
TU0308
Tutorial

ARM Cortex-M1 Embedded Processor

50200308. 2.0. 6/17

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

© 2017 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com
http://www.microsemi.com
http://www.microsemi.com

Contents

1 Revision History . 1
1.1 Revision 2.0 . 1
1.2 Revision 1.0 . 1
1.3 Revision 0 . 1

2 Introduction . 2
2.1 Tutorial Requirements . 2

2.1.1 Software Requirements . 2
2.1.2 Hardware Requirements . 2
2.1.3 Intellectual Property (IP) . 3

2.2 CoreAI version 3.0.119 Licensing . 3

3 Design Overview . 4
3.1 Cortex-M1 System Description . 4
3.2 Cortex-M1 Hardware Design Description . 4

4 Getting Started . 5
4.1 Download Tutorial Files . 5
4.2 Install USB-to-UART Driver . 6

4.2.1 Setting Up the USB-to-UART Driver . 6

5 Creating Design . 8
5.1 Step 1 – Create a Libero SoC Project . 8
5.2 Step 2 – Create a SmartDesign Component with Libero SoC . 9

5.2.1 Obtaining Different Version of Direct Core IP . 11
5.2.2 Instantiate Cortex-M1 Processor . 12
5.2.3 Instantiate CoreAHBLite Bus . 13
5.2.4 Instantiate CoreAhbNvm . 13
5.2.5 Instantiate CoreMemCtrl . 13
5.2.6 Instantiate CoreAhbSram . 14
5.2.7 Instantiate CoreAHB2APB . 15
5.2.8 Instantiate CoreAPB . 15
5.2.9 Instantiate CoreAI . 15
5.2.10 Instantiate CoreUARTapb . 18
5.2.11 Instantiate CoreGPIO . 19
5.2.12 Instantiate RC Oscillator . 19
5.2.13 Instantiate PLL . 20
5.2.14 Instantiate AND2 Gate . 20
5.2.15 Connect Signals Automatically in SmartDesign . 20
5.2.16 Connect Signals Manually in SmartDesign . 22
5.2.17 Promote Signals to Top Level . 25
5.2.18 Save and Generate SmartDesign System . 27

5.3 Step 3 – Create Flash Memory System . 28

6 Simulation, Synthesis, and Place-and-Route . 31
6.1 Step 4 – Perform Synthesis . 31
6.2 Step 5 – Perform Place-and-Route . 32

7 Programming . 34
7.1 Step 6 – Generate Programming File with Software Code in NVM . 34
TU0308 Tutorial Revision 2.0 iii

7.2 Step 7 – Connect to the Target . 35
7.3 Step 8 – Program the M1AFS1500 FPGA . 36

8 Debugging the Application Using SoftConsole . 40
8.1 Step 9 - Building the Software Application through SoftConsole . 40
8.2 Step 10 - Debugging the Project . 44

9 Appendix: Libero SoC Catalog Settings . 48

10 Appendix: Firmware Catalog Settings . 49

11 Appendix: Debugging Features in SoftConsole . 50
TU0308 Tutorial Revision 2.0 iv

Figures

Figure 12 Block Diagram . 4
Figure 13 Tutorial Files . 5
Figure 14 Windows Device Manager . 7
Figure 15 New Project Dialog Box . 8
Figure 16 Selecting SoftConsole as Software IDE . 9
Figure 17 Select Smart Design Component . 9
Figure 18 Smart Design Canvas Window . 10
Figure 19 Opening Options from Catalog Section . 11
Figure 20 Catalog - Options: Filter . 11
Figure 21 Catalog - Options: Display . 12
Figure 22 Configuring Cortex-M1 . 12
Figure 23 Instantiate and Configure CoreAhbNvm . 13
Figure 24 Configuring CoreMemCtrl . 14
Figure 25 Configuring CoreAhbSram . 15
Figure 26 Configuring CoreAI (Part 1) . 16
Figure 27 Configuring CoreAI (Part 2) . 16
Figure 28 Configuring CoreAI (Part 3) . 17
Figure 29 Configuring CoreAI (Part 4) . 18
Figure 30 Configuring CoreUARTapb . 19
Figure 31 Configuring the PLL . 20
Figure 32 Modify Memory Map for CoreAHBLite_0 . 21
Figure 33 Configure Memory Map for CoreAPB_0 . 22
Figure 34 Connecting Signals Manually . 23
Figure 35 Replace Driver Warning . 23
Figure 36 Edit Slice . 24
Figure 37 SmartDesign Canvas . 25
Figure 38 Message while Promoting MEMADDR to Top Level . 25
Figure 39 MEMADDR Naming . 26
Figure 40 SmartDesign Canvas (for Advance Kit) . 26
Figure 41 Design Firmware . 27
Figure 42 Generating the Design . 27
Figure 43 SoftConsole Folder . 28
Figure 44 Flash Memory System Window . 29
Figure 45 Add Data Storage Client . 29
Figure 46 Data Storage Client in Flash Memory System Window . 30
Figure 47 Synthesizing the Project . 31
Figure 48 After Synthesis . 32
Figure 49 Organizing Constraint Files . 32
Figure 50 Constraints Organizer Window . 33
Figure 51 Design Flow after Verify Timing . 33
Figure 52 Designer Window . 34
Figure 53 FlashPoint Programming File Generator . 34
Figure 54 Designer Desktop . 35
Figure 55 COM3 Properties . 36
Figure 56 FlashPro Project Flow . 37
Figure 57 Fusion Embedded Development Kit Reset System with SW1 . 37
Figure 58 Fusion Advanced Development Kit Board Reset System with SW1 . 38
Figure 59 HyperTerminal Window . 38
Figure 60 HyperTerminal Display . 39
Figure 61 Invoking SoftConsole from Libero SoC . 40
Figure 62 SoftConsole Workspace . 41
Figure 63 Import Window . 41
Figure 64 Linker Flags . 42
Figure 65 GNU C Compiler . 43
TU0308 Tutorial Revision 2.0 v

Figure 66 Changes Made to Coreai_cfg.h . 44
Figure 67 Debug Configurations . 45
Figure 68 Debugger Commands . 45
Figure 69 Confirm Perspective Switch . 46
Figure 70 Debug Perspective . 46
Figure 71 Set Breakpoint . 47
Figure 72 Catalog – Options . 48
Figure 73 Setting Repositories . 48
Figure 74 Setting the Vault Location . 48
Figure 75 Firmware Catalog Settings . 49
TU0308 Tutorial Revision 2.0 vi

TU0308 Tutorial Revision 2.0 vii

Tables

Table 76 Description of Tutorial Files . 5
Table 77 Description of Software Tutorial Files . 5
Table 78 Power and USB Connections . 6
Table 79 Programming Interface Connections . 7
Table 80 Connecting Signals Manually . 23
Table 81 VCC and GND Connections . 24
Table 82 Signals to Promote to Top Level . 25

Revision History

TU0308 Tutorial Revision 2.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 2.0
The following is a summary of the changes in revision 2.0 of this document.

• Information about CoreAI licensing was updated. For more information, see CoreAI version 3.0.119
Licensing, page 3.

• Information about extracting source files was removed.

1.2 Revision 1.0
The following is a summary of the changes in revision 1.0 of this document.

• Modified Introduction section and Software Requirements section (SAR 38531).
• Modified Intellectual Property (IP) section (SAR 38531).
• Modified Instantiate Cortex-M1 Processor section (SAR 38531).
• Replaced Figure 11 (SAR 38531).
• Replaced Figure 17 (SAR 38531).
• Modified Instantiate CoreUARTapb section (SAR 38531).
• Replaced Figure 19 and modified Instantiate CoreGPIO section (SAR 38531).
• Modified Connect Signals Manually in SmartDesign section (SAR 38531).
• Modified Promote Signals to Top Level section (SAR 38531).
• Replaced Figure 30 (SAR 38531).
• Replaced Figure 32 (SAR 38531).
• Modified headings from Step 4 - Perform Synthesis till Step 10 - Debugging the Project (SAR

38531).
• Replaced Figure 49 (SAR 38531).

1.3 Revision 0
Revision 0 was the first publication of this document.

Introduction
2 Introduction

This tutorial describes how to create a Cortex-M1 processor system that runs on one of the Fusion
embedded and development kit boards provided by Microsemi system-on-chip (SoC) Products Group.
This design can be used as a starting point for developing the Cortex-M1 embedded system targeting the
ProASIC®3, IGLOO®, and Fusion® FPGAs of the SoC products group. As this tutorial targets one of the
Fusion devices, you need to be familiar with the features and architecture of Fusion. You can download
the Fusion datasheet and user’s guide from the Microsemi website:

• www.microsemi.com/soc/documents/Fusion_DS.pdf
• www.microsemi.com/soc/documents/Fusion_UG.pdf
After completing this tutorial, you will know the hardware design flow for creating a Cortex-M1 embedded
system using Libero® system-on-chip (SoC) v10.0 (or later) and SmartDesign tools. This includes the
following design steps:

• Instantiating and configuring the Cortex-M1 processor, memory, and peripherals in SmartDesign
• Connecting peripherals and defining the address map in SmartDesign
• Automated generation of the DirectCore RTL
• Synthesis, place-and-route of hardware design, and generating FPGA programming image
• Programming a Microsemi FPGA with Cortex-M1 system ready for software design
For this tutorial, use the binary file from previously developed software. The binaries are written into the
memory on the target development kit along with the programming bit files for the hardware designed in
this tutorial.

This is followed by the software development flow for the Cortex-M1 processor.

2.1 Tutorial Requirements
2.1.1 Software Requirements

This tutorial requires the following software installed on your PC:

• Libero SoC v10.0 (or later) can be downloaded from the link below:
www.microsemi.com/soc/download/software/libero/default.aspx.

The instructions are based on the Libero SoC v10.0 (or later) software along with the corresponding
Synplify and ModelSim OEM software installed on your PC. If you are using a different version, some
steps and screen-shots may be different.

• Microsemi SoftConsole v3.3 (or later), which is installed as a part of Microsemi Libero SoC
installation or can be downloaded from
www.microsemi.com/soc/download/software/softconsole/default.aspx.

• USB Drivers for USB to UART connection: www.microsemi.com/soc/documents/CP2102_driver.zip.

2.1.2 Hardware Requirements
This tutorial requires the following hardware:

• Fusion Embedded Development Kit Board (M1AFS-EMBEDDED-KIT board)
• Low-cost programming stick
• 2 USB cables (USB to mini-USB)
• PC with 2 USB ports

• Fusion Advanced Development Kit Board (M1AFS-ADV-DEV-KIT board)
• Low-cost programming stick
• 2 USB cables (USB to mini-USB)
• 9 V power supply (provided with kit)
• PC with 2 USB ports

Everything (except the PC) is provided with the development kit. Refer to the Design Hardware page for
more information: www.microsemi.com/soc/products/hardware/default.aspx
TU0308 Tutorial Revision 2.0 2

http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/Fusion_UG.pdf
http://www.microsemi.com/soc/download/software/libero/default.aspx
http://www.microsemi.com/soc/download/software/softconsole/default.aspx
http://www.microsemi.com/soc/documents/CP2102_driver.zip
http://www.microsemi.com/soc/products/hardware/default.aspx

Introduction
2.1.3 Intellectual Property (IP)
This tutorial is based on the DirectCore IP listed below. If you do not have these DirectCore IP versions in
the SmartDesign Catalog, you may observe different behavior from what is described in this tutorial.

• Cortex-M1 version 3.1.101
• CoreAHBLite version 3.1.102
• CoreAPB version 1.1.101
• CoreAHB2APB version 1.1.101
• CoreAhbNvm version 1.4.110
• CoreAhbSram version 1.4.104
• CoreMemCtrl version 2.0.105
• CoreUARTapb version 5.1.102
• CoreGPIO version 1.2.103

2.2 CoreAI version 3.0.119 Licensing
CoreAI is available with any Libero license. If you do not have the license, you can get it at
www.microsemi.com/soc/portal/default.aspx?v=0

1. Sign-in and select Licenses & Registration on the left navigation.
2. Click Request Free License and select Libero Evaluation or Silver license. Follow the

instructions in the e-mail sent to you to set up the license on your machine.
TU0308 Tutorial Revision 2.0 3

http://www.microsemi.com/soc/portal/default.aspx?v=0

Design Overview

TU0308 Tutorial Revision 2.0 4

3 Design Overview

3.1 Cortex-M1 System Description
The design contains a Cortex-M1 processor system running on a Microsemi Fusion FPGA, which
contains an analog block for monitoring analog signals. The system measures various voltages, currents,
and temperatures on the target board, processes the sample data, and sends the result over UART.

There is a potentiometer (POT) on the board to change the analog voltage being sampled. In this tutorial
you will communicate with the target using HyperTerminal.

3.2 Cortex-M1 Hardware Design Description
The Cortex-M1 processor system uses CoreAI, which allows the processor to configure, control, and
interact with the Analog Block inside the Fusion FPGA. The UART in the system connects to an off-chip
USB-to- UART chip, which allows you to communicate with the target system via a COM port on your PC
(using HyperTerminal). Also included are 4 output bits to LEDs and 2 input bits from push-buttons or DIP
switches (depending on the target board).

The Fusion Advanced Development Kit and the Fusion Embedded Development Kit boards contain a
Fusion AFS1500 device that has 1 MB of embedded flash memory (also referred to as nonvolatile
memory, or NVM) and 30 KB of internal SRAM. The Fusion Embedded Development Kit Board has 1 MB
of SRAM, comprised of two 4 Mbit × 16 bit chips. The Fusion Advanced Development Kit Board has 2
MB of SRAM, comprised of two 1 Mbit × 16 bit chips. This hardware design connects to all of these
memories, not necessarily using the entire memory space of each device.

Microsemi Fusion devices have an on-chip 100 MHz RC oscillator. You can feed this clock source to a
PLL inside the Fusion device that modifies the clock frequency. The output of the PLL is the system
clock. This design enables the JTAG debug interface of the Cortex-M1 processor for software debugging.
The software debugging has been explained in the Debugging the Application Using SoftConsole,
page 40 section.

The block diagram for the design is shown in the following figure.

Figure 1 • Block Diagram

Getting Started
4 Getting Started

4.1 Download Tutorial Files
Before starting the tutorial, you need to download the tutorial files from the website for the board you are
targeting. You can download the tutorials from Microsemi website at:
(www.microsemi.com/soc/products/hardware/default.aspx).

On the web page of the target board, click on the CortexM1_Proc_Tutorial zip file under the ARM Cortex-
M1 Embedded Processor Tutorial document. The supported subdirectories for every board are placed in
this zip folder. The directory structure is similar for each board. The following figure shows the sample
directory structure for the Fusion Advance Development Kit Board (M1AFS-ADV-KIT).

Figure 2 • Tutorial Files

The M1AFS_Verilog and M1AFS_VHDL subdirectories contain the complete VHDL and Verilog projects
for this tutorial design, for reference. The Tutorial_Files subdirectory contains the required source files
you need to complete this tutorial and that are described in the following table. The names of the files are
based on the targeted board.

The Software_tutorial_files subdirectory contains the source files required to complete the Software
tutorial flow. The following table has a description of these files.

Table 1 • Description of Tutorial Files

File Name Description
M1AFS_EMB/ADV_KIT Pin constraints for the Fusion

Embedded/Advanced Development Kit Board

Cortex M1_Tutorial.HEX Intel-Hex file that contains the Cortex-M1
software code

M1AFS_EMB/ADV_KIT_<VERILOG/VHDL>.
PDC

Constraint to put JTAG reset and clock net on
global

Table 2 • Description of Software Tutorial Files

File Name Description
M1<FPGA>_TUT_TOP.PDB FPGA programming file containing Cortex-M1 design tutorial

(hardware design). It can be found in respective folders of
Verilog and VHDL

tutorial.h Header file with memory map and interrupt assignments
targeted for Cortex-M1 FPGA design tutorial

main.c Top C source file

boot-from-actel-coreahbnvm.ld Linker script modified to work with Fusion-based tutorial
designs
TU0308 Tutorial Revision 2.0 5

http://www.microsemi.com/soc/products/hardware/default.aspx

Getting Started
4.2 Install USB-to-UART Driver
At the end of the tutorial, you can program the Fusion FPGA and communicate with the target board. To
complete the tutorial, you need to ensure that the USB-to-UART drivers are installed on your PC and
identify which COM port the USB port is associated with. Follow the steps given below before starting the
tutorial to ensure your PC is properly configured and connected to the target board.

4.2.1 Setting Up the USB-to-UART Driver
Note: You should have Admin privileges to install the USB-RS232 drivers on your PC.

To install drivers for the USB to RS232 Bridge:

1. Download the USB to RS232 bridge drivers from
www.microsemi.com/soc/documents/CP2102_driver.zip.

2. Unzip the cp2102_drivers.zip file.
3. Double-click (Run) the *.exe file.
4. Accept the default installation location and click Install. Click Continue Anyway if prompted.
5. When the installation is complete, click OK. The Ports (COM & LPT) section of the Device Manager

lists Silicon Labs CP210x USB to UART Bridge under the Ports section of Device Manager.
6. Make sure that a terminal emulation program such as HyperTerminal, which is included with

Windows, is installed on your PC.
7. Connect USB and power cables according to the following table.

If Windows prompts you to connect to Windows Update, select No, not at this time and click Next.

8. Select Install the software automatically (recommended) and click Next. Once installation is
completed, click Finish. Repeat the driver installation steps again (if prompted). Click Continue
Anyway if prompted.

9. Open the Windows Device Manager by selecting Start > Control Panel > System > Hardware>
Device Manager. Expand the Ports (COM and LPT) section and take note of the COM port
assignment for the SFE USB to RS232 Controller (in Figure 3, page 7 it is assigned to COM3). If you
do not see SFE USB to RS232 Controller in the Device Manager (Figure 3, page 7), you may need
to reboot your PC.

Table 3 • Power and USB Connections

Board Power and USB Connections
M1AFS-EMBEDDED-KIT Make sure you have the J40 set to use USB power (not V5IN).

Connect a USB cable to J2, which provides power and the USB-to-
UART communication. Make sure JP10 is set to use the 1.5 V
external regulator (connect pins 2 and 3).

M1AFS-ADV-DEV-KIT Connect the 9 V power supply, provided with the kit, to J3 on the
board. Connect a USB cable to J2, (this provides the USB-to-UART
communication) and make sure SW7 is ON to supply
power to the board.
TU0308 Tutorial Revision 2.0 6

http://www.microsemi.com/soc/documents/CP2102_driver.zip

Getting Started
Figure 3 • Windows Device Manager

10. Connect the FlashPro programming interface according to the following table.

11. If you are prompted to install drivers for the FlashPro hardware, refer to the FlashPro User's Guide at
http://www.microsemi.com/soc/documents/flashpro_ug.pdf.

Table 4 • Programming Interface Connections

Board Flash Pro Programming Interface Connection
M1AFS-EMBEDDED-KIT Connect the FlashPro3 Low-Cost Programming Stick (LCPS) to J1.

M1AFS-ADV-DEV-KIT Connect a USB cable between the LCPS and the host machine.
TU0308 Tutorial Revision 2.0 7

http://www.microsemi.com/soc/documents/flashpro_ug.pdf

Creating Design
5 Creating Design

5.1 Step 1 – Create a Libero SoC Project
1. Launch Libero SoC v10.0 or later.
2. From the Project menu, select New Project. Enter the information shown below in the Libero New

Project dialog box.
Under Project:
• Name: M1AFS_Verilog/VHDL
• Location: <..> (Example: C:\CortexM1_Proc_Tutorial\EMB_KIT)
• Preferred HDL Type: Choose VERILOG or VHDL
Under Device:
• Family: Fusion
• Die: M1AFS1500
• Package: 484 FBGA
Leave others as default and click OK.

Figure 4 • New Project Dialog Box

3. Click Edit Tool Profiles and add SoftConsole by clicking Software IDE, as shown in the following
figure.
TU0308 Tutorial Revision 2.0 8

Creating Design
Figure 5 • Selecting SoftConsole as Software IDE

4. After adding the Profile, click OK to close the Add Profile dialog window.
5. Repeat steps above for Synthesis, Simulation, and Programming and then click OK to close the

Tool Profiles dialog window.
6. In order to import the PDC files, use File > Import files and Browse to the following directory:

CortexM1_Proc_Tutorial\<board>\Tutorial_Files. Also select the type of the file as *.pdc.
7. Select M1AFS_EMB_KIT.PDC and M1AFS_EMB_KIT_<VERILOG/VHDL>.PDC or

M1AFS_ADV_KIT.PDC and M1AFS_ADV_KIT_<VERILOG/VHDL>.PDC, depending on the board
you are targeting and the project language used (Verilog or VHDL).

Note: These PDC files contain pin assignments for the FPGA design and are specific to this board. This design
does not need timing constraints file (SDC) because the internal clock source from the RC oscillator is
constrained automatically by SmartTime.

8. Click Open. If the system prompts to organize file constraints, click NO. You should see the file you
selected under Constraint in the Files section.

5.2 Step 2 – Create a SmartDesign Component with Libero
SoC
Follow the steps below to create a SmartDesign component for your hardware design:

1. In the Design Flow tab right-click Create SmartDesign and click Run. The Create New
SmartDesign window is displayed. Enter name of the design as M1AFS_TUT_TOP as shown in the
following figure.

Figure 6 • Select Smart Design Component

2. Click OK. A blank canvas opens in SmartDesign as shown in the following figure. The
M1AFS_TUT_TOP is created under Design Hierarchy > work tab.
TU0308 Tutorial Revision 2.0 9

Creating Design
Figure 7 • Smart Design Canvas Window

In the following steps use SmartDesign to create a Cortex-M1 system, as shown in Figure 11, page 12.
When the instructions tell you to instantiate a component, instantiate it in the SmartDesign Canvas.

When you instantiate components in SmartDesign, it is recommended to use the same version of
DirectCoreIPs that are mentioned in this tutorial.
TU0308 Tutorial Revision 2.0 10

Creating Design
5.2.1 Obtaining Different Version of Direct Core IP
1. Click Options in Catalog section as shown in the following figure.

Figure 8 • Opening Options from Catalog Section

2. Click Filters and clear the display only the latest version of a core check-box and select show all
local and remote cores option as shown in the following figure.

Figure 9 • Catalog - Options: Filter

3. Click Display and select show core version check-box as shown in the following figure.
TU0308 Tutorial Revision 2.0 11

Creating Design
Figure 10 • Catalog - Options: Display

5.2.2 Instantiate Cortex-M1 Processor
The Cortex-M1 processor is a 32-bit soft ARM® processor designed for implementation in an FPGA. Use
the following to instantiate the Cortex-M1 processor:

1. From Catalog, select Processors.
2. Right-click Cortex-M1 Version 3.1.101 and then selects Instantiate in M1AFS_TUT_TOP.
3. If the specific IP version is grayed out or not highlighted in the tool, right-click the specific version

and click Download.
4. Select Include Debug and select JTAG using UJTAG macro from Debug Interface drop-down list.

This allows software debugging over JTAG using SoftConsole® development tool. Select default
settings for other options.

Note: If you want to use third-party tools (Keil MDK-ARM, IAR Embedded Workbench, ARM Real View, etc.),
select Real View JTAG from Debug Interface drop-down list. However, keep in mind that this document
assumes that you are using SoftConsole development tool.

Figure 11 • Configuring Cortex-M1

5. Click OK. You should see an instance of the Cortex-M1 processor on the SmartDesign canvas.
TU0308 Tutorial Revision 2.0 12

Creating Design
5.2.3 Instantiate CoreAHBLite Bus
The AHB-Lite bus is a multi-master 32-bit bus (data and address) which allows you to connect upto 2
masters and 16 slave peripherals, where each peripheral consumes one slot (numbered 0 through 15).
Each slot is 256 MBs in the processor’s memory space (for a total of 4 GBs).

1. From Catalog, select Bus Interfaces.
2. Instantiate CoreAHBLite version 3.1.102 with the slots 0,1,2,12 enabled (select these slots under

Enable Master 0 AHBlite Slave slots and Enable Master 1 AHBlite Slave slots). Choose default
settings for other options.

5.2.4 Instantiate CoreAhbNvm
CoreAhbNvm provides the processor with an AHB interface to access the internal NVM (nonvolatile
memory, also known as embedded flash memory) of the Fusion device. The M1AFS1500 device has 1
MB of internal NVM composed of 4 embedded flash memory blocks, each 256 KBs in size. However, for
this design you need only 1 embedded flash memory block, 256 KBs.

Follow the steps below to instantiate the CoreAhbNvm.

1. From Catalog, select Memory & Controllers.
2. Instantiate and configure CoreAhbNvm version 1.4.110 with a size of 256 KBs, as shown in the

following figure.

Figure 12 • Instantiate and Configure CoreAhbNvm

5.2.5 Instantiate CoreMemCtrl
CoreMemCtrl creates an interface to off-chip SRAM and/or flash with shared data and address buses.
The AHB slot is divided in half with the flash at the bottom half and SRAM at the upper half of the slot. By
setting the Remap input to '1', you can swap the flash and SRAM locations. For this design, you only
need to use the SRAM interface. The system clock in this design is 20 MHz, which has a period of 50 ns.
The asynchronous SRAM has an access time of 10 ns. Therefore, you can set the wait states to their
minimum values: 0 for read wait states and 1 for write wait states.

1. From Catalog, select Memory & Controllers.
2. Instantiate CoreMemCtrl version 2.0.105 to interface to the off-chip asynchronous SRAM on the

development board.
3. Make the following selections in the CoreMemCtrl configuration window:

• SRAM mode: Asynchronous
• Number of wait states for SRAM read: 0
• Number of wait states for SRAM write: 1
• Read and write enables shared for Flash and SRAM: No

The flash and SRAM addressing options determine which bit of the AHB-Lite bus is connected to bit 0 of
the off-chip memory. The default value of "0, 0, HADDR[27:2]" means that the off-chip memory address is
TU0308 Tutorial Revision 2.0 13

Creating Design
word addressed (32-bit word). The other settings refer to half-word and byte addressing. Leave the other
options as default setting since this design does not use this flash interface.

The corresponding CoreMemCtrl settings are shown in the following figure.

Figure 13 • Configuring CoreMemCtrl

5.2.6 Instantiate CoreAhbSram
CoreAhbSram provides the processor with an AHB interface to access the internal SRAM of the Fusion
device. The Fusion M1AFS1500 device has 30 KBs of internal SRAM consisting of 60 RAM blocks each
0.5 KB in size. The Cortex-M1 uses 2 KBs and the CoreUARTApb (which you instantiate later) uses 1 KB
in FIFO mode. Therefore, CoreAHBS RAM should not be more than 27KBs. You need to configure it for
14 KBs. Follow the steps below to instantiate the CoreAhbSram.

1. From Catalog, select Memory & Controllers.
2. Instantiate and configure CoreAhbSram version 1.4.104 with a size of 14 Kbytes. The

CoreAhbSram settings window is shown in the following figure.
TU0308 Tutorial Revision 2.0 14

Creating Design
Figure 14 • Configuring CoreAhbSram

5.2.7 Instantiate CoreAHB2APB
The CoreAHB2APB is a bridge from the AHB bus to APB bus. It has an AHB slave which consumes one
AHB slot and an APB master which can master an APB bus. Read and write transfers on the AHB bus
are converted to APB transfers to the APB bus. Follow the steps below to instantiate the CoreAHB2APB.

1. From Catalog, select Bus Interfaces.
2. Instantiate CoreAHB2APB version 1.1.101 to bridge to the APB bus with default settings.

5.2.8 Instantiate CoreAPB
The CoreAPB bus is a 32-bit bus (data and address) which allows you to connect up to 16 slave
peripherals where each peripheral consumes one slot (numbered 0 through 15). Each slot is 16 MBs in
the processor’s memory space for a total of 256 MBs. Due to the performance, typically slower, low
priority peripherals are placed in the APB bus. Follow the steps below to instantiate the CoreAPB.

1. From Catalog, select Bus Interfaces.
2. Instantiate the CoreAPB version 1.1.101 bus with all slots enabled. Leave others as default.

Note: You can disable slots that you are not using. For this tutorial, leave them all enabled.

5.2.9 Instantiate CoreAI
CoreAI allows the Cortex-M1 processor to access and control the Analog Block in the Fusion device. You
will configure this instance of CoreAI to interface with the analog features on the target development
board. The frequency of the ACM clock in the Analog Block must be 10 MHz or less. The PCLK (clock of
the APB bus) is divided down to create the ACM clock. The appropriate divider value is calculated based
on the PCLK frequency parameter. For this design, the PCLK frequency is 20 MHz.

1. From Catalog, select Peripherals.
2. Instantiate CoreAI version 3.0.119 to give the Cortex-M1 processor access to the Analog Block in

the Fusion device.
3. Configure CoreAI according to the list of settings below and leave the other settings as default.

• APB data bus width (in bits): 32
• PCLK frequency (up to nearest MHz): 20
• Interrupt output: Disabled (tied low)
• Analog Quad 0

•AV0 input: Voltage Monitor: 0 V to 4 V
•AC0 input: Current Monitor

• Analog Quad 1
•AV1 input: Voltage Monitor: 0 V to 2 V
•AC1 input: Current Monitor

• Analog Quad 2
•AT2 input: Temperature Monitor

• Analog Quad 4
•AC4 input: Voltage Monitor: 0 V to 4 V

Figure 15, page 16 through Figure 18, page 18 show the instance of CoreAI with the corresponding
parameters set.
TU0308 Tutorial Revision 2.0 15

Creating Design
Figure 15 • Configuring CoreAI (Part 1)

Figure 16 • Configuring CoreAI (Part 2)
TU0308 Tutorial Revision 2.0 16

Creating Design
Figure 17 • Configuring CoreAI (Part 3)

Note: Many of the parameters are software driven, which means that the Cortex-M1 processor can change
these parameters by writing to registers.
TU0308 Tutorial Revision 2.0 17

Creating Design
Figure 18 • Configuring CoreAI (Part 4)

5.2.10 Instantiate CoreUARTapb
CoreUARTapb is a configurable UART peripheral with an APB slave interface. Follow the steps below to
instantiate the CoreUARTapb.

1. From Catalog, select Peripherals.
2. Instantiate and configure CoreUARTapb version 5.1.102 with the following details:

• TX FIFO: Enable TX FIFO
• RX FIFO: Enable RX FIFO
• Configuration: Programmable

The CoreUARTapb configuration is shown in the following figure.
TU0308 Tutorial Revision 2.0 18

Creating Design
Figure 19 • Configuring CoreUARTapb

The Baud value, Character Size and Parity parameters are grayed out since Configuration is set to
Programmable. These details can be modified by the processor when the UART is initialized. The
following equation is used to calculate the Baud Value parameter based on the desired baud rate (57600)
and system clock frequency (20 MHz) in Hz:

5.2.11 Instantiate CoreGPIO
CoreGPIO allows you to access up to 32 general purpose inputs and 32 general purpose outputs. Follow
the steps below to instantiate CoreGPIO.

1. From Catalog, select Peripherals.
2. Instantiate CoreGPIO version 1.2.103 with the default settings (32 inputs and 32 outputs).

5.2.12 Instantiate RC Oscillator
Microsemi Fusion devices have a 100 MHz on-chip RC oscillator which does not require any extra
components. You can use this as an input to the PLL inside the FPGA. Follow the steps below to
instantiate the RC Oscillator.

1. From Catalog, select Fusion Peripherals.
2. Instantiate Oscillator - RC with clock conditioning circuit selected and click Generate.
3. Name it myRCOSC.

Baud Value Clock
16 baud rate

-- 1 20 106
16 57600

----------------------------------- 1 21 rounded to the nearest integer =–=–=
TU0308 Tutorial Revision 2.0 19

Creating Design
5.2.13 Instantiate PLL
The PLL inside the FPGA can be used to generate new clock signals from a source clock. For this
design, you can configure the PLL to use the RC Oscillator (from the previous step) as the input clock
and generate a 20 MHz output clock (as the system clock). Follow the steps below to instantiate the PLL.

1. From Catalog, select Clock & Management.
2. Instantiate PLL - Static with the following settings:

• Clock input: RC Oscillator (on the left below the MHz text box)
• GLA Output: 20 MHz (no delay)

3. Click Generate. Name the PLL as PLL_sys.

Figure 20 • Configuring the PLL

5.2.14 Instantiate AND2 Gate
Microsemi recommends that you hold the system in reset until the PLL has locked. You can use this
AND2 gate to accomplish this. Later you can make the connections to other components. Follow the
steps below to instantiate the AND2 gate.

1. From Catalog, select Actel Macros.
2. Instantiate AND2.

5.2.15 Connect Signals Automatically in SmartDesign
SmartDesign has the ability to automatically connect together standard interfaces for components with
the Auto Connect feature. Many of the interfaces to standard components are well-defined and permit
automatic connection. These include clock and reset signals and Advanced Microcontroller Bus
Architecture (AMBA) master/slave connections. Follow the steps to have SmartDesign automatically
connect signals and to configure the memory maps.

1. Perform AutoConnect (right-click canvas and select Auto Connect). The Modify Memory Map
window is displayed.

2. Close it and go to the canvas.From canvas, click CoreAPB_0 and check all the slots (Slot 0-15).
Ensure Slots 0,1,2,12 are enabled in Core AHBLite_0 (under Enable Master0/1 AHBlite slave
slots).
TU0308 Tutorial Revision 2.0 20

Creating Design
3. Right-click and select Modify Memory Map on SmartDesign canvas, the Modify Memory Map
window is displayed as shown in the following figure.

4. Click CoreAHBLite_0. Configure the memory map for the CoreAHBLite bus as shown in the
following figure by following the steps below for each peripheral that you need to move.
• Select the Peripheral. To remove the existing peripheral address, select blank from the drop-

down list.
• Select the name of the Peripheral from the list.
If you swap two peripherals, you must select blank for both the address locations and then select
each peripheral at the corresponding addresses.
Both SRAM and flash peripherals are added automatically when using CoreMemCtrl.

Figure 21 • Modify Memory Map for CoreAHBLite_0

5. Click CoreAPB_0. Configure the memory map for the CoreAPB bus as explained above. Click OK.
TU0308 Tutorial Revision 2.0 21

Creating Design
Figure 22 • Configure Memory Map for CoreAPB_0

6. After closing the Memory Map window recheck all the slots of CoreAPB_0 are enabled and GPIO,
UARTapb, COREAI are connected to slot 2, 3, and 6 respectively.
Configure the Memory Map as shown in Figure 21, page 21and Figure 22, page 22. This directly
defines the subsystem memory map and has a direct impact on the Cortex-M1 software code. Right-
click and select the Auto Arrange Instances feature in SmartDesign to place all the peripherals in an
orderly manner on the canvas.

5.2.16 Connect Signals Manually in SmartDesign
Some signals must be manually connected. Use the Canvas in a graphical manner and connect the
signals by following the steps below.

1. Click Signal (For example: LOCK of PLL_sys_0)
2. Press the Ctrl key and click the second signal to be connected (For example: B of AND2_0)
3. Right-click the signal to be connected (Signal B of AND2_0), and select Connect as shown in the

following figure.
TU0308 Tutorial Revision 2.0 22

Creating Design
Figure 23 • Connecting Signals Manually

4. Follow steps 1–3 for the rest of the signals.

5. When making the last connection in the table, a message is displayed as shown in the following
figure.

Figure 24 • Replace Driver Warning

6. Click Yes. You receive this message because you are changing the driver for NSYSRESET of the
Cortex-M1 processor.

7. Some signals need to be connected to GND or VCC. Follow the steps below to connect signals
according to Table 5, page 23 using the SmartDesign Canvas.

8. Right-click the dataIn[31:0] signal from the CoreGPIO_0 instance and select Edit Slice.
9. Select slice width as 2 and create 16 slices as shown in the following figure.
10. Click Add Slices and then click OK.

Table 5 • Connecting Signals Manually

FROM TO
Instance Signal Instance Signal

PLL_sys_0 LOCK AND2_0 B

(top level port) NSYSRESET AND2_0 A

AND2_0 Y CortexM1Top_0 NSYSRESET
TU0308 Tutorial Revision 2.0 23

Creating Design
Figure 25 • Edit Slice

11. Click ‘+’ icon near dataIn[31:0] on the Smart Canvas and press Ctrl and select all the signals from
dataIn[30:31] to dataIn[3:2]. Right-click and select Tie Low option. This is because these bits are not
being used in the design.

12. Right-click EDBGRQ signal in the CortexM1Top_0 instance, and select Tie Low.
Follow steps 10–11 for the remaining signals in the following table. However, remember to choose
Tie High for the POWERDOWN signal of the PLL_sys_0 instance.

Follow the steps below to change the clock source from the auto-generated SYSCLK top-level port to the
output of the PLL:

1. Right-click SYSCLK top level port and select Disconnect.
2. Highlight HCLK input of the Cortex-M1.
3. Press Ctrl and left-click to highlight the GLA output of the PLL.
4. Right-click GLA and select Connect.
5. Delete SYSCLK port as it is not required in this design.
Now, the GLA output of the PLL should be the clock driver for the clock port of all peripherals. Your
Canvas should be as shown in the following figure.

Table 6 • VCC and GND Connections

Instance Signal Connection
CoreGPIO_0 dataIn[31:2] GND

CortexM1Top_0 EDBGRQ GND

NMI GND

IRQ0 GND

WDOGRES GND

PLL_sys_0 POWERDOWN VCC

OADIVRST GND

CoreAHBLite_0 REMAP_M0 GND
TU0308 Tutorial Revision 2.0 24

Creating Design
Figure 26 • SmartDesign Canvas

5.2.17 Promote Signals to Top Level
The SmartDesign component is the top level of this design. Therefore, all of the signals connected to a
pin of the FPGA must be at the top level of the SmartDesign canvas. Follow the steps below to promote
the signals in the following table to the top level.

1. From Canvas, right-click DEBUG group of the CortexM1Top_0 instance and select Promote to
Top Level.

2. Click ‘+’ icon near dataIn[31:0] bus of CoreGPIO_0 instance and right-click dataIn[1:0]. Then select
Promote to Top Level.

3. Right-click dataOut[31:0] and click Edit Slice. Put the width of slice as 4 and create 8 slices by
clicking Add slice.

4. Click ‘+’ icon at dataOut [31:0] and promote dataOut[3:0] to top level.
5. Right-click and select Promote to Top Level to promote the rest of the signals in the following table.

6. Promote only one pin at a time in an order starting with MEMADDR[1:0] till MEMADDR[17:16].
While promoting MEMADDR [17:0], you might get a message as shown in the following figure.

Figure 27 • Message while Promoting MEMADDR to Top Level

Table 7 • Signals to Promote to Top Level

Instance Group Signal
CortexM1Top_0 DEBUG All signals

CoreGPIO_0 dataIn[31:0] dataIn[1:0]

dataOut[31:0] dataOut[3:0]

CoreMemCtrl_0 ExternalMemoryInterface MEMADDR[17:0] (requires slice with slice width 2),
MEMDATA[31:0], SRAMBYTEN[3:0],
SRAMCSN, SRAMOEN, SRAMWEN

CoreUARTapb_0 RX

TX
TU0308 Tutorial Revision 2.0 25

Creating Design
7. Click Yes and continue.
Ensure all the pins of MEMADDR are named in the format. Otherwise right-click the pin and select
Modify Port and modify the name as shown in the following figure.

Figure 28 • MEMADDR Naming

8. For all other signals, right-click the signal and select Mark as Unused. Your canvas should look like
Figure 29, page 26. If you are targeting the M1AFS-ADV-DEV-KIT board perform the following steps
to add a second chip. Select signal for the off-chip SRAM device:

• Right-click the right-side of the canvas and select Add Port.
• Enter SRAMCS as Name.
• Select Output for the direction.
• Click OK. The new SRAMCS port is added to the canvas.
• Press Ctrl and select SRAMCS and SRAMCSN under External Memory interface in

CoreMemCtrl_0.
• Right-click SRAMCS or SRAMCSN and select Connect.
• Right-click SRAMCS (not SRAMCSN) and select Invert.

Note: Ensure SRAMCSN is not highlighted when doing this step.

Figure 29 • SmartDesign Canvas (for Advance Kit)
TU0308 Tutorial Revision 2.0 26

Creating Design
5.2.18 Save and Generate SmartDesign System
The final step within SmartDesign is saving and generating the HDL. Follow the steps below to generate
the HDL for your design. Besides generating the HDL design, a test bench file is created along with all
the necessary files to run a simulation, using the bus functional model (BFM) and AMBA transfers.

1. Before generating the design go to Design > Configure Firmware. Disable the firmware which is
not required by clearing the checkboxes against them. The version of the firmware should be as
shown in the following figure. Ensure you use Version 2.1.102 for the GPIO driver.

2. Also, ensure if all the drivers are available and no warning or error appears saying that the firmware
is missing from the Vault. If so, refer to Appendix: Firmware Catalog Settings, page 49.

Figure 30 • Design Firmware

3. Click Generate as shown in Figure 31, page 27 for generating the project.
4. See the log window for the information if the design has been generated or not.
5. Ensure the DRC report has only one warning about not connecting CoreAHBLite_0 M1 pin. Also,

make sure there are no other warnings. You can ignore this warning.
6. After generation, a SoftConsole folder is created in the Files tab along with few subfolders as shown

in Figure 32, page 28.

Figure 31 • Generating the Design
TU0308 Tutorial Revision 2.0 27

Creating Design
Figure 32 • SoftConsole Folder

5.3 Step 3 – Create Flash Memory System
You are creating this Flash Memory System and Data Storage client that allow you to include software
code, as an Intel-Hex file, in the FPGA programming file. This allows the Cortex-M1processor to boot
and run from the NVM.

1. From Catalog expand Fusion Peripherals category.
2. Double-click Flash Memory System Builder. The Flash Memory System window is displayed as

shown in Figure 33, page 29.
3. Double-click Data Storage Client in the available client types list. The Add Data Storage Client

window is displayed as shown in Figure 34, page 29.
4. Enter NVM as the Client name.
5. Click Browse and select the CortexM1_Tutorial.hex file from the

CortexM1_Proc_Tutorial\<board>\Tutorial_Files directory.
6. The memory content file should be in Intel-Hex format.
TU0308 Tutorial Revision 2.0 28

Creating Design
Figure 33 • Flash Memory System Window

Figure 34 • Add Data Storage Client

7. Click OK. Now the created Data Storage client is displayed in the Flash Memory System window as
shown in the following figure.
TU0308 Tutorial Revision 2.0 29

Creating Design
Figure 35 • Data Storage Client in Flash Memory System Window

8. Click Generate to generate the component. The Generate Core window is displayed.
9. Enter NVM_contents as the Core name.
10. Click OK.

Note: Ensure that no component is instantiated on SmartDesign canvas called NVM contents. If it does then it
has to be deleted and the project has to be regenerated.
TU0308 Tutorial Revision 2.0 30

Simulation, Synthesis, and Place-and-Route
6 Simulation, Synthesis, and Place-and-Route

6.1 Step 4 – Perform Synthesis
After generating the project, synthesis can be performed. Follow the steps below to synthesize the
design.

1. Right-click Synthesize under Implement Design and select Run to synthesize the design as shown
in the following figure.

Figure 36 • Synthesizing the Project

2. Once the synthesis is complete warning messages are displayed which can be ignored. However, if
any errors are present, they need to be corrected prior to continuing. Once synthesize is completed,
a green tick mark displayed near the Synthesize icon as shown in the following figure.
TU0308 Tutorial Revision 2.0 31

Simulation, Synthesis, and Place-and-Route
Figure 37 • After Synthesis

6.2 Step 5 – Perform Place-and-Route
Now that you have synthesized the design, you can place-and-route the design. Follow the steps below
to place-and-route the design.

1. Right-click Compile, select Organize Input Files, and then select Organize Constraint as shown
in the following figure.

Figure 38 • Organizing Constraint Files

2. The first two files created automatically by SmartDesign and Synplify are not required. Select the
files and click Remove. Only the two imported PDC files are required. The constraints organizer
should look as shown in the following figure.
TU0308 Tutorial Revision 2.0 32

Simulation, Synthesis, and Place-and-Route
3. Click OK. Also unselect the Use default list from Project Manager check-box to make the
changes.

Figure 39 • Constraints Organizer Window

4. Right-click Compile under Implement Design, and then click RUN. Once the compilation is
completed, a green tick mark is displayed at the Compile.

5. Right-click Place-and-Route and click RUN. Once the place-and-route is completed, a green tick
mark is displayed against the Place and Route icon.

6. Right-click Verify Timing under Verify Post Layout Implementation, and then click RUN. After this
the design flow should be as shown in the following figure.

Note: The timing requirement for the system clock (myPLL_0/Core:GLA) is automatically created because you
are using a PLL. If any of the clocks in the design are not meeting the constraints set in the constraint
files, a red X is displayed next to the verify timing. To set this right-click Verify Timing and select Open
Interactively. Ensure that red X is not displayed for any of the clocks.

Figure 40 • Design Flow after Verify Timing
TU0308 Tutorial Revision 2.0 33

Programming
7 Programming

7.1 Step 6 – Generate Programming File with Software Code
in NVM
In this section, you will associate the Data Storage client you created with the embedded flash memory
inside the Fusion device. This places the software code and an Intel-Hex file into the embedded flash
memory in the Fusion device and includes it in the FPGA programming file. Use the steps below.

1. Right-click Generate Programming Data and select Open Interactively. A Designer window is
displayed as shown in the following figure.

Figure 41 • Designer Window

2. Click Programming File and Flash Point; the Programming File Generator opens as shown in
the following figure.

Figure 42 • FlashPoint Programming File Generator
TU0308 Tutorial Revision 2.0 34

Programming
3. Select CoreAhbNvm check-box under Embedded Flash Memory Blocks (EFMB). Click Modify,
the Modify Embedded Flash Memory Blocks window is displayed.

4. Click Import Configuration File. The Import window appears.
5. Browse to <project directory>/smartgen/NVM_contents/NVM_contents.efc.
6. Click Import, and then click OK.
7. Click Finish. The Generate Programming Files window is displayed.
8. Ensure that Programming Data File (*.pdb) is selected.
9. Click Generate.

Once the Programming File icon in the Designer changes to green, the programming file for the
Fusion device is generated and you are ready to program the device with your Cortex-M1 design. A
completed Designer desktop is shown in the following figure.

Figure 43 • Designer Desktop

10. Close Designer window. Click Yes if prompted to save changes to M1AFS_TUT_TOP.adb.
On generating the file, a green tick is displayed against the Generate Programming file.

7.2 Step 7 – Connect to the Target
Before programming the FPGA, you need to connect to the target board and setup HyperTerminal to
communicate over the UART in the design. Perform the following steps to setup the communication.

1. Open the HyperTerminal application (Start > Programs > Accessories > Communications >
HyperTerminal).

2. Enter Name as M1AFS_Tutorial in the Connection Description dialog box and click OK.
3. Select COM port you identified in the Getting Started, page 5 section of this tutorial and click OK.
4. Enter the following properties as shown in the following figure:

• Bits per second: 57600
• Data bits: 8
• Parity: None
• Stop bits: 1
• Flow control: None

5. If your PC does not have HyperTerminal, use any free serial terminal emulation program as PuTTY
or Tera Term. Refer to the Configuring Serial Terminal Emulation Programs tutorial for configuring
the HyperTerminal, Tera Term, and PuTTY.
TU0308 Tutorial Revision 2.0 35

http://www.microsemi.com/soc/documents/Configuring_Serial_Terminal_Emulation_Programs.pdf
http://www.microsemi.com/soc/documents/Configuring_Serial_Terminal_Emulation_Programs.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

Programming
Figure 44 • COM3 Properties

6. Click OK. HyperTerminal is now connected with the appropriate settings to communicate with the
UART on the target design.

7.3 Step 8 – Program the M1AFS1500 FPGA
Now the Cortex-M1 processor system is created and the corresponding FPGA programming file is
generated, you can program the FPGA with your design. Follow the steps below to download the
programming file to the FPGA.

1. Confirm that the FlashPro programmer is connected as described in Table 4, page 7.
Note: Do not interrupt power during the programming because the device might get damaged.

2. Right-click Program Device (FlashPro) and select Open interactively in the Design Flow window. A
message is displayed if you want to proceed without IO constraints. Click YES. The FlashPro
window is displayed as shown in the following figure.
TU0308 Tutorial Revision 2.0 36

Programming
Figure 45 • FlashPro Project Flow

Note: If you receive any messages about new hardware being detected on your PC, complete the USB driver
installation as described in the “Getting Started” section of the FlashPro User’s Guide
(www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx#docs).

3. Click PROGRAM to program the Fusion device. Once the programming is completed, the
Programmer Status is shown as RUN PASSED in green color as shown in the preceding figure.

4. Press SW1 on the board to reset the system (Figure 46, page 37and Figure 47, page 38).
Figure 46 • Fusion Embedded Development Kit Reset System with SW1
TU0308 Tutorial Revision 2.0 37

www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx#docs

Programming
Figure 47 • Fusion Advanced Development Kit Board Reset System with SW1

5. After pressing the reset button (SW1, you should see some of the LEDs counting. The message is
displayed in the HyperTerminal window as shown in the following figure.

Figure 48 • HyperTerminal Window

6. Press any key. The window is displayed as shown in the following figure.
TU0308 Tutorial Revision 2.0 38

Programming
Figure 49 • HyperTerminal Display

7. Change the potentiometer on the development board which is on the left corner on M1AFS-
EMBEDDED-KIT and near power supply for M1AFS-ADV-DEV-KIT.

8. Press any key. The AC4 value should get changed.
9. The design is measuring the voltage across the potentiometer. You should be able to measure a

range of about 0 V to 3.3 V across the potentiometer.

Congratulations! You have successfully created a Cortex-M1 system. Now you can develop the
software for your Cortex- M1 design. If you want to learn how to get started developing the software
for Cortex-M1, refer to Debugging the Application Using SoftConsole, page 40.
TU0308 Tutorial Revision 2.0 39

Debugging the Application Using SoftConsole
8 Debugging the Application Using
SoftConsole

8.1 Step 9 - Building the Software Application through
SoftConsole
Before Launching SoftConsole ensure you have programmed the target device using FlashPro and the
device is connected to the PC. You can also program the device with the programming file (*.pdb) given
in Software_tutorial_files by following Step 8 – Program the M1AFS1500 FPGA, page 36.

1. From Libero SoC open the SoftConsole project by double-clicking Write Application Code under
Develop Firmware in Design Flow window.

Figure 50 • Invoking SoftConsole from Libero SoC

2. The SoftConsole window is displayed as shown in the following figure.
TU0308 Tutorial Revision 2.0 40

Debugging the Application Using SoftConsole
Figure 51 • SoftConsole Workspace

3. Right-click M1AFS_TUT_TOP_Cortex M1_Top_0 _app and click Import. The Import window is
displayed.

4. Select File System under General and click Next as shown in the following figure.

Figure 52 • Import Window

5. Click Browse.
6. Browse and select the tutorial source files: <zip file

location>/CortexM1_Proc_Tutorial/<KIT>/Software_tutorial_files.
7. Click OK and select main.c, tutorial.h, and boot-from-actel-coreahbnvm.ld.
TU0308 Tutorial Revision 2.0 41

Debugging the Application Using SoftConsole
8. Ensure that the Create selected folders only check-box is selected.
9. Click Finish. Click Yes if it asks to overwrite main.c. If you expand the project in the Navigator, you

can see the new files that have been imported into the project.
10. Right-click M1AFS_TUT_TOP_Cortex M1_Top_0 _app and select Properties. The Properties for

M1AFS_TUT_TOP_Cortex M1Top_0 _app window are displayed as shown in the following figure.
11. Expand C/C++ Build on the left pane and select Settings.
12. Click GNU C Linker under Miscellaneous.
13. Enter Linker flags as T ../boot-from-actel-coreahbnvm.ld.

Figure 53 • Linker Flags

Example linker scripts are provided in the SoftConsole installation in the <SoftConsole
install>/src/Cortex- M1/linker-script-examples directory. This linker script was copied from this directory
and modified for the target system. The system boots from on-chip NVM, copies the application code and
data to external SRAM, and then runs the application code from external SRAM.

14. Click GNU C Compiler.
15. Add -mlong-calls to the command in Command, as shown in the following figure.
TU0308 Tutorial Revision 2.0 42

Debugging the Application Using SoftConsole
Figure 54 • GNU C Compiler

This flag is required only when booting from NVM and running from SRAM (for example, using boot-
from-actel-coreahbnvm.ld). It is required to support the call to main() from _start since _start is in NVM,
whose base address is 0x00000000, and main() is being executed from SRAM, whose base address is
0x18000000. For more information, refer to the GNU GCC documentation (Start > Programs >
MicrosemiSoftConsole > Reference Documentation > GNU GCC Compiler Manual or
<SoftConsole install>\Sourcery-G++\share\doc\arm-arm- none-eabi \pdf\gcc\gcc.pdf).

16. Click OK to save the project settings.
17. Open the coreai_cfg.h by clicking M1AFS_TUT_TOP_Cortex M1_Top_0 _hw_platform > drivers

> CoreAI > coreai_cfg.h
18. Make the following changes as shown in the following figure.

• #define AC0_CONFIG AC_DISABLED change to #define AC0_CONFIG
AC_CURRENT_MONITOR

• #define AC1_CONFIG AC_DISABLED change to #define AC1_CONFIG
AC_CURRENT_MONITOR

• #define AC4_CONFIG AC_DISABLED change to #define AC4_CONFIG AC_4V
• #define AT2_CONFIG AT_DISABLED change to #define AT2_CONFIG

AT_TEMPERATURE_MONITOR
• #define AV0_CONFIG AV_DISABLED change to #define AV0_CONFIG AV_4V
• #define AV1_CONFIG AV_DISABLED change to#define AV1_CONFIG AV_2V
TU0308 Tutorial Revision 2.0 43

Debugging the Application Using SoftConsole
Figure 55 • Changes Made to Coreai_cfg.h

19. Save the changes. Perform a clean build by selecting Clean all Projects from Project > Clean.
Leave others as default in the Clean dialog box and click OK. Ensure there are no errors and
warnings.

8.2 Step 10 - Debugging the Project
Use the following steps to debug the application project using SoftConsole:

1. From the Run menu of the SoftConsole, select Open Debug Dialog/Debug Configurations. The
Debug dialog is displayed. The M1AFS_TUT_TOP_CortexM1Top_0_app project should be
highlighted in the Project explorer window while doing this.

2. Double-click Microsemi Cortex-M1 Target. The Debug Configurations window is displayed as
shown in the following figure.
TU0308 Tutorial Revision 2.0 44

Debugging the Application Using SoftConsole
Figure 56 • Debug Configurations

3. Confirm that the following details appear on the Main tab in the Debug window:
• Name: M1AFS_TUT_TOP_CortexM1Top_0_app Debug
• Project: M1AFS_TUT_TOP_CortexM1Top_0_app
• C/C++ application: Debug\ M1AFS_TUT_TOP_CortexM1Top_0_app

4. Click the Commands tab. Confirm that Initialize and Run commands should have the commands as
shown in the following figure.

Figure 57 • Debugger Commands

5. Click Apply and Debug.
6. Click Yes when prompted for Confirm Perspective Switch. This displays the debug view mode.
TU0308 Tutorial Revision 2.0 45

Debugging the Application Using SoftConsole
Figure 58 • Confirm Perspective Switch

7. The Debug window should be displayed as shown in the following figure.
Figure 59 • Debug Perspective

8. Ensure that HyperTerminal is configured as shown in Step 7 – Connect to the Target, page 35.
The Debug View in the upper left shows the debug communication client running as well as the call
stacks in the application.

Note: The processor is currently suspended and the Resume and Step buttons are enabled.

A breakpoint is always set at the first executable line of code in main().
You see this line of code highlighted in main.c.
The various processor views, including the current variables, breakpoints, and processor registers
and modules, can be seen on the top-right corner. You can see these values change as you go
through the code.
Some views may not be displayed by default. From Window click Show View to add them. If you
add the Memory view, you can see a Memory tab at the bottom. Here you can view the values
stored in memory. You can view the values and modify the memory in the target. You can add a
memory monitor by clicking the green plus icon. Enter Address and then click OK. You can add
multiple memory monitors.
The application code initializes the UART peripheral, and the analog quads and ADC of the analog
block of the Fusion FPGA. Then a message is sent to the UART, prompting the user to press any
key.
TU0308 Tutorial Revision 2.0 46

Debugging the Application Using SoftConsole
The Cortex-M1 processor reads and displays the following information from the analog sources on
the board (analog channel in parentheses):
• 3.3 V supply voltage (AV0)
• 3.3 V supply current (AV0 and AC0)
• 1.5 V supply voltage (AV1)
• 1.5 V supply current (AV1 and AC1)
• Ambient temperature (AT2)
• Voltage of potentiometer RV1 (AC4)

9. To run the application, from Run select Resume on the SoftConsole toolbar.
10. The output is displayed on HyperTerminal as shown in Figure 49, page 39.
11. Change the potentiometer (RV1) on the target board.
12. Go back to HyperTerminal and press any key. You should see AC4 change value, based on the

potentiometer (RV1). The full range is 0 V to 3.3 V.
13. Click Pause to stop the code execution. Notice that the call stack is updated and the next line of

C code is highlighted.
14. Set a breakpoint at the line of code highlighted in Figure 60, page 47 by double-clicking in the left

margin next to the line of code. This line of code is near line 200.
Figure 60 • Set Breakpoint

A dot appears in the margin indicating that a breakpoint is set on that line of code.
15. Click Resume to continue executing the code. The debugger should stop at the line of code

where you set a breakpoint.
16. To open the Registers view, from Windows select Show View, and then select Registers. You

cannot see the Register option, if the Register view is already open. You can expand the register to
view the values.

17. Click Step Over . The values of the registers change on clicking Step Over. The changed register
values are highlighted.

Congratulations! You have successfully created a Cortex-M1 software project and debugged it, running
on a Microsemi FPGA development kit. For more information on the features of SoftConsole, refer to
Debugging the Application Using SoftConsole, page 40.
TU0308 Tutorial Revision 2.0 47

Appendix: Libero SoC Catalog Settings

TU0308 Tutorial Revision 2.0 48

9 Appendix: Libero SoC Catalog Settings

The following steps show how to configure your vault location and set up the repositories in Libero SoC.

1. On the Catalog window, click Settings and then click Options.

Figure 61 • Catalog – Options

2. The Settings window is displayed as shown in the following figure.
3. Click Repositories and add the following in the address field:

• www.actel-ip.com/repositories/SgCore
• www.actel-ip.com/repositories/DirectCore
• www.actel-ip.com/repositories/Firmware

4. Click Add after entering each path.
Figure 62 • Setting Repositories

5. Click Vault location in the Options window. Browse to a location on your PC to set the vault location
where the IPs can be downloaded from the repositories.

6. Click OK.
Figure 63 • Setting the Vault Location

Appendix: Firmware Catalog Settings

TU0308 Tutorial Revision 2.0 49

10 Appendix: Firmware Catalog Settings

1. Open <Libero Installation directory>\Designer\bin\catalog.exe.
2. Select Tools > Vault/Repositories Settings, from the Firmware Catalog widow.

Figure 64 • Firmware Catalog Settings

3. Select Repositories under Vault/Repositories Settings in the Options dialog box as shown in
Figure 63, page 48.

4. Confirm that the following repositories are displayed (add them if needed):
• www.actel-ip.com/repositories/SgCore
• www.actel-ip.com/repositories/DirectCore
• www.actel-ip.com/repositories/Firmware

5. Add the above mentioned paths in the address field if required by selecting the repository and
clicking Add.

6. Click Download them now! to download the new cores to the vault.

Appendix: Debugging Features in SoftConsole

TU0308 Tutorial Revision 2.0 50

11 Appendix: Debugging Features in
SoftConsole

You can set a breakpoint using any of the following methods:

1. Place the cursor on the line of code and select Run > Toggle Breakpoint.
2. Right-click the line of code and select Toggle Breakpoint.
3. Double-click the left margin next to the line of code.

The Breakpoints, Registers, and Variables tabs are displayed on the top right corner. Elements are
highlighted if the values are changed.

To single step through the source code:

1. From Run select Step Into or click icon and from Run select Step Over or click icon.
2. The Step Return steps to the next instruction of the calling function. From Run select Step Return or

click icon.
3. To view disassembly, choose Window > Show View > Disassembly. You can then click the

Instruction Stepping Mode icon to step by processor instruction.

	1 Revision History
	1.1 Revision 2.0
	1.2 Revision 1.0
	1.3 Revision 0

	2 Introduction
	2.1 Tutorial Requirements
	2.1.1 Software Requirements
	2.1.2 Hardware Requirements
	2.1.3 Intellectual Property (IP)

	2.2 CoreAI version 3.0.119 Licensing

	3 Design Overview
	3.1 Cortex-M1 System Description
	3.2 Cortex-M1 Hardware Design Description

	4 Getting Started
	4.1 Download Tutorial Files
	4.2 Install USB-to-UART Driver
	4.2.1 Setting Up the USB-to-UART Driver

	5 Creating Design
	5.1 Step 1 – Create a Libero SoC Project
	5.2 Step 2 – Create a SmartDesign Component with Libero SoC
	5.2.1 Obtaining Different Version of Direct Core IP
	5.2.2 Instantiate Cortex-M1 Processor
	5.2.3 Instantiate CoreAHBLite Bus
	5.2.4 Instantiate CoreAhbNvm
	5.2.5 Instantiate CoreMemCtrl
	5.2.6 Instantiate CoreAhbSram
	5.2.7 Instantiate CoreAHB2APB
	5.2.8 Instantiate CoreAPB
	5.2.9 Instantiate CoreAI
	5.2.10 Instantiate CoreUARTapb
	5.2.11 Instantiate CoreGPIO
	5.2.12 Instantiate RC Oscillator
	5.2.13 Instantiate PLL
	5.2.14 Instantiate AND2 Gate
	5.2.15 Connect Signals Automatically in SmartDesign
	5.2.16 Connect Signals Manually in SmartDesign
	5.2.17 Promote Signals to Top Level
	5.2.18 Save and Generate SmartDesign System

	5.3 Step 3 – Create Flash Memory System

	6 Simulation, Synthesis, and Place-and-Route
	6.1 Step 4 – Perform Synthesis
	6.2 Step 5 – Perform Place-and-Route

	7 Programming
	7.1 Step 6 – Generate Programming File with Software Code in NVM
	7.2 Step 7 – Connect to the Target
	7.3 Step 8 – Program the M1AFS1500 FPGA

	8 Debugging the Application Using SoftConsole
	8.1 Step 9 - Building the Software Application through SoftConsole
	8.2 Step 10 - Debugging the Project

	9 Appendix: Libero SoC Catalog Settings
	10 Appendix: Firmware Catalog Settings
	11 Appendix: Debugging Features in SoftConsole

