

# RTSX72SU SEE Report-Analysis of NASA/Goddard High Speed SET/SEU Data

July 11, 2006

J.J. Wang and S. Rezgui (650) 318-4576 jih-jong.wang@actel.com

# Acknowledgements

The data in this report are collected by NASA/Goddard radiation group with some Actel engineering supports. Special thanks to the major contributors, Melanie Berg, Hak Kim, and Ray Ladbury.

#### I. SINGLE EVENT EFFECTS TESTING

#### A. Device Under Test

The devices-under-test (DUT) is the RTSX72SU device, a 0.22-µm antifuse FPGA manufactured by the UMC foundry. The lot number is D1JW01; this lot is manufactured using the revision-B mask-set.

# B. Heavy Ion Beam Source

The heavy-ion-beam tests were performed at TAMU. Ion irradiations used effective LET of 20.2, 28.5, 40.4, 52.7 and 74.5 MeV•cm<sup>2</sup>/mg. For each run the effective fluence is  $1 \times 10^7$  cm<sup>-2</sup>.

### C. Test Logic Design and Data Pattern

The DUT design consists of six (6) identically designed shift registers called SR0 to SR5; each has 335 stages of D-flip-flops. Each D flip-flop is constructed from an R-cell. A global clock is shared by all the registers.

During testing, a checkerboard pattern clocked at 2, 50, or 100 MHz is running in the shift register under test.; the other five (5) registers are running a zero pattern.

# D. Test Method and Procedure

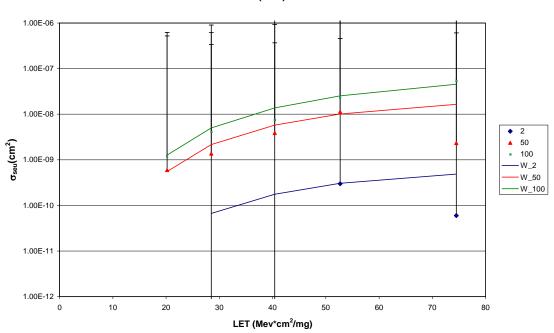
The heavy-ion-irradiation-induced errors in the shift register under test are processed, counted and displayed. These raw data are processed and displayed as the typical cross-section versus effective LET plots in next section. Consult NASA/Goddard for the details of methodology and procedures.

### II. RESULTS AND ANALYSES

### A. Data and Weibull Fit

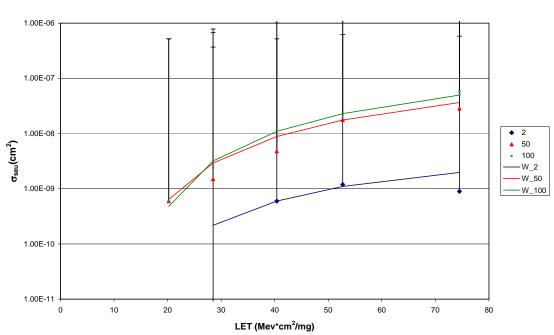
Fig. 1 to 5 displays the typical cross-section versus LET plot for SR0, SR1, SR2, SR3 and SR5 respectively; no data are obtained for SR4 due to hardware issues in that data-collection channel. Each plot has three (3) sets of data obtained at 2, 50 and 100 MHz respectively; each set of data is fitted by a Weibull function plotted as a continuous curve.

# B. SEU Rate Prediction


CREME96 is used to perform the SEU rate prediction. The environment parameters are: GEO orbit, Solar Min, and 100-mil Al shielding. Two depths of the RPP are used; one is that  $Z = 0.25 \,\mu\text{m}$  and Funnel = 0.5  $\mu\text{m}$ , and the other is that  $Z = 1 \,\mu\text{m}$  and no funneling. The result of upsets per bit-day for each shift register running at a particular frequency is listed in the following tables.

|     |                                       | -                                     | •                                     |
|-----|---------------------------------------|---------------------------------------|---------------------------------------|
|     | 2 MHz                                 | 50 MHz                                | 100 MHz                               |
| SR0 | 6.17×10 <sup>-12</sup> upsets/bit/day | 4.24×10 <sup>-10</sup> upsets/bit/day | 1.18×10 <sup>-9</sup> upsets/bit/day  |
| SR1 | 2.88×10 <sup>-11</sup> upsets/bit/day | 7.18×10 <sup>-10</sup> upsets/bit/day | 9.83×10 <sup>-10</sup> upsets/bit/day |
| SR2 | 3.62×10 <sup>-11</sup> upsets/bit/day | 3.17×10 <sup>-10</sup> upsets/bit/day | 1.22×10 <sup>-9</sup> upsets/bit/day  |
| SR3 | 1.25×10 <sup>-11</sup> upsets/bit/day | 4.58×10 <sup>-10</sup> upsets/bit/day | 1.07×10 <sup>-9</sup> upsets/bit/day  |
| SR5 | 1.25×10 <sup>-11</sup> upsets/bit/day | 2.65×10 <sup>-10</sup> upsets/bit/day | 1.18×10 <sup>-9</sup> upsets/bit/day  |
|     |                                       |                                       |                                       |

Table 1 Predicted SEU rate using Z = 0.25  $\mu m$  and Funnel = 0.5  $\mu m$ 


|  | Table 2 | Predicted SEU rate using $Z = 1 \ \mu m$ and Funnel = $0 \ \mu m$ |  |
|--|---------|-------------------------------------------------------------------|--|
|--|---------|-------------------------------------------------------------------|--|

|     | 2 MHz                                 | 50 MHz                                | 100 MHz                              |
|-----|---------------------------------------|---------------------------------------|--------------------------------------|
| SR0 | 1.87×10 <sup>-13</sup> upsets/bit/day | 4.36×10 <sup>-10</sup> upsets/bit/day | 1.92×10 <sup>-9</sup> upsets/bit/day |
| SR1 | 2.70×10 <sup>-13</sup> upsets/bit/day | 1.38×10 <sup>-9</sup> upsets/bit/day  | 2.41×10 <sup>-9</sup> upsets/bit/day |
| SR2 | 4.55×10 <sup>-12</sup> upsets/bit/day | 2.86×10 <sup>-10</sup> upsets/bit/day | 3.22×10 <sup>-9</sup> upsets/bit/day |
| SR3 | 5.83×10 <sup>-13</sup> upsets/bit/day | 5.03×10 <sup>-10</sup> upsets/bit/day | 2.64×10 <sup>-9</sup> upsets/bit/day |
| SR5 | 5.83×10 <sup>-13</sup> upsets/bit/day | 2.35×10 <sup>-10</sup> upsets/bit/day | 1.92×10 <sup>-9</sup> upsets/bit/day |
|     |                                       |                                       |                                      |



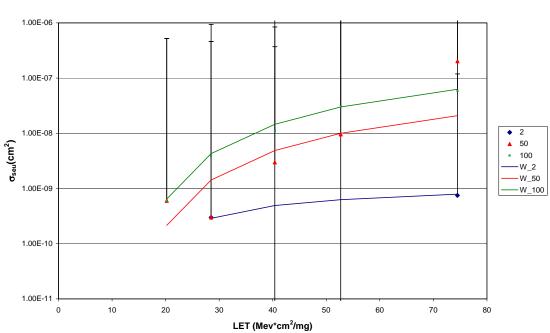

Effective LET vs. Normalized Cross Section (SR0)

Fig. 1 Plot showing SEU cross section ( $\sigma_{SEU}$ ) of SR0 versus effective LET for running a checkerboard pattern at 2, 50, and 100 MHz. Data points with error bars and Weibull-fitting curves are displayed.



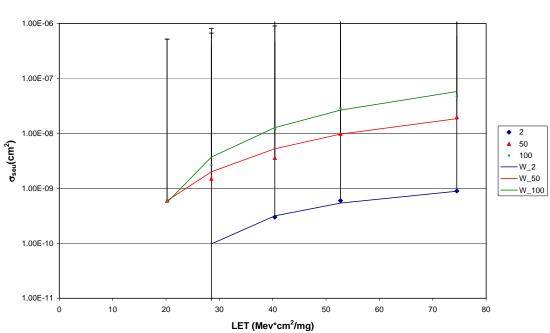

Effective LET vs. Normalized Cross Section (SR1)

Fig. 2 Plot showing SEU cross section ( $\sigma_{SEU}$ ) of SR1 versus effective LET for running a checkerboard pattern at 2, 50, and 100 MHz. Data points with error bars and Weibull-fitting curves are displayed.



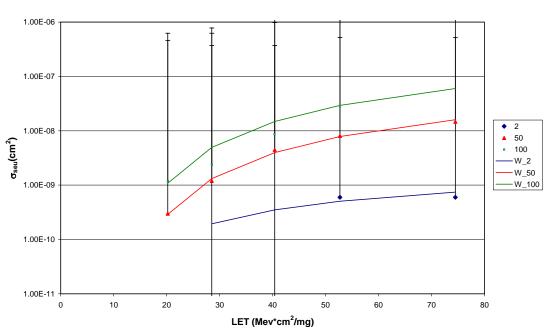

Effective LET vs. Normalized Cross Section (SR2)

Fig. 3 Plot showing SEU cross section ( $\sigma_{SEU}$ ) of SR2 versus effective LET for running a checkerboard pattern at 2, 50, and 100 MHz. Data points with error bars and Weibull-fitting curves are displayed.



Effective LET vs. Normalized Cross Section (SR3)

Fig. 4 Plot showing SEU cross section ( $\sigma_{SEU}$ ) of SR3 versus effective LET for running a checkerboard pattern at 2, 50, and 100 MHz. Data points with error bars and Weibull-fitting curves are displayed.



# Effective LET vs. Normalized Cross Section (SR5)

Fig. 5 Plot showing SEU cross section ( $\sigma_{SEU}$ ) of SR5 versus effective LET for running a checkerboard pattern at 2, 50, and 100 MHz. Data points with error bars and Weibull-fitting curves are displayed.