TOTAL IONIZING DOSE TEST REPORT

No. 07T-RTAX2000S-D2S8N5
Sept. 5, 2007
J.J. Wang
(650) 318-4576
jih-jong.wang@actel.com

I. SUMMARY TABLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Functionality</td>
<td>Passed 300 krad(SiO₂)</td>
</tr>
<tr>
<td>2. Standby Power Supply Current</td>
<td>Passed 200 krad(SiO₂)</td>
</tr>
<tr>
<td>(I_{CCA}/I_{CCI})</td>
<td></td>
</tr>
<tr>
<td>3. Input Threshold (V_{TH}/V_{IH})</td>
<td>Passed 300 krad(SiO₂)</td>
</tr>
<tr>
<td>4. Output Threshold (V_{OL}/V_{OH})</td>
<td>Passed 300 krad(SiO₂)</td>
</tr>
<tr>
<td>5. Propagation Delay</td>
<td>Passed 300 krad(SiO₂) for ±10% degradation criterion</td>
</tr>
<tr>
<td>6. Transition Characteristic</td>
<td>Passed 300 krad(SiO₂)</td>
</tr>
</tbody>
</table>

II. TOTAL IONIZING DOSE (TID) TESTING

The design of the following testing is based on an extensive, published database accumulated from the TID testing of many generations of antifuse-based FPGAs; the link of the database is in below.

http://www.actel.com/products/milaero/hireldata.aspx#tid

A. Device-Under-Test (DUT) and Irradiation Parameters

Table 1 lists the DUT and irradiation parameters. Each input is grounded during irradiation and annealing.

Table 1 DUT and Irradiation Parameters

<table>
<thead>
<tr>
<th>Part Number</th>
<th>RTAX2000S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>CG624</td>
</tr>
<tr>
<td>Foundry</td>
<td>United Microelectronics Corp.</td>
</tr>
<tr>
<td>Technology</td>
<td>0.15 µm CMOS</td>
</tr>
<tr>
<td>DUT Design</td>
<td>rtax2000_CG624_Top</td>
</tr>
<tr>
<td>Die Lot Number</td>
<td>D2S8N5</td>
</tr>
<tr>
<td>Quantity Tested</td>
<td>4</td>
</tr>
</tbody>
</table>
| Serial Number | 300 krad(SiO₂): 3853, 3859
 | 200 krad(SiO₂): 3916, 3931 |
| Radiation Facility | Defense Microelectronics Activity |
| Radiation Source | Co-60 |
| Dose Rate (±5%) | 5 krad(SiO₂)/min |
| Irradiation Temperature | Room |
| Irradiation and Annealing Bias | Static at 3.3 V/1.5 V |
| V_{CC}/V_{CCA} | |
| IO Configuration | Single ended: LVTTL
 | Differential pair: LVPECL |
B. Test Method

1. Pre-Irradiation Electrical Tests

2. Radiate to Specific Dose

3. Post-Irradiation Functional Test

4. Perform Room Temperature Biased Annealing and then Post-Annealing Electrical Tests

Figure 1 Parametric test flow chart

The test method basically is in compliance with the military standard TM1019.6. Figure 1 is the flow chart of the testing sequence. The accelerated annealing test in section 3.12 is not performed lot-to-lot. This is because for a deep-submicron CMOS technology used by the RTAXS product, the adverse effects due to interface state at the gate SiO$_2$/Si interface are negligible. The function of commercial non-irradiated transistors would be unreliable if the degradation of interface plays an important role. In other words, the SiO$_2$/Si interface in deep submicron CMOS transistors has to be radiation hard for even commercial applications. Thus the dominant annealing effect in RTAXS device is the reduction of trapped holes in the SiO$_2$; this basically alleviates the radiation effects on the DUT. Separate report on the accelerated annealing test will be provided to justify the omission of it in the lot testing; the justification testing will follow section 3.12.1.b.5.

Section 3.11 extended room temperature anneal test is also applied; room temperature annealing for 5 days was done on each device before the final parameter measurements.

C. Logic Design and Electrical Parameter Measurements

The DUT uses a high utilization generic design, rtax2000.CG624_Top, for testing total dose effects. These logic designs are described in the following subsections. Figure 2 shows the block diagram and the Verilog file (rtax2000.CG624_Top.v) is in the link:

http://www.actel.com/products/milaero/hireldata.aspx#tid

Generally, the functional test is performed on every design; most inputs are tested for threshold voltage and leakage current, including global clocks; the standby I_{CC} includes I_{CCI} and I_{CCA}. Except propagation delay and the transition characteristic, which is measured on the output O_BS, all other parameter measurements are done on a tester. Also note that, due to logistics limitation, the post-irradiation but pre-room-temperature-annealing functional test is performed on bench; the tested designs are shift registers and long buffer string, which are design 5 and 6 described in the following.

1. Embedded SRAM

This design is to test the function of the embedded SRAM. It uses all the RAM blocks available in the DUT. This design enables an automatic testing sequence that every bit is written and then read. Any error will be reported as a signal in the output.

2. Unidirectional LVTTL Input and Output

This is for testing radiation effects on unidirectional input and output threshold, leakage, and buffer fan-out. There are 3 sub-designs: a) a logic-core buffer with 8 fan-outs; b) a logic-core buffer with 3 fan-outs; c) 6 channels of input buffer directly connected to output buffer without core logic. LVTTL is used because it is the worst case among all the single-ended standards.
3. Bidirectional LVTTTL IO

This design is for testing the radiation effects on the input/output characteristic of the bidirectional IO. There are 7 channels of bidirectional IO for radiation effects testing.

4. LVPECL Input

This design is for testing the radiation effects on the LVPECL differential inputs. 3.3V-LVPECL is considered the worst case differential input standard in the DUT. There are 7 channels.

5. Shift Registers

This design is to test the radiation effects on the function of flip-flops, which are configured R-Cells. There are 4 shift registers and each using a different global clock; one has 3,584 bits and the other three each has 2,048 bits.

6. Long Buffer String

This design is to measure the radiation effects on the propagation delay. The input of the design using a clock feeding a toggle flip-flop to generate a checkerboard signal; this signal is then fed into a buffer string with 10,000 stages. The time delay between the input clock edge at CLOCK_IN and the output switching due to this clock edge at O_B S is defined as propagation delay high to low (T_{pdhl}) or low to high (T_{pdlh}); the percentage change of the average of T_{pdhl} and T_{pdlh} is used to determine the radiation effects. A more than 10% of propagation change is considered as failure.
Figure 2 Block diagram of DUT logic design
III. TEST RESULTS

A. Functional Test

Every DUT passed the pre-irradiation and post-annealing functional tests on the tester; it also passed post-irradiation test on-bench.

B. Standby Power Supply Current (I_{CCA} and I_{CCI})

Figure 3-8 show the in-flux standby I_{CCA} and I_{CCI} versus total dose of every DUT.

In compliance with TM1019.6 subsection 3.11.2.c, the post-irradiation-parametric limit (PIPL) for the post-annealing I_{CC} in this test is defined as the addition of highest I_{CC}, I_{CCDA} and $I_{CCDIFFA}$ values in Table 2-4 of the RTAXS spec sheet:

Thus for I_{CCA}, the PIPL is 500 mA; the PIPL of I_{CCI} equals to $35+10+3.13 \times 7 = 66.91$ mA. Note that there are 7 pairs of differential LVPECL inputs in each DUT.

Table 2 summarizes the pre-irradiation, post-irradiation and post-annealing I_{CC} data: the post-annealing I_{CCA} of every DUT pass the PIPL easily; the post-annealing I_{CCI} of DUTs irradiated to 200 krad(SiO$_2$) all pass the PIPL, while the I_{CCI} of DUTs irradiated to 300 krad(SiO$_2$) all exceed the PIPL.

<table>
<thead>
<tr>
<th>DUT</th>
<th>Total Dose krad (SiO$_2$)</th>
<th>I_{CCA} (mA)</th>
<th>I_{CCI} (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-irrad</td>
<td>Post-irrad</td>
<td>Post-ann</td>
</tr>
<tr>
<td>3853</td>
<td>300</td>
<td>4.38</td>
<td>30</td>
</tr>
<tr>
<td>3859</td>
<td>300</td>
<td>4.6</td>
<td>28</td>
</tr>
<tr>
<td>3916</td>
<td>200</td>
<td>4.0</td>
<td>3.59</td>
</tr>
<tr>
<td>3931</td>
<td>200</td>
<td>4.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Figure 3 DUT 3853 in-flux I_{CCA} and I_{CCI}. The spikes are due to bad contacts.

Figure 4 DUT 3859 in-flux I_{CCA} and I_{CCI}
Figure 5 DUT 3916 in-flux I_{CCA} and I_{CCI}

Figure 6 DUT 3931 in-flux I_{CCA} and I_{CCI}
C. Single-Ended V_{IL}/V_{IH} and I_{IL}/I_{IH}

Table 3 displays the pre-irradiation and post-annealing single-ended V_{IL}; every data in this table passes the spec. Table 4 displays the pre-irradiation and post-annealing single-ended V_{IH}; every data in this table passes the spec.

Table 5 displays the pre-irradiation and post-annealing single-ended I_{IL}; every data in the table passes the spec. Table 6 displays the pre-irradiation and post-annealing single-ended I_{IH}; every data in the table passes the spec. The PIPL for both I_{IL} and I_{IH} is 5 µA.

<table>
<thead>
<tr>
<th>Parameter (V)</th>
<th>Design</th>
<th>Pre-Irrad</th>
<th>Post-Ann</th>
<th>Pre-Irrad</th>
<th>Post-Ann</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 7</td>
<td>1.385</td>
<td>1.375</td>
<td>1.385</td>
<td>1.38</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 6</td>
<td>1.375</td>
<td>1.365</td>
<td>1.375</td>
<td>1.365</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 5</td>
<td>1.38</td>
<td>1.37</td>
<td>1.375</td>
<td>1.365</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 4</td>
<td>1.385</td>
<td>1.375</td>
<td>1.38</td>
<td>1.37</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 3</td>
<td>1.38</td>
<td>1.37</td>
<td>1.385</td>
<td>1.375</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 2</td>
<td>1.375</td>
<td>1.365</td>
<td>1.375</td>
<td>1.365</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 1</td>
<td>1.375</td>
<td>1.365</td>
<td>1.375</td>
<td>1.365</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DA</td>
<td>1.38</td>
<td>1.385</td>
<td>1.385</td>
<td>1.385</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>EN8</td>
<td>1.355</td>
<td>1.355</td>
<td>1.36</td>
<td>1.355</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>IO I 6</td>
<td>1.365</td>
<td>1.36</td>
<td>1.365</td>
<td>1.36</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>IO I 5</td>
<td>1.355</td>
<td>1.36</td>
<td>1.355</td>
<td>1.36</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>IO I 4</td>
<td>1.405</td>
<td>1.395</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>IO I 3</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.395</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>IO I 2</td>
<td>1.405</td>
<td>1.4</td>
<td>1.41</td>
<td>1.4</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>IO I 1</td>
<td>1.4</td>
<td>1.39</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>RCLK1P</td>
<td>1.44</td>
<td>1.435</td>
<td>1.44</td>
<td>1.43</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>RCLK2P</td>
<td>1.44</td>
<td>1.43</td>
<td>1.44</td>
<td>1.44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter (V)</th>
<th>Design</th>
<th>Pre-Irrad</th>
<th>Post-Ann</th>
<th>Pre-Irrad</th>
<th>Post-Ann</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 7</td>
<td>1.39</td>
<td>1.385</td>
<td>1.385</td>
<td>1.38</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 6</td>
<td>1.38</td>
<td>1.37</td>
<td>1.375</td>
<td>1.365</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 5</td>
<td>1.385</td>
<td>1.375</td>
<td>1.38</td>
<td>1.37</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 4</td>
<td>1.385</td>
<td>1.38</td>
<td>1.385</td>
<td>1.375</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 3</td>
<td>1.385</td>
<td>1.38</td>
<td>1.385</td>
<td>1.375</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 2</td>
<td>1.38</td>
<td>1.375</td>
<td>1.375</td>
<td>1.365</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>Bi D 1</td>
<td>1.38</td>
<td>1.375</td>
<td>1.38</td>
<td>1.37</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DA</td>
<td>1.39</td>
<td>1.385</td>
<td>1.385</td>
<td>1.385</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>EN8</td>
<td>1.355</td>
<td>1.355</td>
<td>1.355</td>
<td>1.355</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>IO I 6</td>
<td>1.37</td>
<td>1.365</td>
<td>1.37</td>
<td>1.365</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>IO I 5</td>
<td>1.36</td>
<td>1.365</td>
<td>1.355</td>
<td>1.365</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>IO I 4</td>
<td>1.41</td>
<td>1.405</td>
<td>1.41</td>
<td>1.405</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>IO I 3</td>
<td>1.39</td>
<td>1.4</td>
<td>1.4</td>
<td>1.385</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>IO I 2</td>
<td>1.41</td>
<td>1.405</td>
<td>1.41</td>
<td>1.405</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>IO I 1</td>
<td>1.405</td>
<td>1.395</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>RCLK1P</td>
<td>1.44</td>
<td>1.435</td>
<td>1.44</td>
<td>1.43</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>RCLK2P</td>
<td>1.445</td>
<td>1.435</td>
<td>1.435</td>
<td>1.43</td>
</tr>
<tr>
<td>Parameter (V)</td>
<td>Design</td>
<td>3853 Pre-Irrad</td>
<td>3853 Post-Ann</td>
<td>3859 Pre-Irrad</td>
<td>3859 Post-Ann</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_7</td>
<td>1.385</td>
<td>1.375</td>
<td>1.385</td>
<td>1.375</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_6</td>
<td>1.39</td>
<td>1.385</td>
<td>1.39</td>
<td>1.38</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_5</td>
<td>1.39</td>
<td>1.38</td>
<td>1.385</td>
<td>1.375</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_4</td>
<td>1.385</td>
<td>1.375</td>
<td>1.38</td>
<td>1.37</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_3</td>
<td>1.395</td>
<td>1.385</td>
<td>1.39</td>
<td>1.385</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_2</td>
<td>1.39</td>
<td>1.38</td>
<td>1.39</td>
<td>1.385</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_1</td>
<td>1.39</td>
<td>1.375</td>
<td>1.385</td>
<td>1.375</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DA</td>
<td>1.4</td>
<td>1.395</td>
<td>1.405</td>
<td>1.4</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>EN8</td>
<td>1.42</td>
<td>1.415</td>
<td>1.415</td>
<td>1.41</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>IO_I_6</td>
<td>1.425</td>
<td>1.415</td>
<td>1.425</td>
<td>1.42</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>IO_I_5</td>
<td>1.44</td>
<td>1.435</td>
<td>1.42</td>
<td>1.44</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>IO_I_4</td>
<td>1.4</td>
<td>1.395</td>
<td>1.4</td>
<td>1.395</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>IO_I_3</td>
<td>1.41</td>
<td>1.405</td>
<td>1.41</td>
<td>1.4</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>IO_I_2</td>
<td>1.4</td>
<td>1.39</td>
<td>1.4</td>
<td>1.395</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>IO_I_1</td>
<td>1.405</td>
<td>1.4</td>
<td>1.405</td>
<td>1.4</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>RCLK1P</td>
<td>1.435</td>
<td>1.425</td>
<td>1.43</td>
<td>1.425</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>RCLK2P</td>
<td>1.44</td>
<td>1.425</td>
<td>1.44</td>
<td>1.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter (V)</th>
<th>Design</th>
<th>3916 Pre-Irrad</th>
<th>3916 Post-Ann</th>
<th>3931 Pre-Irrad</th>
<th>3931 Post-Ann</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_7</td>
<td>1.39</td>
<td>1.385</td>
<td>1.385</td>
<td>1.38</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_6</td>
<td>1.395</td>
<td>1.39</td>
<td>1.39</td>
<td>1.385</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_5</td>
<td>1.395</td>
<td>1.385</td>
<td>1.39</td>
<td>1.375</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_4</td>
<td>1.385</td>
<td>1.38</td>
<td>1.385</td>
<td>1.375</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_3</td>
<td>1.395</td>
<td>1.395</td>
<td>1.39</td>
<td>1.385</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_2</td>
<td>1.395</td>
<td>1.39</td>
<td>1.39</td>
<td>1.385</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>Bi_D_1</td>
<td>1.39</td>
<td>1.385</td>
<td>1.39</td>
<td>1.385</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DA</td>
<td>1.4</td>
<td>1.395</td>
<td>1.405</td>
<td>1.4</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>EN8</td>
<td>1.43</td>
<td>1.43</td>
<td>1.43</td>
<td>1.415</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>IO_I_6</td>
<td>1.43</td>
<td>1.43</td>
<td>1.43</td>
<td>1.415</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>IO_I_5</td>
<td>1.445</td>
<td>1.425</td>
<td>1.42</td>
<td>1.44</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>IO_I_4</td>
<td>1.405</td>
<td>1.4</td>
<td>1.405</td>
<td>1.4</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>IO_I_3</td>
<td>1.415</td>
<td>1.41</td>
<td>1.415</td>
<td>1.405</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>IO_I_2</td>
<td>1.405</td>
<td>1.4</td>
<td>1.405</td>
<td>1.4</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>IO_I_1</td>
<td>1.41</td>
<td>1.405</td>
<td>1.41</td>
<td>1.405</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>RCLK1P</td>
<td>1.435</td>
<td>1.425</td>
<td>1.43</td>
<td>1.42</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>RCLK2P</td>
<td>1.44</td>
<td>1.43</td>
<td>1.435</td>
<td>1.43</td>
</tr>
<tr>
<td>DUT</td>
<td>Parameter</td>
<td>Design</td>
<td>Pre-Irrad</td>
<td>Post-Irrad</td>
<td>Pre-Irrad</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3853</td>
<td>3859</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi D 1</td>
<td>121.6455 pA</td>
<td>-1.5525 nA</td>
<td>-296.886 pA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi D 2</td>
<td>3.8884 nA</td>
<td>1.168 nA</td>
<td>2.4236 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi D 3</td>
<td>1.5865 nA</td>
<td>540.1771 pA</td>
<td>1.168 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi D 4</td>
<td>-3.6357 nA</td>
<td>-4.2637 nA</td>
<td>-3.4264 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi D 5</td>
<td>-914.6662 pA</td>
<td>-1.3333 nA</td>
<td>-1.3333 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi D 6</td>
<td>-1.3 nA</td>
<td>-3.3927 nA</td>
<td>-4.0205 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi D 7</td>
<td>-3.4485 nA</td>
<td>-6.1713 nA</td>
<td>-3.0296 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi E 1</td>
<td>-3.2391 nA</td>
<td>-1.773 nA</td>
<td>-1.9824 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi E 2</td>
<td>-1.9824 nA</td>
<td>-3.2391 nA</td>
<td>-2.4013 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi E 3</td>
<td>-1.773 nA</td>
<td>-725.793 pA</td>
<td>-2.4013 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi E 4</td>
<td>-3.2391 nA</td>
<td>-725.793 pA</td>
<td>-2.6108 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi E 5</td>
<td>-3.2391 nA</td>
<td>-1.773 nA</td>
<td>1.3686 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi E 6</td>
<td>-2.4013 nA</td>
<td>-1.3541 nA</td>
<td>-1.5636 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>Bi E 7</td>
<td>-306.911 pA</td>
<td>-1.9824 nA</td>
<td>-2.4013 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DA</td>
<td>-3.3153 nA</td>
<td>-6.0377 nA</td>
<td>-4.1529 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IN_1</td>
<td>-1.0907 nA</td>
<td>-3.1834 nA</td>
<td>-44.3349 pA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IN_2</td>
<td>-1.2211 nA</td>
<td>-3.1058 nA</td>
<td>-3.1058 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IN_3</td>
<td>-3.3153 nA</td>
<td>-3.5247 nA</td>
<td>-2.4776 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IN_4</td>
<td>583.4875 pA</td>
<td>-1.5093 nA</td>
<td>-881.432 pA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IN_5</td>
<td>-2.687 nA</td>
<td>-3.1058 nA</td>
<td>-3.7341 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IN_6</td>
<td>-3.7341 nA</td>
<td>-4.9906 nA</td>
<td>-3.5247 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IN_7</td>
<td>-3.3153 nA</td>
<td>-3.3153 nA</td>
<td>-1.0116 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IP_1</td>
<td>2.0484 nA</td>
<td>-1.9278 nA</td>
<td>1.2113 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IP_2</td>
<td>-2.687 nA</td>
<td>-3.9435 nA</td>
<td>-1.4305 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IP_3</td>
<td>-462.8832 pA</td>
<td>-672.1573 pA</td>
<td>374.213 pA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IP_4</td>
<td>-4.1529 nA</td>
<td>-3.7341 nA</td>
<td>-2.4776 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IP_5</td>
<td>-2.8964 nA</td>
<td>-2.2682 nA</td>
<td>-1.2211 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IP_6</td>
<td>-2.8964 nA</td>
<td>-1.4305 nA</td>
<td>-2.8964 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>DIO_IP_7</td>
<td>-1.8493 nA</td>
<td>-1.4305 nA</td>
<td>-1.0116 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>EN8</td>
<td>-2.2682 nA</td>
<td>-1.2211 nA</td>
<td>-1.4305 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>HCLK1P</td>
<td>-516.3522 pA</td>
<td>-3.4485 nA</td>
<td>-2.4013 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>HCLK2P</td>
<td>1.2113 nA</td>
<td>583.4875 pA</td>
<td>1.002 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>HCLK3P</td>
<td>4.9348 nA</td>
<td>3.4699 nA</td>
<td>2.005 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>HCLK4P</td>
<td>-914.6662 pA</td>
<td>-914.6662 pA</td>
<td>-1.3333 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>IO_I_1</td>
<td>164.9393 pA</td>
<td>-1.9278 nA</td>
<td>-672.1573 pA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>IO_I_2</td>
<td>2.8421 nA</td>
<td>2.4236 nA</td>
<td>1.3772 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>IO_I_3</td>
<td>164.9393 pA</td>
<td>-672.1573 pA</td>
<td>-881.432 pA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>IO_I_4</td>
<td>2.6328 nA</td>
<td>3.4699 nA</td>
<td>2.2143 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>IO_I_5</td>
<td>374.2134 pA</td>
<td>-44.3349 pA</td>
<td>3 pA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>IO_I_6</td>
<td>-3.5247 nA</td>
<td>-592.8091 pA</td>
<td>-5.6189 nA</td>
</tr>
<tr>
<td></td>
<td>III_Inputs_Max</td>
<td>LOADIN</td>
<td>-4.2481 nA</td>
<td>-5.7152 nA</td>
<td>-5.5056 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max_</td>
<td>RCLK1P</td>
<td>374.2134 pA</td>
<td>-44.3349 pA</td>
<td>164.939 3 pA</td>
<td>583.487 5 pA</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>IIL_Inputs_Max_</td>
<td>RCLK2P</td>
<td>-77.4112 pA</td>
<td>1.3878 nA</td>
<td>-496.039 pA</td>
<td>-2.5892 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max_</td>
<td>RCLK3P</td>
<td>1.3772 nA</td>
<td>2.005 nA</td>
<td>4.9348 nA</td>
<td>4.307 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max_</td>
<td>RCLK4P</td>
<td>-3.4485 nA</td>
<td>-2.1919 nA</td>
<td>-1.773 nA</td>
<td>-1.773 nA</td>
</tr>
<tr>
<td>Parameter</td>
<td>Design</td>
<td>Pre-Irrad</td>
<td>Post-Ann</td>
<td>Pre-Irrad</td>
<td>Post-Ann</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi D 1</td>
<td>-1.5525 nA</td>
<td>-506.152 pA</td>
<td>-2.8081 nA</td>
<td>-1.5525 nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>540.177 pA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi D 2</td>
<td>1 pA</td>
<td>1.7958 nA</td>
<td>2.005 nA</td>
<td>-87.6203 pA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi D 3</td>
<td>1.3772 nA</td>
<td>1.7958 nA</td>
<td>1.5865 nA</td>
<td>1.5865 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi D 4</td>
<td>-5.7289 nA</td>
<td>-4.8916 nA</td>
<td>-5.3103 nA</td>
<td>-4.8916 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi D 5</td>
<td>-2.7985 nA</td>
<td>-3.4264 nA</td>
<td>-2.1705 nA</td>
<td>-4.0544 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi D 6</td>
<td>-4.2298 nA</td>
<td>-4.8576 nA</td>
<td>-4.0205 nA</td>
<td>-5.2762 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi D 7</td>
<td>-3.658 nA</td>
<td>-6.3807 nA</td>
<td>-5.5429 nA</td>
<td>-2.6108 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi E 1</td>
<td>-3.2391 nA</td>
<td>-2.6108 nA</td>
<td>-3.2391 nA</td>
<td>-3.2391 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi E 2</td>
<td>-1.3541 nA</td>
<td>-2.8202 nA</td>
<td>-2.4013 nA</td>
<td>-3.4485 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi E 3</td>
<td>-3.2391 nA</td>
<td>-2.8202 nA</td>
<td>-2.8202 nA</td>
<td>-1.773 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi E 4</td>
<td>-1.9824 nA</td>
<td>-1.773 nA</td>
<td>-2.4013 nA</td>
<td>-1.3541 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi E 5</td>
<td>-1.1447 nA</td>
<td>-306.911 pA</td>
<td>-1.9824 nA</td>
<td>-1.9824 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi E 6</td>
<td>-2.1919 nA</td>
<td>-2.1919 nA</td>
<td>-3.8674 nA</td>
<td>-3.2391 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>Bi E 7</td>
<td>-2.4013 nA</td>
<td>-3.2391 nA</td>
<td>-725.793 pA</td>
<td>-1.5636 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>DA</td>
<td>-4.7812 nA</td>
<td>-3.5247 nA</td>
<td>-4.3624 nA</td>
<td>-5.2 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>DIO IN 1</td>
<td>-1.9278 nA</td>
<td>-3.602 nA</td>
<td>-44.3349 pA</td>
<td>-2.7649 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>DIO IN 2</td>
<td>-2.687 nA</td>
<td>-3.7341 nA</td>
<td>-2.4776 nA</td>
<td>-3.1058 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>DIO IN 3</td>
<td>-2.687 nA</td>
<td>-3.7341 nA</td>
<td>-3.7341 nA</td>
<td>-4.5718 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>DIO IN 4</td>
<td>-2.687 nA</td>
<td>-3.7341 nA</td>
<td>-3.7341 nA</td>
<td>-4.5718 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>DIO IN 5</td>
<td>-2.687 nA</td>
<td>-3.7341 nA</td>
<td>-3.7341 nA</td>
<td>-4.5718 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>DIO IN 6</td>
<td>-2.687 nA</td>
<td>-3.7341 nA</td>
<td>-3.7341 nA</td>
<td>-4.5718 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>DIO IN 7</td>
<td>-2.687 nA</td>
<td>-3.7341 nA</td>
<td>-3.7341 nA</td>
<td>-4.5718 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>DIO IN 8</td>
<td>-2.687 nA</td>
<td>-3.7341 nA</td>
<td>-3.7341 nA</td>
<td>-4.5718 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>EN8</td>
<td>-383.389 pA</td>
<td>-1.4305 nA</td>
<td>-802.229 pA</td>
<td>-3.1058 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>HCLK1P</td>
<td>-1.3541 nA</td>
<td>-1.3541 nA</td>
<td>-1.773 nA</td>
<td>-3.658 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>HCLK2P</td>
<td>-2.3464 nA</td>
<td>-1.3 nA</td>
<td>5 pA</td>
<td>-1.0907 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>HCLK3P</td>
<td>3.6792 nA</td>
<td>2.8421 nA</td>
<td>4.7255 nA</td>
<td>4.5162 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>HCLK4P</td>
<td>-2.5892 nA</td>
<td>-3.8451 nA</td>
<td>-1.124 nA</td>
<td>-2.3799 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>IO I 1</td>
<td>-2.1371 nA</td>
<td>7 pA</td>
<td>1.4206 nA</td>
<td>-1.7185 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>IO I 2</td>
<td>2.6328 nA</td>
<td>2.6328 nA</td>
<td>1.7958 nA</td>
<td>2.005 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>IO I 3</td>
<td>-881.432 pA</td>
<td>-881.432 pA</td>
<td>3 pA</td>
<td>-2.9742 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>IO I 4</td>
<td>2.6328 nA</td>
<td>1.168 nA</td>
<td>2.8421 nA</td>
<td>1.5865 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>IO I 5</td>
<td>1.2113 nA</td>
<td>3 pA</td>
<td>2.8421 nA</td>
<td>1.5865 nA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>IO I 6</td>
<td>-2.2682 nA</td>
<td>-173.969 pA</td>
<td>-2.8964 nA</td>
<td>-592.809 pA</td>
</tr>
<tr>
<td>IIL_Inputs_Max</td>
<td>LOADIN</td>
<td>-6.763 nA</td>
<td>-5.0864 nA</td>
<td>-6.3439 nA</td>
<td>-6.763 nA</td>
</tr>
</tbody>
</table>

Table 5b
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design</th>
<th>Pre-Irrad</th>
<th>Post-Irrad</th>
<th>Pre-Irrad</th>
<th>Post-Irrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIL Inputs Max</td>
<td>RCLK1P</td>
<td>-672.157 pA</td>
<td>-1.7185 nA</td>
<td>-881.432 pA</td>
<td>-1.5093 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>RCLK2P</td>
<td>-1.124 nA</td>
<td>-2.3799 nA</td>
<td>-1.3333 nA</td>
<td>-2.7985 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>RCLK3P</td>
<td>2.005 nA</td>
<td>-87.6203 pA</td>
<td>749.443 pA</td>
<td>1.7958 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>RCLK4P</td>
<td>-1.9824 nA</td>
<td>-725.793 pA</td>
<td>-1.773 nA</td>
<td>-2.1919 nA</td>
</tr>
</tbody>
</table>

Table 5c

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design</th>
<th>Pre-Irrad</th>
<th>Post-Irrad</th>
<th>Pre-Irrad</th>
<th>Post-Irrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 1</td>
<td>-4.4391 nA</td>
<td>-5.0669 nA</td>
<td>-2.1371 nA</td>
<td>-4.2298 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 2</td>
<td>-5.5196 nA</td>
<td>-5.1009 nA</td>
<td>-3.8451 nA</td>
<td>-5.9382 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 3</td>
<td>-705.3524 pA</td>
<td>-1.9612 nA</td>
<td>-1.3333 nA</td>
<td>-1.9612 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 4</td>
<td>-1.0907 nA</td>
<td>-2.1371 nA</td>
<td>-881.432 pA</td>
<td>-672.157 pA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 5</td>
<td>-3.4264 nA</td>
<td>-2.3799 nA</td>
<td>-2.1705 nA</td>
<td>-3.2171 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 6</td>
<td>-4.0385 nA</td>
<td>-3.6194 nA</td>
<td>-2.5715 nA</td>
<td>-5.0864 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 7</td>
<td>-2.1523 nA</td>
<td>-4.2481 nA</td>
<td>-3.4098 nA</td>
<td>-3.829 nA</td>
</tr>
</tbody>
</table>

Table 5d

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design</th>
<th>Pre-Irrad</th>
<th>Post-Irrad</th>
<th>Pre-Irrad</th>
<th>Post-Irrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 1</td>
<td>-4.0205 nA</td>
<td>-5.0669 nA</td>
<td>-1.3 nA</td>
<td>-3.1834 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 2</td>
<td>-1.9612 nA</td>
<td>-4.473 nA</td>
<td>-1.7519 nA</td>
<td>-5.1009 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 3</td>
<td>759.8438 pA</td>
<td>-3.0078 nA</td>
<td>-1.7519 nA</td>
<td>-4.473 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 4</td>
<td>-3.1834 nA</td>
<td>-4.4391 nA</td>
<td>-1.3 nA</td>
<td>-1.3 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 5</td>
<td>-1.5426 nA</td>
<td>-4.473 nA</td>
<td>131.9025 pA</td>
<td>-2.3799 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 6</td>
<td>-5.0864 nA</td>
<td>-2.9906 nA</td>
<td>-3.6194 nA</td>
<td>-2.5715 nA</td>
</tr>
<tr>
<td>IIL Inputs Max</td>
<td>Bi IO 7</td>
<td>-1.9427 nA</td>
<td>-6.3439 nA</td>
<td>-2.5715 nA</td>
<td>-4.8768 nA</td>
</tr>
<tr>
<td>DUT</td>
<td>Design</td>
<td>Pre-Irrad</td>
<td>Post-Ann</td>
<td>Pre-Irrad</td>
<td>Post-Ann</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi D_1</td>
<td>7.0274 nA</td>
<td>8.283 nA</td>
<td>7.6552 nA</td>
<td>8.0737 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi D_2</td>
<td>5.144 nA</td>
<td>6.8182 nA</td>
<td>5.3533 nA</td>
<td>6.1904 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi D_3</td>
<td>3.6792 nA</td>
<td>4.307 nA</td>
<td>4.307 nA</td>
<td>4.307 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi D_4</td>
<td>2.4344 nA</td>
<td>1.3878 nA</td>
<td>2.225 nA</td>
<td>1.8064 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi D_5</td>
<td>550.53 pA</td>
<td>550.53 pA</td>
<td>1.1785 nA</td>
<td>-286.725 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi D_6</td>
<td>4.9782 nA</td>
<td>3.7226 nA</td>
<td>6.6524 nA</td>
<td>5.1875 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi D_7</td>
<td>2.2064 nA</td>
<td>2.8347 nA</td>
<td>3.463 nA</td>
<td>2.6253 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi E_1</td>
<td>740.2928 pA</td>
<td>1.5781 nA</td>
<td>-516.352 pA</td>
<td>1.5781 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi E_2</td>
<td>2.4158 nA</td>
<td>530.852 pA</td>
<td>1.3686 nA</td>
<td>-1.1447 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi E_3</td>
<td>4.0913 nA</td>
<td>1.5781 nA</td>
<td>530.852 pA</td>
<td>2 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi E_4</td>
<td>2.6253 nA</td>
<td>-516.352 pA</td>
<td>-1.3541 nA</td>
<td>-516.352 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi E_5</td>
<td>-725.793 pA</td>
<td>1.1592 nA</td>
<td>740.292 pA</td>
<td>8 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi E_6</td>
<td>-306.9113 pA</td>
<td>949.7336 pA</td>
<td>-1.773 nA</td>
<td>1.5781 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>Bi E_7</td>
<td>2.4158 nA</td>
<td>530.852 pA</td>
<td>-516.352 pA</td>
<td>530.852 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DA</td>
<td>1.5014 nA</td>
<td>1.0826 nA</td>
<td>2.5485 nA</td>
<td>2.3931 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IN_1</td>
<td>1.8391 nA</td>
<td>3.9319 nA</td>
<td>3.5133 nA</td>
<td>3.5133 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IN_2</td>
<td>-802.2291 pA</td>
<td>3.3939 nA</td>
<td>-1.2211 nA</td>
<td>2.5485 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IN_3</td>
<td>873.1309 pA</td>
<td>-1.6399 nA</td>
<td>-173.969 pA</td>
<td>1.7108 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IN_4</td>
<td>3.9319 nA</td>
<td>-1.0907 nA</td>
<td>2.8855 nA</td>
<td>5 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IN_5</td>
<td>1.292 nA</td>
<td>1.292 nA</td>
<td>-592.809 pA</td>
<td>-1.0116 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IN_6</td>
<td>1.5014 nA</td>
<td>1.292 nA</td>
<td>1.292 nA</td>
<td>6 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IN_7</td>
<td>1.0826 nA</td>
<td>244.8709 pA</td>
<td>9 nA</td>
<td>1.0826 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IP_1</td>
<td>1.4206 nA</td>
<td>-44.3349 pA</td>
<td>1.4206 nA</td>
<td>-3.7226 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IP_2</td>
<td>663.7109 pA</td>
<td>-592.8091 pA</td>
<td>-1.0116 nA</td>
<td>9 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IP_3</td>
<td>2.8855 nA</td>
<td>1.6299 nA</td>
<td>1.6299 nA</td>
<td>2.467 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IP_4</td>
<td>1.0826 nA</td>
<td>-592.8091 pA</td>
<td>-592.809 pA</td>
<td>-802.229 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IP_5</td>
<td>454.2909 pA</td>
<td>-1.2211 nA</td>
<td>1.2297 nA</td>
<td>9 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IP_6</td>
<td>-173.9691 nA</td>
<td>35.4509 pA</td>
<td>1.5014 nA</td>
<td>35.4509 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>DIO IP_7</td>
<td>1.5014 nA</td>
<td>-1.0116 nA</td>
<td>454.2909 pA</td>
<td>9 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>EN8</td>
<td>1.9202 nA</td>
<td>454.2909 pA</td>
<td>1.292 nA</td>
<td>873.130 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>HCLK1P</td>
<td>-1.5636 nA</td>
<td>-306.9113 pA</td>
<td>-516.352 pA</td>
<td>-935.234 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>HCLK2P</td>
<td>2.6762 nA</td>
<td>1.8391 nA</td>
<td>1.2113 nA</td>
<td>2.2577 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>HCLK3P</td>
<td>4.0797 nA</td>
<td>3.4699 nA</td>
<td>5.6526 nA</td>
<td>3.4699 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>HCLK4P</td>
<td>1.1785 nA</td>
<td>-2.3799 nA</td>
<td>131.902</td>
<td>5 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>IO I 1</td>
<td>3.5133 nA</td>
<td>2.6762 nA</td>
<td>3.9319 nA</td>
<td>1.4206 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>IO I 2</td>
<td>4.307 nA</td>
<td>4.5162 nA</td>
<td>3.8884 nA</td>
<td>3.6792 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>IO I 3</td>
<td>3.3041 nA</td>
<td>2.467 nA</td>
<td>1.6299 nA</td>
<td>1.2113 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>IO I 4</td>
<td>5.5626 nA</td>
<td>5.7718 nA</td>
<td>5.144 nA</td>
<td>5.7718 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>IO_I_5</td>
<td>2.6762 nA</td>
<td>792.7617 pA</td>
<td>583.487 5 pA</td>
<td>4.1411 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>IO_I_6</td>
<td>244.8709 pA</td>
<td>-802.2291 pA</td>
<td>-802.229 pA</td>
<td>663.710 9 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>LOADIN</td>
<td>1.6201 nA</td>
<td>991.3508 pA</td>
<td>2.668 nA</td>
<td>2.668 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>RCLK1P</td>
<td>2.467 nA</td>
<td>792.7617 pA</td>
<td>792.761 7 pA</td>
<td>2.2577 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>RCLK2P</td>
<td>341.2162 pA</td>
<td>-3.0078 nA</td>
<td>2.6437 nA</td>
<td>-3.6357 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>RCLK3P</td>
<td>4.5162 nA</td>
<td>7.4459 nA</td>
<td>3.4699 nA</td>
<td>4.5162 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max</td>
<td>RCLK4P</td>
<td>1.7875 nA</td>
<td>-306.9113 pA</td>
<td>-306.911 pA</td>
<td>-516.352 pA</td>
</tr>
<tr>
<td>Parameter</td>
<td>Design</td>
<td>Pre-Irrad</td>
<td>Post-Ann</td>
<td>Pre-Irrad</td>
<td>Post-Ann</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_D_1</td>
<td>9.7479 nA</td>
<td>8.4923 nA</td>
<td>7.8645 nA</td>
<td>8.283 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_D_2</td>
<td>6.8182 nA</td>
<td>7.4459 nA</td>
<td>4.7255 nA</td>
<td>6.1904 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_D_3</td>
<td>2.6328 nA</td>
<td>7.4459 nA</td>
<td>3.0514 nA</td>
<td>4.0977 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_D_4</td>
<td>969.157 pA</td>
<td>1.3878 nA</td>
<td>2.6437 nA</td>
<td>1.5971 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_D_5</td>
<td>969.157 pA</td>
<td>-496.039 pA</td>
<td>-286.725 pA</td>
<td>1.1785 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_D_6</td>
<td>4.3504 nA</td>
<td>4.3504 nA</td>
<td>5.6061 nA</td>
<td>6.4432 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_D_7</td>
<td>3.463 nA</td>
<td>2.6253 nA</td>
<td>2.4158 nA</td>
<td>2.4158 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_E_1</td>
<td>949.733 pA</td>
<td>1.1592 nA</td>
<td>1.1592 nA</td>
<td>1.3686 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_E_2</td>
<td>2.8347 nA</td>
<td>-935.234 pA</td>
<td>1.7875 nA</td>
<td>-97.4705 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_E_3</td>
<td>-306.911 pA</td>
<td>1.1592 nA</td>
<td>-97.4705 pA</td>
<td></td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_E_4</td>
<td>740.292 pA</td>
<td>111.970 pA</td>
<td>1.3686 nA</td>
<td>530.852 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_E_5</td>
<td>1.5781 nA</td>
<td>1.7875 nA</td>
<td>530.852 pA</td>
<td>-97.4705 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>Bi_E_6</td>
<td>949.733 pA</td>
<td>1.1592 nA</td>
<td>1.1592 nA</td>
<td>1.3686 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IN_1</td>
<td>2.0484 nA</td>
<td>2.6762 nA</td>
<td>3.0948 nA</td>
<td>2.467 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IN_2</td>
<td>244.870 pA</td>
<td>1.7108 nA</td>
<td>1.292 nA</td>
<td></td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IN_3</td>
<td>3.5133 nA</td>
<td>1.8391 nA</td>
<td>1.8391 nA</td>
<td>1.6299 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IN_4</td>
<td>1.6299 nA</td>
<td>2.0484 nA</td>
<td>4.3504 nA</td>
<td>2.8855 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IN_5</td>
<td>-1.4305 nA</td>
<td>-592.809 pA</td>
<td>663.710 pA</td>
<td>1.7108 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IN_6</td>
<td>3.5133 nA</td>
<td>1.8391 nA</td>
<td>1.8391 nA</td>
<td>1.6299 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IN_7</td>
<td>-1.0116 nA</td>
<td>-173.969 pA</td>
<td>663.710 pA</td>
<td>1.7108 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IP_1</td>
<td>244.870 pA</td>
<td>1.7108 nA</td>
<td>1.292 nA</td>
<td></td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IP_2</td>
<td>873.130 pA</td>
<td>1.0826 nA</td>
<td>1.0826 nA</td>
<td></td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IP_3</td>
<td>873.130 pA</td>
<td>1.0826 nA</td>
<td>1.0826 nA</td>
<td></td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IP_4</td>
<td>873.130 pA</td>
<td>1.0826 nA</td>
<td>1.0826 nA</td>
<td></td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IP_5</td>
<td>-383.389 pA</td>
<td>35.4509 pA</td>
<td>1.0116 nA</td>
<td></td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IP_6</td>
<td>-306.911 pA</td>
<td>2.5759 nA</td>
<td>4.0144 nA</td>
<td>663.710 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IP_7</td>
<td>244.870 pA</td>
<td>1.7108 nA</td>
<td>1.292 nA</td>
<td></td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>DIO_IP_8</td>
<td>873.130 pA</td>
<td>1.0826 nA</td>
<td>1.0826 nA</td>
<td></td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>EN8</td>
<td>-2.0587 nA</td>
<td>2.2064 nA</td>
<td>111.970 nA</td>
<td>3 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>HCLK2P</td>
<td>3.5133 nA</td>
<td>3.3041 nA</td>
<td>2.6762 nA</td>
<td>792.761 pA</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>HCLK3P</td>
<td>4.307 nA</td>
<td>4.5162 nA</td>
<td>5.144 nA</td>
<td>4.0977 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>HCLK4P</td>
<td>-914.666 pA</td>
<td>-2.1705 nA</td>
<td>-1.7519 nA</td>
<td>-1.124 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>IO I_1</td>
<td>1.6299 nA</td>
<td>1.2113 nA</td>
<td>1.6299 nA</td>
<td>2.0484 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>IO I_2</td>
<td>3.4699 nA</td>
<td>5.9811 nA</td>
<td>5.144 nA</td>
<td>4.5162 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>IO I_3</td>
<td>2.8855 nA</td>
<td>1.2113 nA</td>
<td>1.6299 nA</td>
<td>164.939 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>IO I_4</td>
<td>5.144 nA</td>
<td>4.5162 nA</td>
<td>3.0514 nA</td>
<td>5.3533 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>IO I_5</td>
<td>3.5133 nA</td>
<td>1.8391 nA</td>
<td>5 pA</td>
<td>1.6299 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>IO I_6</td>
<td>-2.0587 nA</td>
<td>2.9673 nA</td>
<td>1.292 nA</td>
<td>454.290 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>LOADIN</td>
<td>2.0392 nA</td>
<td>1.2009 nA</td>
<td>3.2967 nA</td>
<td>2.0392 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>RCLK1P</td>
<td>583.487 pA</td>
<td>1.2113 nA</td>
<td>7 pA</td>
<td>2.467 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>RCLK2P</td>
<td>2.0157 nA</td>
<td>-1.9612 nA</td>
<td>-2.1705 nA</td>
<td>-914.666 pA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>RCLK3P</td>
<td>5.144 nA</td>
<td>5.9811 nA</td>
<td>5.626 nA</td>
<td>4.5162 nA</td>
</tr>
<tr>
<td>IIH_Inputs_Max_</td>
<td>RCLK4P</td>
<td>-2.4013 nA</td>
<td>-935.234 pA</td>
<td>-1.3541 nA</td>
<td>-306.911 pA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DUT</th>
<th>3853</th>
<th>3859</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Design</td>
<td>Pre-Irrad</td>
</tr>
<tr>
<td>IIH_BiOuts_Max_</td>
<td>Bi IO 1</td>
<td>3.3041 nA</td>
</tr>
<tr>
<td>IIH_BiOuts_Max_</td>
<td>Bi IO 2</td>
<td>-1.124 nA</td>
</tr>
<tr>
<td>IIH_BiOuts_Max_</td>
<td>Bi IO 3</td>
<td>-286.725 pA</td>
</tr>
<tr>
<td>IIH_BiOuts_Max_</td>
<td>Bi IO 4</td>
<td>1.8391 nA</td>
</tr>
<tr>
<td>IIH_BiOuts_Max_</td>
<td>Bi IO 5</td>
<td>-496.0387 pA</td>
</tr>
<tr>
<td>IIH_BiOuts_Max_</td>
<td>Bi IO 6</td>
<td>-475.6976 pA</td>
</tr>
<tr>
<td>IIH_BiOuts_Max_</td>
<td>Bi IO 7</td>
<td>-1.5236 nA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DUT</th>
<th>3916</th>
<th>3931</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Design</td>
<td>Pre-Irrad</td>
</tr>
<tr>
<td>IIH_BiOuts_Max_</td>
<td>Bi IO 1</td>
<td>792.761 pA</td>
</tr>
<tr>
<td>IIH_BiOuts_Max_</td>
<td>Bi IO 2</td>
<td>-77.4112 pA</td>
</tr>
<tr>
<td>IIH_BiOuts_Max_</td>
<td>Bi IO 3</td>
<td>-1.7519 nA</td>
</tr>
<tr>
<td>IIH_BiOuts_Max_</td>
<td>Bi IO 4</td>
<td>-1.3 nA</td>
</tr>
<tr>
<td>IIH_BiOuts_Max_</td>
<td>Bi IO 5</td>
<td>-1.5426 nA</td>
</tr>
</tbody>
</table>
D. Differential Input (LVPECL) Threshold Voltage (V_{IL}/V_{IH})

Table 7 and 8 show the pre-irradiation and post-annealing threshold-voltages of the LVPECL input. Every data passes the spec.

Table 7a

<table>
<thead>
<tr>
<th>Parameter (mV)</th>
<th>Design</th>
<th>Pre-Irrad</th>
<th>Post-Ann</th>
<th>Pre-Irrad</th>
<th>Post-Ann</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 7</td>
<td>110</td>
<td>85</td>
<td>105</td>
<td>75</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 6</td>
<td>110</td>
<td>85</td>
<td>105</td>
<td>80</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 5</td>
<td>115</td>
<td>90</td>
<td>105</td>
<td>80</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 4</td>
<td>100</td>
<td>75</td>
<td>85</td>
<td>60</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 3</td>
<td>90</td>
<td>70</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 2</td>
<td>100</td>
<td>75</td>
<td>90</td>
<td>65</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 1</td>
<td>75</td>
<td>55</td>
<td>80</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 7b

<table>
<thead>
<tr>
<th>Parameter (mV)</th>
<th>Design</th>
<th>Pre-Irrad</th>
<th>Post-Ann</th>
<th>Pre-Irrad</th>
<th>Post-Ann</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 7</td>
<td>100</td>
<td>95</td>
<td>110</td>
<td>105</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 6</td>
<td>110</td>
<td>100</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 5</td>
<td>115</td>
<td>105</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 4</td>
<td>80</td>
<td>75</td>
<td>95</td>
<td>85</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 3</td>
<td>85</td>
<td>75</td>
<td>85</td>
<td>75</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 2</td>
<td>85</td>
<td>75</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>bi_levels_vil</td>
<td>DIO IP 1</td>
<td>90</td>
<td>80</td>
<td>80</td>
<td>75</td>
</tr>
</tbody>
</table>
Table 8a

<table>
<thead>
<tr>
<th>Parameter (mV)</th>
<th>DUT</th>
<th>3853</th>
<th>3859</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_7</td>
<td>105</td>
<td>100</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_6</td>
<td>105</td>
<td>100</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_5</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_4</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_3</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_2</td>
<td>95</td>
<td>85</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_1</td>
<td>80</td>
<td>85</td>
</tr>
</tbody>
</table>

Table 8b

<table>
<thead>
<tr>
<th>Parameter (mV)</th>
<th>DUT</th>
<th>3916</th>
<th>3931</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_7</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_6</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_5</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_4</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_3</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_2</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>bi_levels_vih</td>
<td>DIO_IP_1</td>
<td>90</td>
<td>85</td>
</tr>
</tbody>
</table>
E. Output-Drive Voltage (V_{OL}/V_{OH})

The pre-irradiation and post-annealing V_{OL}/V_{OH} are listed in Tables 9 and 10. Every post-annealing data passes the spec.

<table>
<thead>
<tr>
<th>Parameter (mV)</th>
<th>Design</th>
<th>Pre-Irrad</th>
<th>Post-Ann</th>
<th>Pre-Irrad</th>
<th>Post-Ann</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 7</td>
<td>35 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 6</td>
<td>30 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 5</td>
<td>35 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 4</td>
<td>35 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 3</td>
<td>35 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 2</td>
<td>35 30</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 1</td>
<td>35 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 7</td>
<td>25 25</td>
<td>25 25</td>
<td>25 25</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 6</td>
<td>25 25</td>
<td>25 25</td>
<td>25 25</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 5</td>
<td>25 25</td>
<td>25 25</td>
<td>25 25</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 4</td>
<td>25 25</td>
<td>25 25</td>
<td>25 25</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 3</td>
<td>30 25</td>
<td>30 30</td>
<td>30 30</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 2</td>
<td>25 25</td>
<td>25 25</td>
<td>25 25</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 1</td>
<td>30 30</td>
<td>30 30</td>
<td>30 30</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>CLOCKE_OUT</td>
<td>25 20</td>
<td>20 20</td>
<td>20 20</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>CLOCKF_OUT</td>
<td>20 25</td>
<td>25 25</td>
<td>20 20</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>QA 2</td>
<td>20 20</td>
<td>20 20</td>
<td>20 20</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>QA 1</td>
<td>20 20</td>
<td>20 20</td>
<td>20 20</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>QA 0</td>
<td>20 20</td>
<td>20 20</td>
<td>20 20</td>
<td></td>
</tr>
</tbody>
</table>

Table 9b

<table>
<thead>
<tr>
<th>Parameter (mV)</th>
<th>Design</th>
<th>Pre-Irrad</th>
<th>Post-Ann</th>
<th>Pre-Irrad</th>
<th>Post-Ann</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 7</td>
<td>35 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 6</td>
<td>30 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 5</td>
<td>35 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 4</td>
<td>35 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 3</td>
<td>35 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 2</td>
<td>35 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi IO 1</td>
<td>35 35</td>
<td>35 35</td>
<td>35 35</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 7</td>
<td>25 25</td>
<td>25 25</td>
<td>25 25</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 6</td>
<td>25 25</td>
<td>25 25</td>
<td>25 25</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 5</td>
<td>25 25</td>
<td>25 25</td>
<td>25 25</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 4</td>
<td>25 25</td>
<td>25 25</td>
<td>25 25</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 3</td>
<td>30 25</td>
<td>30 30</td>
<td>30 30</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 2</td>
<td>25 25</td>
<td>25 25</td>
<td>25 25</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>Bi Y 1</td>
<td>30 30</td>
<td>30 30</td>
<td>30 30</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>CLOCKE_OUT</td>
<td>20 20</td>
<td>20 20</td>
<td>20 20</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>CLOCKF_OUT</td>
<td>20 25</td>
<td>25 25</td>
<td>20 20</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>QA 2</td>
<td>20 20</td>
<td>20 20</td>
<td>20 20</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>QA 1</td>
<td>20 20</td>
<td>20 20</td>
<td>20 20</td>
<td></td>
</tr>
<tr>
<td>bi_levels_vol</td>
<td>QA 0</td>
<td>20 20</td>
<td>20 20</td>
<td>20 20</td>
<td></td>
</tr>
<tr>
<td>Parameter (V)</td>
<td>Design</td>
<td>3853 Pre-Irrad</td>
<td>3859 Pre-Irrad</td>
<td>3853 Post-Ann</td>
<td>3859 Post-Ann</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_7</td>
<td>2.965</td>
<td>2.97</td>
<td>2.965</td>
<td>2.97</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_6</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_5</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_4</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_3</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_2</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_1</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_7</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_6</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_5</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_4</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_3</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_2</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_1</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>CLOCKE_OUT</td>
<td>2.975</td>
<td>2.97</td>
<td>2.975</td>
<td>2.97</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>CLOCKF_OUT</td>
<td>2.975</td>
<td>2.97</td>
<td>2.975</td>
<td>2.97</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>QA_2</td>
<td>2.97</td>
<td>2.965</td>
<td>2.97</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>QA_1</td>
<td>2.97</td>
<td>2.965</td>
<td>2.97</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>QA_0</td>
<td>2.97</td>
<td>2.97</td>
<td>2.97</td>
<td>2.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter (V)</th>
<th>Design</th>
<th>3916 Pre-Irrad</th>
<th>3931 Pre-Irrad</th>
<th>3916 Post-Ann</th>
<th>3931 Post-Ann</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_7</td>
<td>2.97</td>
<td>2.97</td>
<td>2.97</td>
<td>2.97</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_6</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_5</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_4</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_3</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_2</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi IO_1</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
<td>2.965</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_7</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_6</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_5</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_4</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_3</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_2</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>Bi Y_1</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>CLOCKE_OUT</td>
<td>2.975</td>
<td>2.97</td>
<td>2.975</td>
<td>2.97</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>CLOCKF_OUT</td>
<td>2.975</td>
<td>2.97</td>
<td>2.975</td>
<td>2.97</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>QA_2</td>
<td>2.97</td>
<td>2.97</td>
<td>2.97</td>
<td>2.97</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>QA_1</td>
<td>2.97</td>
<td>2.97</td>
<td>2.97</td>
<td>2.97</td>
</tr>
<tr>
<td>bi_levels_voh</td>
<td>QA_0</td>
<td>2.97</td>
<td>2.97</td>
<td>2.97</td>
<td>2.97</td>
</tr>
</tbody>
</table>
F. Propagation Delay

Table 11 lists the pre-irradiation and post-annealing propagation delays. The results show small radiation effects; in any case the percentage change is well below ±10%.

<table>
<thead>
<tr>
<th>DUT</th>
<th>Total Dose krad(SiO$_2$)</th>
<th>Pre-Irradiation (µs)</th>
<th>Post-Annealing (µs)</th>
<th>Degradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3853</td>
<td>300</td>
<td>7.618</td>
<td>7.599</td>
<td>-0.24%</td>
</tr>
<tr>
<td>3859</td>
<td>300</td>
<td>7.501</td>
<td>7.485</td>
<td>-0.21%</td>
</tr>
<tr>
<td>3916</td>
<td>200</td>
<td>7.572</td>
<td>7.485</td>
<td>-1.14%</td>
</tr>
<tr>
<td>3931</td>
<td>200</td>
<td>7.334</td>
<td>7.239</td>
<td>-1.30%</td>
</tr>
</tbody>
</table>
G. Transition Characteristic

Figures 7 to 14 show the pre-irradiation and post-annealing transition edges. In each case, the radiation-induced transition-time degradation is not observable.

Figure 7(a) DUT 3853 pre-irradiation rising edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.

Figure 7(b) DUT 3853 post-annealing rising edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.
Figure 8(a) DUT 3859 pre-irradiation rising edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.

Figure 8(b) DUT 3859 post-annealing rising edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.
Figure 9(a) DUT 3916 pre-irradiation rising edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.

Figure 9(b) DUT 3916 post-annealing rising edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.
Figure 10(a) DUT 3931 pre-irradiation rising edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.

Figure 10(b) DUT 3931 post-annealing rising edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.
Figure 11(a) DUT 3853 pre-irradiation falling edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.

Figure 11(b) DUT 3853 post-annealing falling edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.
Figure 12(a) DUT 3859 pre-irradiation falling edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.

Figure 12(b) DUT 3859 post-annealing falling edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.
Figure 13(a) DUT 3916 pre-irradiation falling edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.

Figure 13(b) DUT 3916 post-annealing falling edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.
Figure 14(a) DUT 3931 pre-irradiation falling edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.

Figure 14(b) DUT 3931 post-annealing falling edge, abscissa scale is 1 V/div and ordinate scale is 1 ns/div.