

TOTAL IONIZING DOSE TEST REPORT

No. 08T-RT1280-FP21573 January 18, 2008 J.J. Wang (650) 318-4576 jih-jong.wang@actel.com

I. SUMMARY TABLE

Parameters	Tolerance		
1. Gross Functional	Pass 10 krad(SiO ₂)		
2. I _{DDSTDBY}	Pass 8 krad(SiO ₂)		
3. V_{IL}/V_{IH}	Pass 10 krad(SiO ₂)		
4. V_{OL}/V_{OH}	Pass 10 krad(SiO ₂)		
5. Propagation Delays	Pass 10 krad(SiO ₂)		
6. Rising/Falling Edge Transient	Pass 10 krad(SiO ₂)		

II. TOTAL IONIZING DOSE (TID) TESTING

This section describes the device under test (DUT), the irradiation parameters, and the test method.

A. Device Under Test (DUT)

Table 1 lists the DUT information.

Table 1. DUI Information					
Part Number	RT1280				
Package	CQFP172				
Foundry	MEC				
Technology	0.8 um CMOS				
Die Lot Number	FP21573				
Quantity Tested	6				
Serial Numbers	DUT 1, DUT 2, DUT 3, DUT 4, DUT 5, DUT 6				

Table 1. DUT Information

B. Irradiation

Table 2 lists the irradiation parameters.

Table 2. Irradiation Parameters					
Facility	DMEA				
Radiation Source	Co-60				
Dose Rate	1 krad(SiO ₂)/min (±5%)				
Data Mode	Static				
Temperature	Room				
Bias	5.0 V				

C. Test Method

Acte

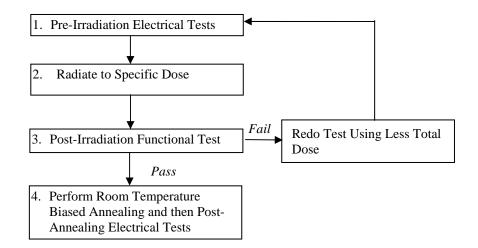


Figure 1 TID test flow chart

The test method basically is in compliance with the military standard TM1019.6. Figure 1 is the flow chart of the testing sequence. The accelerated annealing test in section 3.12 is not performed lot-to-lot. This is because for the CMOS technology used by the RT1280 product, the adverse effects due to interface state at the gate SiO_2/Si interface are negligible, and the dominant annealing effect in this device is the reduction of trapped holes in the SiO_2 . So the accelerated annealing basically alleviates the radiation effects on the DUT.

Section 3.11 extended room temperature anneal test is also applied. Room temperature annealing for approximately 30 days was done on each device before the final parameter measurements.

D. Electrical Parameter Measurements

The electrical parameters were measured on the bench. Compared to an automatic tester, this bench setup has less noise, while it samples selected pins for threshold voltage measurements. However, the conservative dose level used to measure the parameters usually is too low to show any threshold voltage changes. I_{CC} usually dictates the dose level for parameter measurements, and consequently determines the radiation tolerance. Thus sampling few pins is sufficient to prove that the radiation effects at the measured level cause no concerns on the threshold voltages. Other advantages for this bench setup are the in-flux measurement of I_{CC} and the measurement of the signal transient characteristic. Table 3 lists the corresponding logic design for each electrical measurement.

Parameter/Characteristics	Logic Design
1. Functionality	All key architectural functions
2. I _{CC}	DUT power supply
3. V_{IL}/V_{IH}	TTL compatible input buffer
4. V_{OL}/V_{OH}	TTL compatible output buffer
5. Propagation Delays	String of inverters
6. Rising/Falling Edge	TTL compatible output

Table 3 Logic Design for each Measured Parameter

III. TEST RESULTS

A. Functional Test

Referring to Figure 1, the post irradiation functional test is performed on one IO design. Since the functionality versus total dose is determined by the TID tolerance of the charge pump, this test provides a fast and effective test for on-site post-irradiation functional test. The post annealing functional test is performed on key architectural functions includes IO, combinational logic, and shift registers.

Every DUT passed the post-irradiation and post-annealing functional tests.

B. In-Flux and Post-Annealing I_{CC}

DUT	Total Dose	I _{CC} (mA)				
DUT	krad(SiO ₂)	Pre-irrad	Post-ann			
DUT 1	10	0.13	251	71		
DUT 2	10	0.13	250	67		
DUT 3	10	0.13	226	61		
DUT 4	8	0.13	110	30		
DUT 5	8	0.13	105	29		
DUT 6	8	0.13	104	29		

Table 4 Pre-irradiation, Post-irradiation and Post-annealing I_{CC}

Figures 2 to 7 show the in-flux I_{CC} . As shown in Table 4, although the post annealing of 8 krad(SiO₂)-DUT didn't recover the I_{CC} to within the spec of 25 mA, from the trend of annealing it is obvious that longer annealing will reduce ICC to within the spec.

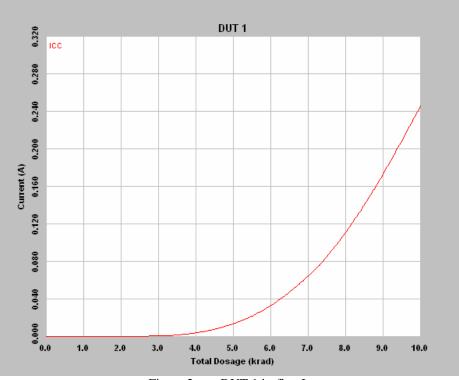
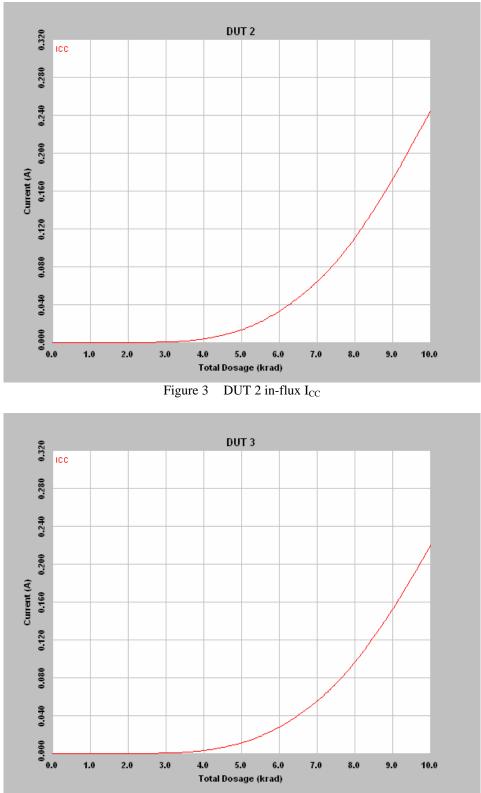
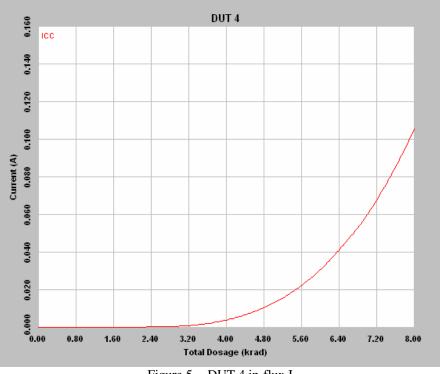
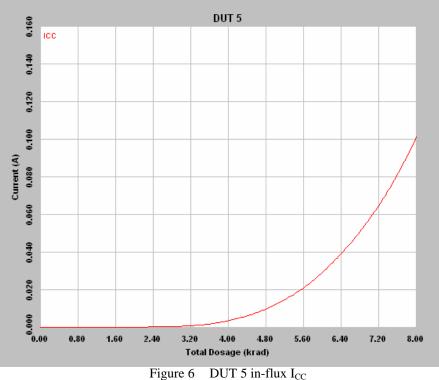
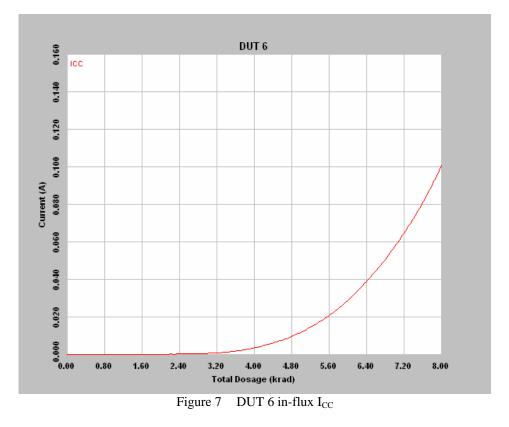


Figure 2 DUT 1 in-flux I_{CC}


Figure 4 DUT 3 in-flux I_{CC}

10013 III-IIux I_{CC}

C. Input Logic Threshold

Table 5 lists the input logic threshold of each DUT for pre-irradiation and post-annealing; every data is within the spec.

	V _{IL}	(V)	V _{IH} (V)		
	Pre-Irrad	Post-Ann	Pre-Irrad	Post-Ann	
DUT 1	1.265	1.278	1.231	1.241	
DUT 2	1268	1.287	1.23	1.251	
DUT 3	1.264	1.284	1.225	1.249	
DUT 4	1.281	1.291	1.241	1.254	
DUT 5	1.279	1.293	1.241	1.256	
DUT 6	1.279	1.259	1.239	1.295	

Table 5 Input Logic Threshold (V_{II}/V_{IH}) Results (V)

D. Output Characteristic

Tables 6a and 6b show the V_{OL} characteristics for the pre-irradiated and post-annealed DUT; every data is within the spec. The spec is that when $I_{OL} = 6$ mA, V_{OL} cannot exceed 0.4 V.

Table 6a v_{OL} for various drive currents (mv)							
	DUT 1		DU	T 2	DUT 3		
$C_{\text{urrent}}(m\Lambda)$	Pre-Irrad	Post-Ann	Pre-Irrad	Post-Ann	Pre-Irrad	Post-Ann	
Current (mA)	(mV)	(mV)	(mV)	(mV)	(mV)	(mV)	
0	-24	-49	-24	-51	-23	-48	
1	10	-12	9	-12	10	-12	
2	24	14	24	15	23	14	
5	61	32	58	32	47	32	
10	250	170	245	174	227	165	
20	537	379	529	386	487	367	
24	628	541	609	544	561	529	

Table 6a V_{OL} for various drive currents (mV)

Table 6bV_{OL} for various drive currents (mV)

	DUT 4		DUT 5		DUT 6	
Current (mA)	Pre-Irrad	Post-Ann	Pre-Irrad	Post-Ann	Pre-Irrad	Post-Ann
Current (IIIA)	(mV)	(mV)	(mV)	(mV)	(mV)	(mV)
0	-20	-50	-22	-51	-22	-51
1	11	-13	10	-14	11	-11
2	24	14	23	13	24	13
5	56	30	48	31	55	31
10	238	163	219	160	238	163
20	513	362	467	359	518	362
24	582	522	554	514	588	522

Figure 7a and 7b show the V_{OH} characteristic curves for the pre-irradiated and post-annealed DUT; every data is within the spec. The spec is that when $I_{OH} = 4$ mA, V_{OH} cannot be lower than 3.7 V.

	DUT 1			T 2	DUT 3	
Current (mA)	Pre-Irrad	Post-Ann	Pre-Irrad	Post-Ann	Pre-Irrad	Post-Ann
0	4.879	4.928	4.88	4.927	4.879	4.93
1	4.798	4.852	4.7993	4.854	4.799	4.861
2	4.762	4.793	4.767	4.793	4.767	4.794
5	4.5205	4.584	4.523	4.583	4.522	4.598
10	4.118	4.264	4.164	4.264	4.139	4.265
20	2.336	3.192	2.7	3.196	2.542	3.25
24	-0.7604	0.976	-0.522	1.113	-0.712	1.567

Table 7aV_{OH} for various drive currents (V)

Table 7bV_{OH} for various drive currents (V)

	DUT 4		DUT 5		DUT 6	
Current (mA)	Pre-Irrad	Post-Ann	Pre-Irrad	Post-Ann	Pre-Irrad	Post-Ann
0	4.876	4.931	4.878	4.931	4.878	4.932
1	4.780	4.863	4.799	4.865	4.800	4.864
2	4.773	4.795	4.767	4.795	4.769	4.975
5	4.526	4.604	4.522	4.610	4.524	4.610
10	4.174	4.266	4.152	4.266	4.156	4.266
20	2.720	3.310	2.623	3.341	2.661	3.338
24	-0.630	1.910	-0.686	2.035	-0.656	2.110

E. Propagation Delays

Table 8 lists the pre-irradiation and post-annealing propagation delays. The results show small radiation effects; in any case the percentage change is below $\pm 10\%$.

Tuble o Rudhandh Madeed Hopaganon Denij Degradanons						
DUT	Total Dose krad(SiO ₂)	Pre-Irradiation (ns)	Post-Annealing (ns)	Degradation		
DUT 1	10	1000.8	1002.7	0.19%		
DUT 2	10	999.2	983.8	-1.55%		
DUT 3	10	998.3	981.0	-1.74%		
DUT 4	8	1002.8	985.9	-1.69%		
DUT 5	8	1001.6	985.6	-1.60%		
DUT 6	8	994.5	975.4	-1.92%		
•			-	· · · · · · · · · · · · · · · · · · ·		

 Table 8
 Radiation-Induced Propagation Delay Degradations

F. Transient Characteristics

The rising and falling edge transient of an output is measured pre-irradiation and post-annealing. Figures 8 to 19 show the pre-irradiation and post-annealing transition edges. In each case, the radiation-induced transition-time degradation is not observable.

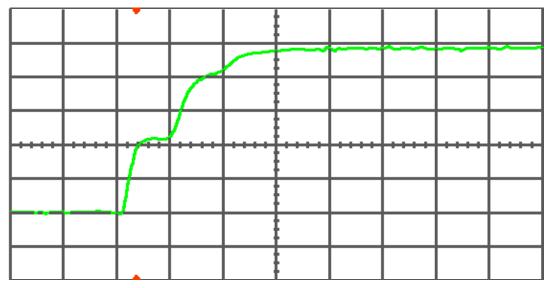
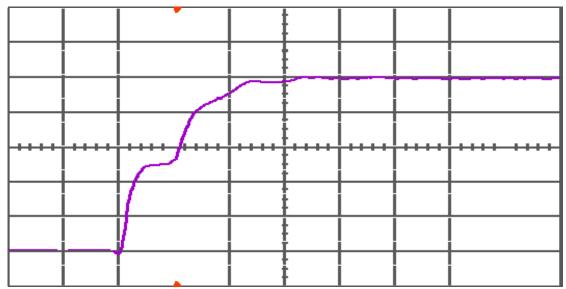
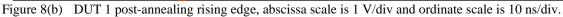
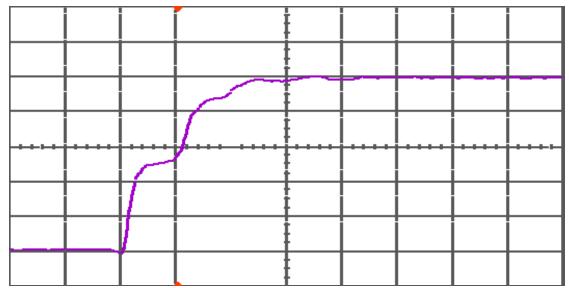
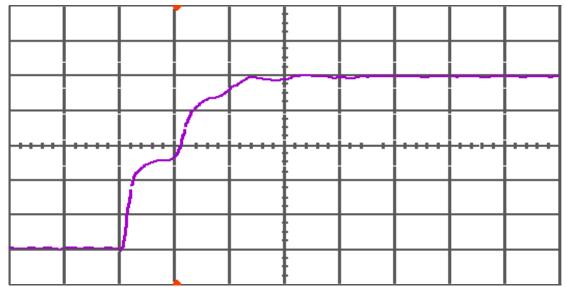
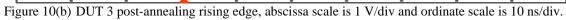




Figure 8(a) DUT 1 pre-irradiation rising edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

	•			
		1		

Figure 9(a) DUT 2 pre-irradiation rising edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.


Figure 9(b) DUT 2 post-annealing rising edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

			ŧ			
		<u> </u>	ŧ	 	<u> </u>	<u> </u>
			<u></u>	 	• • • • • • • • • • • • • • • • • • • •	
<u> </u>	 		ŧ	 	<u> </u>	<u> </u>
	 		<u>‡</u>	 	<u> </u>	<u> </u>
├	 		‡	 		┼──

Figure 10(a) DUT 3 pre-radiation rising edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

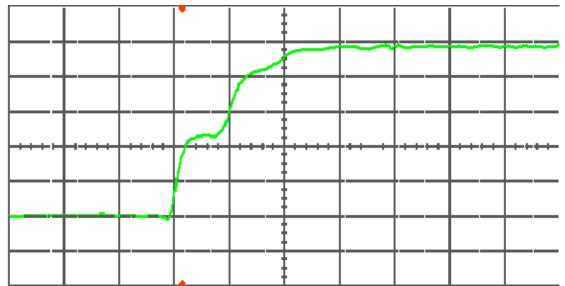


Figure 11(a) DUT 4 pre-irradiation rising edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

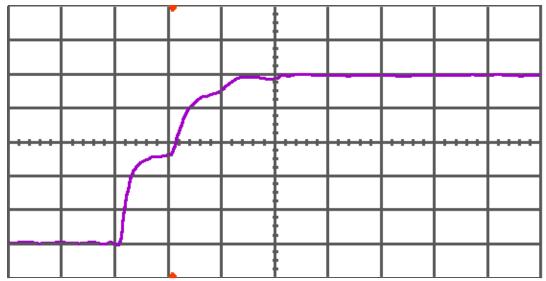
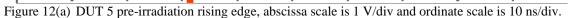



Figure 11(b) DUT 4 post-annealing rising edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

		ŧ			
		<u> </u>	 		
	 	.	 		
	 	<u> </u>	 	<u> </u>	<u> </u>
 	 	<u> </u>	 	<u> </u>	
L		<u> </u>	 	<u> </u>	<u> </u>
		Ŧ			

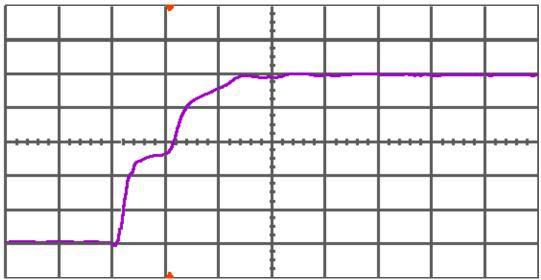
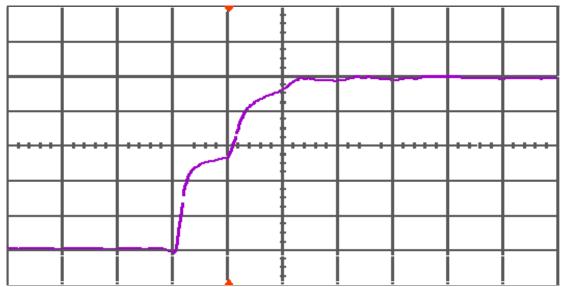
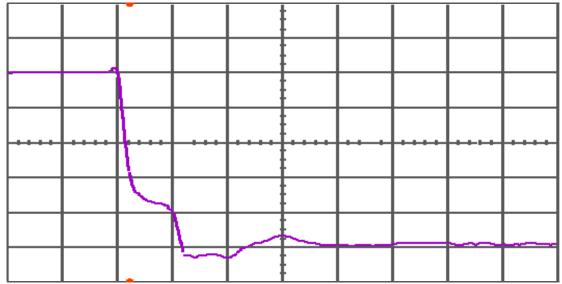


Figure 12(b) DUT 5 post-annealing rising edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

		ŧ			
		<u> </u>	 		
	 -	.	 		
	/	<u> </u>	 	<u> </u>	
	 ·	<u> </u>	 	<u> </u>	
		<u> </u>	 	<u> </u>	<u> </u>
		Ŧ			

Figure 13(a) DUT 6 pre-irradiation rising edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

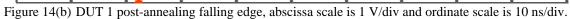

Figure 13(b) DUT 6 post-annealing rising edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

Figure 14(a) DUT 1 pre-irradiation falling edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

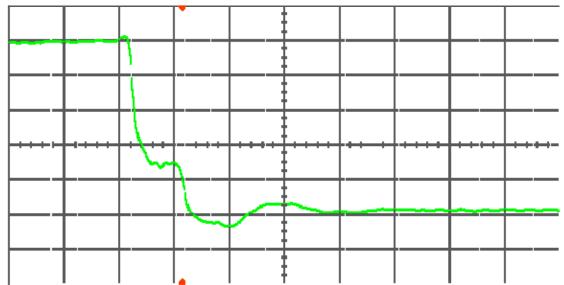


Figure 15(a) DUT 2 pre-irradiation falling edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

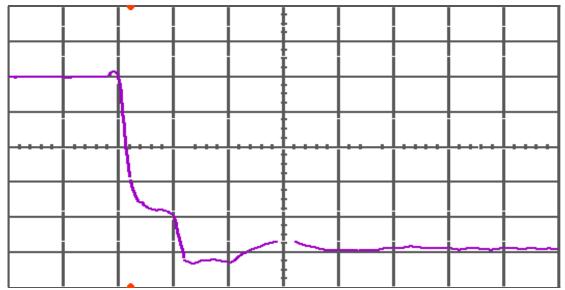


Figure 15(b) DUT 2 post-annealing falling edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

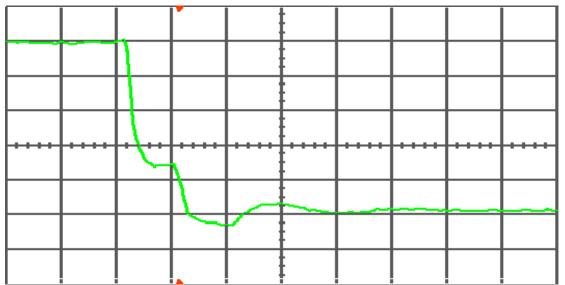


Figure 16a) DUT 3 pre-irradiation falling edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

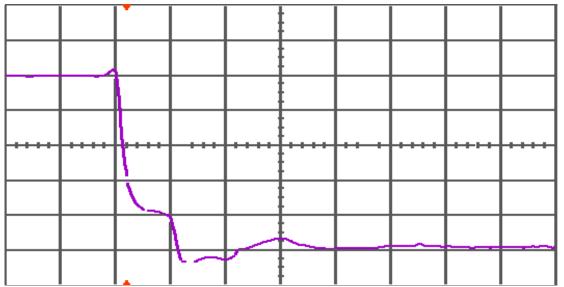


Figure 16(b) DUT 3 post-annealing falling edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

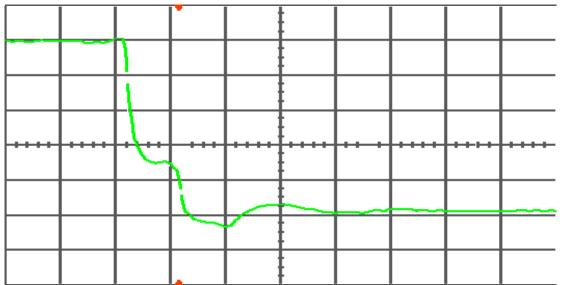


Figure 17(a) DUT 4 pre-irradiation falling edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

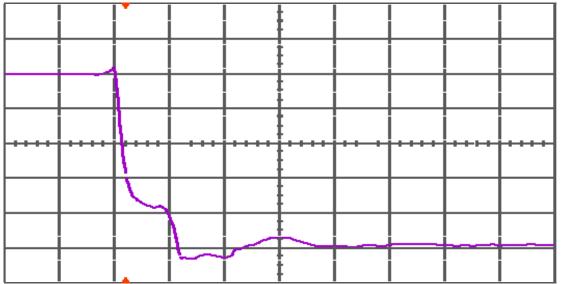


Figure 17(b) DUT 4 post-annealing falling edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

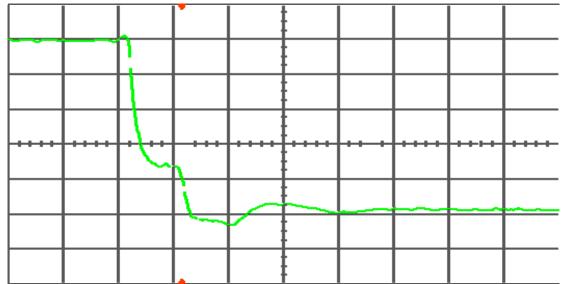


Figure 18(a) DUT 5 post-annealing falling edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

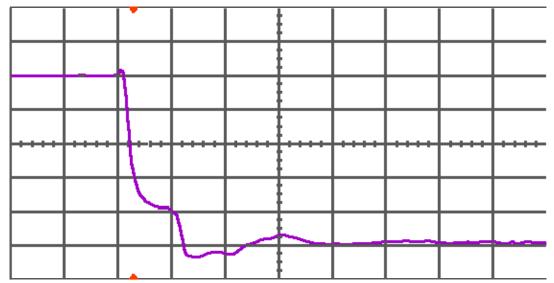


Figure 18(b) DUT 5 post-annealing falling edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

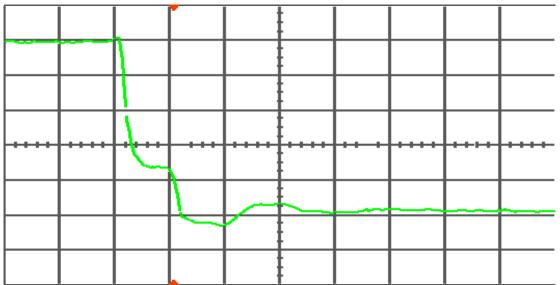


Figure 19(a) DUT 6 pre-irradiation falling edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.

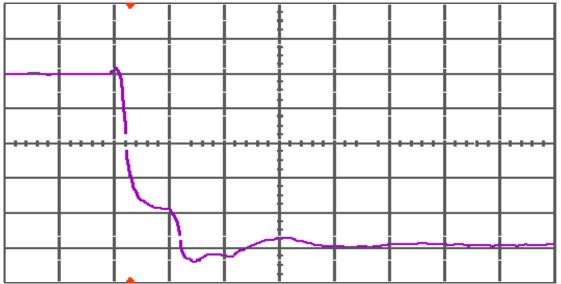


Figure 19(b) DUT 6 post-annealing falling edge, abscissa scale is 1 V/div and ordinate scale is 10 ns/div.