
Core8051s Embedded Processor
Hardware Development Tutorial

for Fusion Mixed-Signal FPGAs

http://www.actel.com/survey/rating/?f=[Filename].pdf
http://www.actel.com/survey/rating/?f=Core8051s_EmbProc_HW_Tutorial_UG.pdf

Actel Corporation, Mountain View, CA 94043

© 2009 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200155-1

Release: March 2009

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

Table of Contents
Introduction . 5
Requirements for Tutorial . 5

1 Design Overview . 7

2 Building the Design . 9
Step 1 – Create the Libero IDE Project . 9

Step 2 – Create the Microcontroller Subsystem . 10

Step 3 – Create the Memory Subsystem. 26

Step 4 – Complete the Top Level . 37

3 Verifying the Design . 47
Pre-Synthesis Simulation in ModelSim . 47

4 Implementing the Design . 49
Step 1 – Synthesizing the Design . 49

Step 2 – Performing Place-and-Route, Pin Assignments 50

Step 3 – Programming the FPGA Using FlashPro . 51

Step 4 – Running the Design . 52

Summary . 53

A Product Support . 55
Actel Customer Technical Support Center . 55

Actel Technical Support . 55

Website . 55

Contacting the Customer Technical Support Center . 55

Index . 57
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 3

Introduction

This tutorial shows how to develop a simple 8051-based embedded processor system using Actel design tools. This
design is suitable as a starting point for developing an embedded system.

It is assumed that the reader is familiar with the FPGA design flow using Actel tools. Actel provides tutorials for both
Libero® Integrated Design Environment (IDE) and SmartDesign on the Actel website in addition to training classes.

After completing this tutorial you will be familiar with the hardware design flow for creating an 8051-based embedded
system using SmartDesign. This includes the following steps:

• Instantiating and configuring the processor, memory, and peripherals

• Connecting peripherals and defining an address map

• Generating RTL and the FPGA programming image ready for software development

This tutorial is designed to support the following three development board designs:

• Cortex™-M1–Enabled Fusion Development Kit (M1AFS-DEV-KIT-SCS) board

• Fusion Embedded Development Kit (M1AFS-EMBEDDED-KIT) board

• Fusion Advanced Development Kit (M1AFS-ADV-DEV-KIT) board

In general, most tutorial steps apply to all three target boards. Steps which are specific to a given target board will be
clearly indicated.

Requirements for Tutorial
This tutorial requires that the Actel Libero IDE is installed. Libero IDE allows you to create the design, perform
simulation, and prepare a file for programming of the FPGA fabric.

This tutorial is based on Libero IDE version 8.5.

This tutorial includes a set of files needed for completing and programming this design. These files can be found at
http://www.actel.com/documents/Core8051s_Fusion_DesignTutorial_DF.zip. Unzip this file in a root directory (e.g.,
c:/ or d:/) of your hard drive. If you unzip the file to a directory path that is too long, you will be asked for a password and
you will not be able to extract the files.

Inside the unzipped folder you will find a Core8051s_Fusion_FPGA_Design_Tutorial_Files folder (Figure 1). Inside this
folder will be a folder for each of three target boards. Inside the board folder will be a folder which contains a completed
design and a folder called Tutorial_Files, which contains support files needed for completing this design.

Figure 1 · File Structure
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 5

http://www.actel.com/documents/Core8051s_Fusion_DesignTutorial_DF.zip

Introduction
The tutorial folder includes the following files:

• An *.ihx file. This is a hex file with the application code for the NVM used by the microcontroller. This is one of the
following, depending on the target board.

M1AFS_SCS_51S_TUT.ihx (for the M1AFS-DEV-KIT-SCS board)

M1AFS_EMB_51S_TUT.ihx (for the M1AFS-EMBEDDED-KIT board)

M1AFS_ADV_51S_TUT.ihx (for the M1AFS-ADV-DEV-KIT board)

• The file MY_NVM.vhd. This is a wrapper for the NVM used for code memory. This file is used for all target boards.

• The file memdecode.vhd. This is VHDL code for the address decoding and control logic. This file is used for all target
boards.

• A *.pdc file containing pin assignments for the board. The exact file name is specific to the target board.
6 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

1
Design Overview

This design targets the Actel Fusion® mixed-signal FPGA. Key features of Fusion are its integrated analog-to-digital
converter (ADC) and analog I/O, embedded flash memory and SRAM, and support for advanced I/O standards. The
analog inputs can provide voltage, current, and temperature measurements. The analog outputs can provide gate drive
for external analog switches. The Fusion flash memory is used to create NVM storage for the application code.

This design implements an 8051-based microcontroller system. In addition to the Core8051s microcontroller core, this
system consists of the following peripherals:

• CoreUARTapb

• CoreTimer (two instances)

• CoreWatchdog

• CoreGPIO

• CoreInterrupt

• CoreAI (interface to the Fusion Analog Block)

These peripherals are interfaced using the APB3 bus. The CoreAPB3 bus component provides an APB interface that
supports up to 16 APB slaves. There is one APB master, which sends out a PSEL signal to CoreAPB3. This is used by
CoreAPB3, along with appropriate bits from the PADDR bus, to decode the appropriate PSELS signal. All 16 APB3
slots occupy 256 memory locations. In Core8051s, the APB3 interface uses the upper 4 KB of the memory address space
from 0xF000 through 0xFFFF.

The memory system consists of the following elements:

• 64 KB of NVM code memory. This memory is internal to the FPGA and occupies addresses 0x0000 through 0xFFFF
of the code memory space.

• 64 KB of SRAM code memory. This memory is external to the FPGA and occupies addresses 0x0000 through 0xFFFF
of the code memory space. This SRAM is intended for use with the debugger for debugging purposes.

• 8 KB of SRAM data memory. This memory is internal to the FPGA; however, it occupies addresses 0x0000 through
0x0FFF of the 8051’s external data memory space.

• 52 KB of SRAM data memory. This memory is external to the FPGA and occupies addresses 0x1000 through 0xFEFF
of the 8051’s external data memory space. The APB3 interface used to connect peripherals to Core8051s occupies the
upper 4 KB of external data memory.

• Control and interface logic

Note: Both the M1AFS-DEV-KIT-SCS and M1AFS-ADV-DEV-KIT boards contain flash memory devices external
to the FPGA. These memory devices are not used in the design and are biased by the respective designs to be
inactive.
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 7

Design Overview
Figure 1-1 · Block Diagram

The software used in the tutorial uses the analog block of the Fusion device to read the voltages and currents of the 3.3 V
and 1.5 V supplies. In addition, ambient room temperature is also measured using the analog block and an NPN
transistor connected as a temperature sensor.

This hardware design is very flexible and mimics the features set of a standard 8051. In addition, this design adds an
exceptionally flexible analog frontend that is not found on most 8051 family devices.

Address

DATA OUT

DATA
Read
MUX

SRAM

Bi
Bus

Buffer

Control
and

Decode

DATA IN

NVM
Code
MEM

APB3
Master

Core8051s

UART GPIOTIMER1TIMER0 WATCHDOG INTERRUPT ANALOG
8 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

2
Building the Design

It is assumed that the reader is familiar with the FPGA design flow using Actel tools. Actel provides tutorials for both
Libero IDE and SmartDesign on the Actel website in addition to training classes.

The microcontroller and its peripherals are grouped in this design into a component called Core8051S_sub. Similarly,
the memories and associated control logic are grouped into a component called Memory. These two components are
then instantiated onto a top-level entity along with other system level components (Figure 2-1).

Figure 2-1 · M1AFS_DEV_KIT Components

Step 1 – Create the Libero IDE Project
In this step we will create the top-level entity and the two component entities.

1. Create a Libero IDE project for this design having the following characteristics, based on the target hardware board.

For the M1AFS-DEV-KIT-SCS:

• Project name: M1AFS-SCS_8051S_TUT

• Family: Fusion

• Die: M1AFS600

• Package: 484 FBGA

For the M1AFS-EMBEDDED-KIT:

• M1AFS_EMB_8051S_TUT

• Family: Fusion

• Die: M1AFS1500

• Package: 484 FBGA

For the M1AFS-ADV-DEV-KIT:

• Project name: M1AFS_ADV_8051S_TUT

• Family: Fusion

• Die: M1AFS1500

• Package: 484 FBGA

2. Select File > Import Files from the main Libero IDE tabs. In the Import Files dialog box, select Physical Design
Constraint Files (*.pdc) for the type of files. Browse to the Tutorial_Files folder for your board and click on the *.pdc
file. Click Import.
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 9

http://www.actel.com/support/training/tutorials.aspx
http://www.actel.com/support/training/tutorials.aspx
http://www.actel.com/products/software/smartdesign/default.aspx

Building the Design
Step 2 – Create the Microcontroller Subsystem
This consists of the microcontroller core, its peripherals, and interconnections.

1. Use SmartDesign to create the 8051 core subsystem file. Give the SmartDesign component the name
Core8051S_sub.

2. Create an instance of Core8051s:

Core8051s is a microcontroller core that is instruction set compatible with the 8051. It contains the main 8051 core
logic but no peripheral logic. Core8051s has an APB bus interface that can be used to easily expand the functionality
of the core by connecting it to existing APB IP peripherals. This allows users to configure the core with the
peripheral functions (timers, UARTs, I/O ports, etc.) that they need for their application.

In the Libero IDE catalog, under the heading Processors, find and instantiate an instance of Core8051s. Configure
this core as indicated below, shown in Figure 2-2 on page 11:

• Include debug block: Yes

• Include trace RAM: No

• Number of hardware triggers/breakpoints: 4

• APB data width: 32

• Include second data pointer: Yes

• Include MUL, DIV, and DA instructions: Yes

• MEMPSACKI-controlled Program Memory: Yes

• MEMACKI-controlled External Data Memory: No

• External Data Memory Stretch Cycles: 2
10 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 2 – Create the Microcontroller Subsystem
Figure 2-2 · Configure Core8051s
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 11

Building the Design
The debug block is necessary if you want to use the JTAG interface for debugging your design.

Trace RAM is not supported in the FlashPro3 debugger, except as an additional cost option. There is no need to
include it in the design unless your Flashpro3 is licensed for this feature. For additional information, visit the
Core8051 web page from http://www.actel.com/products/ip/ by selecting DirectCore then Core8051s. Scroll down
the page to find the 8051 Trace Debugger Upgrade.

The number of hardware triggers / breakpoints is set at four.

The APB databus width is selectable at 8, 16, or 32 bits wide. It must be wide enough to accommodate the width of
the widest peripheral in the design. Core GPIO currently needs to have a 32 inputs and outputs in order to simulate
properly. This implies that APB3 bus width should be set to 32-bits.

The second DPTR is not currently supported by C compilers. Assembly language programs may make use of it. The
second DPTR is useful for memory block moves.

Core8051s has an option to include or omit multiply and divide and the decimal adjust (DA) instructions in order
to reduce the number of tiles used. Caution should be exercised in omitting these instructions when using a C
compiler.

MEMPSACKI is an input that asserts wait states when reading code memory. The system designer has an option
to use the MEMPSACKI signal or use a fixed number of wait states. The internal Flash memory block in the Fusion
FPGA (NVM) used in this design provides a busy signal that can be inverted and connected to MEMPSACKI.

MEMACKI is an input that asserts wait states when reading data memory. The system designer has an option to
use the MEMACKI signal or use a fixed number of wait states. The SRAM used in this design does not have a busy/
non-busy signal available, thus two fixed wait states (External Data Memory Stretch Cycles) are used.

3. Create an instance of CoreAPB3.

CoreAPB3 is an AMBA bus interface that is used to connect subsystem cores to Actel's soft processors, such as
Core8051s. The bus interface is easy to use and fully compatible with the APB v3.0 protocol. The core is constructed
to allow easy connection of IP cores in systems built around the Core8051s processor.

In the Libero IDE catalog, under the heading Bus Interfaces, find and instantiate an instance of CoreAPB3.
Configure this core as indicated below (Figure 2-3 on page 13):

• All slots selected

• APB Slot size: 256 locations
12 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

http://www.actel.com/products/ip/

Step 2 – Create the Microcontroller Subsystem
Figure 2-3 · Configuring CoreAPB3

4. Create an instance of CoreUARTapb.

CoreUARTapb is a serial communications interface that is intended primarily for use in embedded systems. The
controller can operate in either an asynchronous (UART) or synchronous mode. In asynchronous mode,
CoreUARTapb can be used to interface directly to industry standard UARTs. CoreUARTapb has an APB-wrapper
that adds an APB interface allowing the core to be connected to the APB bus and controlled by an APB bus master.

Unlike a standard 8051 UART, CoreUARTapb includes a baudrate generator and thus does not need a separate timer
for the baudrate.
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 13

Building the Design
In the Libero IDE catalog, under the heading Peripherals, find and instantiate an instance of CoreUARTapb.
Configure this core as indicated below (Figure 2-4):

• TX FIFO: Enabled

• RX FIFO: Enabled

• Configuration: Programmable

• Baud value: 1

• Character size: 8 bits

• Parity: Parity Disabled

• Testbench: Verification

Figure 2-4 · Configuring CoreUARTapb
14 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 2 – Create the Microcontroller Subsystem
5. Create an instance of CoreWatchdog.

CoreWatchdog is an APB slave that provides a means of recovering from software crashes. When enabled, the core
will generate a soft reset if the microprocessor fails to refresh it on a regular basis. CoreWatchdog is based on a
decrementing counter which can assert a reset signal if it is allowed to time out. The width of the decrementing
counter can be configured as either 16 or 32 bits. Processor-accessible registers in CoreWatchdog provide a means
to control and monitor the operation of the core.

In the Libero IDE catalog, under the heading Peripherals, find and instantiate an instance of CoreWatchdog.
Configure this core as indicated below (Figure 2-5):

• Configuration: 32-bit

Figure 2-5 · Configuring CoreWatchdog

6. Create the first instance of CoreTimer.

CoreTimer is an APB slave that provides the functionality for an interrupt-generating, programmable decrementing
counter. CoreTimer is configurable and programmable, and can be used in either continuous or one-shot modes.
This core is an essential element in many designs because it supports accurate generation of timing for precise
application control.
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 15

Building the Design
In the Libero IDE catalog, under the heading Peripherals, find and instantiate an instance of CoreTimer. Configure
this core as indicated below (Figure 2-6):

• Width: 16-bit

• Interrupt active level: high

Figure 2-6 · Configuring CoreTimer

7. Create a second instance of CoreTimer.

This second CoreTimer instance is included in the design simply to provide more timer flexibility in the system.

In the Libero IDE catalog, under the heading Peripherals, find and instantiate an instance of CoreTimer. Configure
this core as indicated below:

• Width: 16-bit

• Interrupt active level: High

8. Create an instance of CoreGPIO.

CoreGPIO is an APB bus peripheral that provides up to 32 inputs and 32 outputs for general purpose use. There is
a single register at offset 0x00 and aliased throughout the slot. Writing to this register writes 32 bits to the outputs.
Reading from the register reads the state of the inputs.

It is not required that all inputs and outputs be used. The user need only connect to those inputs or outputs which
are actually used.

Currently CoreGPIO needs to be configured for 32 inputs and 32 outputs in order to simulate correctly. Unused
inputs can be tied low and unused outputs marked as unused.
16 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 2 – Create the Microcontroller Subsystem
In the Libero IDE catalog, under the heading Peripherals, find and instantiate an instance of CoreGPIO. Configure
this core as indicated below (Figure 2-7):

• Number of inputs: 32

• Number of outputs: 32

Figure 2-7 · Configuring CoreGPIO

9. Create an instance of CoreInterrupt.

CoreInterrupt is an APB Slave component that provides configurable interrupt processing. It supports 0 to 32 IRQ
sources and 0 to 8 FIQ sources. The IRQ and FIQ source inputs are level-sensitive, active high ports. These interrupt
sources are processed to produce two output interrupt lines: IRQ and FIQ.

In the Libero IDE catalog, under the heading Peripherals, find and instantiate an instance of CoreInterrupt. This
core provides two interrupt outputs, IRQ and FIQ, which have significance in an ARM7 or Cortex-M1 design. In
a Core8051s design there is no difference and these two outputs can be used as two channels of interrupt control.
Configure this core as indicated below (Figure 2-8 on page 18):

• Number of IRQ sources: 5

• Number of FIQ sources: 0

• IRQ output polarity: High

• FIQ output polarity: High
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 17

Building the Design
Figure 2-8 · Configuring CoreInterrupt
18 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 2 – Create the Microcontroller Subsystem
10. Create an instance of CoreAI.

CoreAI allows for easy control of the on-chip analog hardware peripherals within the Fusion family of Actel devices.
The industry-standard APB slave interface is used as the primary control mechanism within CoreAI. Like all
DirectCores, CoreAI is designed, verified, and fully supported to make it easy to use, enabling designers to get their
products to market faster.

CoreAI provides flexible capabilities for the analog inputs. In this tutorial some analog inputs will be configured to
read voltages, some to read the differential voltage between two nodes (current monitor), and others to read
temperature.

In the Libero IDE catalog, under the heading Peripherals, find and instantiate an instance of CoreAI. Configure
this core as indicated below (Figure 2-9 on page 20 and Figure 2-10 on page 21):

If your target is the M1AFS-DEV-KIT-SCS board, configure this core as indicated below:

• ACM clock divider: PCLK/2

• Internal temperature monitor: Enabled

• Interrupt out line: Enabled

• Interrupt output polarity: Active high

• Quad 6 AV6 input: 0 V to 4 V analog input

• Quad 6 AC6 input: Current Monitor

• Quad 7 AV7 input: 0 V to 2 V analog input

• Quad 7 AC7 input: Current Monitor

• Quad 8 AV8 input: 0 V to 8 V analog input

• Quad 8 AT8 input: Temperature Monitor

• Quad 9 AV9 input: 0 V to 4 V analog input

• Quad 9 AC9 input: Current Monitor

• Quad 9 AT9 input: Temperature Monitor

• Use Real Time Clock: No

• VAREFSEL input control: Fixed

• Fixed VAREFSEL value: Output 2.56 V

• ADC Mode control: Register controlled

• TVC[7:0] pins control: Register controlled

• STC[7:0] pins control: Register controlled

• Use ADC conversions FIFO: No

• APB interface width: 16 bits

If your target is the M1AFS-EMBEDDED-KIT or M1AFS-ADV-DEV-KIT board, configure this core as
indicated below:

• ACM clock divider: PCLK/2

• Internal temperature monitor: Enabled

• Interrupt out line: Enabled

• Interrupt output polarity: Active high

• Quad 0 AV0 input: 0 V to 4 V analog input

• Quad 0 AC0 input: Current Monitor

• Quad 1 AV1 input: 0 V to 2 V analog input

• Quad 1 AC1 input: Current Monitor

• Quad 2 AT2 input: Temperature Monitor
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 19

Building the Design
• Quad 4 AC4 input: 0 V to 4 V

• Use Real Time Clock: No

• VAREFSEL input control: Fixed

• Fixed VAREFSEL value: Output 2.56 V

• ADC Mode control: Register controlled

• TVC[7:0] pins control: Register controlled

• STC[7:0] pins control: Register controlled

• Use ADC conversions FIFO: No

• APB interface width: 16 bits

Figure 2-9 · Configuring CoreAI (part 1)
20 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 2 – Create the Microcontroller Subsystem
Figure 2-10 · Configuring CoreAI (part 2)
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 21

Building the Design
11. Connect peripherals to the APB3.

Right-click on the Core8051S_sub canvas and select Auto Connect. This will connect the MCU and the peripherals
to the APB3 bus. The Modify Memory Map box will open. SmartDesign has assigned APB3 slots for each
peripheral automatically. In this step you will change those assignments. Clear the assigned peripheral for each
address by clicking on the peripheral name for each addresses and selecting the blank (empty) line. Then assign
peripherals to the address slots indicated below (Figure 2-11):

• 0x0000 0000: CoreTimer_0

• 0x0000 0100: CoreInterrupt

• 0x0000 0200: CoreGPIO

• 0x0000 0300: CoreUARTapb

• 0x0000 0400: CoreTimer_1

• 0x0000 0600: CoreAI

• 0x0000 0e00: CoreWatchdog

Figure 2-11 · Modify Memory Map
22 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 2 – Create the Microcontroller Subsystem
12. Promote signals to the top level.

SmartDesign automatically promoted some signals to the top of the Core8051S_sub block. These include SYSCLK,
NSYSRESET, and some analog signals from CoreAI. Promoting signals to the top level allows these signals to be
available for connection to other blocks. Only signals that are promoted to the top level will show as ports of the
Core8051S_sub component. Now you must promote some additional signals to the top level of this block so that
these signals can be connected to other components in the system design.

Right-click on the name of a port or the port connector and select Promote to Top Level to promote a signal to the
top level. Promote the signals in Table 2-1 to the top level (Figure 2-12).

Figure 2-12 · Promote Signal to Top Level

Table 2-1 · Promote Signals to Top Level

Block Port

Core8051s_0

ExternalMemIf

DebugIf

MOVX

CoreUARTapb_0
RX

TX

CoreGPIO
dataIn[31:0]

dataOut[31:0]

CoreInterrupt irqSource3
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 23

Building the Design
13. Change a top-level port name.

Locate the top level port irqSource3 on the input (left) side of the canvas. This name does not convey any sense of
its use in the system. Rename this signal to make its function more easily recognized. Right-click on this port and
select Modify Port (Figure 2-13). Change the name of this port to EXTIRQ, since this signal is used as the external
interrupt request in the system (Figure 2-14).

Figure 2-13 · Modify Port

Figure 2-14 · Change Port Name
24 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 2 – Create the Microcontroller Subsystem
14. Make connections between ports.

While holding the CTRL key, click the first port you wish to connect. The port name will be highlighted. Continue
holding the CTRL key and click on the next port to connect. When you have highlighted the last port to connect
in the net, right-click on this last port and select Connect. This will connect the highlighted ports together.

Most of the peripherals in this design have outputs that can be used as interrupts to the microcontroller core.
Core8051s has two non-maskable interrupt inputs. CoreInterrupt can accept several interrupt inputs and provide
masking capability. We need to connect interrupt request outputs from the peripherals to the interrupt request inputs
of CoreInterrupt. Make the connections listed in Table 2-2.

15. A port can be tied low by right-clicking on the port and selecting Tie Low. More than one port can be tied low by
holding down the CTRL key while clicking on each of the ports. After clicking the last of the ports, right-click and
select Tie Low. Tie the signals listed in Table 2-3 low.

16. Select Check Design Rules from the SmartDesign tab in the Libero IDE main menu. Verify that there are no errors.
Floating driver warnings can be ignored. Right-click in the Core8051S_sub canvas and select Generate Design.

17. This concludes the design of the 8051s subsystem (a good time to save your file). Close the Core8051S_sub
component.

Table 2-2 · Port Connections

Connection Block Port

1
Core8051s INT0

CoreInterrupt IRQ

2
CoreUARTapb RXRDY

CoreInterrupt irqSource2

3
CoreUARTapb TXRDY

CoreInterrupt irqSource1

4
CoreTimer_0 TIMINT

CoreInterrupt irqSource0

5
CoreTimer_1 TIMINT

CoreInterrupt irqSource4

Table 2-3 · Tie Signals Low for CoreAI and CoreInterrupt

Block Port

CoreAI
DDGDON[9:0]

RTCCLK

CoreInterrupt
figSource[7:0]

irqSource[31:5]
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 25

Building the Design
Step 3 – Create the Memory Subsystem
The memory subsystem consists of the 64 KB of flash memory (NVM) code memory, 8 KB of SRAM data memory, an
interface to an off-FPGA SRAM, and control and interface logic. The off-FPGA SRAM provides 56 KB of SRAM
data memory in the 8051’s external data memory space and 64 KB of SRAM code memory. This SRAM code memory
is intended for use with the debugger for debugging purposes.

The memory system uses a 16-bit wide address bus for code and data memory, providing 64 KB of addressable memory
space. The upper 4 KB of this space (address 0xF000 to 0xFFF) is used by the APB3 interface. When the APB3
interface is accessed, Core8051s will not generate memory access cycles on this address bus but instead will generate
accesses on the APB3. Thus it is not necessary to exclude the upper 4 KB for the memory space. This simplifies memory
decoding logic.

The data bus used for code and data memory is 8 bits wide and should not be confused with the large data bus width
used for the APB3 and the peripherals.

1. Use SmartDesign to create the memory subsystem file. Give the SmartDesign component the name Memory.

2. Create the internal RAM.

In the Libero IDE catalog, under the heading Memory & Controllers, instantiate an instance of the RAM – Two
Port component. Configure as indicated below (Figure 2-15 on page 27):

• Optimize for: High Speed

• Write Depth: 8192

• Write Width: 8

• WEN: Choose active high

• Clock: Select single

• Read Depth: 8

• REN: Choose active high

• Reset: Clear check box

• Pipeline: Clear check box

• Clock: Select rising edge
26 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 3 – Create the Memory Subsystem
Figure 2-15 · Configure Two-Port RAM

Click Generate and name the component INT_RAM_8KB.
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 27

Building the Design
3. Create the Flash Memory block.

In the Libero IDE catalog, under the heading Fusion Peripherals, double-click on the Flash Memory System
Builder item. Double-click on the Data Storage client. A box will open. Configure as follows:

• Client name: flash_64KB

• Start address: 0

• Size of word: 8

• Number of words: 65536

• Format of file: Intel-Hex

• JTAG protection: Clear both check boxes

The memory content file contains the hex code for the end application. You can browse to the *.ihx file provided in
the Tutorial_Files folder in the Core8051s_Fusion_FPGA_Design _Tutorial folder and select this file. Click Choose
to select the file. Click OK. Click Generate. Name this block flash_64KB (Figure 2-16).

Figure 2-16 · Add Data Storage Client

An instance of flash_64KB will appear on the memory canvas. Right-click on this block and select Delete. This will
remove this block from the canvas. A wrapper, which instantiates this block, will be used instead.
28 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 3 – Create the Memory Subsystem
4. Add user HDL wrappers and decode logic.

The NVM module created using the Flash Memory System Builder cannot be directly connected to other
components in the design. Thus, it needs a wrapper to allow making connections to it. This wrapper is provided.

This design includes an on-FPGA NVM block, an on-FPGA SRAM block, and an off-FPGA SRAM chip. The
memory architecture is described in “Design Overview” on page 7. Some memory decoding logic is required to drive
the select signals for the memories, control the bidirectional bus buffer, and the data MUX select lines. This logic is
driven by the memory address and the type of memory operation (code read, data read, etc.). This logic is also
provided as an HDL file.

From the main Libero IDE menu, import the following two user HDL files (make certain the file type in the import
dialog box is set to HDL source files):

• MY_NVM.vhd.

• memdecode.vhd

Components called nvm_if (MY_NVM.vhd) and mem_decode (memdecode.vhd) will appear in the list of
components in the Libero IDE Hierarchy tab. Right-click on each of these components and select Instantiate in
Memory.

Right-click on the NVM_BUSY output of the nvm_if_0 block and select Invert.

5. Add the data read multiplexer.

It is not possible to directly connect the outputs of the FPGA memory blocks together, since these block do not have
tristate outputs. Instead, use a data multiplexer to gate the outputs onto the microcontroller’s input data lines at the
appropriate time.

In the Libero IDE catalog, expand the item Basic Blocks and double-click Multiplexor. A box will open.

• Set the bus output width to 8.

• Set the number of input buses to 3.

• Click the Generate button. A box will open (Figure 2-17).

Figure 2-17 · Add Multiplexor
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 29

Building the Design
• Change the component name to data_read_mux.

• Click OK (Figure 2-18).

Figure 2-18 · Change Component Name for MUX

• Right-click on the SmartDesign canvas and select Auto arrange instances.
30 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 3 – Create the Memory Subsystem
6. Add the databus buffer.

This design includes off-FPGA memory chips. These devices use a bidirectional databus. In order to interface them,
you need a bidirectional buffer. The bidirectional buffer allows you to connect the bidirectional interface of the off-
FPGA memories into a separate data_in path and separate data_out path inside the FPGA.

In the Libero IDE catalog, expand the Basic Blocks item and double click on I/O. A configuration box will open.

• Click on the Bidirectional Buffers tab.

• Set buffer width to 8.

• Select active low polarity.

• Click Generate (Figure 2-19).

Figure 2-19 · Configure Bidirectional Buffers
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 31

Building the Design
• Name this component data_bus buffer (Figure 2-20). Click OK.

Figure 2-20 · Name Bidirectional Buffer

The data bus buffer component will appear on the Memory canvas.

In the following instructions, you will interconnect the components in the Memory component and add top-level
ports.
32 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 3 – Create the Memory Subsystem
7. A port can be tied low by right-clicking on the port and selecting Tie Low. More than one port can be tied low by
holding down the CTRL key while clicking on each of the ports. After clicking the last of the ports, right-click and
select Tie Low. Tie the signals listed in Table 2-4 low.

8. Tie the RESET port of the nvm_if_0 block high.

9. Click on the SmartDesign button in the Libero IDE menu. Select Add Port to add a new top-level port. A box will
open. Set the direction to input. Enter ADD[17:0] and click OK.

10. Similarly, add another new top-level port. Set the direction to output. Enter NVM_BUSY_N and click OK.

11. Add another new top-level port. Set the direction to input. Enter CLK and click OK.

12. Right-click on the CLK port and select Invert.

Table 2-4 · Tie Signals Low for nvm_if_0

Block Port

nvm_if_0

AUX_BLOCK

DATA[31:0]

DISCARD_PAGE

ERASE_PAGE

LOCK

OVERWRITE_PAGE

OVERWRITE_PROT

WRITE

PAGE_STATUS

PROGRAM

READ_NEXT

SPARE_PAGE

UNPROT_PAGE

PAGELOSS_PROT

WIDTH[1:0]
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 33

Building the Design
13. Now some additional signals must be promoted to the top level of this block. Right-click on the name of a port or
the port connector and select Promote to Top Level to promote a signal to the top level. Promote the signals in
Table 2-5 to the top level.

14. Now change the names of some top-level ports. Right-click on the name of a port or the port connector, select
Modify Port, and change the port name according to Table 2-6.

Table 2-5 · Promote Signals to Top Level

Block Port

Mem_decode_0

EXT_RAM_CS_N

EXT_RAM_RD_N

EXT_RAM_WR_N

MEMRD

MEMWR

PSRD

PSWR

A16

SW0

nvm_if_0 NVM_STATUS[1:0]

data_bus_buffer_0 PAD[7:0]

INT_RAM_8KB WD[7:0]

data_read_mux_0 Result[7:0]

Table 2-6 · Modify Port Names

Block Old port name New port name

Top level
PAD[7:0] EXT_DATA[7:0]

Result[7:0] RD[7:0]
34 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 3 – Create the Memory Subsystem
15. In this step you will separate some busses into smaller group by creating slices. To create a slice, right-click on the
name of the port and select Add slice. Enter a slice range (the ending and starting bit positions of the slice). Repeat
this process if additional slices are needed. Create the slices indicated for the ports shown in Table 2-7.

16. In this step you will make the connections between ports for the Memory component. Hold the CTRL key and click
on the first port you want to connect. The port name will be highlighted. Hold the CTRL key and click on the next
port to include in the connection. This next port will be highlighted. When you have highlighted the last port to
connect in the net, right-click on this last port and select Connect. This will connect the highlighted ports together.
Make the connections listed in Table 2-8.

Table 2-7 · Create Slices for Ports

Block Port name slices

nvm_if_0

DOUT[31:0] [7:0]

ADD[17:0]

[17:16]

[15:13]

[12:0]

Mem_decode_0 SEL[1:0]
[1:1]

[0:0]

top level ADD[17:0]

[17:16]

[15:13]

[12:0]

Table 2-8 · Connect Ports for Memory Component

Connection Block Port

1
nvm_if_0 DOUT[7:0]

data_read_mux Data2_port[7:0]

2
data_read_mux Data1_port[7:0]

data_bus_buffer_0 Y[7:0]

2
data_read_mux Data0_port[7:0]

INT_RAM_8KB_0 RD[7:0]

4
mem_decode_0 SEL[1]

data_read_mux Sel1

5
mem_decode_0 SEL[0]

data_read_mux Sel0

6
mem_decode_0 INT_RAM_WR

INT_RAM_8KB_0 WEN
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 35

Building the Design
17. Select Check Design Rules from the SmartDesign tab in the Libero IDE main menu. Verify that there are no errors.
Floating driver warnings can be ignored.Right-click in the Memory canvas and select Generate Design.

18. This concludes the design of the Memory subsystem (a good time to save your file). Close the Memory subsystem
component.

7
mem_decode_0 INT_RAM_RD

INT_RAM_8KB_0 REN

8
mem_decode_0 INT_NVM_CS

nvm_if_0 READ

9
mem_decode_0 EXT_RAM_WR_N

data_bus_buffer_0 Trien

10

top level CLK

nvm_if_0 CLK

INT_RAM_8KB_0 RWCLK

11

INT_RAM_8KB_0 WADDR[12:0]

INT_RAM_8KB_0 RADDR[12:0]

nvm_if_0 ADD[12:0]

top level ADD[12:0]

12

top level WD[7:0]

data_bus_buffer_0 Data[7|0]

INT_RAM_8KB_0 WD[7:0]

13

mem_decode_0 UP_ADD[15:13]

nvm_if_0 ADD[15:13]

top level ADD[15:13]

14
nvm_if_0 ADD[17:16]

top level ADD[17:16]

15
nvm_if_0 NVM_BUSY

top level NVM_BUSY_N

Table 2-8 · Connect Ports for Memory Component (continued)

Connection Block Port
36 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 4 – Complete the Top Level
Step 4 – Complete the Top Level
In this step you will create the top level and instantiate the MCU and memory subsystems, add the clock and reset
circuits and top-level ports, and make the required connections.

1. Use SmartDesign to create the top-level file. Give the SmartDesign component the name indicated in Table 2-9,
based on your target board. Set the file for this component as the root.

2. Instantiate the Core8051s subsystem in the top level by right-clicking on the Core8051s component in the Design
Explorer window and selecting Instantiate in M1AFS...TOP (the exact file name depends on your board).

3. Instantiate the Memory subsystem in the top level by right-clicking on the Memory component in the Design
Explorer window and selecting Instantiate in <name of your root file>.

4. Click on the SmartDesign tab at the top of the Libero IDE. Select Add Port to add a new top-level port. A box will
open. Set the direction to input. Enter EXTCLK and click OK.

5. In the catalog, under Basic Blocks, click Register. Select the shift register tab (Figure 2-21 on page 38). Select Serial-
In/Serial-Out for the variation. Set a width of 2. Select Active Low for the async clear. Select rising clock. Select
active low shift enable. Then click Generate. Give this core the name “reset_delay.” Click OK.

Table 2-9 · SmartDesign Components

Target Board Filename

M1AFS-DEV-KIT-SCS M1AFS_DEV_KIT_SCS_8051s_TOP

M1AFS-EMBEDDED-KIT M1AFS_EMBEDDED-KIT_8051s_TOP

M1AFS-ADV-DEV-KIT M1AFS_ADV_DEV_KIT_8051s_TOP
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 37

Building the Design
Figure 2-21 · Configuring the Shift Register

6. Open the Libero IDE catalog, expand Actel Cells, and locate and click on INBUF. An instance of an INBUF will
appear in your design. The input will already be promoted to the top level. Right-click on the top-level port for this
INBUF input, select Modify Port, and change the name of this port to NSYSRESET. Connect the output of this
inbuf to the Aclr input of the reset_delay shift register.

7. From the Libero IDE catalog, expand Clock & Management. Locate and double-click on PLL – static. The Static
PLL box will open (Figure 2-22 on page 39).

If your target is the M1AFS-DEV-KIT-SCS board:

Enter 48.000 (MHz) for the CLKA frequency.

If your target is the M1AFS-EMBEDDED-KIT or M1AFS-ADV-DEV-KIT board:

Enter 50.000 (MHz) for the CLKA frequency.
38 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 4 – Complete the Top Level
Select External I/O from the Clock Source menu. For the Primary frequency, enter 12.000 (MHz). Click the
Generate button. A box will open. Name this component clk_pll. Click OK. Close the Static PLL – Create Core
box. An instance of the PLL will appear on the top canvas.

Figure 2-22 · PLL Configuration
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 39

Building the Design
8. Some signals must be promoted to the top level of this block. Right-click on the name of a port or the port connector
and select Promote to Top Level to promote a signal to the top level. Promote the signals in Table 2-10 to the top
level.

Note: Ensure that the External Memory Interface Ports and the Debug Interface Ports are expanded on the
Core8051S_sub component when making the top-level signal promotions shown in Table 2-10.

9. Right-click on the A16 top-level port and select Modify Port.

If your target is the M1AFS-DEV-KIT-SCS board:

• Change the name of the port to MEMADDR18.

If your target is the M1AFS-EMBEDDED-KIT or M1AFS-ADV-DEV-KIT board:

• Change the name of the port to MEMADDR16.

Table 2-10 · Promote Top-Level Signals

Block Port

Core8051S_sub

MEMADDR[15:0]

TCK

TDI

TMS

TRSTN

TDO

RX

TX

Analog Pads

Memory_0

SW0

EXT_RAM_CS_N

EXT_RAM_RD_N

EXT_RAM_WR_N

A16

EXT_DATA[7:0]

reset_delay_0 Shiften
40 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 4 – Complete the Top Level
10. Click on the SmartDesign tab at the top of the Libero IDE menu. Select Add Port to add a new top-level port. A
box will open. Set the direction to Output. Type in the name of the new port. Click OK.

If your target is the M1AFS-DEV-KIT-SCS board, create the following additional top-level ports:

• SRBS1_N

• Flash_HCE_N

• Flash_LCE_N

• SRBS2_N

• Flash_WE_N

• Flash_RST_N

• Flash_OE_N

• SRBS3_N

• SRSB0_N

• MEMADDR19

• dataOut[3:0]

• dataIn[3:0]

If your target is the M1AFS-EMBEDDED-KIT board, create the following additional top-level ports:

• SRAM_BHE0_N

• SRAM_BHE1_N

• SRAM_BLE0_N

• SRAM_BLE1_N

• MEMADDR17

• dataOut[3:0]

• dataIn[3:0]

If your target is the M1AFS-ADV-DEV-KIT board, create the following additional top-level ports:

• SRAM_BHE0_N

• SRAM_BHE1_N

• SRAM_BLE0_N

• SRAM_BLE1_N

• SRAM_CE2

• Flash_CE0

• Flash_CE1

• Flash_CE2

• Flash_CE3

• Flash_CE4

• Flash_CE5

• Flash_RST_N

• Flash_OE_N

• Flash_WE_N

• Flash_VPEN

• Flash_BYTE_1

• Flash_BYTE_2

• MEMADDR17
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 41

Building the Design
• MEMADDR18

• MEMADDR19

• dataOut[3:0]

• dataIn[3:0]

11. Right-click on the ADD[17:0] port of the Memory_0 block and select Add Slice. Set the slice range from 15 to 0.
Right-click, again, on the ADDR[17:0] port of the Memory_0 block and select Add Slice. Set the slice range from
17 to 16.

12. Right-click on the dataOut[31:0] port of the Core8051s_sub_0 block and select Add Slice. Set the slice range from
3 to 0. Right-click, again, on the dataOut[31:0] port of the Core8051s_sub_0 block and select Add Slice. Set the
slice range from 31 to 4.

13. Right-click on the dataIn[31:0] port of the Core8051s_sub_0 block and select Add Slice. Set the slice range from 3
to 0. Right-click, again, on the dataIn[31:0] port of the Core8051s_sub_0 block and select Add Slice. Set the slice
range from 31 to 4.

14. A port can be tied low by right-clicking on the port and selecting Tie Low. More than one port can be tied low by
holding down the CTRL key while clicking on each of the ports. After clicking the last of the ports, right-click and
select Tie Low.

• If the target is the M1AFS-DEV-KIT-SCS board, tie the signals listed in Table 2-11 low.

• If the target is the M1AFS-EMBEDDED-KIT board, tie the signals listed in Table 2-12 low.

Table 2-11 · Tie Signals Low for M1AFS-DEV-KIT-SCS Board

Block Port

Core8051s_sub_0

BREAKIN

MEMBANK[3:0]

dataIn[31:4]

EXTIRQ

Memory_0 ADDR[17:16]

top level
MEM_ADDR19

SRSB0_N

reset_delay_0 Shiften

Table 2-12 · Tie Signals Low forM1AFS-EMBEDDED-KIT Board

Block Port

Core8051s_sub_0

BREAKIN

MEMBANK[3:0]

EXTIRQ

dataIn[31:4]

Memory_0 ADDR[17:16]

top level
MEM_ADDR17

SRAM_BLE0_N

reset_delay_0 Shiften
42 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 4 – Complete the Top Level
• If the target is the M1AFS-ADV-DEV-KIT board, tie the signals listed in Table 2-13 low.

15. A port can be tied high by right-clicking on the port and selecting Tie High. More than one port can be tied high
by holding down the CTRL key while clicking on each of the ports. After clicking the last of the ports, right-click
and select Tie High.

• If the target is the M1AFS-DEV-KIT-SCS board, tie the signals listed in Table 2-14 high.

Table 2-13 · Tie Signals Low for M1AFS-ADV-DEV-KIT Board

Block Port

Core8051s_sub_0

BREAKIN

MEMBANK[3:0]

EXTIRQ

dataIn[31:4]

Memory_0 ADDR[17:16]

top level

MEM_ADDR17

MEM_ADDR18

MEM_ADDR19

SRAM_BLE0_N

Flash_RST_N

reset_delay_0 Shiften

Table 2-14 · Tie Signals High for M1AFS-DEV-KIT-SCS Board

Block Port

Core8051s_sub_0 MEMACKI

clk_pll_0
OADIVRST

POWERDOWN

top level

Flash_HCE_N

Flash_LCE_N

SRBS1_N

SRBS2_N

SRBS3_N

Flash_WE_N

Flash_RST_N

Flash_OE_N
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 43

Building the Design
• If the target is the M1AFS-EMBEDDED-KIT board, tie the signals listed in Table 2-15 high.

• If the target is the M1AFS-ADV-DEV-KIT board, tie the signals listed in Table 2-16 high.

Table 2-15 · Tie Signals High for M1AFS-EMBEDDED-KIT Board

Block Port

Core8051s_sub_0 MEMACKI

clk_pll_0
OADIVRST

POWERDOWN

top level

SRAM_BHE0_N

SRAM_BHE1_N

SRAM_BLE1_N

Table 2-16 · Tie Signals High for M1AFS-ADV-DEV-KIT Board

Block Port

Core8051s_sub_0 MEMACKI

clk_pll_0
OADIVRST

POWERDOWN

top level

SRAM_BHE0_N

SRAM_BHE1_N

SRAM_BLE1_N

SRAM_CE2

Flash_BYTE_1

Flash_BYTE_2

Flash_WE_N

Flash_OE_N

Flash_CE0

Flash_CE1

Flash_CE2

Flash_CE3

Flash_CE4

Flash_CE5

Flash_VPEN
44 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 4 – Complete the Top Level
16. In this step you will make various connections. To connect two (or more) ports, hold the CTRL key and click on the
first port. The port name will be highlighted. Locate the second port to be included in the net. Hold the CTRL key
and click on this port. The port name will be highlighted. Repeat for as many ports as will be added to the net. Right-
click on the last port added and select Connect. This will connect these ports together. Make the port connections
listed in Table 2-17.

17. Select Check Design Rules from the SmartDesign tab in the Libero IDE main menu. Verify that there are no errors.
Right-click in the root canvas and select Generate Design.

Table 2-17 · Port Connections

Connection Block Port

1
Memory_0 ADDR[15:0]

Core8051s_sub_0 MEMADDR[15:0]

2
Memory_0 PSWR

Core8051s_sub_0 DBGMEMPSWR

3
Memory_0 PSRD

Core8051s_sub_0 MEMPSRD

4
Memory_0 MEMRD

Core8051s_sub_0 MEMRD

5
Memory_0 MEMWR

Core8051s_sub_0 MEMWR

6
Memory_0 RD[7:0]

Core8051s_sub_0 MEMDATAI[7:0]

7
Memory_0 WD[7:0]

Core8051s_sub_0 MEMDATAO[7:0]

8
Memory_0 NVM_BUSY_N

Core8051s_sub_0 MEMPSACKI

9

Memory_0 CLK

Core8051s_sub_0 SYSCLK

clk_pll_0 GLA

reset_delay_0 Clock

10
top level EXTCLK

clk_pll_0 CLKA

11
Core8051s_sub_0 dataOut[3:0]

top level dataOut[3:0]

12
Core8051s_sub_0 dataIn[3:0]

top level dataIn[3:0]

13
reset_delay_0 Shiftout

Core8051s_sub_0 NSYSRESET

14
reset_delay_0 Shiftin

clk_pll_0 LOCK
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 45

3
Verifying the Design

Pre-Synthesis Simulation in ModelSim
1. In the Design Explorer box, right-click on the top-level entity (*_TUT_TOP) and select Organize Stimulus. In the

right-side box inside the Organize Stimulus window, verify that it contains a file, testbench.vhd, whose origin is the
*_TUT_TOP entity. If not present, find the file in the list in left-side box and click Add.

2. From the main Project tab, select Settings. In the Project Settings box, select the Simulation tab. Highlight
COREUARTAPB_… in the left-side box under the Libraries category. In the value box for the Library command,
click Delete and recompile.

 Highlight Waveforms in the left-side box. Click the value box for the Log all signals in the design item.

Highlight DO File. Set the Simulation runtime item to 1 ms.

Click OK.

3. Right-click the Simulation button in the Project Flow window of Libero IDE and select Run Pre-Synthesis
Simulation.

4. After the simulator has loaded, in the Instance window, locate and click on the *_top_0 entity. Expand the top entity.
Scroll, find, and expand the core8051s_sub_0 entity. Click on the core8051s_0 entity.

5. In the objects window, click and add the following signals to the simulation: clk, nsysreset, mempsacki, mempsrd,
memaddr, and memdati (Figure 3-1).

Figure 3-1 · Selecting Core8051s Signals

6. Click on the Zoom Full icon (filled magnifying glass). You can now use the zoom and scroll functions to observe the
processor execute code in the waveform window.
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 47

Verifying the Design
7. Undock the waveform window by clicking on the undock button in the waveform window. This is the icon with the
box and upper right arrow. In the resulting waveform window (Figure 3-3), click File > Save Format. Click
Waveform formats in the Save Contents box. Click OK (click Yes if prompted to overwrite).

Figure 3-2 · Undocking the Simulation Window

Figure 3-3 · Simulation of CPU Instruction Fetches

Note: In Figure 3-3, the path names for the signals have been suppressed by setting the Display Signal Path to one
element.
48 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

4
Implementing the Design

Step 1 – Synthesizing the Design
1. Click on the Project Flow tab in Libero IDE. Click on the Synthesis box.

Figure 4-1 · Setting the Frequency in Synplify

If your target is the M1AFS-EMBEDDED-KIT board or the M1AFS-ADV-DEV-KIT board, set the frequency
to 50 MHz.

If your target is the M1AFS-DEV-KIT-SCS board, set the frequency to 48 MHz.

2. Click the Run button after Synplify opens. Close Synplify when it completes.
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 49

Implementing the Design
Step 2 – Performing Place-and-Route, Pin Assignments
1. Click on the Designer button. In the Organize Constraints for Designer box, click on the *.pdc file in the project

files (left) box. Click the Add button. The *.pdc file will appear in the Designer files (right) box. Click OK. Normally,
when you click on the Designer button for the first time with a new project, the Organize Constraints for Designer
box will automatically launch.

Figure 4-2 · Organize Constraints for Designer

2. The Device Selection Wizard will open. Choose the Fusion die that matches your target board (refer to “Step 1 –
Create the Libero IDE Project” on page 9).

Choose the 484 FBGA package. Select Std speed range. Click Next.

The Device Selection Wizard - Variations box will open. Accept the defaults and click Next.

The Device Selection Wizard - Operating Conditions box will open. Click Finish.

3. In Designer, click the Compile button. Answer OK. Wait for the Compile button to turn green.

4. The I/O Attribute Editor in the MultiView Navigator section of Designer can be used to assign signals to physical
device pins. An alternative is to import a *.pdc file that already contains pin assignments for the design. This was
done earlier in our project. This file was then selected for Designer to use when we organized the constraint files, as
shown in Figure 4-2.

5. Click on the Constraints Editor button in the Designer GUI. In the "Constraints Editor" box, click on the frequency
value for TCK and change it to 20.

Note: The constraints Editor box opened inside of the SmartTime box.

6. Select Actions > Constraint > Clock from the SmartTime Constraint Editor menu to open the Create Clock
Constraint Dialog box. Select the clock beginning with the name Core8051S_sub from the pull-down menu in the
Create Clock Constraint dialog box. Enter 10 MHz. Click OK.
50 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Step 3 – Programming the FPGA Using FlashPro
7. Select Actions > Constraint > Clock from the SmartTime Constraint Editor menu to open the Create Clock
Constraint Dialog box. Select the EXTCLK clock beginning from the pull-down menu in the Create Clock
Constraint dialog box.

If your target is the M1AFS-DEV-KIT-SCS board, enter 48 MHz; otherwise enter 50 MHz. Click OK.

8. Click on the Layout button. Answer OK. Wait for the Layout button to turn green.

9. Click on the Programming file button. Click the Finish button in the FlashPoint – Programming File Generator
box. Click Finish. Click Generate in the Generate Programming Files box. Answer Yes if prompted to replace files.
Close Designer after the Programming Files button turns green. Answer Yes if prompted to save changes.

The generated file will include the FPGA design plus the firmware for the 64KB NVM block. Later, FlashPro can
be used to update the contents of the NVM block.

Step 3 – Programming the FPGA Using FlashPro
1. In this step we will connect the PC to the FlashPro programmer.

If your target is the M1AFS-DEV-KIT-SCS board:

• Connect a USB cable from a USB port on your PC to the USB PROG connector on the board. This board has
the FlashPro programmer and debugger integrated into the board design.

If your target is the M1AFS-EMBEDDED-KIT board:

• Plug the LC Programmer board into connector J1 of the M1AFS-EMBEDDED-KIT board.

• Connect a USB cable from a USB port on your PC to the USB connector on the LC Programmer board.

If your target is the M1AFS-ADV-DEV-KIT board:

• Plug the 10-pin ribbon connector from a FlashPro3 unit into connector J6 of the M1AFS-ADV-DEV-KIT
board.

• Connect a USB cable from a USB port on your PC to the USB connector on the FlashPro3 unit.

2. Connect power to the power connector of the board.

3. Install the USB drivers for FlashPro3 if not previously installed.

4. Click on the Programming box in the Project Flow tab.

5. Maximize the FlashPro dialog box.

6. Verify that a programmer has been identified in the Programmer Name list. If no programmer name is shown, click
the Refresh/Rescan for Programmers button.

7. FlashPro will read the PDB file created by Designer and obtain the path for the *.efc and *.ihx files for the NVM
block. These can be verified by clicking the PDB Configuration… button. Click the Modify button in the
FlashPoint – Programming File Generator box. Click the Import Configuration File… button to check the *.efc file.
Click the Import content… button to verify the *.ihx file. The Import content… button can be used to update the
code for the NVM block when making code changes.

8. Click the Program button. The FlashPro Programmer will program both the FPGA array and the Embedded Flash
Memory Module. Do not disrupt the power during the programming operation, as it can damage the FPGA. Close
FlashPro. Answer Yes if prompted to save file(s).
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 51

Implementing the Design
Step 4 – Running the Design
1. If your target is the M1AFS-DEV-KIT-SCS board:

• Disconnect the USB cable from the USB PROG connector on the board.

• Install jumpers on JP1, JP2, JP3, JP4 (1-4), JP5, JP7 (2-3), JP8 (2-3), JP9, JP10 (1-2), and JP13. All other jumpers
on this board are not installed.

If your target is the M1AFS-EMBEDDED-KIT board:

• Unplug the LC Programmer board from connector J1 of the M1AFS-EMBEDDED-KIT board.

If your target is the M1AFS-ADV-DEV-KIT board:

• Unplug the 10-pin ribbon connector of the FlashPro3 unit from connector J6 of the M1AFS-ADV-DEV-KIT
board.

2. Install the drivers for the CP2102 USB serial port if not already installed on your computer. You can
download the drivers from http://www.actel.com/products/hardware/devkits_boards/fusion_embedded.aspx

3. Connect a USB cable between the USB serial port connector on your target board and your PC.

4. Determine the COM port assigned to the USB interface. Open the Windows Control Panel and double-click the
System icon. Click on the Hardware tab. Click the Device Manager button. Expand the Ports (Com & LPT) item
in Device Manager. Look for the CP2102 USB to UART Bridge Controller in the list of ports. The COM port in
parentheses next to it is the COM port assigned to this device.

Figure 4-3 · Determining the USB Serial Port's COM Port

5. Open a terminal emulator program and set the communications parameters to 9600 baud, 8 data bit, no parity, and
no handshaking. Set the COM port to match the USB serial port of the board.

6. If your target is the M1AFS-DEV-KIT-SCS board set position 10 of switch SW1 to the OFF position.

If your target is the M1AFS-EMBEDDED-KIT board or the M1AFS-ADV-DEV-KIT board remove the jumper,
if any, between pins 1 and 2 of connector J5. When the switch is off or this jumper is removed, the NVM block
occupies the microcontroller’s code memory space. When switch SW1 is in the ON position or the jumper is in place,
external SRAM is used for code storage during debugging.

7. Cycle power to the board.
52 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

http://www.actel.com/products/hardware/devkits_boards/fusion_embedded.aspx

Summary
8. Momentarily push the reset button on the board. The terminal program should show a sign-on message. Click any
key on your keyboard to send a character to the board. The board should respond by printing voltage, current, and
temperature measurements on the board (Figure 4-4).

Figure 4-4 · Application Running

Summary
In this tutorial you have created a Core8051s-based microcontroller system on an Actel Fusion device. This design
includes on-chip flash code memory, on-chip (logically external) data memory, and an interface to off-chip SRAM that
is used for both code and data memory.

This design can serve as the basic starting point for other Core8051s designs. Only the CoreAI function and the on-chip
flash memory are specific to the Fusion family.

If these are removed, this design can be ported to other families such as ProASIC®3 and IGLOO.® The specific details
are outside of the scope of this document. In general, this can be accomplished by creating a Libero IDE project for the
new target family. Then import the *.cxf file for each of the three components: *.TOP, Core8051S_sub, and Memory.
Regenerate these components in SmartDesign.
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 53

A
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support.
Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on
the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 55

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Product Support
Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
56 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Index
*.pdc file 6

A
Actel

electronic mail 55
telephone 56
web-based technical support 55
website 55

B
bidirectional buffers 31, 32
block diagram 8

C
contacting Actel

customer service 55
electronic mail 55
telephone 56
web-based technical support 55

Core8051s
configuring 11
instance 10

Core8051s designs 53
CoreAI

configuring 19, 20, 21
instance 19

CoreAPB3
configuring 13
create instance 12

CoreGPIO
configuring 17
instance 16

CoreInterrupt
configuring 18
instance 17

CoreTimer
configuring 16
instance 15

CoreUARTapb
configuring 14
instance 13

CoreWatchdog
configuring 15
instance 15

customer service 55

D
data storage client 28
database buffer 31
debug block 11
decode logic 29
design

building 9
implementing 49
overview 7

F
flash memory block

configuring 28
creating 28

FlashPro programmer 51

H
HDL wrappers 29
hex files 6

I
I/O attribute editor 50
IGLOO designs 53

L
Libero IDE

create project 9

M
memory map

modify 22
memory subsystem

creating 26
memory system 7
microcontroller subsystem 10
multiplexer 29
MUX 29

P
peripherals 7, 22
pin assignments 50
place-and-route 50
ports

change name 24, 34
make connections 25, 35, 45
tie high 43, 44
Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs 57

Index
tie low 25, 33, 42, 43
ProASIC3 designs 53
product support 55–56

customer service 55
electronic mail 55
technical support 55
telephone 56
website 55

programming
FlashPro 51

R
RAM

configure two-port 26, 27

S
signals

promote to top level 23, 34, 40
slices 35, 42
SmartDesign

components 37
synthesis 49

T
technical support 55
top level 37
top-level entity 9
top-level ports 41
tutorial

board designs 5
requirements 5

tutorial steps 5

V
VHDL code 6

W
web-based technical support 55
wrapper 6
58 Core8051s Embedded Processor Hardware Development Tutorial for Fusion Mixed-Signal FPGAs

Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 • USA
Phone 650.318.4200 • Fax 650.318.4600 • Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley Surrey GU17 9AB • United Kingdom
Phone +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

Actel Japan • EXOS Ebisu Building 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • www.jp.actel.com

Actel Hong Kong • Room 2107, China Resources Building • 26 Harbour Road • Wanchai • Hong Kong
Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

50200155-1/3.09

Actel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of system
and power management solutions. Power Matters. Learn more at www.actel.com.

http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com

	Introduction
	Requirements for Tutorial

	Design Overview
	Building the Design
	Step 1 - Create the Libero IDE Project
	Step 2 - Create the Microcontroller Subsystem
	Step 3 - Create the Memory Subsystem
	Step 4 - Complete the Top Level

	Verifying the Design
	Pre-Synthesis Simulation in ModelSim

	Implementing the Design
	Step 1 - Synthesizing the Design
	Step 2 - Performing Place-and-Route, Pin Assignments
	Step 3 - Programming the FPGA Using FlashPro
	Step 4 - Running the Design
	Summary

	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

