicator
(DRI) in loopback mode through the use of the out1 bit of the MCR.

4.2.5.11 General Purpose Outputs
The out1N and out2N outputs are driven from bits 2 and 3 of the MCR, respectively. These outputs are active
low, therefore setting bit 2 in the MCR will cause the out1N output to be driven low, while clearing bit 2 in the
MCR causes the out1N output to be driven high. The out2N output is controlled in a similar fashion by bit 3 of
the MCR. A system reset will set these signals to their inactive state (logic ‘1’) since bits 2 and 3 of the MCR
are cleared on a system reset.

Version 1.0 –Sept. 26, 2006 Page 53 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.2.6 Timing Diagrams

4.2.6.1 Example Transmitter Timing

sout

baudStb

start
start bit of next character

stop

data bits 0-7

d0 d1 d2 d3 d4 d5 d6 d7 d0 d1 d2

sout idle
8 bit character length, no parity, 1 stop bit

sout

baudStb

start
start bit of next character

2 stop bits

data bits 0-5

d0 d1 d2 d3 d4 d5 parity

sout idle
6 bit character length, parity enabled, 2 stop bits

d0 d1 d2

(each baudStb has a width of one sysClk period)

4.2.6.2 Example Receiver Timing

sin

baudX16Stb

start
start bit of next character

stop

data bits 0-7

d0 d1 d2 d3 d4 d5 d6 d7 d0 d1 d2

sin idle
8 bit character length, no parity, 1 stop bit

(there are sixteen baudX16Stb's per baud time,
each baudX16Stb has a width of one sysClk period)

1 baud time

Version 1.0 –Sept. 26, 2006 Page 54 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.2.6.3 PCLK & clkBaud
PCLK

clkBaud
(divisor = 0x0001)

clkBaud
(divisor = 0x0002)

clkBaud
(divisor > 0x0002)

(divisor - 2) sysClk cycles

2 sysClk
cycles

Note that the 2nd and 3rd waveforms only apply when the baudClkEn input is tied high. When the input clock is
divided down using the baudClkEn signal, no special cases exist and the clkBaud signal looks like the last
waveform above.

4.2.6.4 sout & clkBaud
sout

clkBaud

1 baud time

16 clkBaud cycles

Version 1.0 –Sept. 26, 2006 Page 55 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.3 Parallel Port

4.3.1 Overview
This module is an 8-bit bi-directional parallel port compatible with PC printers. Alternatively, the parallel port
can be used for general purpose I/O. The status and command registers provide information about state of the
printer inputs and outputs, while the control register allows the programmer to control the printer outputs. There
are two bi-directional modes to control I/O for the parallel port. One mode allows the I/O select register to
control the parallel port direction while the other mode allows for a direction bit in the control register to control
the direction. The parallel port also provides two interrupt modes, known as “ack” and “latch” modes.

4.3.2 Block Diagram

Version 1.0 –Sept. 26, 2006 Page 56 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.3.3 Signal Descriptions

Signal Name I/O Description
PRESETn I Active low APB reset
PCLK I APB clock
PADDR[1:0] I APB Address
PWDATA[31:0] I APB write data bus
PWRITE I APB Write signal (0=Read and 1=Write)
PSEL I APB Block select
PENABLE I APB signal indicating 2nd cycle of APB transfer
PRDATA[31:0] O APB read data bus
blkInt O Block Interrupt (1=interrupt active)
errorN I Printer error
slct I Printer select
pe I Printer paper empty
ackN I Printer acknowledge of successful data transfer to print buffer
busyN I Printer busy, indicates printer not ready to accept data
strobeN O Strobe, indicates parallel data output valid
autoFdXtN O Auto line feed
init O Initialize printer
slctInN O Printer select
bidEn I Bi-directional enable
intSel I Interrupt mode select (1=latched mode, 0=ack mode)
parDin[7:0] I Parallel data input bus
parDout[7:0] O Parallel data output bus
parOeN O Parallel data output enable

Version 1.0 –Sept. 26, 2006 Page 57 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.3.4 Programming Interface

4.3.4.1 Register Summary

Register Name Offset Description
data 0x0 Access to the parallel data bus
status 0x4 Status of interrupt and printer inputs
ioSel 0x4 Controls direction of port when bidEn input is low
command 0x8 Status or interrupt enable and printer outputs
control 0x8 Enables interrupt output and drives printer outputs

4.3.4.2 Register Descriptions

4.3.4.2.1 data
offset: 0x0

Bits Access Default Description
[7:0] Read/Write 0x00 Writes to this location store data in the parallel data

register, which drives the parallel data bus when in
output mode. Reads to this location with the parallel
port in output mode reads the parallel data register,
while reads to this location with the parallel port in
input mode are directly reading the parallel data bus.

4.3.4.2.2 status
offset: 0x4

Bits Access Default Description
[7] Read undefined State of busyN input, 1=busyN is low, 0=busyN is high
[6] Read undefined State of ackN input, 1=ackN is high, 0=ackN is low
[5] Read undefined State of pe input, 1=pe is high, 0=ackN is low
[4] Read undefined State of slct input, 1=slct is high, 0=slct is low
[3] Read undefined State of errorN input, 1=errorN is high, 0=errorN is low
[2] Read 0x1 Indicates that an interrupt is pending, 1=no interrupt

pending, 0=interrupt pending
[1:0] Read 0x3 Unused, these bits are permanently set

4.3.4.2.3 ioSel
offset: 0x4

Bits Access Default Description
[7:0] Write 0x00 Used to set direction mode of parallel port when bidEn

input is low. When bidEn is low, 0xAA=input mode,
0x55=output mode. This register has no effect when bidEn
is high.

4.3.4.2.4 command

Version 1.0 –Sept. 26, 2006 Page 58 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

offset: 0x8
Bits Access Default Description
[7:5] Read 0x7 Unused, these bits are permanently set
[4] Read 0x0 State of block interrupt enable, 1=blkInt is enabled,

0=blkInt disabled
[3] Read 0x0 State of slctInN output, 1=slctInN output is low,

0=slctInN output is high
[2] Read 0x0 State of init output, 1=init output is high, 0=init

output is low
[1] Read 0x0 State of autoFdXtN output, 1=autoFdXtN is low,

0=autoFdXtN is high
[0] Read 0x0 State of strobeN output, 1=strobeN is low, 0=strobeN is

high

4.3.4.2.5 control
offset: 0x8

Bits Access Default Description
[7:6] Write undefined Unused, these bits will be ignored when written to
[5] Write 0x0 Direction bit, used when bidEn is high. When bidEn is

high, 1=input mode, 0=output mode. This bit has no effect
when bidEn is low

[4] Write 0x0 Block interrupt enable, enables the blkInt output. Note
that the interrupt pending bit in the status register is
not affected by this bit. 1=blkInt enabled, 0=blkInt
disabled

[3] Write 0x0 Drives slctInN output, 1=slctInN output is low, 0=slctInN
is high

[2] Write 0x0 Drives init output, 1=init output is high, 0=init output
is low

[1] Write 0x0 Drives autoFdXtN output, 1=autoFdXtN output is low,
0=autoFdXtN output is high

[0] Write 0x0 Drives strobeN output, 1=strobeN output is low, 0=strobeN
output is high

Version 1.0 –Sept. 26, 2006 Page 59 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.3.5 Functional Description

4.3.5.1 Bi-directional Data Bus
The bi-directional data bus is not implemented within the parallel port. The parallel port offers two
unidirectional buses with an output enable used to implement a bi-directional bus at a higher level of the design
hierarchy. This is done in order to facilitate integration with many FPGA and ASIC architectures where tristate
buffers must exist at the I/O level. Note that this logic can easily be modified for custom applications. The
following figure illustrates the bi-directional bus implementation in the Embedded Controller with AMBA
interface.

4.3.5.2 I/O Modes
The parallel port is bi-directional, and its direction can be controlled by two methods. The first method of
controlling the direction is by bit 5 of the control register, known as the direction bit. In order to control the
direction of the parallel port with the direction bit, the bidEn input must be high. When bidEn is high, writing a
logic ‘0’ to bit 5 of the control register sets the parallel port for output mode while writing a logic ‘1’ to bit 5 of
the control register sets the parallel port for input mode.

The second method of controlling the direction is by the I/O Select register (ioSel). In order to control the
direction of the parallel port with the ioSel register, the bidEn input must be low. When bidEn is low, writing
0x55 to the ioSel register sets the parallel port to output mode while writing 0xAA to the ioSel register sets the
parallel port to input mode.

Whether the direction is controlled by the direction bit or by the ioSel register, the parallel port comes out of
reset in output mode. In the Embedded Controller with AMBA interface, the bidEn input is bootstrapped high to
allow the direction to be controlled by the direction bit in the control register. The following table summarizes
conditions for the I/O modes.

bidEn ioSel control[5] direction
1 X 0 output
1 X 1 input
0 0x55 X output
0 0xAA X input

Version 1.0 –Sept. 26, 2006 Page 60 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.3.5.2.1 Output Mode
In output mode, the bi-directional parallel data bus (parData) is driven by the data register of the parallel port.
This occurs because the output enable signal (parOeN) is asserted low during output mode operation, causing
the parallel data output (parDout) bus to be driven onto parData. In this mode, reads to the data register location
will read the data stored in the data register, which is also the data being driven onto the bi-directional data bus,
which is the same data being driven onto parDin. See the following illustration.

4.3.5.2.2 Input Mode
In input mode, the output enable signal (parOeN) is high, causing the parData bus to be tristated so that an
external source can drive it. The data register can still be written in this mode, however the data register will not
drive parData as long as the parallel port is in input mode. Reads to the data register location will read the data
being driven onto parData externally.

Be aware that no synchronization of the parallel data input bus (parDin) is performed within the parallel port. It
is assumed that any external sources driving parData are synchronized to the system clock.

4.3.5.3 Interrupt Modes
Two interrupt modes are supported, known as the “ack” and “latch” modes. These modes are controlled by the
intSel input of the parallel port. When intSel is high, the parallel port operates in latch mode, and when intSel is
low, the parallel port operates in ack mode. In both modes the interrupt is enabled by bit 4 of the control
register. Be aware that the interrupt enable applies only to the blkInt output and does not affect bit 2 of the
status register. Bit 2 of the status register indicates a pending interrupt condition regardless of the interrupt
enable bit.

4.3.5.3.1 Latch Mode
In this mode, the interrupt is asserted on the falling edge of ackN input and will remain set until the status
register is read.

4.3.5.3.2 Ack Mode

Version 1.0 –Sept. 26, 2006 Page 61 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

In this mode, the interrupt tracks the ackN input. That is, any time ackN is low, the interrupt will be asserted,
and any time ackN is high, the interrupt will be clear. Reads of the status register have no effect on the interrupt
in this mode. There is no way to clear the interrupt from within the parallel port when operating in this mode,
the only way to clear the interrupt is to remove the condition causing the interrupt. When the parallel port is
operating in this mode, an interrupt service routine must perform all service necessary to raise the ackN input
high to clear the interrupt, otherwise the parallel port interrupt will never be cleared.

4.3.5.4 Printer I/O
The parallel port provides various printer I/O signals which can be monitored and controlled through the status,
command, and control registers. Printer input signals (errorN, slct, pe, ackN, busyN) can be monitored through
the status register, printer outputs (strobeN, autoFdXtN, init, slctInN) can be monitored through the command
register and controlled through the control register.

Be aware that no synchronization of printer inputs is performed within the parallel port. It is assumed that these
signals are synchronized with the system clock prior to connection with the parallel port.

Version 1.0 –Sept. 26, 2006 Page 62 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.4 Timer

4.4.1 Overview

The Timer module is a sixteen bit down counter with a selectable prescaler. The prescaler can be
programmed for different divide ratios and extends the timer’s range at the expense of precision.
The Timer provides two modes of operation that provide a free running value and also periodic interrupts.

4.4.2 Block Diagram

blkInt

PRDATA

PRESETn

PCLK

PWDATA

PWRITE

PADDR

PSEL

Timer

Presc.

Config
Regs

Counter Int.
Gen.

The Timer contains several configuration registers that can be written and read by the processor. A
programmable prescaler precedes a 16-bit counter. The counter can be clocked at either the input clock
rate, or a choice of prescaled rates. The counter can be loaded with a value from a preload register. The
counter can optionally generate an interrupt.

4.4.3 Signal Descriptions

Version 1.0 –Sept. 26, 2006 Page 63 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

Signal Name I/O Description
PRESETn I APB reset (active low)
PCLK I APB clock
PWRITE I APB write, 0=Read and 1=Write.
PWDATA[31:0] I APB write data bus
PADDR[1:0] I APB Address bus
PSEL I APB Block select
PENABLE I APB signal indicating 2nd cycle of APB transfer
blkInt O Block Interrupt (1=interrupt active)
PRDATA[31:0] O APB read data bus

4.4.4 Programming Interface

4.4.4.1 Register Summary

Register Name Offset Description
Load 0x0 Initial value of the timer
Value 0x4 The current value of the timer (Read Only)
Control 0x8 Provides enable/disable, mode and pre-scale configurations
Clear 0xC Clears the interrupt (Write Only)

4.4.4.2 Register Descriptions

4.4.4.2.1 Load
offset: 0x0

Bits Access Default Description
[31:16] Read/Write undefined Unused – undefined on a read, should be set to zero on a

write
[15:0] Read/Write 0x0 The initial value of the timer. Also, the reload value

when the timer is in periodic mode.

4.4.4.2.2 Value
offset: 0x4

Bits Access Default Description
[31:16] Read undefined Unused – undefined
[15:0] Read 0x0 The current value of the timer

4.4.4.2.3 Control
offset: 0x8

Bits Access Default Description
[31:8] Read/Write undefined Unused – undefined on a read, should be set to zero on a

write
[7] Read/Write 0x0 Enable – 0=Timer Disabled, 1=Timer Enabled
[6] Read/Write 0x0 Mode – 0=Free running mode, 1=Periodic mode

Version 1.0 –Sept. 26, 2006 Page 64 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

[5] Read/Write 0x0 Unused - 0 on a read, should be set to zero on a write
[4:2] Read/Write 0x0 Prescale – 0=none – clock is divided by one

 1=clock is divided by 16
 2=clock is divided by 256
 3=clock is divided by 2
 4=clock is divided by 8
 5=clock is divided by 32
 6=clock is divided by 128
 7=clock is divided by 1024

[1:0] Read/Write 0x0 Unused - 0 on a read, should be set to zero on a write

4.4.4.2.4 Clear
offset: 0xC

Bits Access Default Description
[31:0] Write undefined Clear Interrupt – the bit settings are unused and should

be set to zero

4.4.5 Functional Description
The timer is a basic down counter. When the timer is enabled by setting bit 7 in the Control register or a
new value is set in the Load register, the Load register is loaded into the Value register. Bits 2 thru 4 of
the Control register control the scaling of sysClk creating a timer clock enable. The Value register is
decremented on the leading edge of the clock when the prescale clock enable is high. When enabled,
blkInt is then activated until it is cleared by writing to the Clear register.

The prescaler is a free running counter. Its output is a 1-clock-wide pulse that feeds the timer’s main
counter as a clock enable. The prescaler is held in the clear state when the Timer is disabled (bit 6 of the
Control register is zero). It is also cleared when the Load register is loaded. Bits 2 thru 4 of the Control
register determine which prescale divide ratio is selected.

The timer has two modes of operation determined by bit 6 in the Control register: free running and
periodic. When the Value register reaches zero and the free running mode is selected, Value is
decremented to 0xFFFF on the next enabled clock edge. When the Value register reaches zero and the
periodic running mode is selected, the Load register is reloaded into the Value register on the next enabled
clock edge. In either case, the Value register will continue to be decremented on each enabled clock edge
until the Value register reaches zero where the whole process starts over again.

Because zero is a separate count, periodic counts are actually one count longer than the contents of the
Load register. For example, if a value of four is put into the Load register and the periodic mode is
selected, an interrupt will occur every five clock cycles (when prescale value is 0).

Version 1.0 –Sept. 26, 2006 Page 65 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.5 Watchdog Timer

4.5.1 Overview
The Watchdog Timer module is a 16 bit down counter with a selectable prescaler, watchdog reset,
warning interrupt, and reset controller.

4.5.2 Block Diagram

blkInt

PRDATAPCLK

PWDATA

PWRITE

PADDR

Shift
register

earlyRstN

Delay
extRstN

wdRstNWatchDog

delayedRstN

Watchdog Timer

PSEL

Presc.

Config
Regs

Counter

resetInN

Version 1.0 –Sept. 26, 2006 Page 66 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

The Watchdog timer contains several configuration registers that can be written and read by the processor.
A programmable prescaler precedes a 16-bit counter. The counter can be clocked at either the input clock
rate, or a choice of prescaled rates. Prescale values of 1, 16, 32, 128, 256, 1024, and 4096 can be selected.
The prescaler extends the timer’s range at the expense of precision.

The Watchdog reset can be used to reset a system after a configurable time lapse without activity. A
warning interrupt can be issued a predetermined amount of time before a watchdog reset to indicate a reset
is imminent. The reset controller within this module can be used to provide a glitch free version of an
external reset to the internal system, and issue an early reset to components before a processor reset. The
watchdog reset output can be routed to the reset input. When not used, the reset input should be tied High.

When the kick register is written, the counter is loaded with a value from a preload register. The
watchdog will generate an interrupt when it decrements to the warning time (255), then a reset when it
decrements to zero.

4.5.3 Signal Descriptions
Signal Name I/O Description
PRESETn I APB reset (active low)
PCLK I APB clock
PWRITE I APB write, 0=Read and 1=Write.
PWDATA[31:0] I APB write data bus
PADDR[2:0] I APB Address bus
PSEL I APB Block select
PENABLE I APB signal indicating 2nd cycle of APB transfer
extRstN I External Reset (0= Reset)
ResetInN I Reset Input
blkInt O Block Interrupt (1=interrupt active)
PRDATA[31:0] O APB read data bus
earlyRstN O Glitch free version of External reset (0= Reset)
delayedRstN O Delayed version of External reset (0= Reset)
wdRstN O WatchDog reset (0= Reset)

4.5.4 Programming Interface

4.5.4.1 Register Summary

Register Name Offset Description
Load 0x0 Initial value of the timer
Value 0x4 The current value of the watchdog timer (Read Only)
Control 0x8 Provides enable/disable, pre-scale configurations
Kick 0xC Kicks the watchdog (Write Only)

4.5.4.2 Register Descriptions

4.5.4.2.1 Load
offset: 0x0

Version 1.0 –Sept. 26, 2006 Page 67 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

Bits Access Default Description
[31:16] Read/Write undefined Unused – undefined on a read, should be set to zero on a

write
[15:0] Read/Write 0x0 The initial value of the timer.

4.5.4.2.2 Value
offset: 0x4

Bits Access Default Description
[31:16] Read undefined Unused – undefined
[15:0] Read 0xFFFF The current value of the watchdog timer

4.5.4.2.3 Control
offset: 0x8

Bits Access Default Description
[31:8] Read/Write undefined Unused – undefined on a read, should be set to zero on a

write
[7] Read/Write 0x0 Enable – 0=Timer Disabled, 1=Timer Enabled
[6:5] Read/Write 0x0 Unused - 0 on a read, should be set to zero on a write
[4:2] Read/Write 0x0 Prescale – 0=none – clock is divided by one

 1=clock is divided by 16
 2=clock is divided by 256
 3=clock is divided by 32
 4=clock is divided by 128
 5=clock is divided by 1024
 6=clock is divided by 4096
 7=undefined

[1:0] Read/Write 0x0 Unused - 0 on a read, should be set to zero on a write

4.5.4.2.4 Kick
offset: 0xC

Bits Access Default Description
[31:0] Write undefined Kick the watchdog - reset the timer value to its default

load and clear the block interrupt – the bit settings are
unused and should be set to zero

4.5.5 Functional Description
The watchdog timer is a basic down counter which generates a reset when it decrements to zero. The
watchdog timer is only active when enabled, and can be enabled by setting bit 7 in the Control register.

Bits 2 thru 4 of the Control register control the scaling of PCLK creating a timer clock. When all 3 bits
are zero, PCLK is used directly to generate the timer clock. When bit 2 is asserted and bit 3 is unasserted,
PCLK is divided by 16 to generate the timer clock. When bit 2 is asserted and bit 3 is unasserted, PCLK is
divided by 256 to generate the timer clock.

The prescaler is a free running counter. Its output is a 1-clock-wide pulse that feeds the watchdog timer’s
main counter as a clock enable. The prescaler is held in the clear state when the Timer is disabled (bit 6

Version 1.0 –Sept. 26, 2006 Page 68 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

of the Control register is zero). It is also cleared when the Load register is loaded. Bits 2 thru 4 of the
Control register determine which prescale divide ratio is selected.

When active, the Value register counts down from the value of the Load register. The Value register is
decremented on each enabled clock until it reaches zero. The module then asserts wdRstN, which can be
used to restart a system that appears to have timed out. The system should intermittently “Kick” the
Watchdog, to prevent this system reset. When kicked the watchdog reloads the Value register with the
contents of the Load register and resumes decrementing.

The watchdog can be kicked by a single write to the Kick address. A timer kick, a block enable, or a write
to the Load register all cause the Value register to be loaded with the contents of the Load register.

The watchdog timer will issue a warning interrupt (assert blkInt) 256 timer cycles before it asserts
wdRstN. This will warn the system that it hasn’t kicked the watchdog recently and should do so or the
system will be reset. BlkInt will remain active until the watchdog has been kicked.

The watchdog timer also provides reset controller functions. The module feeds extRstN into a 4bit linear
shift register and asserts earlyRstN (logic 0) when the registers value is zero. This makes earlyRstN a
glitch free version of extRstN. delayedRstN is the earlyRstN signal with its assertion delayed by 15 PCLK
cycles. It can be used to reset the processor after other devices, such as flash, have been reset. The
watchdog reset will stay asserted for 256 clocks and will then deassert.

4.6 PWM

4.6.1 Block Diagram

Control
Reg'sPWDATA

PRDATA

 =

pulseOut
S

R

 =

0

8-bit
Counter

dutyCycle

4-bit
Prescale

PCLK

prescaleEnable

PADDR[4:2]
pulseEnable

The PWM Controller generates a programmable duty cycle output signal. The period of the output waveform is
either PCLK/256 or PCLK/4096 (when prescale is enabled). The duty cycle can be programmed with 8-bit
resolution. The output can be disabled or enabled. Disabling resets the counter to zero for the next enable.

Version 1.0 –Sept. 26, 2006 Page 69 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.6.2 Timing Diagram

dutyCycle

0

255

Counter
Value

prescaleEnable

output

When the 8-bit counter value reaches the value programmed into the dutyCycle register, the output goes low.
When the counter has reached its maximum value and rolls back over to zero, the output goes high.

Version 1.0 –Sept. 26, 2006 Page 70 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.6.3 Programming Interface

4.6.3.1 Register Summary

Register Name Offset Description
PWM_DUTYCYCLE 0x00 PWM Duty Cycle
PWM_ENABLE 0x04 PWM Enable
PWM_DISABLE 0x08 PWM Disable

PWM_PRESCALE_ENABLE 0x0C PWM Prescale Enable
PWM_ PRESCALE_DISABLE 0x10 PWM Prescale Disable

4.6.3.2 Register Descriptions

4.6.3.2.1 PWM_DUTYCYCLE
offset: 0x00

Bits Signal Access Default Description
31:8 reserved W Reserved
31:11 reserved R Reserved
10 pulseOut RO PWM Output
9 pulseEnable RO PWM Enable
8 PrescaleEnable RO PWM Prescale Enable
7:0 dutyCycle R/W 0x00 PWM Duty Cycle (0=always off; 255 = always on;

128 = 50% duty cycle)

4.6.3.2.2 PWM_ENABLE
offset: 0x04

Write any value to enable PWM output.

4.6.3.2.3 PWM_DISABLE
offset: 0x04

Write any value to disable PWM output.

4.6.3.2.4 PWM_PRESCALE_ENABLE
offset: 0x04

Write any value to enable Prescale.

4.6.3.2.5 PWM_PRESCALE_DISABLE
offset: 0x04

Write any value to disable Prescale.

Version 1.0 –Sept. 26, 2006 Page 71 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.7 Stealth Mode

4.7.1 Overview

The Stealth Mode is an optional mode that can be useful in debugging a system. In this mode, registers
can be accessed (written or read) without any side effects. Stealth mode is activated by setting the
stealthMode bit in the stealthReg register. This mode is only available when the Stealth Mode IP block is
purchased.

4.7.2 Signal Descriptions

Signal Name I/O Description
PRESETn I APB reset (active low)
PCLK I APB clock
PWRITE I APB write, 0=Read and 1=Write.
PWDATA[31:0] I APB write data bus
PSEL I APB Block select
PENABLE I APB signal indicating 2nd cycle of APB transfer
PRDATA[31:0] O APB read data bus
stealthMode O In this mode, no "side-effects" to reads or writes

stealthUartXMode O
Stealth cross-connect mode: reading RBR really reads
from TX FIFO or THR (writing THR does NOT write RX FIFO
or RBR)

stealthUartDataSel[1:0] O

Stealth UART data select mode – selects what data is read
when performing FIFO/RBR read:
00 = normal: data is RX FIFO/RBR (or TX FIFO/THR if in X
mode)
01 = FIFO errors (RX or TX FIFO determined by X mode)
10 = FIFO depth & cumulative error bit (again RX or TX
FIFO)
11 = reserved

Version 1.0 –Sept. 26, 2006 Page 72 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.7.3 Programming Interface

4.7.3.1.1 Register Summary

Register Name Offset Description
StealthReg 0x0 Stealth mode control register

4.7.3.1.2 StealthReg

Bits Access Default Description
[15:4] Read/Write undefined Unused – undefined on a read, should be set to zero on a

write
[3:2] Read/Write 0x0 stealthUartDataSel - Stealth UART data select mode –

selects what data is read when performing FIFO/RBR read:
00 = normal - data is RX FIFO/RBR (or TX FIFO/THR if in X

mode) (when in FIFO mode, 16 reads must be performed
so that FIFO pointers will end up where they
started)

01 = FIFO errors (RX or TX FIFO determined by X mode)
(when in FIFO mode, 16 reads must be performed so
that FIFO pointers will end up where they started)

10 = FIFO depth & cumulative error bit (again RX or TX
FIFO)

data[4] = 1 if any errors in FIFO
data[3:0] = FIFO depth

(single read is OK; no FIFO pointers altered)
11 = reserved

stealthUartDataSel has no effect when not in stealthMode

[1] Read/Write 0x0 StealthUartXMode - Stealth UART cross-connect mode:
reading RX FIFO/RBR really reads from TX FIFO or THR
(writing THR does NOT write RX FIFO or RBR)

stealthUartDataSel has no effect when not in stealthMode

[0] Read/Write 0x0 stealthMode - In this mode, no "side-effects" to reads or
writes

Version 1.0 –Sept. 26, 2006 Page 73 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

4.7.3.1.3 Caveats
The stealth mode support in the socUart module has a few requirements:

• for safety, turn interrupts off while doing stealth mode operations.

• after enabling stealth mode, the processor must wait at least 2 clock cycles before doing the first
read of UART registers. Normally this will be no problem, but NO-OPs or some delay code might
be necessary.

• since the XMT & RCV state machines hang in the armed state while in stealth mode, do all stealth

mode operations as quickly as possible and immediately disable stealth mode. This will allow the
state machines to resume before a character gets overwritten. Also, for this reason it might be a
good idea to separate blocks of UART stealth operations from each other and from other non-
UART stealth operations in time.

• all 16 locations of a FIFO must be read before exiting stealth mode to insure the state of the

system is not changed.

4.7.4 Functional Description

The Stealth Mode can be very useful in debugging a system. In this mode, registers can be accessed
(written or read) without any side effects. Stealth mode is activated by setting the stealthMode bit in the
stealthReg register. Stealth mode may be removed entirely from the compilation by turning off the
definition for ENABLE_STEALTH_MODE.

Several other SoC Solutions IP components have been enhanced to take advantage of this mode of
operation. An example is the 16550 UART. In stealth mode, the contents of both the transmit and
receive FIFOs, the FIFO depths, and any errors in the FIFOs can be read transparently to the normal
operation of the UART. A normal 16550 does not provide a way to read data from the transmit FIFO, so
asserting this signal activates special steering logic in the SoC UART IP. Once stealth mode is disabled,
this logic becomes transparent.

The stealth mode enhancements are only added when the Stealth Mode IP block is purchased. When
stealth mode is added, the gate count is increased slightly (typically less than 1%), so the user may wish to
remove stealth mode in the final product.

Version 1.0 –Sept. 26, 2006 Page 74 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

Appendix A: Example External Memory Configuration

Version 1.0 –Sept. 26, 2006 Page 75 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

Appendix B: Verilog Testbench

The Verilog testbench consists of the following components:
• Top Level Testbench File
• External Memory Models
• Processor Bus Functional Model (BFM)
• Testbench Utilities
• Module Tests
• Main Interrupt Service Routine (ISR)
• Module ISRs

The top level Verilog testbench file

• creates the clock,
• instantiates the chip,
• instantiates the memory models,
• `includes code for the BFM, utilities, module tests, & ISRs, and
• contains an initial block that runs the tests.

The external memory models emulate the memories found on an SoC Solutions development board and can be
easily modified for other platforms.

Since the PiP-EC02 is designed to be connected directly to a processor, the testbench is written to emulate
instructions that run on the processor, including interrupt service routines which run when interrupts are
generated by the PiP-EC02. This also makes the Verilog tests easy to convert to C code for running on the
actual processor.

BFM

The BFM included in the PiP-EC02 is for the ARM7TDMI processor. The BFM does not try to emulate
complete functionality of the processor. It does, however, perform the logic necessary to emulate the activity of
a processor executing instructions. Note that the main difference is that the instructions are not fetched from
memory; rather, they are calls to tasks which read and write registers and memory locations.

The BFM operates in one of two modes: core or ARM test chip. In ARM test chip mode, the SEL[1:0] signal is
used to steer the bytes of the data bus to and from the processor. This is necessary because the ARM7TDMI
test chip incorporates this logic around the ARM7TDMI core. This allows for direct connections to memory
devices of various widths.

The BFM supplies read and write tasks for both main “code” and ISR code. The module tests consist of calls to
these basic read and writes tasks.

Testbench Utilities

Utility routines are provided which

• read and verify memory/register values,

Version 1.0 –Sept. 26, 2006 Page 76 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

• cause simulation time to continue without accessing valid memory locations, and
• facilitate testing (testInit, testFailure, & testDone)

Module Tests

The module tests emulate test code running on the processor. They consist of one or more tasks containing a
series of calls to read and write tasks. Occasionally there are additional tests that reach into the Verilog
hierarchy to verify signals are in the correct states. Each test should be bracketed by calls to the testInit and
testDone tasks. If a failure occurs, the testFailure task should be invoked.

ISRs

The following conditions are treated as ISRs to the ARM7TDMI:

• IRQ
• FIQ
• Abort

The portion of the main ISR which handles IRQ interrupts reads the interrupt controller to determine the source
of interrupt and invokes the appropriate interrupt service routine. Since the interrupts are level triggered, the
module’s ISR is responsible for clearing the condition that caused the interrupt to be generated; otherwise, the
interrupt will stay asserted.

Version 1.0 –Sept. 26, 2006 Page 77 of 78 © 2007, SoC Solutions, L.L.C.

SoC Solutions – PiP-EC02 ™ Specification

Version 1.0 –Sept. 26, 2006 Page 78 of 78 © 2007, SoC Solutions, L.L.C.

Appendix C: ARM Signal name mapping

The PiP-EC02 uses generic signal names for processor signals, although the PiP-EC02 has been designed to
connect directly to the ARM data, address, and control signals. Here are the equivalent ARM signal names.

PiP-EC02 Signal Name ARM Signal Name
procRstN nRESET
procAddr[31:0] A[31:0]
procData[31:0] D[31:0] (or the unidirectional DIN & DOUT may be used)
fiqOutN nFIQ
irqOutN nIRQ
procWrRdN nRW
procWaitN nWAIT
procAccType[1] nMREQ
procAccType[0] SEQ
procByteLatch[3:0] BL[3:0]
procDsize[1:0] MAS[1:0]
procAbort ABORT
ProcLock LOCK

	Copyright Notice
	Disclaimer
	Trademarks
	Bugs and Suggestions
	Change Log
	System Overview
	The Pre-integrated IP Embedded Controller with AMBA interface
	Peripheral Overview
	Clock and Reset Signals
	Data and Address Bus
	Memory Maps
	Top-Level Signal Descriptions
	Interrupt Source Bit Assignments
	System Configuration
	Timing Considerations

	Multi-Master AHB
	AHB Arbiter
	Processor Interface
	Overview
	Timing

	Other Masters

	AHB Peripherals
	Address Decoder
	Overview
	Block Diagram
	Remap Logic
	AHB Peripheral Memory Map
	Programming Interface
	Register Summary
	Register Descriptions
	remapStatus
	clearResetMap

	Internal Memory and Interface
	Overview
	BlockDiagram
	Signal Descriptions (memory interface)

	Interrupt Controller
	Overview
	Block Diagram
	Signal Descriptions
	Programming Interface
	Register Summary
	Register Descriptions
	request
	status
	enable
	enableSet
	enableClr
	progIntr
	mapping

	Functional Description

	External Bus Interface (EBI)
	Overview
	Limitations
	Timing
	Configurability

	Block Diagram
	Signal Descriptions
	Programming Interface
	Register Summary
	Register Descriptions
	ebiCfg0
	ebiCfg1
	ebiCfg2
	ebiCfg3

	Common Setups

	Instantiation Parameters
	Functional Description
	Timing Diagrams

	SDRAM Controller
	APB Bridge
	Overview
	APB Peripheral Memory Map
	Timing

	APB Peripherals
	General Purpose Input/Output (GPIO)
	Overview
	Block Diagram
	Signal Descriptions
	Programming Interface
	Register Summary
	Register Descriptions
	State Register
	Set Register
	Clear Register
	Interrupts Register
	Out Register
	In Register
	Enable Set Register
	Enable Clear Register
	Edge Register
	Level Register
	Set Level Register
	Clear Level Register
	Any Edge Set Register
	Any Edge Clear Register
	Interrupt Clear Register

	Functional Description

	Universal Asynchronous Receiver/Transmitters (UARTs)
	Overview
	Block Diagram
	Signal Descriptions
	Programming Interface
	Register Summary
	Register Descriptions
	Receiver Buffer Register
	Transmitter Holding Register
	Interrupt Enable Register
	Interrupt Identification Register
	FIFO Control Register
	Line Control Register
	Modem Control Register
	Line Status Register
	Modem Status Register
	Scratch Register
	Divisor Latch (LS)
	Divisor Latch (MS)

	Functional Description
	Transmitter Operation
	Receiver Operation
	Baud Rate Generator
	Optional Divisor for Baud Rate Generator

	Interrupts
	Enabling Interrupts
	Interrupt Types
	Receiver Line Status
	Received Data Available
	Character Timeout
	Transmitter Holding Register Empty
	Modem Status
	Interrupt Identification

	FIFO Control
	Receiver FIFO
	Transmitter FIFO

	Line Control
	Asynchronous Serial Data Format
	Diagnostic Mechanisms

	Line Status
	Modem Control / Status
	Modem Control
	Modem Status

	DMA modes
	Mode 0 (16450 and 16550)
	Mode 1 (16550 only)

	Loopback Operation
	General Purpose Outputs

	Timing Diagrams
	Example Transmitter Timing
	Example Receiver Timing
	PCLK & clkBaud
	sout & clkBaud

	Parallel Port
	Overview
	Block Diagram
	Signal Descriptions
	Programming Interface
	Register Summary
	Register Descriptions
	data
	status
	ioSel
	command
	control

	Functional Description
	Bi-directional Data Bus
	I/O Modes
	Output Mode
	Input Mode

	Interrupt Modes
	Latch Mode
	Ack Mode

	Printer I/O

	Timer
	Overview
	Block Diagram
	Signal Descriptions
	Programming Interface
	Register Summary
	Register Descriptions
	Load
	Value
	Control
	Clear

	Functional Description

	Watchdog Timer
	Overview
	Block Diagram
	
	�

	Signal Descriptions
	Programming Interface
	Register Summary
	Register Descriptions
	Load
	Value
	Control
	Kick

	Functional Description

	PWM
	Block Diagram
	Timing Diagram
	Programming Interface
	Register Summary
	Register Descriptions
	PWM_DUTYCYCLE
	PWM_ENABLE
	PWM_DISABLE
	PWM_PRESCALE_ENABLE
	PWM_PRESCALE_DISABLE

	Stealth Mode
	Overview
	Signal Descriptions
	Programming Interface
	
	Register Summary
	StealthReg
	Caveats

	Functional Description

	Appendix A: Example External Memory Configuration
	Appendix B: Verilog Testbench
	Appendix C: ARM Signal name mapping

