

RTAX-S TAMU Single Event Dielectric Rupture August 8, 2006

J.J. Wang and S. Rezgui (650) 318-4576 jih-jong.wang@actel.com

I. INTRODUCTION

Single event dielectric rupture (SEDR) was observed during a beam test on RTAX2000S devices. This phenomenon, although it has never been observed in any space-flight data, has been attributed to beam-induced antifuse rupture. The characteristics of the SEDR can be summarized as:

- 1. The SEDR event is identified by a small permanent jump in the core power supply current (I_{CCA}). Sometimes an I_{CCI} jump occurs simultaneously with an I_{CCA} jump. Since all the antifuses are biased by V_{CCA} only, the probable cause for this I_{CCI} jump is an induced current in the V_{CCI} -powered circuits due to an SEDR in the V_{CCA} -powered array.
- 2. The threshold LET is very high, in this case approximately 80 MeV•cm²/mg.
- 3. The DUT always continues to function after SEDR occurs.
- 4. In this case only one out of three DUT had SEDR occurring; and it occurred only at V_{CC} +10%.
- 5. The worst-case incidence angle is 90° , or 0° -tilt.

In this document, the rate of SEDR is estimated for the worst-case space environment. Due to the rarity of the event, it is considered more of an academic curiosity than a practical risk.

II. DUT AND BEAM TEST

The details of the beam test can be found in a report, "RTAXS TAMU Single Event Latch-up Test Report" dated July 12, 2006. This report is available for download from the Actel web site at <u>http://www.actel.com/documents/RTAX-S%20High%20Temp%20SEL.pdf</u>. Table I lists the DUT parameters; Table II lists the test log; and Fig. 1 to Fig. 18 shows the in-flux I_{CC} of each run. SEDR events are identified in Fig. 7 and Fig. 9.

III. RATE CALCULATION

Integral flux hitting on a flat antifuse at all angles

$$= \iint_{sphere-surface} F \bullet \cos\theta \bullet d\Omega$$

= $2 \bullet \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} F \bullet \sin\theta \bullet \cos\theta \bullet d\theta d\varphi$
= $2\pi \bullet F$ (ions•m⁻²•s⁻¹)

F is the space integral flux (ions•m⁻²•sr⁻¹•s⁻¹) that can be simulated by CREME96. Fig. 19 shows the plot of *F* versus LET in a typical environment: geosynchronous orbit, solar minimum activity, and 100-mil Al shielding. Use the worst-case scenario of Fig. 7: four (4) SEDR occurred for total fluence of 10^7 cm^{-2} . The integral flux (*F*) for LET $\geq 80 \text{ MeV} \cdot \text{cm}^2/\text{mg}$ (or 80,000 MeV•cm²/g in Fig. 19) is $1.5 \times 10^{-8} \text{ ions} \cdot \text{m}^{-2} \cdot \text{sr}^{-1} \cdot \text{s}^{-1}$. The SEDR rate (*R*) for an RTAX2000S device in this space environment is:

=
$$[4 \div 10^7 (\text{ions} \cdot \text{cm}^{-2})] \times 2\pi \times 1.5 \times 10^{-8} (\text{ions} \cdot \text{m}^{-2} \cdot \text{s}^{-1})$$

= $3.77 \times 10^{-18} \text{ s}^{-1}$
= $1.19 \times 10^{-10} \text{ yr}^{-1}$

So the mean time between SEDR events is approximately ten-billion years! Note that the majority, \cong 99%, of antifuses are not in the critical path; and an antifuse rupture will most likely contribute only a few mA of leakage current.

Several comments about the calculation:

1. The test design is a typical case for SEDR events. The reasons are: the number of unused antifuses is independent of the design because about 95% of antifuses are not used for any design; and always about half of the unused antifuses are biased at V_{CCA} and the other half biased at GND.

- 2. Ions with $LET \ge$ Threshold cause SEDR at any incident angles. This causes an over estimate of the rate; in other words, this makes the estimate conservative.
- Effective LET is not applicable. Ions with LET < Threshold but at an angle other than normal incidence do 3. not cause any SEDR because the normal incidence is the worst case.

Table I DU	JT parameters
Device	RTAX2000S
Package	CQ352
Foundry	UMC
Technology	0.15 μm CMOS
Die-Lot/Serial Number	D1L9R1: 73026
	D1KHN1: 79023, 79102
Quantity Tested	3
IO Configuration	LVTTL
Design	SR_1000_4P_70_sp1

			Quantity Tested					3					
			IO Configuration					LVTTL					
			Design					SR_1000_4P_70_sp1					
						T 11		-					
I adie II Test Log													
Run	DUT	Bias (V) V _{CCI} /V _{CCA}		Temp (°C)	Ion	LET MeV•cm ² /mg	Tilt	Flux Ions/cm ² /s	Fluence Ions/cm ²	File Name	Comments		
1	79023	3.7/1.7		125	Au	82.8	0	NA	NA	79023Au1	Run aborted		
2	79023	3.7/1.7		125	Au	82.8	0	8.71E+04	9.97E+06	79023Au2	Functional		
3	79023	3.3/1.5		125	Au	117.2	45	1.50E+05	9.97E+06	79023Au3	Functional		
4	79023	3.6/1.65		125	Au	117.2	45	1.67E+05	1.00E+07	79023Au4	Functional		
5	79023	3.	3/1.5	125	Au	82.8	0	1.73E+05	1.00E+07	79023Au5	Functional		
6	73026	3.	3/1.5	125	Au	82.8	0	1.14E+05	9.99E+06	73026Au1	Functional		
7	73026	3.0	6/1.65	125	Au	82.8	0	1.19E+05	9.96E+06	73026Au2	Functional		
8	73026	3.3/1.5		125	Au	117.2	45	1.21E+05	9.96E+06	73026Au3	Functional		
9	73026	3.0	6/1.65	125	Au	117.2	45	1.23E+05	1.00E+07	73026Au4	Functional		
10	79102	3.	3/1.5	125	Au	82.8	0	1.51E+05	1.00E+07	79102Au1	Functional		
11	79102	3.0	6/1.65	125	Au	82.8	0	1.42E+05	9.98E+06	79102Au2	Functional		
12	79102	3.	3/1.5	125	Au	117.2	45	1.18E+05	1.00E+07	79102Au3	Functional		
13	79102	3.0	6/1.65	125	Au	117.2	45	7.88E+04	9.99E+06	79102Au4	Functional		
14	79102	3.0	6/1.65	125	Xe	69.8	45	1.12E+05	9.97E+06	79102Xe1	Functional		
15	79102	3.6/1.65		125	Xe	49.3	0	1.12E+05	9.94E+06	79102Xe2	Functional		
16	73026	3.0	5/1.65	125	Xe	49.3	0	1.11E+05	1.00E+07	73026Xe1	Functional		
17	73026	3.0	5/1.65	125	Xe	69.8	45	1.04E+05	1.00E+07	73026Xe2	Functional		

0

45

1.05E+05

1.12E+04

9.96E+06

1.00E+07

79023Xe1

79023Xe2

Functional

Functional

18

19

79023

79023

3.6/1.65

3.6/1.65

125

125

Xe

Xe

49.3

69.8

Fig. 1 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT73026 irradiated by Au-ions with 0° tilt; effective LET = 82.8 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.3 V/1.5 V

Fig. 2 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT73026 irradiated by Au-ions with 0° tilt; effective LET = 82.8 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.6 V/1.65 V.

Fig. 3 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT73026 irradiated by Au-ions with 45° tilt; effective LET = 117.2 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.3 V/1.5 V.

Fig. 4 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT73026 irradiated by Au-ions with 45° tilt; effective LET = 117.2 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.6 V/1.65 V.

Fig. 5 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT73026 irradiated by Xe-ions with 0° tilt; effective LET = 49.3 MeV•cm²/mg; $V_{CCI}/V_{CCA} = 3.6 \text{ V}/1.65 \text{ V}.$

Fig. 6 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT73026 irradiated by Xe-ions with 45° tilt; effective LET = 69.8 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.6 V/1.65 V.

Fig. 7 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT79023 irradiated by Au-ions with 0° tilt; effective LET = 82.8 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.7 V/1.7 V.

Fig. 8 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT79023 irradiated by Au-ions with 45° tilt; effective LET = 117.2 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.3 V/1.5 V.

Fig. 9 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT79023 irradiated by Au-ions with 45° tilt; effective LET = 117.2 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.6 V/1.65 V.

Fig. 10 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT79023 irradiated by Au-ions with 0° tilt; effective LET = 82.8 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.3 V/1.5 V.

Fig. 11 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT79023 irradiated by Xe-ions with 0° tilt; effective LET = 49.3 MeV•cm²/mg; $V_{CCI}/V_{CCA} = 3.6 \text{ V}/1.65 \text{ V}.$

Fig. 12 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT79023 irradiated by Xe-ions with 45° tilt; effective LET = 69.8 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.6 V/1.65 V.

Fig. 13 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT79102 irradiated by Au-ions with 0° tilt; effective LET = 82.8 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.3 V/1.5 V.

Fig. 14 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT79102 irradiated by Au-ions with 0° tilt; effective LET = 82.8 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.6 V/1.65 V.

Fig. 15 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT79102 irradiated by Au-ions with 45° tilt; effective LET = 117.2 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.3 V/1.5 V.

Fig. 16 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT79102 irradiated by Au-ions with 45° tilt; effective LET = 117.2 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.6 V/1.65 V.

Fig. 17 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT79102 irradiated by Xe-ions with 0° tilt; effective LET = 49.3 MeV•cm²/mg; $V_{CCI}/V_{CCA} = 3.6 \text{ V}/1.65 \text{ V}.$

Fig. 18 Plot showing in-flux power supply currents (I_{CCI} and I_{CCA}) of DUT79102 irradiated by Xe-ions with 45° tilt; effective LET = 69.8 MeV•cm²/mg; V_{CCI}/V_{CCA} = 3.6 V/1.65 V.

Fig. 19 Plot showing CRÈME96-generated integral flux versus LET in an environment of: geosynchronous orbit, solar minimum, and 100 mil Al shielding.