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Introduction

This document describes the architecture and implementation of the 32-bit ARM® Cortex™-M1 
microprocessor developed by ARM specifically for use in FPGAs. Cortex-M1 has a three-stage pipeline 
and runs the ARMv6-M instruction set; it is essentially a functional subset of the Cortex-M3 processor. 
The streamlined Cortex-M1, developed for use in embedded applications, is designed to balance size 
and speed when implemented in an FPGA. 

Key Features
• 32-bit RISC architecture (ARMv6-M) 

• 32-bit AHB-Lite bus interface

• Three-stage pipeline 

• 32-bit ALU 

• 4-GB memory addressing range (the upper 0.5 GB is reserved) 

• Optional real-time debug unit

• JTAG interface

Benefits
• Fully implemented in FPGA fabric

• All microprocessor I/Os available to user

• No license fees or royalties

• Can run all existing Thumb® code 

• Upward-compatible with Cortex-M3 processor

Supported Microsemi SoC Products Group FPGA Families 
The Cortex-M1 version part number prefix is in parentheses.

• IGLOO® (M1AGL)

• IGLOOe (M1AGLE)

• ProASIC3L (M1A3PxxxxL)

• ProASIC®3 (M1A3P)

• ProASIC3E (M1A3PE)

• Fusion (M1AFS)
Revision 13 3



Introduction
Utilization and Performance 
Cortex-M1 can be implemented in several Microsemi FPGA devices. Table 1 gives typical utilization 
figures using standard synthesis tools. The Configuration column of Table 1 uses numbers to identify 
particular configurations of the core. Refer to Table 1-1 on page 8 for a description of each 
configuration.

Table 1 • Cortex-M1 Utilization and Performance Data 

Device Configuration Frequency (MHz)

Utilization

RAM Blocks Tiles

M1AFS250 028910 64.08 4 4411

M1AFS600 028910 63.86 4 4411

028911 62.83 4 7491

M1AFS1500 028910 59.94 4 4411

028911 61.74 4 7491

134820 45.93 28 7465

134821 47.34 28 10881

M1AGL250V2 028910 26.59 4 4411

M1AGL250V5 028910 43.49 4 4411

M1AGL600V2 028910 25.43 4 4411

028911 25.11 4 7491

M1AGL600V5 028910 42.47 4 4411

028911 40.45 4 7491

M1AGL1000V2 028910 25.81 4 4411

028911 25.46 4 7491

M1AGL1000V5 028910 42.36 4 4411

028911 42.65 4 7491

M1AGLE3000V2 028910 25.82 4 4411

028911 25.36 4 7491

M1AGLE3000V5 028910 41.29 4 4411

028911 40.65 4 7491

M1A3P250 028910 66.08 4 4411

M1A3P400 028910 61.63 4 4411

028911 58.89 4 7491

M1A3P600 028910 66.90 4 4411

028911 63.47 4 7491

Notes:

1. See Table 1-1 on page 8 for a description of the numbers in the Configuration column.

2. All frequency values are measured at commercial operating range conditions.
4 Revision 13
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Utilization of Global Nets
Cortex-M1 configurations that do not include debug logic use two global clock nets within the FPGA for 
the following signals:

• HCLK

• SYSRESETn

Cortex-M1 configurations that do include debug logic use four global clock nets within the FPGA for the 
following signals:

• HCLK

• SYSRESETn

• SWCLKTCK

• DBGRESETn

Layout Constraints
Microsemi's SmartDesign tool should be used to instantiate and configure Cortex-M1.

If you configure Cortex-M1 to enable debugging via the UJTAG macro (which is the necessary 
configuration when debugging with Microsemi's SoftConsole tool), it is good practice to ensure that low 
skew routing is used for the clock signal output from the UJTAG macro. You may also wish to use low 
skew routing for the reset signal from the UJTAG macro, but this is a less critical signal. Debugging via 
UJTAG is enabled by selecting the Include debug check box and setting the Debug interface option to 
JTAG, using UJTAG macro in the Cortex-M1 configuration window.

The easiest way to ensure that low skew routing is used for the UJTAG clock signal is to select the 
Instantiate CLKINT buffer for UJTAG clock signal check box in the Cortex-M1 configuration window.

Alternatively, you may wish to leave the Instantiate CLKINT buffer for UJTAG clock signal check box 
cleared and instead use a PDC constraint file to ensure that low skew routing is used for the UJTAG 

M1A3P1000 028910 66.26 4 4411

028911 63.65 4 7491

M1A3PE1500 028910 65.61 4 4411

028911 63.80 4 7491

134820  46.35 28 7465

134821 48.38 28 10881

M1A3PE3000 028910 62.34 4 4411

028911 62.03 4 7491

M1A3P600L 028910 53.42 4 4411

028911 52.13 4 7491

M1A3P1000L 028910 55.09 4 4411

028911 52.68 4 7491

M1A3PE3000L 028910 51.03 4 4411

028911 50.76 4 7491

Table 1 • Cortex-M1 Utilization and Performance Data  (continued)

Device Configuration Frequency (MHz)

Utilization

RAM Blocks Tiles

Notes:

1. See Table 1-1 on page 8 for a description of the numbers in the Configuration column.

2. All frequency values are measured at commercial operating range conditions.
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Introduction
clock signal. For example, a constraint such as the following could be used to assign the UJTAG clock 
signal (UDRCK) to a quadrant clock net in the lower right (LR) quadrant of the device:

assign_quadrant_clock -net <hierarchical path to Cortex-M1 instance>/RS/UDRCK -quadrant 
LR

If your SmartDesign component is the top-level module in your design and you have accepted the default 
instance name of CortexM1Top_0 for Cortex-M1, the previous example PDC constraint will have the 
following form:

assign_quadrant_clock -net CortexM1Top_0/RS/UDRCK -quadrant LR

The PDC constraint to assign UDRCK to a global clock net would be:

assign_global_clock -net CortexM1Top_0/RS/UDRCK
6 Revision 13



1 – Cortex-M1 Overview

Cortex-M1 Processor
Cortex-M1 is a general purpose 32-bit microprocessor that offers high performance and small size in 
FPGAs. 

Cortex-M1 runs a subset of the Thumb-2 instruction set (ARMv6-M) that includes all base 16-bit Thumb 
instructions and a few Thumb-2 32-bit instructions (BL, MRS, MSR, ISB, DSB, and DMB). This enables 
writing very tight and efficient processor code, which is ideal for the limited memory typically found in 
deeply-embedded applications.

Figure 1-1 shows a block diagram of the Cortex-M1 processor available for use in Microsemi 
M1-enabled devices. The components within the blue box in this diagram are preconfigured 
and fixed for each available configuration of the core. These components are contained within 
a black box core data base (CDB) file which includes placement and routing information for 
these components. At the top level, there is an RTL wrapper surrounding the CDB and this 
contains reset synchronization logic and some debug related logic.

The main blocks in Cortex-M1 are shown in Figure 1-1 and include the processor core, the Nested 
Vectored Interrupt Controller (NVIC), the AHB interface, and the debug unit. The processor has 13 
general purpose 32-bit registers as well as a Link register (LR), a program counter (PC), a 
stack pointer (SP) and a Program Status register (xPSR). If the core has been configured with 
operating system (OS) extensions present, a second stack pointer is available for use. A 
dedicated memory interface is available for access to Instruction and Data Tightly Coupled 
Memories (ITCM and DTCM) when the core has been configured with non-zero-sized TCMs. 
Currently OS extensions and TCMs are not supported on the majority of Microsemi M1 
devices but are available when using an M1AFS1500 or M1A3PE1500 device. 

Figure 1-1 • Cortex-M1 Block Diagram
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Revision 13 7



Cortex-M1 Overview
The NVIC is closely coupled to the Cortex-M1 core to achieve low-latency interrupt processing. The 
processor state is automatically saved on interrupt entry and restored on interrupt exit, with no instruction 
overhead to simplify software development.

The 16-bit length of the Cortex-M1 Thumb instruction allows it to approach twice the code density of the 
standard 32-bit ARM code, while retaining most of the ARM performance advantages over a traditional 
16-bit processor that uses 16-bit registers. This is possible because Thumb code operates on the 32-bit 
register set in the processor. Thumb code is able to provide up to 65% of the code size of ARM, and 
160% of the performance of an equivalent ARM processor connected to a 16-bit memory system. 

Detailed information on the Cortex-M1 processor is contained in the Cortex-M1 Technical Reference 
Manual (TRM). This document is available on the ARM website (www.arm.com) and is also delivered 
with the core. Right-click on the core in the Libero Catalog pane and select Open documentation > 
CortexM1_TRM.pdf to open the document.

The information in the Cortex-M1 TRM applies to the level of hierarchy contained within the blue box 
shown in Figure 1-1 on page 7; that is, at the level of the black box CDB.

Cortex-M1 Configurations
Due to the fact that much of the logic in the Cortex-M1 is contained within the black box CDB, the extent 
of configurability available to the user is limited; essentially, canned configurations are presented for use. 
Currently, configurations which minimize the resource requirements of the core are available for each 
M1-enabled device. For the M1AFS1500 and M1A3PE1500 devices, a more fully featured configuration 
can be selected. In all cases the core can be configured to include or exclude debug logic. It is intended 
that, over time, more configurations will become available across a range of devices. Each configuration 
is assigned a unique number for ease of reference; Table 1-1 shows the available configurations along 
with the corresponding configuration numbers.

Table 1-1 • Cortex-M1 Configurations

Configuration 
Number Configuration Description

Devices on which 
Configuration is 

Available

028910 Little endian, 1 interrupt, small multiplier, OS extensions 
absent, 0 KB ITCM, 0 KB DTCM, debug logic not included

All M1-enabled devices

028911 Little endian, 1 interrupt, small multiplier, OS extensions 
absent, 0 KB ITCM, 0 KB DTCM, reduced debug with JTAG 
interface

All M1-enabled devices

134820 Little endian, 16 interrupts, normal multiplier, OS extensions 
present, 8 KB ITCM, 4 KB DTCM, debug logic not included

M1AFS1500, 
M1A3PE1500

134821 Little endian, 16 interrupts, normal multiplier, OS extensions 
present, 8 KB ITCM, 4 KB DTCM, reduced debug with JTAG 
interface

M1AFS1500, 
M1A3PE1500
8 Revision 13
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The configurations listed in the "Cortex-M1 Configurations" section on page 8 are relevant to the 
configuration of the logic within the black box CDB, which accounts for the majority of the Cortex-M1 
logic. There is also some configurability associated with the top-level RTL wrapper surrounding the CDB. 
A GUI configuration window is available for setting configuration options when working with Cortex-M1 
within SmartDesign. The configuration options chosen are used to select the appropriate CDB as well as 
to configure the top-level RTL wrapper. A screenshot of the configuration window is shown in Figure 1-2. 
For many of the options, tooltips will pop up when the mouse pointer hovers over the option. These 
tooltips provide more information on the options available and explain abbreviations used in the text of 
settings.

The Configuration option is used to select the major aspects of the processor configuration.

The ITCM aliasing out of reset option determines the reset or default values of the ITCMUAEN and 
ITCMLAEN bits of the Cortex-M1 Auxiliary Control register. (See the Cortex-M1 Technical Reference 
Manual for more details on the Auxiliary Control register.) Note that the Configuration and ITCM 
aliasing out of reset options may be interdependent and not every combination of settings may be valid. 
Small yellow warning triangles are displayed when an invalid combination has been selected. If you 

Figure 1-2 • M1 Configuration Window
Revision 13 9
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Cortex-M1 Overview
hover over a warning triangle with your mouse pointer, an information message will appear with an 
explanation of how to resolve the issue.

Select or clear the Include debug check box to include or exclude debug logic. Selecting Include debug 
enables the other debug related configuration options.

The Reset to debug logic (DBGRESETn) option is used to determine how the internal DBGRESETn 
signal is driven. This signal is used to reset some debug components that are clocked by HCLK. Ideally, 
Reset to debug logic (DBGRESETn) should be set to Driven by PORESETN input and a power-on 
reset signal should be connected to the PORESETN input. Alternatively, NSYSRESET can be used as 
the source for DBGRESETn by selecting Driven by NSYSRESET input, in which case PORESETN is 
not used. The advantage of using a power-on reset signal as the source for DBGRESETn is that this 
allows NSYSRESET to be asserted during a debug session without losing the debug connection to the 
processor. NSYSRESET will often be connected to an external reset push-button.

Set the Debug interface option to JTAG, using UJTAG macro when using Microsemi SoftConsole tool 
to debug your Cortex-M1 system. When debugging with SoftConsole, the dedicated JTAG pins of the 
device are used for the debug connection with the UJTAG macro used as a conduit between the 
dedicated on-chip JTAG controller and the FPGA fabric where the Cortex-M1 resides. Set Debug 
interface to JTAG, not using UJTAG macro when using a third party debugger such as ARM/Keil™ 
RealView® or the IAR Systems® Embedded Workbench for ARM (EWARM) tool. When the JTAG, not 
using UJTAG macro setting has been selected, the JTAG pins (TCK, TMS, TDI, TDO, and nTRST) 
should be routed to appropriate device pins, which will typically be connected to a debug header. When 
JTAG, using UJTAG macro has been selected, the JTAG pins must still be routed to the top level of your 
design, but in this case specific pin assignments are not required. Microsemi Designer tool will recognize 
that the UJTAG macro is in use and make use of the dedicated JTAG pins of the device for the Cortex-
M1 debug connection.

When Debug interface is set to JTAG, using UJTAG macro, two further check boxes are enabled for 
selecting whether or not to instantiate CLKINT buffers for the UJTAG clock and reset signals. 
Instantiating a CLKINT buffer is one way of ensuring that low skew routing is used for a signal. 
Alternatively, design constraints may be used to cause low skew routing to be used. See the "Layout 
Constraints" section on page 5 for more information on using PDC constraints to cause low skew routing 
to be used for UJTAG signals. It is good practice to use low skew routing for the UJTAG clock signal, but 
the use of low skew routing for the UJTAG reset signal is not as critical. 

Delivery and Deployment
Cortex-M1 is available through the Libero® Integrated Design Environment (IDE) IP Catalog. It can be 
downloaded from a remote web-based repository and installed into the user's local vault, ready for use. 
Once installed in Libero IDE, the core can be instantiated, configured, and generated within SmartDesign 
for inclusion in your Libero IDE project.

Cortex-M1 I/O Ports
Table 1-2 lists the ports of CortexM1Top, the top level of the core.

Table 1-2 • Cortex-M1 Port Descriptions 

Name Width Type Description

HCLK 1 Input Main processor clock

NSYSRESET 1 Input Active low system reset.

PORESETN 1 Input Active low power on reset. This input is only used when the Reset 
to debug logic (DBGRESETn) configuration option is set to 
Driven by PORESETN input.

HRESETn 1 Output Reset output to other components in the system

WDOGRES 1 Input "Bark" signal from watchdog

WDOGRESn 1 Output Reset signal to watchdog
10 Revision 13
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LOCKUP 1 Output Status output which, when asserted, indicates that the processor is 
in the lock-up state.

HALTED 1 Output Status output which, when asserted, indicates that the processor is 
in halting debug mode. This output is only functional when the core 
has been configured to include debug logic.

NMI 1 Input Non-maskable interrupt

IRQ0 1 Input External interrupt 0

IRQ1 to IRQ7 Input External interrupts 1 to 7. These are only functional when the core 
has been configured with 8 or more interrupts.

IRQ8 to IRQ15 Input External interrupts 8 to 15. These are only functional when the 
core has been configured with 16 or more interrupts.

IRQ16 to IRQ31 Input External interrupts 16 to 31. These are only functional when the 
core has been configured with 32 interrupts.

HADDR 32 Output AHB-Lite address bus

HBURST 3 Output AHB-Lite burst indication

HPROT 4 Output AHB-Lite protection control signals

HRDATA 32 Input AHB-lite read data bus

HREADY 1 Input AHB-Lite "bus ready" signal

HRESP 2 Input AHB-Lite response signal; indicates OKAY or ERROR status for 
each transfer on the bus.

HSIZE 3 Output AHB-Lite size indication; byte, halfword, word, for example.

HTRANS 2 Output AHB-Lite transfer type indication. Can be IDLE, BUSY, 
NONSEQUENTIAL, or SEQUENTIAL.

HWDATA 32 Output AHB-Lite write data bus

HWRITE 1 Output AHB-Lite transfer direction indication. High for a write transfer.

HMASTLOCK 1 Output AHB-Lite signal that indicates if a transfer is part of a locked 
sequence.

EDBGRQ 1 Input External debug request. This input is only functional when the core 
has been configured to include debug logic.

JTAGTOP 1 Output Indicates state of JTAG controller. This output is only functional 
when the core has been configured to include debug.

JTAGNSW 1 Output Indicates whether JTAG or Serial Wire (SW) based debug is in 
use. High = JTAG, low = SW. This output is only functional when 
the core has been configured to include debug.

SWDO 1 Output Serial data output. This output is only functional when the core has 
been configured to include debug.

SWDOEN 1 Output Active high serial data output enable. This output is only functional 
when the core has been configured to include debug.

nTDOEN 1 Output Active low output enable for JTAG TDO signal. This output is only 
functional when the core has been configured to include debug.

TCK 1 Input JTAG clock input. This input is only functional when the core has 
been configured to include debug.

Table 1-2 • Cortex-M1 Port Descriptions  (continued)
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nTRST 1 Input JTAG reset signal, active low. This input is only functional when the 
core has been configured to include debug.

TMS 1 Input JTAG test mode select. Also serves as serial data input when SW 
debug is in use. This input is only functional when the core has 
been configured to include debug.

TDI 1 Input JTAG data input. This input is only functional when the core has 
been configured to include debug.

TDO 1 Output JTAG data output. This output is only functional when the core has 
been configured to include debug.

Table 1-2 • Cortex-M1 Port Descriptions  (continued)
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2 – Interfaces

The Cortex-M1 processor has an external AHB-Lite interface that can be used to connect to other AMBA 
components. Internally a private peripheral bus (PPB) is used to facilitate communication between the 
processor core and the NVIC and debug blocks. When a processor configuration which includes TCMs 
has been selected, dedicated interfaces are available to provide fast, uncontended access to the ITCM 
and DTCM. 

External Interface
The external interface is an AMBA AHB-Lite bus interface. Descriptions of the bus signals are shown in 
Table 1-2 on page 10. Processor accesses and debug accesses to external AHB peripherals can occur 
over this bus interface. Because AHB fetches take two cycles longer than TCM fetches, instructions and 
data should ideally be contained in TCM where possible. 

Figure 2-1 shows the timing of a read without wait states on the external interface. The Address A0 is 
presented on HADDR one cycle later than the internal address is generated, and the returned data D0 is 
registered again before use in the processor. This enables the AHB peripherals sufficient time to use the 
address generated.  

Processor accesses and debug accesses share the external interface. Debug accesses take priority over 
processor accesses. Giving the highest priority to debug means that debug cannot be locked out by a 
continuously executing stream of core instructions. Timing of processor accesses might be changed by 
the presence of debug accesses. Debug accesses tend to be infrequent, so debug accesses generally 
do not have a major impact on processor accesses.

Any vendor-specific components with an AHB interface can populate this bus.

Unaligned accesses to this bus are not supported.

Write Buffer
To prevent bus wait cycles from stalling the processor during data stores, buffered stores to the external 
interfaces go through a one-entry write buffer. If the write buffer is full, subsequent accesses to the bus 

Figure 2-1 • AHB Read without Wait States
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stall until the write buffer has drained. The write buffer is only used if the bus waits for the data phase of 
the buffered store; otherwise the transaction is immediately completed on the bus.

The DMB and DSB instructions wait for the write buffer to drain before completing. If an interrupt arrives 
while DMB/DSB is waiting for the write buffer to drain, the processor returns to the opcode after the 
DMB/DSB, on completion of the interrupt. This is because interrupt processing is a so-called memory 
barrier operation. In other words, all reads and writes occurring before the interrupt appear to happen 
before the interrupt, so the DMB and DSB instructions must appear to have completed before the 
interrupt.

Tightly Coupled Memory (TCM) Interface
For processor configurations which include non zero sized TCMs, dedicated low latency memory 
interfaces are available for accessing ITCM and DTCM.

Because reads are speculatively fetched from TCMs, Device and Strongly-Ordered memory types such 
as FIFOs in TCM space are not supported. The processor does not support wait states for the memory 
interfaces. Figure 2-2 shows the signal timings for ITCM. The DTCM signal timings are the same as 
ITCM signal timings.  

The write address, WA0, and write data, WD0, are presented in the same cycle. The Read Address (RA) 
is presented in one cycle, and the memory generates the Read Data (RD) in the next cycle. The 
sequence that Figure 2-2 shows is only possible on ITCM, where the RA read is an instruction fetch, and 
WA1 write is the product of a store instruction. The WA0-RA sequence is possible on DTCM.

In situations where there is only one large RAM available, but the user wants to run from RAM (for 
example, the user is debugging code on an Microsemi Cortex-M1 Development Board), the RAM should 
be mapped to location 0x6000000. The user should download the program (via debugger) to this location 
and start execution from this point. The user’s software should be written/linked assuming this location 
during the debug stage. This is the only SRAM area in the memory map that supports both instruction 
fetches and data accesses. When the debugging has finished, the software needs to be rewritten and 
linked to assume the starting point of location 0x00000000.

Note: ITCM and DTCM are currently fixed at 0 memory size in the majority of Microsemi M1 devices. 
TCMs are supported on the M1AFS1500 and M1A3PE1500 devices.

Figure 2-2 • ITCM Signal Timings
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3 – Cortex-M1 Features

This section briefly outlines the main features of the Cortex-M1 processor. More detailed information is 
available in the Cortex-M1 Technical Reference Manual.

Programmer’s Model
The Cortex-M1 processor implements a subset of the Thumb-2 (ARMv7) architecture called ARMv6-M. 
This includes all of the 16-bit Thumb-2 instructions and some of the 32-bit instructions. The processor 
does not support ARM instructions.

The Thumb-2 (ARMv7) instruction set architecture (ISA) was developed by ARM for the Cortex family of 
processors. Offering increased efficiency and performance, the Thumb-2 ISA differs from previous ARM 
architectures in that it includes both 16- and 32-bit instructions. The previous 16-bit Thumb instruction set 
and 32-bit ARM instruction set were separate and had to be executed from different modes within the 
processor. The Thumb-2 ISA gives users all the advantages of the reduced code size of the 16-bit 
Thumb instructions and the higher performance of the 32-bit ARM instructions. This is achieved in a 
single ISA that can be executed without requiring any context switching within the processor, 
increasing the efficiency of the code as it executes and improving the performance and throughput of the 
Cortex family of processors. 

Processor Operating States
The Cortex-M1 processor has two operating states: 

• Thumb state – This is normal execution, running the set of 16-bit, halfword-aligned Thumb and 
Thumb-2 instructions; as well as the 32-bit BL, MRS, MSR, ISB, DSB, and DMB instructions.

• Debug state – This is the state when halting debug

Processor Operating Modes
The Cortex-M1 processor supports two modes of operation:

• Thread mode – Entered on Reset, and can be re-entered as the result of an exception return

• Handler mode – Entered as the result of an exception

Main Stack and Process Stack Access
Out of reset, all code uses the main stack with the processor in Thread mode. If the processor is 
configured with OS extensions present, a second (process) stack can be used in addition to 
the main stack. The stack pointer (R13) becomes a banked register when OS extensions are 
present.

Note: OS extensions are not supported on the majority of Microsemi M1 devices. OS extensions are 
supported on the M1AFS1500 and M1A3PE1500 devices.

Data Types
The processor supports the following data types:

• 32-bit words

• 16-bit halfwords

• 8-bit bytes

Note: Unless otherwise stated, the core can access all regions of the memory map, including the code 
region, with all data types. To support this, the system must support sub-word writes without 
corrupting neighboring bytes in that word (i.e., individual byte enables for writes).
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Registers
The processor has the following 32-bit registers (shown in Figure 3-1):

• 13 general purpose registers, R0–R12

• Stack Pointer (SP), R13

• Link Register (LR), R14

• Program Counter (PC), R15

• Program status registers, xPSR 

General Purpose Registers
The general purpose registers, R0–R12, have no architecture-specific uses.

• Low registers – Registers R0–R7 are accessible by all instructions that specify a general 
purpose register.

• High registers – Registers R8–R12 are accessible by some, but not all 16-bit instructions.

The R13, R14, and R15 registers have the following special functions:

• Stack pointer – Register R13 is used as the Stack Pointer (SP). Because the SP ignores writes 
to bits [1:0], it is auto-aligned to a word (four-byte) boundary. The stack pointer has banked 
aliases, SP_process and SP_main, when the processor has been configured with OS 
extensions present. When OS extensions are absent, only a single stack pointer, 
SP_main, is present.

• Link register – Register R14 is the subroutine Link Register (LR). The LR receives the return 
address from the Program Counter (PC) when a Branch and Link (BL) instruction is executed. 
The LR is also used for exception returns. At all other times, R14 can be treated as a general 
purpose register.

• Program counter – Register R15 is the Program Counter (PC). Bit [0] is always 0, so 
instructions are always aligned to 16-bit halfword (two-byte) boundaries.

Figure 3-1 • Cortex-M1 Register Set
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Special Purpose Program Status Registers (xPSR)
Processor status at the system level is broken into three categories and can be accessed as individual 
registers, a combination of any two of the three, or a combination of all three using the MRS and MSR 
instructions.

• Application PSR (APSR) – Contains the condition code flags. Before entering an exception, the 
processor saves the condition code flags on the stack. The APSR can be accessed with the MSR 
and MRS instructions.

• Interrupt PSR (IPSR) – Contains the Interrupt Service Routine (ISR) number of the current 
exception

• Execution PSR (EPSR) – Contains the Thumb state bit (T-bit). Unless the processor is in Debug 
state, the EPSR is not directly accessible and all fields read as zero using an MRS instruction. 
MSR instruction writes are ignored.

On entering an exception, the processor saves the combined information from the three status registers 
on the stack.

Special Purpose Priority Mask Register
Use the special purpose Priority Mask Register to boost execution priority. The special purpose Priority 
Mask Register can be accessed by using the MSR and MRS instructions. The CPS instruction to set or 
clear PRIMASK can also be accessed.

Special Purpose Control Register
The special purpose Control Register identifies the stack pointers usage.
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Memory Map
Cortex-M1 has a defined memory map with the various processor interfaces addressed by different 
memory map regions, as shown in Figure 3-2. The processor can access all regions within the memory 
map with the exception of the reserved regions. The reserved regions are Execute Never (XN) and 
instruction accesses are prevented by the processor hardware. The SRAM, Peripheral, External Device, 
and Private Peripheral Bus regions in the memory map are also XN. Instructions can be executed from 
the Code and External (not External Device) regions of the memory map. 

The processor views memory as a linear collection of bytes numbered in ascending order from 0. 

For example:

• Bytes 0–3 hold the first stored word

Figure 3-2 • Cortex-M1 Memory Map
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• Bytes 4–7 hold the second stored word

The processor can access data words in memory in little-endian format or big-endian format. 

In little-endian format, the byte with the lowest address in a word is the least significant byte of the word. 
The byte with the highest address in a word is the most significant. The byte at address 0 of the memory 
system connects to data lines 7–0.

In big-endian format, the byte with the lowest address in a word is the most significant byte of the word. 
The byte with the highest address in a word is the least significant. The byte at address 0 of the memory 
system connects to data lines 7–0.

Cortex-M1 always accesses code in little-endian format. Little-endian is the default memory format for 
ARM processors. The processor contains a configuration option that enables the user to select either the 
little-endian or big-endian format during implementation. Currently, only little-endian configurations of 
Cortex-M1 are supported on Microsemi devices.

Subsystem Restrictions
The fixed memory map of the Cortex-M1 places certain restrictions on the processor subsystem.

The Code region encompasses two CoreAHB/CoreAHBLite 256 MB slots (0 and 1). If the Data region of 
the memory map is being mapped to a device (RAM, for example), this must be mapped to AHB slot 2 or 
3.

1. If the user has internal or external RAM mapped to the Data space and is using non-zero DTCM, 
there will be a wasted area of external RAM. If the user wishes to use non-zero DTCM, the 
external SRAM should be mapped up to the second SRAM space (0x60000000 and above).

2. Similarly, if the user wishes to run from internal or external SRAM, with non-zero ITCM, this 
SRAM should be mapped to 0x60000000 and above. The RAM would be wasted if SRAM were 
remapped to location zero after boot.

3. If the user wishes to run from NVM, with non-zero ITCM, NVM can be left at location 0x00000000. 
ITCM can be filled from NVM after reset and the ITCM then remapped to 0x00000000 using the 
Auxiliary Control register. From then on instruction fetches in the ITCM range would go to the 
ITCM, and instruction fetches above this space (but still within Code space) would go to NVM.

Exceptions
The processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. 
All exceptions are handled in Handler mode. The processor state is automatically stored to the stack on 
an exception, and automatically restored from the stack at the end of the exception handler Interrupt 
Service Routine (ISR). The following features enable efficient, low-latency exception handling:

• Automatic state saving and restoring. The processor pushes state registers on the stack before 
entering the ISR, and pops them after exiting the ISR with no instruction overhead. 

• Automatic reading of the vector table entry that contains the ISR address in code memory or data 
SRAM

• Closely-coupled interface between the processor and the NVIC to enable early processing of 
interrupts and processing of late-arriving interrupts with higher priority

• One configurable interrupt

• Separate stacks for Handler and Thread modes if OS extensions are implemented

• ISR control transfer using the calling conventions of the C/C++ standard, Procedure Call 
Standard for the ARM Architecture (PCSAA)

• Priority masking to support critical regions
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Exception Types
The types of exceptions supported in Cortex-M1 are listed in Table 3-1. A fault is an exception that 
results from an error condition. Faults can be reported synchronously or asynchronously to the 
instruction that caused them. In general, faults are reported synchronously. Faults caused by writes over 
the bus are asynchronous faults. A synchronous fault is always reported with the instruction that caused 
the fault. An asynchronous fault may vary in how it is reported with respect to the instruction that caused 
the fault. 

Exception Priority
In the processor exception model, priority determines when and how the processor handles exceptions. 
Software priority levels can be assigned to interrupts.

The NVIC supports software-assigned priority levels. A priority level from 0 (highest) to 3 (lowest) can be 
assigned to an interrupt by writing to the two-bit IP_N field in an Interrupt Priority Register. Hardware 
priority ranges from –3 (highest), to 3 (lowest). By default, external interrupts have a hardware priority of 
3, but hardware priority decreases with increasing interrupt number. The programmable priority level 
overrides the hardware priority. For example, IRQ(4) would have a default priority lower than IRQ(2), but 
if IRQ(4) is assigned a software priority of 1 and IRQ(2) is assigned 0, then IRQ(2) has priority over 
IRQ(4).

Table 3-1 • Cortex-M1 Exceptions

Position
Exception 

Type Priority Description Activated

– – – Stack top is loaded from first entry of vector table 
on reset.

–

1 Reset –3 (highest) Invoked on power-up and warm reset. On first 
instruction, drops to lowest priority. Thread mode.

Asynchronous

2 Non-
maskable 
Interrupt

–2 Cannot be marked, prevented by activation, by 
any other exception. Cannot be preempted by 
any other exception other than Reset.

Asynchronous

3 Hard Fault –1 All classes of Fault Synchronous 
or 

asynchronous

4–10 – – Reserved. –

11 SVCall Configurable System service call with SVC instruction. Synchronous

12–13 – – Reserved –

14 PendSV Configurable Pendable request for system service. This is only 
pended by software.

Asynchronous

15 SysTick Configurable System tick timer has fired. Asynchronous

16–48 External 
Interrupt

Configurable Asserted from outside the processor, IRQ[2n-1:0], 
and fed through the NVIC (prioritized).

Asynchronous
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Servicing an Exception
When the processor invokes an exception, it automatically pushes the following eight registers in two 
stages to the stack in the following order:

1. Processor Status Register (xPSR)

2. ReturnAddress ()

3. Link Register (LR)

4. R12

5. R3

6. R2

7. R1

8. R0

The SP is decremented by eight words on the completion of the stack push.Figure 3-3 shows the 
contents of the stack after an exception preempts the current program flow. 

When the processor services an exception, it takes the following steps before it enters the exception 
service routine.

1. It pushes 8 registers: xPSR, ReturnAddress (), R0, R1, R2, R3, R12, and LR on the selected 
stack

2. It reads the vector from the appropriate vector table entry, for example: (0x0) + 
(exception_number *4). This vector table read is done after all eight registers in the previous step 
are pushed onto the stack.

3. On Reset only, SP_main is updated from the first entry in the vector table. Other exceptions do 
not modify SP_main at this time and in this manner.

4. Updates PC with vector table read location. No other late-arriving exceptions can be processed 
until the first instruction of the exception starts to execute.

5. LR is set to EXC_RETURN to exit from the exception.

Figure 3-3 • Stack Contents from an Exception
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Figure 3-4 shows a timing example of an exception entry without wait states. 

After returning from the exception, the processor automatically pops the eight registers from the stack. 
The interrupt return value, EXC_RETURN, passes as a data field in the LR, so exception functions can 
be normal C/C++ functions and do not require a veneer.

Nested Vectored Interrupt Controller
The NVIC facilitates low-latency exception and interrupt handling and implements System Control 
Registers. The NVIC supports reprioritizable interrupts. The NVIC and the processor core interface are 
closely coupled, which enables low-latency interrupt processing and efficient processing of late arriving 
interrupts. The NVIC registers are listed in Table 3-2 and can only be accessed using word transfers. Any 
attempt to write a halfword or byte individually causes corruption of the register bits. All NVIC registers 
and system debug registers are little-endian regardless of the endianness state of the processor. 

The processor supports both level and pulse interrupts. A level interrupt is held asserted until it is cleared 
by the ISR accessing the device. A pulse interrupt is a variant of an edge model. The edge must be 
sampled on the rising edge of the processor clock (HCLK) instead of being asynchronous.

Figure 3-4 • Exception Entry Without Wait States
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Table 3-2 • Cortex-M1 NVIC Registers

Name of Register Type Address Reset Value

Irq 0 to 31 Set Enable Register R/W 0xE000E100 0x00000000

Irq to 31 Clear Enable Register R/W 0xE000E180 0x00000000

Irq to 31 Set Pending Register R/W 0xE000E200 0x00000000

Irq to 31 Clear Pending Register R/W 0xE000E280 0x00000000

Priority 0 Register R/W 0xE000E400 0x00000000

Priority 1 Register R/W 0xE000E404 0x00000000

Priority 2 Register R/W 0xE000E408 0x00000000

Priority 3 Register R/W 0xE000E40C 0x00000000

Priority 4 Register R/W 0xE000E410 0x00000000

Priority 5 Register R/W 0xE000E414 0x00000000

Priority 6 Register R/W 0xE000E418 0x00000000

Priority 7 Register R/W 0xE000E41C 0x00000000
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For level interrupts, if the signal is not deasserted before the return from the interrupt routine, the 
interrupt remains pending and re-activates. This is particularly useful for FIFO and buffer-based devices 
because it ensures that they drain either by a single ISR or by repeated invocations, with no extra work. 
This means that the device continues to assert the signal until the device is empty.

A pulse interrupt must be asserted for at least one HCLK cycle to enable the NVIC to latch the pending 
bit.

A pulse interrupt can be reasserted during the ISR so that the interrupt can be pending and active at the 
same time. If this occurs, the application design must ensure that a second pulse does not arrive before 
the first pulse is activated. The second pulse cannot set the pending bit and would have no effect, 
because the interrupt is already pending. However, if the interrupt is activated for at least one cycle, the 
NVIC latches the pending bit. After the ISR activates, the pending bit is cleared. After the bit is cleared if 
the interrupt is asserted again while it is activated, it can latch the pending bit again.

Note: The number of external interrupts is currently fixed at 1 in the majority of Microsemi M1 devices. A 
processor configuration with 16 external interrupts is available for the M1AFS1500 and 
M1A3PE1500 devices.

Clocking and Resets

Clocks 
HCLK is the main clock input and clocks the majority of the logic in the processor. When debug logic is 
included the TCK input is used to clock logic in the debug access port. TCK is not functional when debug 
logic is excluded. HCLK is also used for clocking some debug components when these are present.

Resets
Within the CortexM1Top level of hierarchy (see Figure 1-1 on page 7) a reset synchronization block takes 
in a number of reset signals and produces several reset outputs. The synchronization block ensures that 
resets which may assert asynchronously are deasserted synchronous to the clock domain to which they 
are relevant.

NSYSRESET is the main reset input. A power-on reset input, PORESETN, is functional when the core is 
appropriately configured. Set the Reset to debug logic (DBGRESETn) configuration option to Driven 
by PORESETN input if you have a power-on reset signal available in your system. Alternatively, you can 
set this option to Driven by NSYSRESET input if no power-on reset is available. This latter setting is 
less desirable because it means that if NSYSRESET (which is typically connected to a push-button 
reset) is asserted during a debug session, then the debug connection will be lost as some of the debug 
logic will be reset. If you have chosen not to include debug logic, the setting chosen for the Reset to 
debug logic (DBGRESETn) option is of no consequence.

WDOGRES and WDOGRESn ports are provided to facilitate support of a watchdog type component 
such as CoreWatchdog. WDOGRES is the "bark" signal from the watchdog and WDOGRESn is a reset 
output to the watchdog.

When debug logic is included, the nTRST reset input is functional and is used to reset logic clocked by 
TCK within the debug port.

The following paragraphs describe the reset outputs from the reset synchronization block and detail the 
reset sources for each reset output.

HRESETn
HRESETn internally drives the SYSRESETn input of the processor core and is also an output from the 
top level for use as a synchronized reset to other components in the design clocked by HCLK. HRESETn 
is asserted whenever any of the following signals assert:

• NSYSRESET (external push-button reset)

• PORESETN (power-on reset signal)

• SYSRESETREQ (reset request signal from processor core)

• WDOGRES (bark signal from watchdog, if present in the processor subsystem)
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DBGRESETn
DBGRESETn resets debug logic which is clocked by HCLK and the source of its assertion is dependent 
on the setting chosen for the Reset to debug logic (DBGRESETn) option. When this option is set to 
Driven by NSYSRESET input, DBGRESETn is asserted when NSYSRESET is asserted. When this 
option is set to Driven by PORESETN input, DBGRESETn is asserted when PORESETN is asserted.

WDOGRESn 
WDOGRESn is a reset output suitable for connection to a watchdog component such as CoreWatchdog. 
WDOGRESn is asserted when any of the following signals assert:

• NSYSRESET (external push button reset)

• PORESETN (power-on reset signal)

• SYSRESETREQ (reset request signal from processor core)

Buffering of Clocks and Resets
Buffers are included within the CortexM1Top level of hierarchy to ensure that low skew routing resources 
are used for clock and reset signals. One important exception to this is the HCLK signal. HCLK is not 
buffered within the core; you must ensure that the signal driving the HCLK input to the core is driven by a 
CLKINT buffer. 
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4 – Software Development

SoftConsole is the free-of-charge Microsemi software development environment that allows quick turn-
around for C and C++ based projects targeting Cortex-M1 and other processor-based platforms available 
for use in Microsemi devices. SoftConsole allows users to create a project and transparently manages all 
compilation stages in order to generate a binary file ready to be used with the Cortex-M1 processor. 
SoftConsole includes a fully integrated debugger that offers easy access to memory contents, registers, 
and single-instruction execution. Programs developed with SoftConsole can be debugged on a target 
board or in the tool's simulator using the same uniform interface.

SoftConsole provides a flexible and easy-to-use graphical user interface for managing your software 
development projects. The tool gives you the ability to quickly develop and debug software programs and 
to implement them in Microsemi devices. SoftConsole enables users to edit and debug software 
programs, organize files, and configure settings in a project. This tool provides simultaneous access to 
multiple tool windows and the ability to quickly switch editing, debug, and synchronization views.

The compilation tools can be used to build C or C++ programs. The following tools are included in 
SoftConsole:

• SoftConsole Eclipse-based IDE

• GCC Compiler

• GDB Debugger

• Support for program download and debug with FlashPro3

There are other tools available from ARM and third-party companies that can be purchased, including the 
RealView Development Suite, RealView Microcontroller Development Kit, and embedded workbench 
tools from IAR. The RealView and IAR tools feature compilers that offer a higher level of efficiency than 
the GCC compiler included in SoftConsole. If higher code density is required for an application than what 
can be achieved using GNU, Microsemi recommends that one of these other tools be purchased and 
used.





5 – Cortex-M1 Design Entry Flow

Libero IDE automatically manages Cortex-M1 through the tool flow when it is instantiated in a 
SmartDesign project system design. The design can consist of only the Cortex-M1 itself or it can include 
a range of subsystem and higher-level IP blocks. The overall flow is shown in Figure 5-1.  

Figure 5-1 • Cortex-M1 Design Entry Flow
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Cortex-M1 Design Entry Flow
Use SmartDesign to create a Cortex-M1 based system. The external AHB-Lite interface of Cortex-M1 
should be used to master an instance of CoreAHBLite through which the processor can communicate 
with a range of other AMBA components. The SmartDesign Auto Connect feature can be used to make 
many of the required connections in a system after you have selected the necessary components and 
instantiated these on the SmartDesign canvas. A screenshot of an example Cortex-M1 system created in 
SmartDesign is shown in Figure 5-2 on page 28.

Cortex-M1 Security
The majority of the Cortex-M1 core is contained within a black box CDB file that allows users to access 
the top level I/O and use the core in Microsemi M1 devices, but not view the contents of the black box. 
The black box cannot be unlocked and can only be programmed into an Microsemi M1 device. The CDB 
file includes placement and routing information meaning that the location of the processor is fixed within 
the FPGA fabric of the target device. Timing shells are included as part of the Cortex-M1 delivery from 
Microsemi to model the timing at the interface of the CDB. These timing shells are automatically handled 
by the tools in the Libero IDE and their use is transparent to the Cortex-M1 user.

Figure 5-2 • Cortex-M1 System
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6 – Bus Functional Model (BFM)

During the development of an FPGA-based SoC, various stages of testing can be performed. This may 
involve some or all of the following approaches:

• Hardware simulation, using Verilog or VHDL 

• Software simulation, using a host-based instruction set simulator (ISS) of the processor

• Hardware and software co-verification, using a full functional model of the processor in Verilog or 
VHDL form, or using a tool such as Seamless

Due to the rapid prototyping capability of FPGAs, integration of hardware and software often occurs 
earlier in the development cycle than it would for ASIC targets. Therefore, hardware and software co-
verification (which can be very slow) are not as critical an issue for most FPGA-based system-level 
designs.

SmartDesign provides a means for stitching together IP blocks to create a system. When this system is 
generated within SmartDesign, a system testbench is also created to aid simulation of the design. In the 
case of a Cortex-M1 based system, a bus functional model (BFM) of the processor is generated by 
SmartDesign for use during simulation. Essentially this BFM takes the place of the Cortex-M1 black box 
during simulation as the black box is not amenable to simulation. SmartDesign also creates script files for 
controlling the BFM.

This section describes the following aspects of Cortex-M1 BFM:

• Functionality

• BFM usage flow

• BFM script language

• Platforms

• Supported simulation tools

• Example BFM use case
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Bus Functional Model (BFM)
BFM Usage Flow
The BFM is part of an overall system test strategy, so it is helpful to look at the context in which it is used. 
Figure 6-1 shows the various components within a typical system-level testbench.  

In Figure 6-1 it is assumed that the processor subsystem has been specified by selecting the processor, 
bus fabric, IP blocks, and the memory system using SmartDesign.

Based on the bus connections made, SmartDesign can build up a memory map for the Cortex-M1 
system. SmartDesign will generate the following outputs:

• Verilog/VHDL model of SoC subsystem

• Verilog/VHDL models of IP cores

• Cortex-M1 BFM

• BFM test script

• System-level skeleton testbench

The BFM acts as a pin-for-pin replacement for the Cortex-M1 in the project system. It initiates cycle-
accurate bus transactions on the native Cortex-M1 bus. It has no knowledge, however, of real Cortex-M1 
instructions.

At this point, the BFM may be used to run a basic test of the system, using the skeleton system with the 
BFM script serving as stimulus for the simulation. This script does a write to and/or read from 

Figure 6-1 • BFM Simulation Environment
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all accessible locations. It has knowledge of whether registers are read-only, read/write, clear-
on-read, or write-only. From this it can decide what the expected data should be on reads.

The system Verilog/VHDL can be edited to add new design blocks in the above diagram. The system-
level testbench can be edited to include tasks that test any newly added functionality, or for adding stubs 
to allow more complex system testing involving the IP cores. The BFM input scripts may also be 
manually enhanced, so that you can test access to register locations in newly added logic. In this way, 
stimuli can be provided to the system from the inside (via the Cortex-M1 BFM), as well as from the 
outside (via testbench tasks).

Functionality
This section describes the specific functionality of the Cortex-M1 BFM. The BFM models transactions on 
the external (AHB-Lite) bus of Cortex-M1. 

Cortex-M1 Pin Compatibility
The BFM model is pin-for-pin compatible with the Cortex-M1. This allows the model to be dropped into 
the space that would be occupied by the processor core in the system testbench.

Cortex-M1 Bus Cycle Accuracy
The bus cycle timings for the Cortex-M1 external bus signals are specified in the Cortex-M1 Technical 
Reference Manual. The Cortex-M1 BFM models these bus cycles exactly.

Scripting
In order to provide a simple and extensible mechanism for providing stimuli to the BFM, a BFM scripting 
language is defined (see "BFM Script Language" on page 31). This allows initiating writes to system 
resources, reads from system resources (with or without checking of expected data), and waiting for 
interrupt events.

Self-Checking
The BFM gives a pass/fail indication at the end of a test run. This is based on whether or not any of the 
expected data read checks failed.

Endianness
The BFM supports both big and little-endian memory configurations. For byte and halfword transfers, it 
reads and writes data from/to the appropriate data lanes.

Interrupt Support
The BFM has the ability to wait for the Cortex-M1 interrupt lines to be triggered before proceeding with 
the remainder of the test script.

Log File Generation
The BFM generates output messages to the console of the simulation tool, and also generates an HTML 
log file. The messages in this file are color-coded so that any errors can be easily identified.

BFM Script Language
The following script commands are defined for use by the BFM:

Write
The write command causes the BFM to perform a write to a specified offset, within the memory map 
range of a specified system resource.
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Syntax
write width resource_name byte_offset data;

Width
This takes on the enumerated values of W, H or B, for word, halfword, or byte respectively.

resource_name
This is a string containing the user-friendly instance name of the resource being accessed.

byte_offset
This is the offset from the base of the resource, in bytes. It is specified as a hexadecimal value.

Data
This is the data to be written. It is specified as a hexadecimal value. 

Example
write W videoCodec 20 11223344;

Read
The read command causes the BFM to perform a read of a specified offset, within the memory map 
range of a specified system resource.

Syntax
read width resource_name byte_offset;

Width
:This takes on the enumerated values of W, H or B, for word, halfword, or byte respectively.

resource_name
This is a string containing the user-friendly instance name of the resource being accessed.

byte_offset
This is the offset from the base of the resource, in bytes. It is specified as a hexadecimal value.

Example
read W videoCodec 20;
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Readcheck
The readcheck command causes the BFM to perform a read of a specified offset, within the memory map 
range of a specified system resource and to compare the read value with the expected value provided.

Syntax
readcheck width resource_name byte_offset data;

Width
This takes on the enumerated values of W, H or B, for word, halfword, or byte respectively.

resource_name
This is a string containing the user-friendly instance name of the resource being accessed.

byte_offset
This is the offset from the base of the resource, in bytes. It is specified as a hexadecimal value.

Data
This is the expected read data. It is specified as a hexadecimal value.

Example
readcheck W videoCodec 20 11223344;

poll
This command continuously reads a specified location until a requested value is obtained. This 
command allows one or more bits of the read data to be masked out. This allows, for example, poll 
waiting for a ready bit to be set, while ignoring the values of the other bits in the location being read.

Syntax
poll width resource_name byte_offset data_bitmask;

width
This takes on the enumerated values of W, H, or B, for word, halfword, or byte.

resource_name
This is a string containing the user-friendly instance name of the resource being accessed.

byte_offset
This is the offset from the base of the resource, in bytes. It is specified as a hexadecimal value.

bitmask
The bitmask is ANDed with the read data and the result is then compared to the bitmask itself. If equal, 
then all the bits of interest are at their required value and the poll command is complete. If not equal, then 
the polling continues.

wait
This command causes the BFM script to stall for a specified number of clock periods.

Syntax
wait num_clock_ticks;

num_clock_ticks
This is the number of Cortex-M1 clock periods, during which the BFM stalls (doesn't initiate any bus 
transactions).

Timing Shell
A timing shell is provided for each Cortex-M1 variant wrapped around the BFM itself. The BFM is bus 
cycle accurate and performs setup/hold checks to model output propagation delays. 
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Example BFM Use Case
This section goes through an example use case of the Cortex-M1 BFM. In this system, the developer 
requires two additional Microsemi IP cores: the Core10/100 and the CoreUART.

SPIRIT IP-XACT Attributes
SmartDesign has access to a database of Microsemi IP cores and a list of attributes for each core. These 
attributes are organized according to the SPIRIT IP-XACT specification in XML. For example, in the case 
of the CoreUART, the attributes would indicate that there are three registers, as shown in Table . 

Based on these attributes, SmartDesign can determine when generating the BFM script that there are 
three locations corresponding to the UART, which may be accessed. In this case, none of the registers 
are RW, so there will not be any self-checking that can be performed for the UART. Nevertheless, the bus 
transactions do take place and the cycles can be viewed in a waveform of the simulator.

Automatic BFM Script
After generating a design in SmartDesign, a BFM script is available. This would look similar to the 
following:

read B uart 0;
write B uart 4 bb;
read B uart 8;
write B mac 30 11;
readcheck B mac 11;

Run BFM
The developer may run the BFM with the automatic script, or edit the script to put in bus transactions 
to/from any new logic that has been added to the SoC. For example, transactions to/from the registers in 
a new block could be added.

The skeleton system-level testbench, generated by SmartDesign can also be modified to add some 
external resources (for example, models of SSRAM and FLASH) and some high-level tasks.

When running the system simulation, messages appear in the console window of the simulation tool:

# read B uart 0;
Reading offset 0 of uart – data = 0x1c
# write B uart 4 bb;
Writing 0xbb to offset 4 of uart
# read B uart 8;
Reading offset 8 of uart – data = 0x28
# write B mac 30 11;
Writing 0x11 to offset 30 of mac
# readcheck B mac 11;
Reading offset 0 of mac 
Error: Expected data = 0x11, Actual data = 0x22
Test Failed, with 1 error

Table 6-1 • SPIRIT IP-XACT Attributes

Offset Register Read/Write Width

0 UART Status Register R Byte

1 UART Tx Data W Byte

2 UART Rx Data R Byte
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7 – Debug

The ARM Debug Architecture uses a protocol converter box to allow the debugger to talk via a JTAG port 
directly to the core. 

About Debug
Debug facilitates the following:

• Core halt

• Core stepping

• Core register access

• Read/Write to TCMs

• Read/Write to AHB address space

• Breakpoints

• Watchpoints

The main debug components are as follows:

• Debug control registers to access and control debugging of the core

• BreakPoint Unit (BPU) to implement breakpoints

• Data Watchpoint (DW) unit to implement watchpoints and trigger resources

• Debug memory interfaces to access external ITCM and DTCM

• ROM table

All debug components exist on the internal Private Peripheral Bus (PPB), 0xE000ED30 to 0xE000EEFF. 
Access to the debug components, debug control, and configuration are only available when the debug 
extension is present. You can never access the debug components from the processor, even when 
debug is present.

Debug control and data access occur through the Advanced High-Performance Bus-Access Port 
(AHB-AP). 

Access includes the following:

• The AHB-PPB. Through this bus, the debugger can access debug, including the following:

– debug control

– DW unit

– BPU unit

– The ROM Table

• The AHB address space. The AHB slaves in the debug system always expect 32-bit AHB 
transfers. If a byte or halfword access is created from the DAP, the transfer is extended to a 32-bit 
access and all 32 bits in the register are accessed. Figure 1-1 on page 7 shows an overview of 
how the debug system interacts with the rest of the processor.
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JTAG Debug Interface
The Microsemi FlashPro3 programmer, which is used to program the FPGA and debug the Cortex-M1 
core using SoftConsole, uses a standard 10-pin JTAG interface, shown in Figure 7-1. Other debuggers, 
including those in the RealView and IAR tools, use a 20-pin, 2.54 mm pitch IDC connector (Figure 7-2 on 
page 36). The cable can be used to mate with a keyed box header on the target.  

The signals on the 10-pin JTAG interface are shown in Table 7-1.  

Figure 7-1 • JTAG 10-Pin Connector Pinout

Table 7-1 • JTAG 10-Pin Connector Signals 

Signal Description

VPUMP 3.3 V Programming voltage

GND Signal reference

TCK JTAG clock

TDI JTAG data input to device

TDO JTAG data output from device

TMS JTAG mode select

nTRST Programmable output pin may be set to Off, Toggle, Low, or High Level

VJTAG Reference voltage from the target board

N/C Programmer does not connect to this pin

Figure 7-2 • JTAG 20-Pin Connector Pinout
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The signals on the 20-pin JTAG interface are shown in Table 7-2.  

Table 7-2 • JTAG 20-Pin Connector Signals

Signal I/O Description 

DBGACK – This pin is connected in the RealView ICE run control unit, but is not 
supported in the current release of the software. It is reserved for compatibility 
with other equipment to be used as a debug acknowledge signal from the 
target system. Microsemi recommends pulling this signal LOW on the target. 

DBGRQ – This pin is connected in the RealView ICE run control unit, but is not 
supported in the current release of the software. It is reserved for compatibility 
with other equipment, to be used as a debug request signal to the target 
system. This signal is tied LOW. When applicable, RealView ICE uses the 
core's scanchain 2 to put the core in debug state. Microsemi recommends 
pulling this signal LOW on the target. 

GND – Ground

nSRST Input/
output 

Open collector output from RealView ICE to the target system reset. This is 
also an input to RealView ICE so that a reset initiated on the target can be 
reported to the debugger. This pin must be pulled HIGH on the target to avoid 
unintentional resets when there is no connection. 

nTRST Output Open collector output from RealView ICE to the Reset signal on the target 
JTAG port. This pin must be pulled HIGH on the target to avoid unintentional 
resets when there is no connection. 

RTCK Input Return Test Clock signal from the target JTAG port to RealView ICE. Some 
targets must synchronize the JTAG inputs to internal clocks. To assist in 
meeting this requirement, a returned, and retimed, TCK can be used to 
dynamically control the TCK rate. RealView ICE provides Adaptive Clock 
Timing, which waits for TCK changes to be echoed correctly before making 
further changes. Targets that do not have to process TCK can simply ground 
this pin. 

TCK Output Test Clock signal from RealView ICE to the target JTAG port. Microsemi 
recommends pulling this pin LOW on the target. 

TDI Output Test Data In signal from RealView ICE to the target JTAG port. Microsemi 
recommends pulling this pin HIGH on the target. 

TDO Input Test Data Out from the target JTAG port to RealView ICE. Microsemi 
recommends pulling this pin HIGH on the target. 

TMS Output Test Mode signal from RealView ICE to the target JTAG port. This pin must be 
pulled HIGH on the target to avoid adverse effects from any spurious TCKs 
when there is no connection.

VSUPPLY Input This pin is not connected in the RealView ICE run control unit. It is reserved 
for compatibility with other equipment to be used as a power feed from the 
target system. 

VTREF Input This is the target reference voltage. It indicates that the target has power, and 
It must be at least 0.628 V. VTREF is normally fed from VDD on the target 
hardware and might have a series resistor (though this is not recommended). 
There is a 10 kB pull-down resistor on VTREF in RealView ICE. 
Revision 13 37



Debug
JTAGTOP
JTAGTOP (JTAG TAP Operation) indicates the state/operation of the JTAG TAP controller state machine 
contained within the debug access port of the Cortex-M1 processor.

When JTAGTOP is asserted, it implies that the TAP controller is in one of the following four states:

1. Test Logic Reset

2. Run Test/Idle

3. Select DR Scan

4. Select IR Scan

When JTAGTOP is de-asserted, it implies that the TAP controller is in a state other than the four listed 
above. There are 12 other possible states like Capture DR, Shift DR, Capture IR, Shift IR etc. JTAGTOP 
indicates the level of activity of the JTAG port. In other words, JTAGTOP signal indicates the internal 
state of the JTAG TAP controller. This indication of state will be valid whether the debug port is active or 
not. However, when the debug port is inactive, it is likely that JTAGTOP will be asserted since the state 
machine will probably be in one of the four states listed above.

The purpose of the JTAGTOP signal is to allow reuse of the TDI and TDO ports for other signals when 
possible. When the JTAG TAP controller is in one of the four states listed above, the TDI and TDO 
signals are not in use and so other signals could be multiplexed on these ports at these times, while 
JTAGTOP used to control the multiplexers. In truth, it's probably unlikely that a user would want to make 
use of the JTAGTOP signal in one of our devices since there will normally be a substantial number of 
I/Os available for use on the device. It's also true to say that even where a user did want to make use of 
JTAGTOP, this could really be done only when the "Debug interface" configuration option is set to "JTAG, 
not using UJTAG macro". 

JTAGTOP is really intended for use when the processor core is used in a dedicated microcontroller type 
device where pins are likely to be at a premium and it may be very beneficial to be able to reuse some of 
the debug pins in certain circumstances. As already mentioned, this is less of an issue in our devices 
since there is more scope to assign pins as needed. ARM cores often provide another output, named 
JTAGNSW, which indicates whether the debug access port is operating in JTAG or Serial Wire mode. In 
Serial Wire mode, only two external pins are required; one for a clock signal and one for bi-directional 
data. Typically the SW pins are overlaid on the JTAG pins and so, similar to the JTAGTOP signal, the 
JTAGNSW signal can be used to indicate when it is possible to reuse some of the (unused) JTAG pins 
for other purposes. At present, only JTAG based debug is supported in our releases of the Cortex-M1 
and so the JTAGNSW signal does not feature.
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8 – AC Parameters

This section gives the AC timing parameters of the Cortex-M1 black box across all M1-enabled devices. 
These numbers describe the timing at the ports of the black box; that is, the logic contained within the 
CDB file. The AC parameters are valid for v3.1 of Cortex-M1, operating under worst-case commercial 
conditions. In the following tables. all times are in nanoseconds. 

Note: All AC parameters are measured at commercial range operating conditions.

The parameter definitions are as follows:

• PERIOD is the minimum supported period of the clock signal specified.

• SETUP is the minimum time for which the specified input signal must be valid before the rising 
edge of the specified clock.

• HOLD is the minimum time for which the specified input signal must remain valid after the rising 
edge of the specified clock.

• CLOCK2OUT is the maximum propagation delay from the rising edge of the specified clock to the 
specified output signal to be guaranteed valid.

The AC parameters are shown in Table 8-1 on page 40 through Table 8-6 on page 45.
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AC P

Tabl

Para

A3P600 M1A3P1000 M1A3P1000

28911 028910 028911

PER 15.755 15.093 15.711

PER 11.928 15.093 12.548

SET 5.462 1.594 5.73

SET 6.757 5.262 6.654

SET 6.461 4.661 5.816

SET 3.692 1.889 4.121

SET 3.23 3.124 2.565

SET 0.235 0.286 0.239

CLO 5.657 3.588 6.056

CLO 5.248 2.366 4.908

CLO 4.902 1.234 4.838

CLO 6.619 4.892 6.66

CLO 3.719 3.012 4.606

CLO 4.712 2.511 4.694

CLO 3.889 2.434 3.08

CLO 2.588 1.912 1.899

SET -0.137 – -0.272

SET 0.279 – 0.262

CLO 4.573 – 3.253

SET 0.252 – 0.255

SET 3.419 – 4.112

SET 3.128 – 4.273

SET 2.53 – 3.901

CLO 3.006 – 3.309

CLO 1.072 – 1.173

CLO 1.155 – 1.174
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e 8-1 • AC Parameters for Cortex-M1 Black Box on ProASIC3 Devices

meter Clock Signal

Device/Configuration

M1A3P250 M1A3P400 M1A3P400 M1A3P600 M1

028910 028910 028911 028910 0

IOD HCLK – 15.133 16.226 16.982 14.948

IOD SWCLKTCK – 15.133 16.226 16.228 14.948

UP HCLK HRDATA 2.305 1.574 5.625 1.649

UP HCLK HREADY 5.146 5.861 7.415 5.123

UP HCLK HRESP 4.597 5.518 6.644 4.513

UP HCLK IRQ 2.138 1.726 4.469 1.395

UP HCLK NMI 3.995 3.028 2.831 4.145

UP HCLK SYSRESETn 0.277 0.29 0.294 0.264

CK2OUT HCLK HADDR 2.942 3.709 6.191 2.882

CK2OUT HCLK HPROT 2.567 2.445 4.727 3.095

CK2OUT HCLK HSIZE 1.136 1.133 4.741 1.203

CK2OUT HCLK HTRANS 4.836 5.741 6.783 4.915

CK2OUT HCLK HWDATA 2.882 2.622 3.852 3.098

CK2OUT HCLK HWRITE 2.414 2.456 4.607 2.536

CK2OUT HCLK LOCKUP 3.24 2.722 3.831 2.71

CK2OUT HCLK SYSRESETREQ 1.772 1.797 3.383 1.791

UP HCLK EDBGRQ – – -0.149 –

UP HCLK DBGRESETn – – 0.267 –

CK2OUT HCLK HALTED – – 4.769 –

UP SWCLKTCK DBGRESETn – – 0.267 –

UP SWCLKTCK SWDITMS – – 2.941 –

UP SWCLKTCK TDI – – 2.64 –

UP SWCLKTCK nTRST – – 3.155 –

CK2OUT SWCLKTCK JTAGTOP – – 2.887 –

CK2OUT SWCLKTCK TDO – – 1.103 –

CK2OUT SWCLKTCK nTDOEN – – 1.111 –
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Tabl

Para

ion

E1500 M1A3PE3000 M1A3PE3000

821 028910 028911

PER 71 16.042 16.121

PER 04 16.042 15.77

SET 23 1.412 5.027

SET 26 5.558 6.487

SET 77 4.481 5.948

SET 17 1.278 3.773

SET 92 2.532 2.092

SET 4 0.268 0.25

CLO 1 4.133 5.778

CLO 77 2.852 4.85

CLO 02 1.789 5.264

CLO 44 5.686 7.133

CLO 59 3.38 4.834

CLO 27 3.067 5.483

CLO 38 3.322 3.645

CLO 23 2.595 2.368

SET 08 – –0.726

SET 72 – 0.277

CLO 5 – 3.488

SET 12 – 0.308

SET 26 – 5.532

SET 8 – 3.061

SET 5 – 2.849

CLO 03 – 4.882

CLO 29 – 1.64

CLO 11 – 1.658
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e 8-2 • AC Parameters for Cortex-M1 Black Box on ProASIC3E Devices

meter Clock Signal

Device/Configurat

M1A3PE1500 M1A3PE1500 M1A3PE1500 M1A3P

028910 028911 134820 134

IOD HCLK – 15.242 15.674 21.573 20.6

IOD SWCLKTCK – 15.242 15.808 21.573 12.9

UP HCLK HRDATA 1.123 4.735 1.588 6.0

UP HCLK HREADY 5.545 6.7 5.265 6.6

UP HCLK HRESP 5.106 6.412 4.938 7.6

UP HCLK IRQ 1.134 4.044 4.962 4.1

UP HCLK NMI 2.815 3.379 2.623 2.8

UP HCLK SYSRESETn 0.27 0.242 0.249 0.2

CK2OUT HCLK HADDR 3.593 5.326 3.339 5.1

CK2OUT HCLK HPROT 2.487 4.599 2.683 4.3

CK2OUT HCLK HSIZE 1.378 4.954 1.425 4.4

CK2OUT HCLK HTRANS 5.272 6.555 4.792 6.4

CK2OUT HCLK HWDATA 3.392 3.604 3.707 5.7

CK2OUT HCLK HWRITE 3.663 4.441 2.785 4.7

CK2OUT HCLK LOCKUP 2.863 3.852 2.912 3.1

CK2OUT HCLK SYSRESETREQ 2.084 3.072 2.067 2.0

UP HCLK EDBGRQ – –0.427 – –0.4

UP HCLK DBGRESETn – 0.27 – 0.2

CK2OUT HCLK HALTED – 4.445 – 3.4

UP SWCLKTCK DBGRESETn – 0.241 – 0.3

UP SWCLKTCK SWDITMS – 3.917 – 3.5

UP SWCLKTCK TDI – 3.691 – 2.7

UP SWCLKTCK nTRST – 3.918 – 3.7

CK2OUT SWCLKTCK JTAGTOP – 3.289 – 3.5

CK2OUT SWCLKTCK TDO – 1.316 – 1.3

CK2OUT SWCLKTCK nTDOEN – 1.316 1.3
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Tabl

Para

L M1A3PE3000L M1A3PE3000L

028910 028911

PER 19.594 19.698

PER 19.594 14.284

SET 1.58 7.138

SET 6.459 8.018

SET 5.67 6.75

SET 1.311 4.151

SET 3.084 2.666

SET 0.32 0.325

CLO 5.716 7.357

CLO 5.156 5.985

CLO 2.205 6.2

CLO 7.148 7.936

CLO 4.178 5.857

CLO 4.07 5.364

CLO 4.538 4.226

CLO 3.448 4.174

SET – -0.785

SET – 0.398

CLO – 4.441

SET – 0.383

SET – 5.656

SET – 4.903

SET – 3.836

CLO – 4.484

CLO – 2.002

CLO – 2.002
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arameters

e 8-3 • AC Parameters for Cortex-M1 Black Box on ProASIC3L Devices

meter Clock Signal

Device/Configuration

M1A3P600L M1A3P600L M1A3P1000L M1A3P1000

028910 028911 028910 028911

IOD HCLK – 18.721 19.181 18.151 18.984

IOD SWCLKTCK – 18.721 17.05 18.151 17.928

UP HCLK HRDATA 1.725 6.704 1.334 7.321

UP HCLK HREADY 7.395 8.586 7.725 9.31

UP HCLK HRESP 6.701 7.719 8.742 7.318

UP HCLK IRQ 1.319 4.477 1.805 4.129

UP HCLK NMI 3.513 4.737 3.92 3.384

UP HCLK SYSRESETn 0.339 0.314 0.346 0.323

CK2OUT HCLK HADDR 4.456 6.398 4.834 7.618

CK2OUT HCLK HPROT 3.098 6.067 2.989 5.361

CK2OUT HCLK HSIZE 1.427 5.597 1.526 6.136

CK2OUT HCLK HTRANS 6.783 8.316 6.863 8.502

CK2OUT HCLK HWDATA 3.428 4.601 3.611 6.154

CK2OUT HCLK HWRITE 3.726 5.011 3.458 7.676

CK2OUT HCLK LOCKUP 3.527 4.733 3.36 3.647

CK2OUT HCLK SYSRESETREQ 2.328 2.949 2.345 2.358

UP HCLK EDBGRQ – -0.148 – -0.232

UP HCLK DBGRESETn – 0.341 – 0.339

CK2OUT HCLK HALTED – 5.487 – 3.475

UP SWCLKTCK DBGRESETn – 0.33 – 0.317

UP SWCLKTCK SWDITMS – 6.123 – 6.979

UP SWCLKTCK TDI – 5.242 – 4.281

UP SWCLKTCK nTRST – 3.632 – 3.423

CK2OUT SWCLKTCK JTAGTOP – 4.051 – 3.931

CK2OUT SWCLKTCK TDO – 1.324 – 1.446

CK2OUT SWCLKTCK nTDOEN – 1.324 – 1.444
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Tabl

Para

S1500 M1AFS1500 M1AFS1500

911 134820 134821

PER 197 21.773 21.124

PER 692 21.773 13.54

SET 85 1.793 5.064

SET 21 5.194 6.337

SET 21 4.569 6.919

SET 18 5.02 5.366

SET 32 2.68 3.289

SET 26 0.25 0.249

CLO 62 3.881 4.886

CLO 77 2.765 3.746

CLO 39 1.463 3.912

CLO 91 5.172 6.217

CLO 95 4.075 4.172

CLO 09 2.815 4.384

CLO 92 2.515 3.732

CLO 02 2.108 2.841

SET 05 – -0.465

SET 79 – 0.269

CLO 66 – 3.203

SET 24 – 0.273

SET 81 – 4.216

SET 54 – 1.884

SET 35 – 4.613

CLO 69 – 3.78

CLO 34 – 1.351

CLO 34 – 1.331
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e 8-4 •  AC Parameters for Cortex-M1 Black Box on Fusion Devices

meter Clock Signal

Device/Configuration

M1AFS250 M1AFS600 M1AFS600 M1AFS1500 M1AF

028910 028910 028911 028910 028

IOD HCLK 15.606 15.659 15.917 16.684 16.

IOD SWCLKTCK 15.606 15.659 11.472 16.684 11.

UP HCLK HRDATA 1.535 1.077 5.422 1.147 5.8

UP HCLK HREADY 5.513 5.363 6.43 4.532 6.

UP HCLK HRESP 5.097 4.894 6.383 5.575 5.1

UP HCLK IRQ 1.569 1.577 3.313 1.546 3.1

UP HCLK NMI 3.737 3.266 2.377 3.171 2.0

UP HCLK SYSRESETn 0.292 0.293 3.751 0.282 0.

CK2OUT HCLK HADDR 2.934 3.72 5.428 3.316 5.5

CK2OUT HCLK HPROT 2.552 2.505 4.069 3.133 4.

CK2OUT HCLK HSIZE 1.174 1.167 4.365 1.429 4.8

CK2OUT HCLK HTRANS 4.709 4.883 6.336 4.698 6.1

CK2OUT HCLK HWDATA 2.789 3.131 3.728 3.862 4.2

CK2OUT HCLK HWRITE 2.303 2.391 4.91 2.735 4.4

CK2OUT HCLK LOCKUP 3.76 2.758 3.23 3.173 2.

CK2OUT HCLK SYSRESETREQ 1.805 1.786 1.849 3.006 2.0

UP HCLK EDBGRQ – – -0.189 – -0.4

UP HCLK DBGRESETn – – 0.256 – 0.2

CK2OUT HCLK HALTED – – 2.32 – 3.1

UP SWCLKTCK DBGRESETn – – 0.257 – 0.

UP SWCLKTCK SWDITMS – – 3.751 – 3.0

UP SWCLKTCK TDI – – 3.032 – 4.3

UP SWCLKTCK nTRST – – 5.953 – 5.

CK2OUT SWCLKTCK JTAGTOP – – 3.574 – 3.9

CK2OUT SWCLKTCK TDO – – 1.12 – 1.3

CK2OUT SWCLKTCK nTDOEN – – 1.12 – 1.3
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AC P

Tabl

P

L600V5 M1AGL600V5 M1AGL1000V2
910 028911 028910

PER .545 24.724 38.746

PER .545 17.229 38.746

SET 022 10.279 2.241

SET .001 13.526 16.978

SET .444 10.372 14.138

SET 683 7.738 5.802

SET 496 3.603 5.86

SET 265 0.282 0.348

CLO 245 9.104 8.907

CLO 075 5.849 6.237

CLO 757 5.594 3.048

CLO 125 10.831 14.747

CLO 607 7.865 7.475

CLO .46 6.647 6.441

CLO 942 4.944 6.967

CLO 669 2.726 4.593

SET – -0.102 –

SET – 0.304 –

CLO – 6.234 –

SET – 0.333 –

SET – 5.374 –

SET – 5.104 –

SET – 4.319 –

CLO – 4.695 –

CLO – 1.636 –

CLO – 1.636 –
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arameters

e 8-5 • AC Parameters for Cortex-M1 Black Box on IGLOO Devices (Part 1)

arameter Clock Signal

Device/Configuration

M1AGL250V2 M1AGL250V5 M1AGL600V2 M1AGL600V2 M1AG

028910 028910 028910 028911 028

IOD HCLK 37.608 22.994 39.325 39.822 23

IOD SWCLKTCK 37.608 22.994 39.325 31.132 23

UP HCLK HRDATA 3.694 2.056 3.271 16.731 2.

UP HCLK HREADY 17.98 10.417 17.788 20.205 12

UP HCLK HRESP 13.902 9.377 16.121 18.644 10

UP HCLK IRQ 9.631 2.622 3.943 8.61 2.

UP HCLK NMI 8.399 6.827 8.374 6.056 4.

UP HCLK SYSRESETn 0.296 0.291 0.287 11.615 0.

CK2OUT HCLK HADDR 8.764 5.994 9.144 17.564 7.

CK2OUT HCLK HPROT 5.535 4.494 5.686 10.998 5.

CK2OUT HCLK HSIZE 2.913 1.736 2.979 12.006 1.

CK2OUT HCLK HTRANS 17.068 6.906 13.472 21.567 8.

CK2OUT HCLK HWDATA 6.94 4.221 8.04 11.529 4.

CK2OUT HCLK HWRITE 6.112 5.07 7.225 9.771 4

CK2OUT HCLK LOCKUP 9.044 5.633 7.111 8.535 3.

CK2OUT HCLK SYSRESETREQ 4.418 2.734 4.502 4.536 2.

UP HCLK EDBGRQ – – – -0.136

UP HCLK DBGRESETn – – – 0.322

CK2OUT HCLK HALTED – – – 7.938

UP SWCLKTCK DBGRESETn – – – 0.369

UP SWCLKTCK SWDITMS – – – 11.615

UP SWCLKTCK TDI – – – 9.786

UP SWCLKTCK nTRST – – – 9.324

CK2OUT SWCLKTCK JTAGTOP – – – 8.488

CK2OUT SWCLKTCK TDO – – – 2.59

CK2OUT SWCLKTCK nTDOEN – – – 2.645
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Tabl

Pa

000V2 M1AGLE3000V5 M1AGLE3000V5

1 028910 028911

PER 4 24.218 24.6

PER 6 24.218 18.202

SET 3 1.891 10.127

SET 1 9.069 13.768

SET 2 8.886 12.371

SET 1.529 6.026

SET 4.92 2.601

SET 0.276 0.243

CLO 5 7.147 10.949

CLO 7 4.533 7.806

CLO 5 2.342 7.062

CLO 2 11.452 13.245

CLO 5 6.325 8.733

CLO 8 5.001 8.526

CLO 4.294 6.666

CLO 3.266 3.239

SET 9 – -0.617

SET – 0.317

CLO 1 – 4.695

SET – 0.339

SET – 7.129

SET – 5.547

SET – 3.472

CLO – 5.624

CLO – 2.116

CLO – 2.116
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e 8-6 • AC Parameters for Cortex-M1 Black Box on IGLOO Devices (Part 2)

rameter Clock Signal

Device/Configuration

M1AGL1000V2 M1AGL1000V5 M1AGL1000V5 M1AGLE3000V2 M1AGLE3

028911 028910 028911 028910 02891

IOD HCLK 39.274 23.607 23.445 38.726 39.43

IOD SWCLKTCK 30.178 23.607 20.852 38.726 33.86

UP HCLK HRDATA 13.548 1.939 9.385 3.496 12.56

UP HCLK HREADY 20.22 9.939 13.222 15.702 21.52

UP HCLK HRESP 19.906 9.766 9.648 12.77 14.31

UP HCLK IRQ 9.769 2.482 5.556 6.78 7.304

UP HCLK NMI 6.841 4.667 3.745 5.657 8.017

UP HCLK SYSRESETn 0.305 0.281 0.267 0.378 0.283

CK2OUT HCLK HADDR 16.207 5.869 9.944 10.736 17.05

CK2OUT HCLK HPROT 12.706 3.774 7.08 4.92 11.62

CK2OUT HCLK HSIZE 10.82 1.883 7.696 3.567 10.14

CK2OUT HCLK HTRANS 21.62 9.502 14.296 15.246 24.03

CK2OUT HCLK HWDATA 11.638 4.403 7.757 9.997 10.23

CK2OUT HCLK HWRITE 13.404 3.715 8.51 7.514 10.14

CK2OUT HCLK LOCKUP 7.78 4.698 4.511 7.663 9.927

CK2OUT HCLK SYSRESETREQ 4.528 2.84 3.586 5.271 5.129

UP HCLK EDBGRQ -0.248 – -0.133 – -0.75

UP HCLK DBGRESETn 0.335 – 0.274 – 0.346

CK2OUT HCLK HALTED 6.482 – 4.098 – 10.08

UP SWCLKTCK DBGRESETn 0.342 – 0.283 – 0.426

UP SWCLKTCK SWDITMS 9.942 – 7.386 – 8.178

UP SWCLKTCK TDI 10.315 – 6.13 – 9.715

UP SWCLKTCK nTRST 6.282 – 2.862 – 4.673

CK2OUT SWCLKTCK JTAGTOP 7.543 – 5.064 – 7.424

CK2OUT SWCLKTCK TDO 2.658 – 1.682 – 3.187

CK2OUT SWCLKTCK nTDOEN 2.664 – 1.695 – 3.187





9 – Ordering Information

Ordering Codes
Cortex-M1 can be ordered through your local Microsemi sales representative. It should be ordered using 
the following number scheme: CortexM1-XX, where XX is listed in Table 9-1.

Table 9-1 • Ordering Codes

XX Description

OM RTL for Obfuscated RTL – multiple-use license

Note: CortexM1-OM is included free with a Libero IDE license
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10 – List of Changes

The following table lists critical changes that were made in each revision of the document.

Date Changes Page

Revision 13
(September 2012)

Added "JTAGTOP" section (SAR 34336). 38

Revision 12
(September 2010)

The core version has been revised to v3.1. N/A

Two rows were added to Table 1 • Cortex-M1 Utilization and Performance Data for the 
M1A3PE1500 device, for configurations 134820 and 134821.

4

The "Cortex-M1 Processor" section was modified to add M1A3PE1500 to the 
sentence, "Currently OS extensions and TCMs are not supported on the 
majority of Microsemi M1 devices but are available when using an M1AFS1500 
or M1A3PE1500 device." Mention of the M1A3PE1500 device was similarly added to 
the following sections of the document:

"Cortex-M1 Configurations" section

Table 1-1 • Cortex-M1 Configurations

"Tightly Coupled Memory (TCM) Interface" section

"Main Stack and Process Stack Access" section

"Nested Vectored Interrupt Controller" section

7

8

8

14

15

22

Table 8-2 • AC Parameters for Cortex-M1 Black Box on ProASIC3E Devices is new. 41

Revision 11
(May 2010)

The core version has been revised to v3.0. N/A

Table 1 • Cortex-M1 Utilization and Performance Data was updated. 4

The "Utilization of Global Nets" section was revised. 5

The "Cortex-M1 Processor" section was revised. Figure 1-1 • Cortex-M1 Block 
Diagram was replaced.

7

References to CoreConsole were removed and information regarding SmartDesign 
was added as appropriate.

N/A

The "Cortex-M1 Configurations" section and Figure 1-2 • M1 Configuration Window 
are new.

8

The "Delivery and Deployment" chapter was revised, abbreviated, and incorporated 
into the "Cortex-M1 Overview" chapter.

7

The Cortex-M1 Signals section was renamed to "Cortex-M1 I/O Ports" and Table 1-2 • 
Cortex-M1 Port Descriptions was updated.

10

The "Supported Interfaces" chapter was renamed to "Interfaces", revised, and 
reorganized.

13

Several sections in the "Cortex-M1 Features" chapter were revised, clarifying OS 
extensions, stack pointers, clocks, and resets.

15

The "Cortex-M1 Design Entry Flow", "Bus Functional Model (BFM)", and "AC 
Parameters" chapters were revised extensively.

27, 29, 
39
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A – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more 
information and support. Many answers available on the searchable web resource include diagrams, 
illustrations, and links to other resources on the website. 

Website
You can browse a variety of technical and non-technical information on the SoC home page, at 
www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.

The technical support email address is soc_tech@microsemi.com.The technical support email address 
is tech@actel.com.
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Product Support
My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My 
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms 
Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select 
Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR 
web page.
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