RTAXS Single Event Effects Test Report

August 3, 2004

J.J. Wang
(650) 318-4576
jih-jong.wang@actel.com

SUMMARY

Prototype RTAXS devices were beam-tested at BNL and TAMU for single event effects (SEE), which include single event upset (SEU), single event functional interrupt (SEFI), single event latch-up (SEL) and single event dielectric rupture (SEDR). The key results are list below:

- The SEU-hardened TMR flip-flop (R-cell) meets the hardening target. The SEU rate per flip-flop at geostationary orbit for 100 mil aluminum shielding and solar-minimum environment is below 1.96×10^{-11} upsets/bit•day.
- There is no occurrence of SEFI in any test run.
- There is no occurrence of SEL in any test run. The maximum effective LET used at BNL is $104 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$, and the maximum effective LET used at TAMU is $84 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$.
- There is no occurrence of SEDR in any test run. The maximum LET used at BNL is $60 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$, and the maximum LET used at TAMU is $54 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$.

I. Test ObJective

This report combines the results of three heavy-ion-beam tests. The primary objective of these tests is to quantitatively characterize the SEE (single event effects) of the RTAXS product family. The SEE includes SEU (single event upset), SEFI (single event functional interrupt), SEL (single event latch-up) and SEDR (single event dielectric rupture). Particularly, the SEU cross-sections of the storage devices have to be obtained by the beam test. There are two storage devices in RTAXS product: the embedded RAM is reported in another separate report; the testing and analysis of the SEU-hardened TMR flip-flop in the logic module are described in this report.

II. DEVICE UndER TEST

The devices under test (DUT) are separated into three groups by three separate heavy-ion-beam tests: Group A is made of samples from the first prototype (revision A) device, and this group is tested at BNL; Group B is made of samples from the revised prototype (revision B) device, also tested at BNL; Group C is also made of samples from the revision B prototype, and this group is tested at TAMU. For SEE point of view, revision A and revision B prototypes are practically the same, and they are treated as the same in this report. Table I lists the DUT parameters for each testing group.

Table I. DUT Parameters

	Group A	Group B	Group C
Device	RTAX2000S	RTAX2000S	RTAX1000S
Package	CQFP352	CQFP352	CQFP352
Foundry	UMC	UMC	UMC
Technology	$0.15 \mu \mathrm{~m}$ CMOS	$0.15 \mu \mathrm{~m} \mathrm{CMOS}$	$0.15 \mu \mathrm{~m} \mathrm{CMOS}$
Die Size	$18.3 \mathrm{~mm} \times 16.9 \mathrm{~mm}$	$18.3 \mathrm{~mm} \times 16.9 \mathrm{~mm}$	$14.4 \mathrm{~mm} \times 13.3 \mathrm{~mm}$
Die Lot Number	Rev A prototype	Rev B prototype	Rev B prototype
Date Code	NA	NA	NA
Quantity Tested	2	4	3
Serial Number	307,315	$\# 1, \# 2, \# 3, \# 4$	$35475,35546,35551$
IO Configuration	$3.3 V$ PCI	3.3 V PCI	3.3 V PCI
Design	TMRAXS	TMRAXS	TMRAXS

III. Test Methods

This test generally follows the guidelines of two SEE testing standards: ASTM standard F1192M-95, "Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation on Semiconductor Devices," and JEDEC standard JESD57, "Test Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy Ion Irradiation."

Specifically, the SEU cross-section is obtained by measuring the in-flux upsets in two shift registers; the SEFI is monitored by the functionality of the shift registers; the SEL and SEDR are tested by measuring the in-flux power supply currents.

A. Irradiation

Group-A and Group-B testing use the Tandem Van de Graaff beam source at Brookhaven National Laboratory; Group-C testing uses the Cyclotron beam source at Texas A\&M University. The irradiation details for each run are listed in Table II, III, and IV.

B. Test Logic Design

The test logic design, called TMRAXS, composes of two shift registers, SH1 and SH2; each shift register has 100 stages (flip-flops), and each stage is made of one R-cell. Thus the upsets in these registers can be directly translated into the upsets in R-cells, and the SEU cross-section of the R-cell for a specific LET can be calculated.

C. Experimental Setup and Procedure

Figure 1 shows the block diagram of the testing system. A PC (personal computer) commands the communication between an IO-counter card, which is plugged in a PCI slot on the motherboard, and a DUT board. The IO initiates the operation by starting the generator in the control chip to generate the clock and signal patterns. The signals passing the DUT and a control path are checked in the comparator; the generated errors are fed back into a counter on the IO-counter card. A heavy-ion beam of 1" diameter irradiates only the DUT chip on the DUT board. The communication between the IO-counter and DUT board is through RS422 interfaces.

The data generator generates " 1 ", " 0 ", or checkerboard patterns. The checkerboard pattern is used for detecting SEU because it toggles every flip-flop at the clock edge and it also can detect the "clock" upset. An HP6629 power supply unit is used to monitor the in-flux current for SEL and SEDR detection. This power supply communicates with the PC through a GPIB interface so that the in-flux power supply current is recorded throughout the testing. For the worst case scenario, the power supply voltage is 10% under nominal for SEU testing and 10% over nominal for SEL and SEDR testing.

Figure 1 Block diagram showing the measurement of upset-errors

IV. RESULTS AND DISCUSSIONS

A. Test Data

Tables II, III and IV list the Group-A, Group-B and Group-C test data respectively. Key results are:

1. Upsets for each run to the fluence of $10^{7} \mathrm{Ions} / \mathrm{cm}^{2}$ are low, even for high LETs.
2. The upsets at 0° roll and 90° roll is approximately the same. As shown in Figure 2, the TMR flip-flop has three sub-flip-flops stacked vertically. Rolling 90° and tilting will enhance the possibility of the TMR flipflop upset by ion striking two sub-flip-flops the same time. The distance between the sub-flip-flops is designed to avoid this upset mechanism, which is consistent with the testing result.

Figure 2 Simplified drawings showing the relative position of the sub-flip-flops in the TMR flip-flop with respect to the roll and tilt angles.
3. Several runs in Group C show the multiple upsets symptom, indicating the possibility of clock upset; particularly run 12 in Group C shows a burst of 28 errors in SH2. However, this error-burst case could not be reproduced by repeating test runs. Since these suspected multiple-upsets are occurred at a very high LET of $62.8 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$, the impact to the upset rate in the standard GEO environment is negligible.
4. There is no occurrence of SEFI in any run.
5. There is no occurrence of SEL in any run.
6. There is no occurrence of SEDR in any run.

Table II. Group-A Test Data

BNL	DUT	Bias (V)	Ion	LET	Tilt	Flux	Fluence			Comments
Run	DUT	$\mathrm{V}_{\mathrm{CCI}} / \mathrm{V}_{\mathrm{CCA}}$	Ion	$\left(\mathrm{MeV} \cdot \mathrm{~cm}^{2} / \mathrm{mg}\right)$	Tilt	$\text { (Ions } / \mathrm{cm}^{2} / \mathrm{s} \text {) }$	(Ions/cm ${ }^{2}$)	SR1	SR2	
298	307	3.3/1.5	Br-81	37.45	0	$2.37 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	$\mathrm{CB}, 2 \mathrm{MHz}$
299	307	3.3/1.5	Br-81	52.96	45	$2.44 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	1	CB, 2 MHz
300	307	3.3/1.5	Br-81	52.96	-45	$2.67 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	$\mathrm{CB}, 2 \mathrm{MHz}$
301	307	3.3/1.5	I-127	59.73	0	$1.78 \mathrm{E}+04$	$8.86 \mathrm{E}+06$	1	0	CB, 2 MHz
302	307	3.3/1.5	I-127	68.98	30	$1.59 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
303	307	3.3/1.5	I-127	84.48	45	$1.11 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	$\mathrm{CB}, 2 \mathrm{MHz}$
304	307	3.3/1.5	I-127	104.1	55	$8.99 \mathrm{E}+03$	$1.00 \mathrm{E}+07$	0	1	$\mathrm{CB}, 2 \mathrm{MHz}$
305	307	3.3/1.5	I-127	68.98	-30	$1.28 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
306	307	3.3/1.5	I-127	84.48	-45	$3.17 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	$\mathrm{CB}, 2 \mathrm{MHz}$
307	307	3.3/1.5	I-127	92.93	-50	$2.68 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB, 2 MHz
308	315	3.3/1.5	I-127	59.73	0	$4.38 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	$\mathrm{CB}, 2 \mathrm{MHz}$
309	315	3.3/1.5	I-127	68.98	30	$3.70 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
310	315	3.3/1.5	I-127	84.48	45	$2.53 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	2	0	CB, 2 MHz
311	315	3.3/1.5	I-127	104.1	55	$2.25 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB, 2 MHz
312	315	3.3/1.5	I-127	68.98	-30	$3.25 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	2	0	$\mathrm{CB}, 2 \mathrm{MHz}$
313	315	3.3/1.5	I-127	84.48	-45	$2.28 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB, 2 MHz
314	315	3.3/1.5	Ni-58	26.58	0	$4.14 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	$\mathrm{CB}, 2 \mathrm{MHz}$
315	315	3.3/1.5	Ni-58	30.69	30	$4.76 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
316	315	3.3/1.5	Ni-58	37.59	45	$3.66 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
317	315	3.3/1.5	Ni-58	30.7	-30	$5.05 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	CB, 2 MHz
318	315	3.3/1.5	Ni-58	37.59	-45	$4.34 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
319	307	3.3/1.5	Ni-58	26.58	0	$3.56 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB, 2 MHz
320	307	3.3/1.5	Ni-58	30.69	30	$4.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
321	307	3.3/1.5	Ni-58	37.59	45	$3.40 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	$\mathrm{CB}, 2 \mathrm{MHz}$
322	307	3.3/1.5	Ni-58	30.69	-30	$4.29 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	1	CB, 2 MHz
323	307	3.3/1.5	Ni-58	37.59	-45	$3.49 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$

Table III. Group-B Test Data

BNL Run	DUT	Bias (V)	Ion	LET	Tilt	Roll	Flux	$\begin{gathered} \text { Fluence } \\ \text { (Ions/ } / \mathrm{cm}^{2} \text {) } \end{gathered}$	Upsets		Comments
		$\mathrm{V}_{\mathrm{CCI}} / \mathrm{V}_{\mathrm{CCA}}$		$\left(\mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}\right)$	(Deg)	(Deg)	(Ions/ $\mathrm{cm}^{2} / \mathrm{s}$)		SH1	SH2	
100	\#1	3.3/1.5	Br-81	37.46	0	0	$1.97 \mathrm{E}+05$	$1.01 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
101	\#1	3.3/1.5	Br-81	37.46	0	0	$1.12 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	1	CB, 2 MHz
102	\#1	3.0/1.4	Br-81	37.46	0	0	$1.19 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
103	\#1	3.0/1.4	Br-81	52.98	45	0	$8.41 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	CB, 2MHz
104	\#1	3.0/1.4	Br-81	52.97	45	0	$8.11 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	CB, 2 MHz
105	\#2	3.0/1.4	Br-81	37.46	0	0	$6.28 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	CB, 2 MHz
106	\#2	3.0/1.4	Br-81	52.98	45	0	$3.18 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
107	\#2	3.0/1.4	Br-81	52.98	-45	0	$2.49 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	$\mathrm{CB}, 2 \mathrm{MHz}$
108	\#2	3.0/1.4	Br-81	37.46	0	-89.1	$2.71 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
109	\#2	3.0/1.4	Br-81	52.98	45	-89.1	$2.43 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	CB, 2 MHz
110	\#2	3.0/1.4	Br-81	52.98	-45	-89.1	$1.81 \mathrm{E}+04$	$6.52 \mathrm{E}+05$	NA	NA	Aborted
111	\#2	3.0/1.4	Br-81	52.98	-45	-89.1	$2.31 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB, 2 MHz
112	\#2	3.0/1.4	Br-81	43.25	-30	-89.1	$9.71 \mathrm{E}+04$	$1.01 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
113	\#2	3.0/1.4	Br-81	43.25	-30	-89.1	$9.59 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	CB, 2 MHz
114	\#2	3.0/1.4	Br-81	43.25	30	-89.1	$9.54 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB, 2MHz
115	\#3	3.0/1.4	Br-81	37.46	0	0	$1.10 \mathrm{E}+05$	$1.01 \mathrm{E}+07$	1	1	CB, 2 MHz
116	\#3	3.0/1.4	Br-81	37.46	0	0	$1.13 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
117	\#3	3.0/1.4	Br-81	43.25	30	0	$9.64 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	1	CB, 2 MHz
118	\#3	3.0/1.4	Br-81	43.25	30	0	$9.60 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	2	1	$\mathrm{CB}, 2 \mathrm{MHz}$
119	\#3	3.0/1.4	Br-81	43.25	30	0	$4.32 \mathrm{E}+04$	$9.98 \mathrm{E}+06$	2	1	$\mathrm{CB}, 2 \mathrm{MHz}$
120	\#3	3.0/1.4	Br-81	43.25	-30	0	$4.01 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	$\mathrm{CB}, 2 \mathrm{MHz}$
121	\#3	3.0/1.4	Br-81	52.98	45	0	$2.90 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB, 2MHz
122	\#3	3.0/1.4	Br-81	52.98	45	0	$2.85 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	CB, 2MHz
123	\#3	3.0/1.4	Br-81	52.98	-45	0	$3.10 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	$\mathrm{CB}, 2 \mathrm{MHz}$
124	\#3	3.0/1.4	Br-81	43.25	30	-89	$3.95 \mathrm{E}+04$	$9.95 \mathrm{E}+06$	1	0	CB, 2 MHz
125	\#3	3.0/1.4	Br-81	43.25	-30	-89	$4.11 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	2	0	CB, 2MHz
126	\#3	3.0/1.4	Br-81	52.98	-45	-89	$3.22 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
127	\#3	3.0/1.4	Br-81	52.98	45	-89	$3.19 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB, 2MHz
128	\#3	3.0/1.4	Br-81	52.98	45	-89	$3.01 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	One, 2 MHz
129	\#4	3.0/1.4	Br-81	37.46	0	0	$6.27 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	$\mathrm{CB}, 2 \mathrm{MHz}$
130	\#4	3.0/1.4	Br-81	43.25	30	0	$8.65 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
131	\#4	3.0/1.4	Br-81	52.98	45	0	$7.06 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	3	0	CB, 2MHz
132	\#4	3.0/1.4	Br-81	43.25	-30	0	$8.38 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
133	\#4	3.0/1.4	Br-81	52.97	-45	0	$6.82 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	1	$\mathrm{CB}, 2 \mathrm{MHz}$
134	\#4	3.0/1.4	I-127	59.72	0	0	$5.58 \mathrm{E}+04$	$9.54 \mathrm{E}+06$	2	1	$\mathrm{CB}, 2 \mathrm{MHz}$
135	\#4	3.0/1.4	I-127	68.96	30	0	$4.57 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	CB, 2 MHz
136	\#4	3.0/1.4	I-127	84.46	45	0	$3.49 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	3	CB, 2MHz
137	\#4	3.0/1.4	I-127	68.96	-30	0	$3.89 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	$\mathrm{CB}, 2 \mathrm{MHz}$
138	\#4	3.0/1.4	I-127	84.45	-45	0	$2.97 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	$\mathrm{CB}, 2 \mathrm{MHz}$
139	\#4	3.6/1.65	I-127	84.45	-45	0	$2.79 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	No SEL, No SEDR
140	\#4	3.6/1.65	I-127	84.46	45	0	$7.08 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	No SEL, No SEDR
141	\#4	3.6/1.65	I-127	104.1	55	0	$4.80 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	No SEL, No SEDR
142	\#4	3.6/1.65	I-127	104.1	-55	0	$4.75 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	No SEL, No SEDR
143	\#4	3.6/1.65	I-127	59.72	0	0	$7.74 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	No SEL, No SEDR
144	\#3	3.0/1.4	I-127	59.72	0	0	$6.91 \mathrm{E}+04$	$9.98 \mathrm{E}+06$	2	1	CB, 2MHz
145	\#3	3.0/1.4	I-127	68.96	30	0	$5.39 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
146	\#3	3.0/1.4	I-127	84.46	45	0	$4.12 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB, 2MHz
147	\#3	3.6/1.65	I-127	104.1	55	0	$3.30 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	No SEL, No SEDR
148	\#3	3.6/1.65	I-127	104.1	-55	0	$3.08 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	No SEL, No SEDR
149	\#3	3.6/1.65	I-127	104.1	-55	0	$2.81 \mathrm{E}+04$	$9.95 \mathrm{E}+06$	0	0	No SEL, No SEDR
150	\#3	3.6/1.65	I-127	59.72	0	0	$4.66 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	2	0	No SEL, No SEDR
151	\#2	3.0/1.4	I-127	59.72	0	0	$9.33 \mathrm{E}+04$	$1.01 \mathrm{E}+07$	2	0	CB, 2 MHz
152	\#2	3.0/1.4	I-127	68.96	30	0	$7.55 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	CB, 2MHz
153	\#2	3.0/1.4	I-127	84.46	45	0	$5.81 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB, 2 MHz
154	\#2	3.6/1.65	I-127	104.1	55	0	$4.07 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	No SEL, No SEDR
155	\#2	3.6/1.65	I-127	104.1	-55	0	$3.62 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	No SEL, No SEDR

156	\#2	3.6/1.65	I-127	59.72	0	0	$5.37 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	No SEL, No SEDR
157	\#1	3.0/1.4	I-127	59.72	0	0	$1.19 \mathrm{E}+05$	$9.95 \mathrm{E}+06$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
158	\#1	3.0/1.4	I-127	68.96	30	0	$1.01 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
159	\#1	3.0/1.4	I-127	84.45	45	0	$1.01 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
160	\#1	3.6/1.65	I-127	104.1	55	0	$2.48 \mathrm{E}+04$	$1.01 \mathrm{E}+07$	0	0	No SEL, No SEDR
161	\#1	3.6/1.65	I-127	104.1	-55	0	$4.25 \mathrm{E}+04$	$9.89 \mathrm{E}+06$	0	0	No SEL, No SEDR
162	\#1	3.6/1.65	I-127	59.72	0	0	$4.63 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	2	0	No SEL, No SEDR
163	\#1	3.0/1.4	Cl-35	11.73	0	0	$1.45 \mathrm{E}+05$	$1.01 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
164	\#1	3.0/1.4	Cl-35	13.54	30	0	$1.26 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
165	\#1	3.0/1.4	Cl-35	16.59	45	0	$1.02 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
166	\#1	3.0/1.4	Cl-35	13.54	-30	0	$1.26 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB, 2 MHz
167	\#1	3.0/1.4	Cl-35	16.59	-45	0	$1.02 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB, 2 MHz
168	\#1	3.0/1.4	Cl-35	13.54	30	-89	$1.25 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
169	\#1	3.0/1.4	Cl-35	16.59	45	-89	$1.01 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
170	\#2	3.0/1.4	Cl-35	11.73	0	0	$1.43 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
171	\#2	3.0/1.4	Cl-35	13.54	30	0	$1.24 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
172	\#2	3.0/1.4	Cl-35	16.59	45	0	$1.01 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	1	0	$\mathrm{CB}, 2 \mathrm{MHz}$
173	\#2	3.0/1.4	Cl-35	16.59	-45	0	$9.96 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB, 2 MHz
174	\#2	3.0/1.4	Cl-35	13.54	-30	0	$1.22 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	1	$\mathrm{CB}, 2 \mathrm{MHz}$
175	\#2	3.0/1.4	Cl-35	13.54	30	-89	$1.23 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
176	\#2	3.0/1.4	Cl-35	16.59	45	-89	$1.01 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
177	\#2	3.0/1.4	Cl-35	16.59	-45	-89	$1.01 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
178	\#2	3.0/1.4	Cl-35	13.54	-30	-89	$1.25 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB, 2 MHz
179	\#3	3.0/1.4	Cl-35	11.73	0	0	$1.45 \mathrm{E}+05$	$1.01 \mathrm{E}+07$	0	0	CB, 2 MHz
180	\#3	3.0/1.4	Cl-35	16.59	45	0	$1.03 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB, 2MHz
181	\#3	3.0/1.4	Cl-35	13.54	30	0	$1.26 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
183	\#4	3.0/1.4	Cl-35	16.59	45	0	$1.03 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
184	\#4	3.0/1.4	Cl-35	13.54	30	0	$1.28 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB, 2MHz
185	\#4	3.0/1.4	Cl-35	11.73	0	0	$1.47 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
186	\#4	3.0/1.4	Ni-58	26.58	0	0	$1.14 \mathrm{E}+05$	$1.06 \mathrm{E}+07$	0	0	CB, 2 MHz
187	\#4	3.0/1.4	Ni -58	30.69	30	0	$1.03 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
188	\#4	3.0/1.4	Ni-58	37.59	45	0	$8.49 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
189	\#4	3.0/1.4	Ni-58	37.59	-45	0	$8.83 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	0	$\mathrm{CB}, 2 \mathrm{MHz}$
190	\#4	3.0/1.4	Ni-58	30.69	-30	0	$1.05 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	1	$\mathrm{CB}, 2 \mathrm{MHz}$
191	\#3	3.0/1.4	Ni-58	26.58	0	0	$1.32 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	1	0	CB, 2 MHz
192	\#3	3.0/1.4	Ni-58	30.69	30	0	$1.10 \mathrm{E}+05$	$9.99 \mathrm{E}+06$	0	0	CB, 2 MHz
193	\#3	3.0/1.4	Ni-58	30.69	-30	0	$1.07 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	1	1	CB, 2 MHz
194	\#2	3.0/1.4	Ni-58	30.69	-30	0	$1.11 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB, 2 MHz
195	\#2	3.0/1.4	Ni-58	26.58	0	0	$1.25 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB, 2MHz
196	\#2	3.0/1.4	Ni-58	30.69	30	0	$1.05 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	1	CB, 2MHz
197	\#2	3.0/1.4	Ni-58	30.69	30	0	$1.05 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$
198	\#1	3.0/1.4	Ni-58	30.69	-30	0	$6.16 \mathrm{E}+04$	$1.01 \mathrm{E}+07$	0	0	CB, 2 MHz
199	\#1	3.0/1.4	Ni-58	26.58	0	0	$7.24 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	$\mathrm{CB}, 2 \mathrm{MHz}$
200	\#1	3.0/1.4	Ni-58	30.69	30	0	$4.31 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	CB, 2 MHz
201	\#1	3.0/1.4	Ni-58	30.69	30	0	$3.89 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB, 2 MHz
202	\#1	3.0/1.4	Ni-58	26.58	0	0	$3.60 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	$\mathrm{CB}, 2 \mathrm{MHz}$

Table IV. Group-C Test Data

$\begin{aligned} & \text { TAMU } \\ & \text { Run } \end{aligned}$	DUT	Bias (V)	Ion	$\overline{\text { LET }}$	Tilt	Flux	Fluence (Ions/cm ${ }^{2}$)	Upset		Comments
		$\mathrm{V}_{\mathrm{CCI}} / \mathrm{V}_{\text {CCA }}$		$\left(\mathrm{MeV} \cdot \mathrm{~cm}^{2} / \mathrm{mg}\right)$		$\text { (Ions } / \mathrm{cm}^{2} / \mathrm{s} \text {) }$		SH1	SH2	
1	35546	3.3/1.5	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	1	0	zero pattern 2 MHz
2	35546	3.3/1.35	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	1	0	CB 2MHz
3	35546	3.0/1.35	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 2MHz
4	35546	3.6/1.7	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 2MHz
5	35546	3.6/1.7	Ag	62.8	45	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	2	2	CB 2MHz
6	35546	3.6/1.7	Ag	69	50	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 2MHz
7	35546	3.0/1.35	Ag	69	50	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	1	1	CB 2MHz
8	35546	3.0/1.35	Ag	62.8	45	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 2MHz
9	35546	3.0/1.35	Ag	51.3	30	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	1	0	CB 2MHz
10	35546	3.0/1.35	Ag	51.3	30	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 500 kHz
11	35546	3.0/1.35	Ag	51.3	30	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 100 kHz
12	35546	3.0/1.35	Ag	62.8	45	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	1	28	CB 100 kHz , clock upset?
13	35546	3.0/1.35	Ag	62.8	45	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	1	1	CB 100 kHz , clock upset?
14	35475	3.0/1.35	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	Zero 2MHz
15	35475	3.0/1.35	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 2MHz
16	35475	3.6/1.7	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	2	CB 2MHz
17	35475	3.6/1.7	Ag	62.8	45	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 2MHz
18	35475	3.0/1.35	Ag	62.8	45	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 2MHz
19	35475	3.0/1.35	Ag	62.8	45	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 100 kHz
20	35475	3.0/1.35	Ag	51.3	30	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 100 kHz
21	35475	3.0/1.35	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 100kHz
22	35551	3.0/1.35	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	Zero 100 kHz
23	35551	3.0/1.35	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 100 kHz
24	35551	3.6/1.7	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 100 kHz
25	35551	3.6/1.7	Ag	62.8	45	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 100 kHz
26	35551	3.6/1.7	Ag	62.8	45	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 100kHz
27	35551	3.0/1.35	Ag	62.8	45	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 100kHz
28	35551	3.0/1.35	Ag	62.8	45	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	1	1	CB 2MHz, clock upset?
29	35551	3.6/1.7	Ag	62.8	45	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 2 MHz
30	35551	3.6/1.7	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	1	0	CB 2MHz
31	35551	3.0/1.35	Ag	44.4	0	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	0	0	CB 2MHz
63	35475	3.0/1.35	Xe	54	0	$6.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	1	1	CB 2MHz
64	35475	3.0/1.35	Xe	54	0	$6.00 \mathrm{E}+04$	$6.00 \mathrm{E}+06$	0	0	CB 2MHz
65	35475	3.6/1.7	Xe	54	0	$6.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB 2 MHz
66	35475	3.6/1.7	Xe	76.4	45	$6.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB 2MHz
67	35475	3.0/1.35	Xe	76.4	45	$6.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	CB 2MHz
68	35475	3.0/1.35	Xe	84	50	$6.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	CB 2MHz
69	35475	3.6/1.7	Xe	84	50	$6.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	CB 2MHz
70	35546	3.6/1.7	Xe	54	0	$6.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	2	0	CB 2MHz
71	35546	3.0/1.35	Xe	54	0	$5.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	CB 2MHz
72	35546	3.0/1.35	Xe	84	50	$5.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB 2MHz
73	35546	3.6/1.7	Xe	84	50	$5.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	CB 2MHz
74	35551	3.6/1.7	Xe	54	0	$5.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	0	CB 2MHz
75	35551	3.6/1.7	Xe	84	50	$5.00 \mathrm{E}+04$	$1.00 \mathrm{E}+07$	0	1	CB 2MHz

B. Single Event Upset and Rate Prediction

Group-B test data acquired are used to obtain the SEU cross-section because this group has the most complete data. Figure 2 shows the cross-section per flip-flop calculated from the upsets measured for each specific LET. Each data point is the average upset of the four DUTs. The measured errors may include facility noises (e.g. mechanical noises). Nevertheless, all the measured errors are counted for a worst-case scenario. The Weibull-curve fit of these data obtains: $\mathrm{L}_{0}=10 \mathrm{MeV} \cdot \mathrm{cm} 2 / \mathrm{mg}$; width $=35 \mathrm{MeV} \cdot \mathrm{cm} 2 / \mathrm{mg}$; shape $=2$; saturation crosssection $=9 \times 10^{-10} \mathrm{~cm}^{2}$. The approximate device parameters for simulation are: active volume depth $=0.15 \mu \mathrm{~m}$, and funnel depth $=0.3 \mu \mathrm{~m}$. Using Space Radiation 4.5 simulator with Weibull and device parameters, the SEU rate at GEO for 100 mil Aluminum shielding and Solar minimum condition is obtained as 1.96×10^{-11} upsets/bit•day.

Group-A and Group-C test data are consistent with the above data. Group-C test data also includes upsets measured both at $100-\mathrm{kHz}$ and $2-\mathrm{MHz}$ clock speed. Except the outlier of Run 12, the $100-\mathrm{kHz}$ upsets are significantly less than the $2-\mathrm{MHz}$ upsets; this indicates that the measured upsets are mostly single-event-transient induced.

Figure 3 Group-B test data plotted as the SEU Cross-section of the TMR flip-flop with respect to the heavyion LET, each data point represents the average of four DUTs. The data point with an arrow pointed down-ward indicates the cross-section derived from test data is below this point. The curve is a Weibull fit for SEU rate predictions.

Figure 4 Group-A test data plotted as the SEU cross-section of the TMR flip-flop with respect to the heavy ion LET.

Figure 5 Group-C test data plotted as the SEU cross-section of the TMR flip-flop with respect to the heavy ion LET.

C. Single Event Latch-up

There is no occurrence of SEL in any Group-A, Group-B or Group-C test run. Table V lists the SEL testing limits for each test Group.

Table V SEL Testing Limits

	Group A	Group B	Group C
Facility	BNL	BNL	TAMU
$\mathrm{V}_{\mathrm{CCI}} / \mathrm{V}_{\mathrm{CCA}}$	$3.3 \mathrm{~V} / 1.5 \mathrm{~V}$	$3.6 \mathrm{~V} / 1.65 \mathrm{~V}$	$3.6 \mathrm{~V} / 1.7 \mathrm{~V}$
Temperature	Room	Room	Room
Max Effective LET $\left(\mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}\right)$	$104(320-\mathrm{MeV}$ Iodine tilted $\left.55^{\circ}\right)$	$104(320-\mathrm{MeV}$ Iodine tilted $\left.55^{\circ}\right)$	$84(1.253-\mathrm{GeV} \mathrm{Xe}$ tilted $\left.50^{\circ}\right)$
Quantity Tested	2	4	3

D. Single Event Dielectric Rupture

The signature of the occurrence of a SEDR is a permanent power-supply current jump. Based on previous experiences the resistance of the antifuse after SEDR is approximately $500-1000 \Omega$, so the current jump is 1.5 V $\left(\mathrm{V}_{\mathrm{CCA}}\right) / 500-1000 \Omega$, which is $3 \mathrm{~mA}-1.5 \mathrm{~mA}$. Since the antifuse can only be biased by $\mathrm{V}_{\text {CCA }}$, the in-flux $\mathrm{I}_{\mathrm{CCA}}$ is examined throughout the test run. Figures $5-8$ show the in-flux $I_{\text {CCA }}$ for the Group-B SEDR testing runs, and Figures $9-11$ show the in-flux $\mathrm{I}_{\mathrm{CCA}}$ for the Group-C SEDR testing runs. No signature permanent current jump is observed in any run. The maximum LET for Group-B testing is $60 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$ (Iodine), and for Group-C testing is $54 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}(\mathrm{Xe})$. The worst case for SEDR is with the ion beam perpendicular to the antifuse surface; an ion with small LET striking at a tilting angle cannot be used to simulate the effect of an ion-strike with a large LET. Since the antifuse surface is not completely perpendicular to the surface, tilting test runs with high LET ions are performed for completeness. The antifuse is between the top two layers of metal, so the penetration of heavy ions is not an issue.

Figure 6 Group-B DUT \#4 in-flux $\mathrm{I}_{\mathrm{CCA}}$ current, $\mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V}$. $\mathrm{I}_{\mathrm{CCA}}$ increases continuously because of total dose effect. $\mathrm{I}_{\mathrm{CCA}}$ also has small fluctuation but no significant jumps, which would be the signature of SEDR.

Figure 7 Group-B DUT \#3 in-flux $\mathrm{I}_{\mathrm{CCA}}$ current, $\mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V}$. $\mathrm{I}_{\mathrm{CCA}}$ increases continuously because of totaldose effect. $I_{\text {CCA }}$ also has small fluctuations but no significant permanent jumps, which would be the signature of SEDR.

Figure 8 Group-B DUT \#2 in-flux $\mathrm{I}_{\mathrm{CCA}}$ current, $\mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V}$. $\mathrm{I}_{\mathrm{CCA}}$ increases continuously because of totaldose effect. $\mathrm{I}_{\mathrm{CCA}}$ also has small fluctuations but no significant permanent jumps, which would be the signature of SEDR. Run- 156 has small temporary current-pulse of $\sim 0.5 \mathrm{~mA}$, which may due to charging/discharging effects.

Figure 9 Group-B DUT \#1 in-flux $\mathrm{I}_{\mathrm{CCA}}$ current, $\mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V}$. $\mathrm{I}_{\mathrm{CCA}}$ increases continuously because of totaldose effect. $\mathrm{I}_{\mathrm{CCA}}$ also has small fluctuations but no significant permanent jumps, which would be the signature of SEDR.

Figure 10 Group-C DUT 34475 in-flux $\mathrm{I}_{\mathrm{CCA}}$ current, $\mathrm{V}_{\mathrm{CCA}}=1.7 \mathrm{~V}$. $\mathrm{I}_{\mathrm{CCA}}$ increases continuously because of total-dose effect. $\mathrm{I}_{\mathrm{CCA}}$ also has small fluctuations but no significant permanent jumps, which would be the signature of SEDR.

Figure 11 Group-C DUT 35546 in-flux $\mathrm{I}_{\mathrm{CCA}}$ current, $\mathrm{V}_{\mathrm{CCA}}=1.7 \mathrm{~V}$. $\mathrm{I}_{\mathrm{CCA}}$ increases continuously because of total-dose effect. $\mathrm{I}_{\mathrm{CCA}}$ also has small fluctuations but no significant permanent jumps, which would be the signature of SEDR.

Figure 12 Group-C DUT 35551 in-flux $\mathrm{I}_{\mathrm{CCA}}$ current, $\mathrm{V}_{\mathrm{CCA}}=1.7 \mathrm{~V}$. $\mathrm{I}_{\mathrm{CCA}}$ increases continuously because of total-dose effect. $\mathrm{I}_{\mathrm{CCA}}$ also has small fluctuations but no significant permanent jumps, which would be the signature of SEDR.

