
SoftConsole v3.4

User’s Guide

SoftConsole v3.4 User's Guide

SoftConsole v3.4 User's Guide 3

Table of Contents

Introduction .. 5

Prerequisite knowledge .. 5

Overview .. 5

Supported platforms ... 5

Supported CPUs .. 5

Installing ... 6

Constituent components ... 7

Java .. 7

Eclipse .. 7

Eclipse CDT ... 7

CodeSourcery Sourcery G++ Lite – GNU Toolchain for ARM Processors 8

8051 development tools ... 8

Hardware target debug support tools... 9

Related Microsemi tools and resources .. 10

Firmware cores .. 10

Libero ... 11

Firmware Catalog ... 11

FlashPro ... 12

Suggested firmware development flow .. 12

Eclipse concepts and GUI overview... 14

Workbench ... 14

Workspace ... 14

Perspectives ... 15

Views .. 17

Editors .. 18

Notebooks .. 18

Resources .. 19

Using SoftConsole ... 21

Getting help .. 21

Launching SoftConsole .. 21

Managing workspaces ... 22

Managing projects .. 23

Project build settings .. 29

Building a project .. 31

Debugging .. 37

Flash programming ... 48

ARM projects .. 48

8051 projects .. 49

Table of Contents

4 SoftConsole v3.4 User's Guide

Useful tips .. 52

Linker Map files vs memory-map.xml .. 52

How to verify program downloads .. 52

How to enable verbose logging and capture logging to a file .. 53

Launch debugger in background ... 54

Access to unconnected/unimplemented memory regions ... 55

Keep only one project open at a time .. 56

Use “fine grained” linking to reduce executable image size .. 56

Avoid unnecessary use float/double ... 56

newlib integer only *printf()/*scanf() support .. 56

Use a lightweight [s]printf() implementation ... 57

Licensing .. 58

Product Support .. 59

Customer Service ... 59

Customer Technical Support Center .. 59

Technical Support .. 59

Website .. 59

Contacting the Customer Technical Support Center ... 59

ITAR Technical Support ... 60

SoftConsole v3.4 User's Guide 5

Introduction

Prerequisite knowledge
It is assumed that the reader has some familiarity with FPGA and embedded C firmware development flows

and tools.

Overview
SoftConsole is Microsemi‟s free software development toolchain that enables the rapid development of C,

C++ and assembler based embedded firmware for the full range of Microsemi CPUs.

Key features of SoftConsole are:

 Provides a flexible and intuitive Eclipse based GUI IDE which integrates and coordinates all of the

underlying development tools and facilitates the creation, management, building and debugging of

embedded firmware projects.

 Bundles all development tools required to create embedded firmware using C, C++ and assembler –

including make, compiler, assembler, linker, debugger and ancillary development tools.

 The Eclipse based GUI IDE provides a front end to the GDB debugger for interactive debugging of

program code on a hardware target connected via FlashPro programmer device.

 Supports the full embedded firmware development lifecycle from original creation of firmware projects,

thru iterative and interactive debugging of debug builds on target hardware thru to the production of the

ultimate release build executable suitable for storage in and execution from non volatile memory.

 Supports (embedded and external) flash programming of program images for interactive debugging and

production execution purposes.

 Integrates with other Microsemi tools such as Libero and Firmware Catalog for ease of use and parallel

development of hardware and firmware.

Supported platforms
 Microsoft Windows 8 Pro or Enterprise 32-bit and 64-bit

 Microsoft Windows 7 Professional 32-bit and 64-bit

 Microsoft Windows Vista Business 32-bit and 64-bit

 Microsoft Windows XP Professional with SP3 32-bit and 64-bit

 SoftConsole may run on other Windows 8/Windows 7/Vista/XP variants but it is not supported on anything

other than those listed above.

Supported CPUs
SoftConsole supports the full range of Microsemi CPUs. Refer to the web links for more detailed information

and documentation relating to each CPU.

 Cortex-M3 (http://www.microsemi.com/soc/products/mpu/cortexm3) which is implemented as part of the

Microcontroller Subsystem (MSS) in the following devices

 SmartFusion2 SoC (http://www.microsemi.com/soc/products/smartfusion)

 SmartFusion cSoC (configurable System on Chip)

(http://www.microsemi.com/soc/products/smartfusion2)

 Cortex-M1 (http://www.microsemi.com/soc/products/mpu/cortexm1)

http://www.microsemi.com/soc/products/mpu/cortexm3
http://www.microsemi.com/soc/products/smartfusion
http://www.microsemi.com/soc/products/smartfusion2
http://www.microsemi.com/soc/products/mpu/cortexm1

Introduction

6 SoftConsole v3.4 User's Guide

 CoreMP7 ARM7TDMI-S (http://www.microsemi.com/soc/products/mpu/coremp7)

 Core8051s

(http://www.microsemi.com/soc/products/ip/search/results.aspx?n=8051&fn=none&pv=none&mk=none)

Installing
Recent releases of Microsemi Libero SoC bundle SoftConsole so that it can be installed when installing

Libero and other associated tools.

Alternatively to install SoftConsole on a standalone basis download the install image from the link below, run

the installer and click through the installation wizard:

http://www.microsemi.com/soc/download/software/softconsole/default.aspx

Administrator privileges are required in order to install SoftConsole. Once installed administrator privileges

are not required in order to use SoftConsole.

In order to use SoftConsole to download and debug programs on a hardware target (for example, a

development board), a FlashPro programmer device must be connected to a USB port on the computer the

required drivers installed. This should be done before attempting to download and

debug programs on a hardware target. Failing to attach the required programmer results in the following

error when attempting to access the hardware target:

error: No FlashPro device found

Refer to the FlashPro installation instructions for more information about installing the required FlashPro

software, hardware, and drivers.

http://www.microsemi.com/soc/download/program_debug/flashpro/default.aspx

SoftConsole supports FlashPro4, FlashPro3 (including LCPS and on-board FlashPro3 programmers built

onto certain development boards) and FlashPro Lite (for 8051 only).

http://www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx

SoftConsole can be uninstalled using the standard Windows Add/Remove Programs utility, using the Start

menu entry for the uninstaller (Start > All Programs > Microsemi SoftConsole > Uninstall Microsemi

SoftConsole IDE) or using the Libero uninstaller if it was originally installed using the Libero installer.

http://www.microsemi.com/soc/products/mpu/coremp7
http://www.microsemi.com/soc/products/ip/search/results.aspx?n=8051&fn=none&pv=none&mk=none
http://www.microsemi.com/soc/download/software/softconsole/default.aspx
http://www.microsemi.com/soc/download/program_debug/flashpro/default.aspx
http://www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx

Java

SoftConsole v3.4 User's Guide 7

Constituent components

SoftConsole comprises a number of constituent components that are described briefly here. For more

detailed information and documentation please refer to each component‟s specific home and documentation

pages. For details of the specific version of each component used please refer to the SoftConsole release

notes.

Java
Eclipse, CDT and related plug-ins are Java based so SoftConsole bundles a copy of the Oracle Java

Standard Edition runtime.

Eclipse
The Eclipse Java based platform and workbench provide the main user interface to SoftConsole allowing for

the creation and management of workspaces and (in conjunction with the Eclipse CDT and related plugins)

embedded firmware C/C++ projects.

Generic documentation about Eclipse is available from here:

http://help.eclipse.org/galileo/index.jsp?nav=/0
1
. This documentation explains the general concepts,

structure, function and appearance of the Eclipse platform and workbench.

The Eclipse home page is here: http://www.eclipse.org

Eclipse CDT
The Eclipse CDT (C/C++ Development Tooling) adapts the generic Eclipse development environment and

provides specific support for C /C++ development. To quote the Eclipse CDT home page:

“The CDT Project provides a fully functional C and C++ Integrated Development Environment based on the

Eclipse platform. Features include: support for project creation and managed build for various toolchains,

standard make build, source navigation, various source knowledge tools, such as type hierarchy, call graph,

include browser, macro definition browser, code editor with syntax highlighting, folding and hyperlink

navigation, source code refactoring and code generation, visual debugging tools, including memory,

registers, and disassembly viewers.”

The version of the Eclipse CDT bundled with SoftConsole is further modified and enhanced through a

number of additional Eclipse plug-ins in order to provide specific configuration, development and debugging

support for Microsemi CPU targets.

Taken together the Eclipse platform and workbench, Eclipse CDT and additional related plug-ins provide the

framework for the management and integration of all underlying development and debugging tools and also

provide the main SoftConsole IDE front end visible to the end user for the creation, management,

configuration, development and debugging of firmware projects.

1
 SoftConsole v3.4 bundles Eclipse Galileo 3.5

http://help.eclipse.org/galileo/index.jsp?nav=/0
http://www.eclipse.org/

Constituent components

8 SoftConsole v3.4 User's Guide

Generic documentation about the Eclipse CDT is available from here:

http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.cdt.doc.user/concepts/cdt_o_home.htm. This

documentation explains the general concepts, structure, function and appearance of the CDT.

The Eclipse CDT home page is here: http://www.eclipse.org/cdt

CodeSourcery Sourcery G++ Lite – GNU Toolchain for ARM
Processors

2

This component provides a complete set of development tools for ARM CPUs, in particular the Microsemi

Cortex-M3, Cortex-M1 and CoreMP7 ARM7TDMI-S.

 GCC (The GNU Compiler Collection) C and C++ compilers

 GDB (The GNU Project Debugger) with Microsemi modifications for ARM CPU hardware target debugging

 GNU Binutils (Binary Utilities) including assembler and linker

 GNU Make

 newlib C standard library

More detailed information and documentation on each of these tools are available from the relevant home

page and documentation links. For example the GCC and GNU Binutils ld linker documentation explains all

of the command line options supported by these tools some of which might be needed in order to specify

them in a particular SoftConsole project using the Eclipse/CDT project settings.

 GCC (The GNU Compiler Collection) C and C++ compilers

 Home page: http://gcc.gnu.org

 Documentation: http://gcc.gnu.org/onlinedocs

 GDB (The GNU Project Debugger)

 Home page: http://www.gnu.org/software/gdb

 Documentation: http://www.gnu.org/software/gdb/documentation

 GNU Binutils (Binary Utilities) including assembler and linker

 Home page: http://www.gnu.org/software/binutils

 Documentation: http://sourceware.org/binutils/docs-2.23.1

 GNU Make

 Home page: http://www.gnu.org/software/make

 Documentation: http://www.gnu.org/software/make/manual

 newlib C standard library

 Home page: http://sourceware.org/newlib

 Documentation: http://sourceware.org/newlib/docs.html

8051 development tools
Core8051s software development and debugging is provided by way of the following tools:

2
 CodeSourcery Sourcery G++ Lite is now owned by Mentor Graphics and branded Sourcery CodeBench

Lite. See here: http://www.mentor.com/embedded-software/codesourcery.

http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.cdt.doc.user/concepts/cdt_o_home.htm
http://www.eclipse.org/cdt
http://gcc.gnu.org/
http://gcc.gnu.org/onlinedocs
http://www.gnu.org/software/gdb
http://www.gnu.org/software/gdb/documentation
http://www.gnu.org/software/binutils
http://sourceware.org/binutils/docs-2.23.1
http://www.gnu.org/software/make
http://www.gnu.org/software/make/manual
http://sourceware.org/newlib
http://sourceware.org/newlib/docs.html
http://www.mentor.com/embedded-software/codesourcery

Hardware target debug support tools

SoftConsole v3.4 User's Guide 9

 SDCC Small Device C Compiler
3

 Home page: http://sdcc.sourceforge.net

 Documentation: http://sdcc.sourceforge.net/doc/sdccman.pdf

 CodeSourcery omf2elf OMF to ELF executable file format converter utility

 GDB (The GNU Project Debugger) with Microsemi modifications for 8051 CPU hardware target debugging

 GNU Binutils (Binary Utilities) with Microsemi modifications for 8051 CPU support

Hardware target debug support tools
The following tools sit between GDB and the relevant target CPU in order to allow SoftConsole to debug

programs that are running on a hardware target. Debug connectivity is via a FlashPro programmer device.

These tools translate between GDB Remote Serial Protocol and CPU specific JTAG debug commands and

responses.

 Cortex-M1/Cortex-M3: CoreSourcery ARM Debug Sprite with Microsemi modifications and flash

programming support

 CoreMP7 ARM7TDMI-S: FS2 In-Target Analyzer for ARM Processor Cores

 Core8051s: C8051 Debug Sprite with Microsemi modifications and flash programming support

3
 In compliance with the relevant licenses governing the use of SDCC source code is available on request

from Microsemi.

http://sdcc.sourceforge.net/
http://sdcc.sourceforge.net/doc/sdccman.pdf

Related Microsemi tools and resources

10 SoftConsole v3.4 User's Guide

Related Microsemi tools and resources

When using SoftConsole to develop embedded firmware for Microsemi CPU targets the following Microsemi

tools may also be relevant.

Firmware cores
Firmware cores are pre-packaged bundles of embedded firmware header and source files, documentation

and fully self contained sample projects supporting specific embedded firmware development tools

(including SoftConsole), CPU targets, DirectCores and SmartFusion/SmartFusion2 MSS (Microcontroller

Subsystem) peripherals and services.

Firmware cores are published through the Microsemi firmware repository and the Firmware Catalog and

Libero provide support for locating, browsing, downloading and generating firmware core drivers, sample

projects and documentation. Firmware cores facilitate and accelerate embedded firmware development by

obviating the need to write low level code that interacts with the raw hardware platform.

The sample projects bundled with firmware cores are a useful starting point getting familiar with SoftConsole

and as a reference point and basis for the creation of custom application projects.

When targeting SmartFusion or SmartFusion2 Cortex-M3 designs it is important to remember to update

sample projects with the <libero-project-root>/firmware/drivers_config folder and contents

generated by Libero for the target design in order to ensure that the firmware project matches the target

hardware. Failure to do so may result in unexpected behaviour when executing the firmware.

Firmware cores fall into two main categories

 Hardware abstraction layers

 Hardware Abstraction Layer underlying the DirectCore peripheral drivers

 SmartFusion CMSIS-PAL

 SmartFusion2 CMSIS Hardware Abstraction Layer

 Drivers

 Firmware drivers for FPGA fabric based DirectCore peripherals

 Firmware drivers for SmartFusion MSS peripherals

 Firmware drivers for SmartFusion2 MSS peripherals and system services

The hardware abstraction layer firmware cores provide

 a base platform on which other peripheral drivers sit

 C startup code that runs before main() is called and which carries out initialization of the hardware and

runtime firmware platforms

 useful example linker scripts which can be reused as-is or adapted to the needs of a specific target. These

include linker scripts for a variety of memory map configurations, interactive download/debug and creation

of “production” firmware intended for storage in and booting from embedded or external flash memory.
4

4
 Linker scripts for downloading to and debugging from a specific target memory are generally named

debug-in-... or ...-debug while those for producing production firmware images for storage in and

Libero

SoftConsole v3.4 User's Guide 11

Refer to the Firmware Catalog home page, documentation and online help for more information about the

Firmware Catalog and the firmware cores to which it provides access. Detailed documentation about each

individual firmware core can also be accessed using the Firmware Catalog.

 Home page: http://www.microsemi.com/soc/products/software/firmwarecat

 Documentation: http://www.microsemi.com/soc/products/software/firmwarecat/default.aspx#docs

Libero
Libero is used to create hardware designs for Microsemi FPGAs. SoftConsole can be used to develop

embedded firmware for Microsemi CPU based systems created using Libero.

Libero SoC can integrate with the embedded firmware development toolchain (including SoftConsole, IAR

Embedded Workbench and Keil MDK-ARM) allowing for closer co-development of the embedded hardware

and firmware. Libero can create the required workspace/project files and embedded firmware drivers and

related files matching the target platform and the embedded firmware tool (e.g. SoftConsole) can be

launched directly from Libero SoC to work on these. A prerequisite for this to happen is that the embedded

firmware toolchain is configured and selected in Libero under Tool Profiles.

Using Libero in this way to integrate with the embedded firmware development toolchain and generate the

required workspace, project and firmware core files ensures that the firmware closely matches the target

hardware in terms of the memory map and drivers used.

When Libero is used in conjunction with SoftConsole in this way the SoftConsole workspace is generated

into <libero-project-root>/SoftConsole.

Whether or not the Libero integration with the embedded firmware toolchain is used Libero generates

firmware related files into <libero-project-root>/firmware.

If SoftConsole is used standalone to target SmartFusion or SmartFusion2 Cortex-M3 hardware designs then

it is critical that firmware files generated by Libero into <libero-project-

root>/firmware/drivers_config are copied into the SoftConsole project in order for the firmware to

correctly match the target hardware design. Failure to do so may result in unexpected behaviour when

executing the firmware.

Refer to the Libero home page, documentation and online help for more information about Libero‟s support

for embedded firmware development.

 Home page: http://www.microsemi.com/soc/products/software/libero

 Documentation: http://www.microsemi.com/soc/products/software/libero/docs.aspx

Firmware Catalog
The Firmware Catalog supports the locating (in a remote repository), downloading (from remote repository to

local vault) and generation (from the local vault into a local folder or SoftConsole project) of firmware driver

packages and sample projects. It can be run standalone or else from within SoftConsole when the C/C++

perspective is active using the Run > Run Firmware Catalog menu option or the Run Firmware Catalog

toolbar button:

booting (and optional relocation) from embedded or external flash memory are generally named

production-..., boot-from-... or run-from-...

http://www.microsemi.com/soc/products/software/firmwarecat
http://www.microsemi.com/soc/products/software/firmwarecat/default.aspx#docs
http://www.microsemi.com/soc/products/software/libero
http://www.microsemi.com/soc/products/software/libero/docs.aspx

Related Microsemi tools and resources

12 SoftConsole v3.4 User's Guide

To generate firmware drivers into a project ensure that the project is selected/highlighted in SoftConsole‟s

Project Explorer view before launching and using the Firmware Catalog. If no project is selected then the

driver will be generated in a folder named default_fc_folder in the current workspace.

When a sample project bundled with a firmware driver core is generated the resulting project must be

imported into the SoftConsole workspace before it appears in the Project Explorer view and can be used.

The Firmware Catalog can be used to update or add to the firmware drivers used by an existing project –

including a hardware platform library project created by Libero. It can also be used to generate sample

projects that can be used as a starting point for creating a new application.

Refer to the Firmware Catalog home page, documentation and online help for more information about the

services offered by the Firmware Catalog and how to use them.

 Home page: http://www.microsemi.com/soc/products/software/firmwarecat

 Documentation: http://www.microsemi.com/soc/products/software/firmwarecat/default.aspx#docs

FlashPro
When debugging SoftConsole connects to the hardware target and communicates with the CPU target using

a FlashPro programmer. The FlashPro software provides the drivers needed by SoftConsole to

communicate with the FlashPro programmer.

The FlashPro software can also be used to program production firmware produced by SoftConsole into

Fusion, SmartFusion or SmartFusion2 ENVM embedded flash by way of a suitable ENVM data storage

client defined in the design and associated programming file and associated with the production firmware

executable image.

 Home page: http://www.microsemi.com/soc/products/hardware/program_debug/flashpro

 Documentation:

http://www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx#docs

Suggested firmware development flow

1. Create the target hardware design using Libero and related tools.

2. Program the hardware design to a development board.

3. Configure SoftConsole as the Libero Software IDE in Tool Profiles and allow Libero to drive the

generation and updating of the SoftConsole workspace, application/hardware platform library projects

and firmware cores and then launch SoftConsole from Libero.

4. Note that by convention projects are often and created and configured to provide two build

configurations – a debug and a release configuration. The debug configuration is normally not optimized

and includes full debug symbolic information for ease of interactive debugging. The release

configuration is normally optimized which, even if full debug symbolic information is included, usually

makes interactive debugging difficult (e.g. line tracking in the debugger may not work). All Microsemi

projects (e.g. firmware core example projects, Libero created application projects, other demo, sample

and reference designs) following this convention. However this is just a convention and a project can be

configured to have any number and type of build configurations as needed.

http://www.microsemi.com/soc/products/software/firmwarecat
http://www.microsemi.com/soc/products/software/firmwarecat/default.aspx#docs
http://www.microsemi.com/soc/products/hardware/program_debug/flashpro
http://www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx#docs

Suggested firmware development flow

SoftConsole v3.4 User's Guide 13

5. If necessary tune the project settings (e.g. compiler/assembler/linker options, linker scripts etc.) to the

specific needs of the target system. When doing this it may be necessary to refer to the documentation

about the relevant underlying tools (e.g. GCC C/C++ compiler, GNU assembler, GNU ld linker, GNU

Binutils, SDCC etc.) for information about tool options and switches that can be entered into the

SoftConsole project properties.

6. A key consideration at this stage is matching the firmware project‟s knowledge of the target system‟s

memory spaces and memory map with that of the actual target system. Libero provides some

assistance with this by generating a memory map for a CPU based system and even skeleton projects.

It is important that the firmware access memory regions and memory mapped peripherals using the

appropriate addresses. To this end an appropriate linker script or equivalent specification of the target

memory is required. Often the CMSIS example linker scripts provide a useful starting point for creating

or adapting a linker script suitable for a specific firmware project and target hardware system.

7. Having built the program using a suitable linker script create a suitable debug launch configuration in

SoftConsole and iteratively and interactively download and debug the program on the target platform

until it is working satisfactorily. By convention projects usually have a debug build configuration suitable

for this purpose.

8. Once the debug build configuration is working build a release confguration (e.g. including optimization)

and ensure that this executes satisfactorily. If it does not then further debugging using the debug

configuration may be required. Debugging of optimized builds can be difficult due to the lack of reliable

source line tracking etc.

9. When the release configuration firmware is executing satisfactorily the next step is to create a

production firmware image. This is a normally an optimized/release configuration build linked in such a

way that it is suitable for storage in flash memory so that it can boot on power up, optionally relocate in

part or full to RAM and then continue executing as part of the embedded system. The CMSIS/HAL

firmware core production linker scripts
5
 may be suitable (as-is or adapted) for creating a production

firmware image for storage in and boot time execution from flash. For Fusion, SmartFusion or

SmartFusion2 production firmware (or at least a boot loader) will normally be stored in ENVM with the

firmware image stored in an ENVM data storage client defined in the target hardware system design

and programmed to the FPGA device using Libero/FlashPro.

5
 E.g. production-..., boot-from-..., run-from-...

Eclipse concepts and GUI overview

14 SoftConsole v3.4 User's Guide

Eclipse concepts and GUI overview

Because the SoftConsole IDE is based on Eclipse and the Eclipse CDT familiarity with some key Eclipse

concepts will lead to a better understanding of how SoftConsole works. Refer to the original Eclipse and

CDT documentation for more detailed information about these and other related concepts:

 Eclipse Workbench User Guide: http://help.eclipse.org/galileo/index.jsp?nav=/0

 CDT C/C++ Development User Guide:

http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.cdt.doc.user/concepts/cdt_o_home.htm

Workbench
The workbench is the main window that appears when SoftConsole is launched and a workspace has been

opened. The workbench displays the main menu bar, toolbars, views and resources. The workbench can

offer different perspectives as explained below. This is an example of the SoftConsole Eclipse workbench

with the C/C++ perspective active.

Workspace
The workspace is the main working folder which stores information about projects in the workspace, user

preferences, cached data for Eclipse plug-ins etc. Multiple workspaces can be created but only a single

http://help.eclipse.org/galileo/index.jsp?nav=/0
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.cdt.doc.user/concepts/cdt_o_home.htm

Perspectives

SoftConsole v3.4 User's Guide 15

workspace can be open at any one time. When using SoftConsole all operations take place in the context of

the open workspace. A workspace can contain zero or more projects. When SoftConsole is launched it may

prompt for a workspace to be selected or created.

The File > Switch Workspace menu option can be used to switch to a different workspace or to create a

new one. To create a new workspace choose the Other... menu option and then create and select a

new/empty folder on the file system.
6
 The file system folder for a workspace contains a folder named

.metadata which contains all of the SoftConsole/Eclipse data associated with the workspace.

Perspectives
A perspective defines the initial set and layout of views in the workbench window. The workbench can offer

multiple perspectives. Only one perspective can be active at any one time. The active perspective

determines what views and resources are available and what operations can be carried out. For example

the visible and enabled menu and toolbar options may differ depending on which perspective, view and/or

resource is active/selected.

SoftConsole offers two perspectives relevant to the development of embedded firmware for Microsemi CPU

based systems:

 The C/C++ perspective – for managing and configuring projects, writing code, compiling projects etc.

 The Debug perspective – for interactive debugging of firmware on a hardware target.

The two perspectives display views and options appropriate and specific to these two modes of working. For

example the default C/C++ perspective is as pictured earlier and the default Debug perspective is as

follows:

6
 Avoid using an existing non empty folder as a workspace. Avoid creating a workspace folder below an

existing workspace or project folder.

Eclipse concepts and GUI overview

16 SoftConsole v3.4 User's Guide

The default views presented by each perspective are:

 C/C++ perspective

 On the left hand side of the workbench is the Project Explorer view which supports interaction with

the projects in the current workspace.

 In the middle of the workbench are zero or more editors allowing source and other files in any of

the open projects to be viewed and edited. Multiple editors are displayed as a notebook (see

below) of stacked tabs.

 At the top right hand side of the workbench is a notebook containing

 The Outline view which lists symbols in the currently active editor. Clicking on any symbol

ion this view jumps to that symbol in the editor.

 The Make view which lists make targets in the current workspace.

 At the bottom right of the workbench is a notebook containing

 The Problems view which displays build warnings and errors and supports quick

navigation to the source of such problems.

 The Tasks view

 The Console view which displays project build and debug launch logging, status and error

messages.

 The Properties view

 Debug perspective

 At the top left of the workbench is the Debug view displaying information, including the call stack,

about debug sessions and tool buttons for various interactive debug operations (e.g. Resume,

Suspend, Terminate, Step Into, Step Over, Step Return, Instruction Stepping Mode etc.)

 At the top right of the workbench is a notebook containing

Views

SoftConsole v3.4 User's Guide 17

 The Variables view allowing local and other variables to be viewed and modified while

debugging.

 The Breakpoints view allowing breakpoints to be viewed and modified. Note also that

breakpoints can be managed via the editor window for a particular source file.

 The Registers view allowing target CPU/system registers to be viewed and modified.

 The Modules view

In addition to the default views presented by these two perspectives additional views can be used via the

Window > Show View menu option. Additional views and other display settings are retained when changes

are made. To revert a perspective to its original default appearance use Window > Reset Perspective...

The workbench presents buttons for selecting which perspective to use. This screenshot shows the buttons

for the C/C++ and Debug perspectives and indicates that the C/C++ perspective is active:

SoftConsole can also automatically switch from the C/C++ perspective to the Debug perspective when a

debug session is launched. When this happens SoftConsole may prompt as follows:

When debugging is complete it is usually desirable to manually switch back to the C/C++ perspective.

Views
Views are visual components within the workbench and are used to interact with, navigate and change the

properties of resources. For example:

 The Project Explorer view in the C/C++ perspective displays the list and hierarchy of projects in the

current workspace and allows properties of each resource, folder or file to be viewed and modified.

 The Debug view in the Debug perspective displays details about debug sessions including the call stack.

Eclipse concepts and GUI overview

18 SoftConsole v3.4 User's Guide

Changes made in a view are saved immediately.

Editors
Editors are also visual components within the workbench and are used to edit source code and other files in

projects. Changes made in an editor are only saved when explicitly requested.

Note that only a single view or can be active at any one time and the title bar or tab of the active view or

editor is highlighted.

Notebooks
A notebook is simply a stacked arrangement of tabbed views. For example this is a notebook showing the

Problems, Tasks, Console and Properties views with the Console view active:

And this is a notebook displaying three editors with the demo.c editor active:

Resources

SoftConsole v3.4 User's Guide 19

Resources
Resources are the projects, folders and files that existing in the workbench.

Files

The files contained in a project – e.g. C/C++ and assembler source code and include files, linker scripts,

compiled object files, linked executable files, generated list and map and hex files etc.

Folders

In the workbench folders are contained inside projects or inside other folders and folders can contain other

folders and/or files.

Projects

A project contains folders and files and is used for building, version management, sharing and resource

organization. Projects map to folders on the underlying file system. The file system folder containing a

SoftConsole project contains two files named .project and .cproject along with the other folders and

files that appear in the project in SoftConsole.

The Project Explorer view displays the list of projects in the current workspace. For example this

screenshot shows the Project Explorer listing four projects in the current workspace:

Note that the first two projects are closed while the other two projects are the application and library projects

generated by Libero from the associated hardware project. Many commonly used project operations can be

carried out by left mouse button clicking on a project in the Project Explorer to select it and then choosing

the appropriate menu option or toolbar button, or by right mouse button clicking on the project and choosing

an option from the context menu that appears:

Eclipse concepts and GUI overview

20 SoftConsole v3.4 User's Guide

Getting help

SoftConsole v3.4 User's Guide 21

Using SoftConsole

Not all of the capabilities of SoftConsole are covered in detail here as many of these are already covered

adequately or in more detail elsewhere – e.g. in the Eclipse and CDT or other component documentation

cited earlier.

Bear in mind that often there is more than one way to perform a particular operation – e.g. using the main

menu, a toolbar button, a context specific menu etc.

Getting help
General help about Eclipse and CDT is available from the Help option in the main menu bar. This is useful

for general guidance on Eclipse and CDT concepts and capabilities. The documentation mentioned earlier

for the various components bundled with SoftConsole should also be referenced for details of how these

tools work, what options are available and so on.

Launching SoftConsole
SoftConsole can be launched in a number of ways:

 From the shortcut that the installer creates on the Windows desktop or from the Windows Start menu (e.g.

Start > All Programs > Microsemi SoftConsole > Microsemi SoftConsole IDE).

 By executing C:\Program Files\Microsemi\SoftConsole ...\Eclipse\eclipse.exe
7
.

 From Libero SoC using Design Flow > Write Application Code > Open Interactively

7
 C:\Program Files\Microsemi\SoftConsole ... is the default installation folder so adjust this if

SoftConsole is installed in another location or was installed alongside Libero by the Libero installer.

Using SoftConsole

22 SoftConsole v3.4 User's Guide

when SoftConsole has been configured as the Software IDE Tool Profile

and Libero has generated the SoftConsole workspace and application/library projects matching the
hardware design being created.

Managing workspaces
When SoftConsole is launched it may prompt for a workspace:

Managing projects

SoftConsole v3.4 User's Guide 23

From the Workspace Launcher dialog an existing workspace folder (containing a .metadata folder) can

be selected or a new/blank folder can be selected in order to create a new/blank workspace.

SoftConsole will not prompt for a workspace if one was previously selected and is still accessible and the

Use this as the default and do not ask again option was checked or if it is launched from the Libero SoC

Design Flow.

To switch to or create another workspace when one is already open use the File > Switch Workspace

menu option.

Managing projects

Creating projects

A new/blank project can be created using File > New > C Project or File > New > C++ Project which

presents the C/C++ Project dialog:

Using SoftConsole

24 SoftConsole v3.4 User's Guide

Enter/select the appropriate settings for the new project:

 Project name: the name for this project

 Use default location: leave this checked in order to create the project in the current workspace

 Project type: select the appropriate project type

 Executable (Managed Make) > Empty Project: a project which builds an executable program

image and whose make/build process is completely managed by SoftConsole.

 Static Library > Empty Project: a project which builds a library which can be linked to an

application project and whose make/build process is completely managed by SoftConsole.

 Makefile project > Empty Project: a project whose build process is not managed by SoftConsole

but by a makefile.

 Toolchains: the target CPU toolchain.

 Clicking Next> presents the Select Configurations dialog.

Managing projects

SoftConsole v3.4 User's Guide 25

By convention SoftConsole projects contain two build configurations – Debug and Release – and it is

normally advisable to accept and use these.

A new/blank project created in this way is ready to be populated with the necessary source files and folders

and have its project properties configure appropriately. As mentioned earlier selecting the project in the

Project Explorer view, launching the Firmware Catalog from SoftConsole and generating individual firmware

cores generates the driver files into the project. Depending on the firmware core some include directory

settings may need to be configured in the project properties.

An often more convenient alternative to starting with a new/blank project is to take an existing project and

adapt it to the needs of a specific target system. This can be done by allowing Libero SoC to generate the

SoftConsole workspace and application/library projects matching the target hardware system as mentioned

earlier, or by generating a suitable firmware core example project and importing it into the SoftConsole

workspace.

Importing and exporting projects

As mentioned earlier the Firmware Catalog can be launched from SoftConsole and firmware cores

generated into the selected project. Similarly the Firmware Catalog can generate fully self contained and

working example projects
8
 from firmware cores into the current workspace. When this is done, although the

generated project is in the workspace folder the project still needs to be imported into the workspace.

8
 Refer to the firmware core documentation and example project header files for information about any

hardware requirements assumed by the example project.

Using SoftConsole

26 SoftConsole v3.4 User's Guide

To import a project:

 Choose the File > Import... menu option or

 Right click inside the Project Explorer view and from the context menu choose Import...

 The Import > Select dialog appears

 Select General > Existing Projects into Workspace and click Next>.

Managing projects

SoftConsole v3.4 User's Guide 27

 The Import > Import Projects dialog appears:

 Select Select root directory and click Browse... which presents the Browse For folder dialog which is

already located at the current workspace‟s file system folder.

 If the project is to be imported from some other location then browse to the required folder.

 Alternatively if the project is to be imported from an archive file select Select archive file and then click its

Browse... button to locate the required archive file.

 When the source folder or archive file for the project(s) to be imported has been selected then the

Projects list in the Import dialog lists the available project(s). Projects that are already in the workspace

are greyed out.

Using SoftConsole

28 SoftConsole v3.4 User's Guide

 Select the required project(s) and check Copy projects into workspace.

 Click Finish and the required project(s) are imported into the workspace and appear in the Project

Explorer view.

Once imported a firmware core example project can be used as-is or as the basis for another program by

adapting the project contents and properties as required.

To export a project:

 Select the File > Export... menu option or

 Right click in the Project Explorer view or on a project and from the context menu choose Export...

 In the Export > Select dialog select General > Archive File to export to an archive file or General > File

System to export to the file system.

 Click Next>

 Select the projects , folders, files etc. to export and the other export options as required.

 Click Finish to export.

Project build settings

SoftConsole v3.4 User's Guide 29

Opening, closing and deleting projects

Sometimes when there are several projects in a workspace it may be convenient to close those that are not

in use at a specific point in time. To do this select a project or multi-select multiple projects, right click in the

Project Explorer view and from the context menu choose Close Project.

Alternatively select the project to be kept open (along with any related projects), right click in the Project

Explorer view and from the context menu choose Close Unrelated Projects.

To delete a project select it, right click in the Project Explorer view and from the context menu choose

Delete. The Delete Resources dialog appears. Check the Delete project contents on disk (cannot be

undone) to delete the project from the SoftConsole workspace and also delete all underlying project files on

the file system. Click OK to carry out the deletion operation.

Other common operations on projects

Select a project and then right click in the Project Explorer view to see the context menu which contains

other operations that can be carried out on projects. For example:

 Copy and Paste projects in the workspace.

 Rename... a project in the workspace – note that this just changes the workspace name of the project but

does not change the name of any build targets etc.

 Refresh the project which may be needed, for example, if files are copied to a project via the file system

and they do not automatically show up in the SoftConsole Project Explorer view.

Build related project operations are dealt with later.

Project build settings
The project build settings specify details of the number and type of build configurations supported by a

project and the tools and configuration options used to build these. These will vary from project to project but

the Firmware core example projects and Libero generated application/library projects provide useful

examples of how the project build settings can be configured to create debug and release executable

images and are a useful place to start when creating firmware for a CPU based system.

The project build settings can be accessed as follows:

 Select the project in the Project Explorer view.

 Type Alt + Enter or choose File > Properties or right click and from the context menu select Properties.

 The Properties for <project-name> dialog appears.

 Browse to C/C++ Build > Settings > Tool Settings.

 The Configuration: setting lists the build configurations supported by this project. Each build

configuration has its own set of tool settings although it is possible to share settings between all

configurations where necessary by choosing [All configurations] from the dropdown list.

 The Tool Settings property page lists all of the tools used to build a program such as the compiler,

assembler, linker etc.

 Different tools have different categories of settings and these can be tuned as required to suit the needs of

a specific firmware project and build configuration.

The project build settings user interface and the tools listed differ depending on a number of factors:

 The target CPU type (ARM or 8051).

 The build configuration (e.g. debug or release)

 The project type (e.g. C or C++, application or library)

Using SoftConsole

30 SoftConsole v3.4 User's Guide

Note: please refer to the relevant tool specific documentation for details of the configuration options

supported by each tool – e.g. GCC, GNU Linker, GNU Assembler, SDCC tools etc.

ARM projects

This is an example of the project build settings user interface for an ARM project.

8051 projects

This is an example of the project build settings user interface for an 8051 project:

Building a project

SoftConsole v3.4 User's Guide 31

Application and library project dependencies

The workspace generated by Libero for a CPU based system contains an application and a library project.

The library project contains all firmware drivers and target system specific settings. The application project is

intended to be filled out by the user with the custom firmware required by the system. The application project

is configured to have a dependency on the library project so that when the application is built then the library

is also rebuilt if needed so that it is available to be linked into the application. The same build configuration

(e.g. debug or release) should be selected for both projects to ensure that this works smoothly. The

application project build settings contain the necessary include directory and library paths to ensure that the

library project links correctly. The application project properties also specify the dependency on the library

project under Properties > Project References where the library project in the workspace is selected.

This approach to having application projects that depend on one or more library projects in the same

workspace can be adopted for use with other projects.

Building a project

Build configurations

By convention SoftConsole projects normally contain two build configurations with the following

characteristics:

Using SoftConsole

32 SoftConsole v3.4 User's Guide

 Debug

 Facilitates interactive and iterative download to and debugging on the target hardware.

 Most or all optimization disabled (e.g. GCC -O0 option or equivalent).

 Most or all debugging symbolic information enabled (e.g. GCC -g3 option or equivalent).

 Usually linked with linker settings or a linker script that facilitates download to and debugging from

embedded or external RAM

 Optionally linked to facilitate download to and debugging from embedded or external flash memory.

 Release

 Facilitates the creation of production program images for storage in and execution from a suitable

internal or external flash memory.

 Most or all optimization enabled (e.g. GCC optimization options -O2, -O3 or -Os or equivalent).

 Debugging disabled (e.g. no GCC -g option or equivalent).

 Usually linked with one of the CMSIS/HAL “production” linker scripts or similar.
9

 Optionally linked with a linker script that facilitates interactive download to and debugging on the

target platform but the presence of optimization and/or the lack of debug symbolic information may

militate against accurate debugging (e.g. line tracking).

However bear in mind that these build configurations are simply conventional and it is perfectly feasible to

have as many and as varied build configurations as required by a specific program and target system. For

example having different debug or release configurations with different #defines to enable or disable

optional functionality.

To add, remove or modify build configurations supported by a project:

 Select the project in the Project Explorer view and choose the File > Properties menu option or

 Right click on the project in the Project Explorer view and select Properties from the context menu

 Select C/C++ Build

9
 E.g. production-..., boot-from-..., run-from-...

Building a project

SoftConsole v3.4 User's Guide 33

 Click Manage Configurations...

Matching firmware to target hardware

It is obviously important to match the firmware to the target hardware. Libero can assist in this respect by

generating the appropriate workspace and application/library projects, project settings and firmware drivers

which are then picked up when SoftConsole is launched from Libero.

For SmartFusion and SmartFusion2 Cortex-M3 based systems it is essential that the <libero-project-

root>/firmware/drivers_config folder and contents are copied into the firmware project if the Libero

generated workspace and application/library projects are not being used.

Memory map and linker scripts

And essential part of matching the firmware to the target hardware is ensuring that the firmware knowledge

of the memory map matches the actual target hardware. This includes the location and size of each memory

region and the address of each memory mapped peripheral.

For ARM CPU based systems it is important to specify a suitably linker script in the project build settings:

Using SoftConsole

34 SoftConsole v3.4 User's Guide

Very often the CMSIS/HAL example linker scripts can be used either as-is or having been adapted to match

the needs of a specific target system.

For 8051 CPU based systems the SDCC toolchain does not use linker scripts but uses tool configuration

options to specify details of the memory model and memory map to be used – for example under Properties

> C/C++ Build > Settings > Tool Settings > SDCC Compiler/SDCC Linker > Memory Options.

Building projects

There are a number of ways to build projects in SoftConsole. One simple way is to specify the active build

configuration as follows:

 Select the project in the Project Explorer view.

 From the main menu bar choose Project > Build Configurations > Set Active and choose one of the

listed build configurations.
10

Thereafter many of the build related actions apply to the active build configuration. For example to build the

active build configuration:

10

 When an application project depends on a library project – such as with the Libero generated workspace

and application/library projects – the same build configuration must be selected for both the application and

library projects in order for the application to build and link correctly.

Building a project

SoftConsole v3.4 User's Guide 35

 Select the project in the Project Explorer view.

 Right click on the project and from the context menu choose Build Project.

To clean the project:

 Select the project in the Project Explorer view.

 Right click on the project and from the context menu choose Clean Project.

An alternative way to clean a project is:

 In the Project Explorer view select the build configuration folder in the project (e.g. Debug or Release).

 Right click on the folder and from the context menu select Delete.

 Click OK on the Delete Resources dialog box.

To build some or all defined build configurations for a project rather than just the active build configuration:

 Select the project in the Project Explorer view.

 Right click on the project and from the context menu choose Build Configurations > Build > All to build

all defined build configurations or Build Configurations > Build > Select to build selected build

configurations.

To build the active build configurations for all open projects:

 From the main menu bar select Project > Build All.

A project can also be configured to build every time anything related to the project changes – e.g. project

properties are changed or file changes are saved in an editor:

 Select the project in the Project Explorer view.

 From the main menu bar choose Project > Build Automatically.

Build artifacts

Build artifacts are files produced by the build process and stored in the build configuration folder in the

project – e.g. Debug or Release folder for the respective build configurations. This section briefly

summarises some of build artifacts for ARM and 8051 projects.

ARM and 8051 projects

 ELF (Executable and Linkable Format) executable file (no file extension or *.elf): The linked executable

program image in ELF format which may include symbolic debug information. The debugger uses this file

when loading and debugging a program. For ARM projects the ELF file is produced by the GNU ld linker.

For 8051 projects the ELF file is produced from the AOMF51 file by the CodeSourcery OMF2ELF

Converter build step.

 Library archive file (*.a or *.lib): The library archive file for a library project which can be linked into an

application project. The Libero generated workspace for a CPU based system illustrates how application

and library projects can be used.

 Object files (*.o or *.rel): Object files produced by the compiler which may be linked into an executable

or archived into a library. There is normally one object file per compilation unit or source file. Object files

may be stored in a folder hierarchy beneath the build configuration target folder (e.g. Debug or Release).

 Intel Hex file (*.hex): An Intel Hex format file (http://en.wikipedia.org/wiki/Intel_HEX) for the executable

program image. This is generated from the ELF format program image by the GNU Intel Hex File

http://en.wikipedia.org/wiki/Intel_HEX

Using SoftConsole

36 SoftConsole v3.4 User's Guide

Generator build step which calls arm-none-eabi-objcopy -Oihex <elf-file>. This file can be

programmed to non volatile memory using a suitable flash programmer including FlashPro to program an

ENVM data storage client.

 Motorola S-record file (*.srec): A Motorola S-record format file

(http://en.wikipedia.org/wiki/SREC_%28file_format%29) for the executable program image. This is

generated from the ELF format file by the GNU S-Record Generator build step which calls arm-none-

eabi-objcopy -Osrec <elf-file>. This file can be programmed to non volatile memory using a

suitable flash programmer.

 Makefiles (makefile, *.mk): Make/build files created by a Managed Make project and used to build a

project build configuration.

 memory-map.xml: The memory map file created by the Memory map generator build step which calls

actel-map. This file is read by the debug sprite in order to obtain information about the target memory –

in particular if flash programming needs to be used for any memory space.

ARM projects

 List file (*.lst): A list file for the program image. This is generated from the ELF format program image

by the GNU Listing Generator build step which calls arm-none-eabi-objdump -h –S <elf-file>.

The list file contains section information and a disassembly listing for the program image.

 Map file (*.map): A map file for the program image. This is generated by default when Project Properties

> C/C++ Build > Settings > Tool Settings > GNU C Linker > Miscellaneous > Generate linker

memory map file is checked. The map file contains size and location information for sections and

headers in the program image.

The list and map files are useful for analyzing the contents of an executable program image such as when

investigating ways of reducing the program image size by eliminating unnecessary code.

For further details about GCC build artifacts, intermediate files/formats and commands and options refer to

the GCC and related documentation.

8051 projects

 Assembler files (*.asm, *.lst and *.rst): 8051 assembler source files created by SDCC.

 ADB files (*.adb): Intermediate files created by SDCC containing debug information needed to create a

CDB file. Note that these should not be confused with Libero ADB files and are not the same format.

 CDB files (*.cdb): An optional SDCC file containing debug information. Note that these should not be

confused with Libero CDB files and are not the same format.

 Symbol files (*.sym): Symbol listing files created by the SDCC assembler.

 Linker script file (*.lnk): Script file used by SDCC to invoke the linker. Note that this is not the same as a

GNU ld linker script file.

 Memory map file (*.map): SDCC memory map file for the program image. Note that this is not the same

format as the map file created for ARM projects.

 Memory usage file (*.mem): A file summarising the 8051 memory usage. Note that this is not a mem file

for use with an ENVM data storage client.

For further details about SDCC build artifacts and intermediate files refer to the SDCC manual.

Dealing with build problems

When building projects the Console view displays the logging output from the compilation tools as they run.

If any errors or warnings arise these are also displayed in the Problems view from allowing them to be

traced back to source or other input files.

Note that at the time of writing SDCC warnings appear in the Problems view as errors even if they are not

fatal to the build process.

http://en.wikipedia.org/wiki/SREC_%28file_format%29

Debugging

SoftConsole v3.4 User's Guide 37

Debugging

Installing FlashPro programmer and drivers

A FlashPro programmer and connected to the target hardware before debugging can take place. Refer to

the Libero/FlashPro documentation for instructions on how to install a FlashPro programmer and the

required drivers and software.

By default SoftConsole uses the first FlashPro programmer found for debugging. If more than one FlashPro

programmer is attached to the computer then the one that should be used for debugging must be specified

to the debug sprite.

Building a project for debugging

Select a project and build configuration for debugging. By convention the Debug build configuration is

usually the most suitable for interactive download and debugging as it normally has most or all optimization

disabled and full symbolic debugging information enabled both of which facilitate accurate debugging.

However it is also possible to download and debug a program that has some or all optimization enabled and

some or all debugging information disabled but debugging may be more difficult – e.g. line tracking and

displaying variable values may not work reliably.

Creating a debug launch configuration

To debug a build project it is necessary to create a debug launch configuration.

 Select the project in the Project Explorer view.

 Right click on the project and choose Debug As... > Debug Configurations.

 The Debug Configurations dialog appears:

Using SoftConsole

38 SoftConsole v3.4 User's Guide

 Right click on the appropriate CPU target and from the context menu choose New.

 The configuration settings for the debug launch configuration appear:

 If the C/C++ Application field is not automatically filled out with the executable to be debugged then click
Search Project... and from the Program Selection dialog select the correct executable to be debugged
and click OK and the C/C++ Application field will then be filled out.

Debugging

SoftConsole v3.4 User's Guide 39

 In the Debug Configurations dialog click Apply to save the debug launch configuration settings.

 It is possible to create more than one debug launch configuration for a project if needed.

 It is often useful to configure the debug launch configuration so that the progress dialog that appears
when initiating a debug session is not modal and so does not block access to the SoftConsole GUI. To do
this check the Launch in background option on the Common property page:

Using SoftConsole

40 SoftConsole v3.4 User's Guide

The Commands property page for a debug launch configuration contains some ‘Initialize’ commands
and some ‘Run’ commands that control how GDB operates when initiating a debug session.

Debugging

SoftConsole v3.4 User's Guide 41

For Cortex-M3 targets (SmartFusion and SmartFusion2) most of the commands are stored in the

microsemi-cortex-m3-target-gdbinit script file bundled with SoftConsole. For other CPU targets

the commands are fully specified in the Commands property page.

Generally it should not be necessary to modify the microsemi-cortex-m3-target-gdbinit script file

but if this is done then a backup copy of the original script file should be made first.

Launching a debug session

To launch a debug session invoke the relevant debug launch configuration.

 Select the project in the Project Explorer view.

 Right click on the project and from the context menu select Debug As... > Debug Configurations.

 The Debug Configurations dialog appears.

 Select the appropriate debug launch configuration and then click Debug...

 Where a debug launch configuration has been used previously it may be available to invoke from the
Debug toolbar button menu:

Using SoftConsole

42 SoftConsole v3.4 User's Guide

 SoftConsole may prompt asking if it should switch to the Debug perspective – click Yes and optionally
check the Remember my decision option so that it does not prompt for subsequent debug sessions.

 The Progress Information dialog appears while the debug session is initiated which involves the
execution of the ‘Run’ commands and ‘Initialize’ commands specified in the debug launch

configuration:

 If the Launch in background option is enabled in the debug launch configuration then the Progress

Information dialog will not be modal and the SoftConsole GUI can be used while it is displayed. This can

be useful if there are any debug launch problems as otherwise, if the Progress Information dialog is

modal, then clicking Cancel terminates the debug session altogether.

 The Console view will display logging and output information indicating the progress of the debug

session. Note that red messages in this view are not necessarily errors!

Debugging

SoftConsole v3.4 User's Guide 43

 By default debug launch configurations will perform any necessary target initialization for debugging,

establish a debug connection, download the program and then run the program until a temporary

breakpoint at main() fires.

 Once all this has happened and SoftConsole has switched to the Debug perspective the stage is set for

debugging the program.

 If there are any problems or errors while launching the debug session, downloading the program or

executing the program then it is necessary to look at the log messages in the Console view (perhaps

having enabled verbose debug sprite logging) and investigate the root cause of the problems.

Using a debug session

When a debug session has successfully launched and SoftConsole has switched to the Debug perspective

it will look similar to this:

Using SoftConsole

44 SoftConsole v3.4 User's Guide

The Eclipse and CDT help explains many of the debugging capabilities and options. Some of the commonly

used views and features are explained below.

If any of the listed views is not displayed by default it can be shown by choosing Window > Show View from

the main menu bar.

Debug view

The Debug view lists the active debug session and shows the stack trace. The Debug view has its own

toolbar buttons which can be used to control debugging:

 Resume (continue execution), Suspend (pause execution) and Terminate (end the debug

session).

 Step Into, Step Over and Step Return for interactive debugging of code at the C/C++

code or machine instruction level.

Debugging

SoftConsole v3.4 User's Guide 45

 Instruction Stepping Mode – by default this is off so that interactive debugging using Step Into,
Step Over and Step Return operate at C/C++ code level in the relevant editor. When this mode is on

debugging operates at the machine instruction level in conjunction with the code displayed in the
Disassembly view.

When program execution is paused the Debug view displays the current stack trace. Clicking on any

function in the stack trace shows details for that function in the editor and Variables view.

Editors

When a debug session is active the active editor displays the file containing the C/C++ code currently being

executed. Various information about program symbols (such as functions, variables, manifest constants etc.)

can be viewed by moving the mouse cursor over the relevant symbol in the editor. Breakpoints can be set or

cleared by double clicking in the margin to the left hand side of the editor or by right clicking in it and using

the context menu.

It is possible to edit code and save changes while a debug session is active. It is even possible to rebuild the

program. However it is better not to do this as it can cause confusion while debugging when the source code

or executable image no longer matches the program being debugged on the target hardware. It is better to

do all code editing, saving of changes and program rebuilds in the C/C++ perspective when no debug

session is active.

Variables view

When program execution is paused the Variables view allows variables to be viewed and modified.

By default stack based variables in the local scope of the function currently selected in the Debug view stack

trace are displayed. However global variables can also be added to the view by right clicking in the view and

selecting Add Global Variables... and selecting the required variables from the Global Variables list.

Right clicking on a variable brings up a context menu providing additional actions such as opening a

Memory Monitor on the area of memory in which the variable is stored, selecting the format in which the

variable value is displayed etc.

Breakpoints view

The Breakpoints view displays all breakpoints currently configured. Because all breakpoints for all

programs are displayed here it is normally a good idea to close all projects other than the project being

debugged so that breakpoints for unrelated projects do not interfere with debugging.

Breakpoints can be viewed, enabled, disabled and removed in this view.

Registers view

When program execution is paused the Registers view displays the CPU registers. Register values can be

viewed and modified from this view. Right clicking on a register and choosing Show Memory allows a

Memory Monitor for the address held by the register to be created.

Outline view

The Outline view displays all symbols in the current source file. Clicking an item listed in the Outline view

opens the editor at that point in the source file.

Disassembly view

The Disassembly view displays the program‟s assembler code. It is useful for examining and debugging of

code at the assembler code level. This is relevant when there is no high level C/C++ source code for a

particular part of the program or when doing low level assembler level debugging using the Debug view‟s

Instruction Stepping Mode and program stepping options.

It is sometimes also useful to view the assembler code while debugging at the high level C/C++ language

level.

As with C/C++ code in the editor it is possible to configure and enable/disable breakpoints in the

Disassembly view using the margin displayed on the left hand side of the view.

Using SoftConsole

46 SoftConsole v3.4 User's Guide

The Disassembly view reads code from the target hardware and disassembles it on demand so having it

visible can slow down debugging depending on the characteristics of the memory subsystem used to store

program code. For this reason it is advisable to only show this view when absolutely necessary if it tends to

slow debugging down.

Console view

The Console view shows logging and progress information for debugging and program execution. It also

provides a full command line interface to GDB which means that GDB commands can be entered and

executed.

Refer to the GDB documentation for details of commands supported by the debugger.

Logging and progress messages in red in the Console view are not necessarily errors.

Memory view

The Memory view displays Memory Monitors allowing memory regions in the target system to be

displayed. Memory contents can be viewed and modified (assuming that the memory region is not read-

only).

To define a Memory Monitor right click in the Monitors region of the Memory view and from the context

menu choose Add Memory Monitor. In the Monitor Memory dialog enter the address of the memory region

to view. This can also be a variable based expression.

A Memory Monitor can also be created from the Variables or Registers views by right clicking on a

variable or register and from the context menu choosing View Memory.

Once a Memory Monitor has been defined the memory addresses and contents are displayed. Inaccessible

(e.g. unimplemented or unconnected) memory regions are read as zero values and writes are ignored.

Scrolling the memory contents region allows further memory contents to be viewed. Memory contents can

be changed by double clicking on a memory cell and entering a new value (assuming that memory is not

read-only).

Right click on the Memory Monitor memory contents region and use the context menu to control

characteristics such as rendering, formatting, size etc.

Right click on a Memory Monitor in the Monitors region of the Memory view to delete or reset it to display

the memory contents at the original configured address.

Terminating a debug session

To terminate a debug session select the debug session in the Debug view and click the red Terminate

button or right click on debug session and from the context menu choose Terminate.

The context menu also offers a Terminate and Relaunch option in order to terminate a debug session and

immediately launch it again.

Debugging

SoftConsole v3.4 User's Guide 47

Once a debug session has terminated it usually makes sense to switch from the Debug perspective back to

the C/C++ perspective.

Flash programming

48 SoftConsole v3.4 User's Guide

Flash programming

SoftConsole supports the creation of programs that can be downloaded to, debugged from and

booted/executed from non volatile memory including internal ENVM on Fusion, SmartFusion and

SmartFusion2 devices and external flash memory on all devices.

An obvious prerequisite for this is a CPU based system that implements a code space memory region using

non volatile memory. Different systems will have different requirements and capabilities in this respect. The

details of how to construct such a system are outside the scope of this document.

SoftConsole‟s flash programming capabilities support both ARM and 8051 based systems. The general

approach is the same in both cases.

When building such a program the non volatile code space memory region and the flash programming

profile to be used are specified. For ARM targets these details are provided by an annotated linker script.

For 8051 targets they are provided by a memory region file passed to the actel-map tool.

The annotated linker script or memory region file contains a structured comment annotation indicating the

non volatile code space memory region and the XML based flash programming profile to be used from this

folder:

<SoftConsole-install-dir>\Sourcery-G++\share\sprite\flash

The following is an example of such an ARM linker script or memory region file annotation denoting the non

volatile memory region and the XML flash programming profile to be used (note that the .xml file extension

is omitted):

/* SOFTCONSOLE FLASH USE: microsemi-smartfusion2-envm */

rom (rx) : ORIGIN = 0x60000000, LENGTH = 256k

The 8051 memory region file uses the same syntax as the GNU ld linker script for memory regions.

SoftConsole includes a number of useful example XML based flash programming profile files. Where these

do not cater for the requirements or characteristics of a specific target system then please contact Microsemi

technical support for advice on how to create a custom flash programming file.

The CMSIS/HAL firmware cores also include a number of useful example linker scripts for creating

programs that can be programmed to various flash memory targets. Refer to the relevant CMSIS/HAL

firmware cores and documentation for specific details about these.

When a debug session for such a program is launched the debugger knows that instead of writing the

program image directly to memory (as happens with read-write memory such as RAM) it will go through the

necessary flash programming steps to load the program into the non volatile memory space. This process is

generally slower than downloading a program to RAM. When interactively debugging such a program the

debugger is also aware that hardware rather than software breakpoints must be used.

It is also possible to create a hardware target system and build a program so that when a debug session is

launched the program is programmed to the relevant target flash memory and thereafter the program

boots/executes from that memory out of reset.

ARM projects

Building for flash download

As mentioned above the linker script used to link the program specifies the non volatile code space memory

region and the flash programming profile to be used to download the program.

8051 projects

SoftConsole v3.4 User's Guide 49

The various CMSIS/HAL firmware cores include useful example linker scripts suitable for creating programs

that can be downloaded to various embedded and external flash devices. These example linker scripts refer

to flash programming profiles bundled with SoftConsole.

To use one of these example linker scripts to build a program suitable for flash programming simply specify

the linker script in the project build configuration properties. For example to build a Cortex-M3 project for

download to and debugging from SmartFusion2 ENVM use the SmartFusion2 CMSIS HAL debug-in-

microsemi-smartfusion2-envm.ld linker script which refers to the microsemi-smartfusion2-

envm.xml flash programming profile which will be used for downloading the program.

The linker script for a project build configuration is specified as follows:

 Select the project in the Project Explorer view.

 Right click on the project and from the context menu choose Properties.

 Browse to C/C++ Build > Settings > Tool Settings > GNU C Linker > Miscellaneous

 In the Linker flags field enter -T <linker-script> where -T is the GCC linker script option and

<linker-script> is the linker script itself.

 For example: -T../CMSIS/startup_gcc/debug-in-microsemi-smartfusion2-envm.ld

When such a program is built, a debug launch configuration created and a debug session launched the

SoftConsole GDB debugger will download the program to the target flash memory using the relevant flash

programming profile. The debugger displays progress information as the program is written to flash. This is

done because downloading a program to flash normally takes longer than downloading to RAM. When the

program has successfully downloaded debugging can proceed as normal except that hardware rather than

software breakpoints are used because the code is in read-only memory.

In some cases the program downloaded in this way will also execute from the relevant flash memory out of

reset.

CMSIS/HAL example linker scripts

The CMSIS/HAL firmware core linker scripts are useful examples that can be used as-is or adapted to the

needs of a specific system. Refer to the CMSIS/HAL firmware cores and documentation for more detailed

information about these.

Firmware core example projects and Libero generated application projects for CPU based systems use

some of these example linker scripts and are useful for reference purposes.

The example linker scripts support download to and debug from embedded and external RAMs and flash

devices. There are also linker scripts for creating production executables suitable for download to embedded

flash using Libero/FlashPro to program the executable image to an ENVM data storage client on Fusion,

SmartFusion and SmartFusion2 devices. There are also linker scripts for booting from flash and relocating to

RAM.

The example linker scripts cover a variety of link/load memory map scenarios but not every possible

scenario. Different systems will have different memory map, link/load, boot/run and relocate requirements.

For this reason it may be necessary to adapt the CMSIS/HAL example linker scripts to the need of a specific

system. Similarly it may be necessary to adapt a flash programming profile to the needs of the non volatile

memory used in a specific system.

8051 projects

Specifying CODE memory in flash

By default two forms of non-volatile storage for the Core8051s are supported by SoftConsole v3.1 and

higher. For each, a sample file is used by SoftConsole to properly explain the memory region‟s layout to the

debug sprite:

Flash programming

50 SoftConsole v3.4 User's Guide

Flash Device Memory Region File

Microsemi Fusion NVM actel-fusion-nvm-code-

memory.txt

Intel 28F640 in 8-bit mode intel-28f640-1x8-code-

memory.txt

Each sample file is installed in the directory

 <SoftConsole-install-dir>\src\Core8051s\memory-region-file-examples

To make your program load into a given flash memory device, you must copy the memory region file from

the install directory into your project, and then adjust a setting to make the build process use this new file.

You can add the memory region file by dragging it over from another window where you‟ve navigated your

way to the install directory. Instead, you could make SoftConsole bring the file in for you:

 Right-click your project under the Project Explorer tab

 Click Import

 Select General > File System > Next

 Use Browse to navigate your way to the memory-region-file-examples directory

 Select the memory region file you want to use and click Finish

Adjusting build for flash

After the file is in your project, right-click your project under the Project Explorer tab and select Properties.

In the window that appears, select C/C++ Build > Settings > Tool Settings > Memory map generator.

To the existing actel-map command, add the option „-M ../filename.txt‟ to point it at the new file.

The actel-map program uses this information to produce a specific memory map for that device, instead of

its default description for RAM. Click Apply and OK to save your changes.

For example:

actel-map -M ../actel-fusion-nvm-code-memory.txt

produces a memory-map.xml file that the sprite will load and understand the program should be

programmed into the Microsemi Fusion NVM device.

Debugging in flash with Core8051s

A debug session using a program running from flash memory only differs in the choice of breakpoints used

by the debugger. Software breakpoints are not possible because they depend upon the ability to write a trap

instruction (0xA5) at a given location, and flash memory is normally read-only. Instead, the Core8051s

debug sprite now also supports the use of hardware breakpoints if they are available from a particular

design.

A debug session detects if up to four hardware breakpoints are available on the target. If too many

hardware breakpoints are requested, the console shows the error

c8051-elf-sprite: only 4 hardware breakpoints available

(The number 4 above may differ if you have fewer hardware breakpoints in your design). If this occurs,

disable the extra breakpoints which will not yet be reached. When a given breakpoint stops execution,

disable its entry in the Breakpoints view and enable the next one that you expect your code to use.

8051 projects

SoftConsole v3.4 User's Guide 51

For more information about how to construct a Core8051s base system that supports flash programming

using SoftConsole please contact Micrsosemi support.

Useful tips

52 SoftConsole v3.4 User's Guide

Useful tips

Linker Map files vs memory-map.xml
Previous versions of SoftConsole required you take some manual steps to create a map file with the linker;

this map file can be useful when analyzing the structure and makeup of your linked application (ELF image).

Starting with SoftConsole v3.2, a linker map file is automatically generated for you as part of the standard

build process. This linker map file is totally distinct from the memory-map.xml file automatically generated

by the actel-map program when building a project.

Starting with SoftConsole v3.3 the linker map file generation can be controlled from a checkbox in the GUI:

The linker map file created during your build is used to produce information about where symbols are

mapped by the linker (including whether a symbol was actually defined by the linker rather than by any

particular input file). The linker map also describes allocation of storage in the resulting binary.

The debug sprite uses the memory-map.xml file to understand the memory regions as specified in the

linker script, and explain to the debugger specific details about how to handle attempts to read or write to a

given address.

How to verify program downloads
To verify a program download:

 Select Run > Debug Configurations...from the main menu bar.

How to enable verbose logging and capture logging to a file

SoftConsole v3.4 User's Guide 53

 Select the relevant debug launch configuration and then its Commands property page.

 In the ‘Initialize’ commands section add the compare-sections command to the end of the list of

commands ensuring that it appears after the load command.

 Save the debug launch configuration settings.

Now when the debugger is launched the compare-sections command will verify the integrity of the

program download by comparing the contents of program memory against the program image on disk.

How to enable verbose logging and capture logging to a file
Verbose debug sprite logging can be useful when investigating problems with program download and

debugging. Capturing the log output to a file can be useful for analyzing the logging information or sending it

to Microsemi technical support when reporting problems.

To enable verbose logging:

 Select Run > Debug Configurations... from the main menu bar.

 Select the relevant debug launch configuration and then its Commands property page.

 In the ‘Initialize’ commands section add a -v option to the debug sprite invocation:

target remote | "${eclipse_home}/../Sourcery-G++/bin/arm-none-eabi-sprite"

flashpro:?cpu=Cortex-M3 "${build_loc}" –v

 To capture debug logging to a file:

 Go to the Common property page of the selected debug launch configuration.

 Under Standard Input and Output check the File option and enter the name of a log file in the

associated field. For example:

Useful tips

54 SoftConsole v3.4 User's Guide

 Save the changes and now when the debugger is launched debug sprite log messages will be saved to

the specified file.

Launch debugger in background
It is often useful to configure the debug launch configuration so that the progress dialog that appears when
initiating a debug session is not modal and so does not block access to the SoftConsole GUI. To do this
check the Launch in background option on the Common property page:

Access to unconnected/unimplemented memory regions

SoftConsole v3.4 User's Guide 55

Access to unconnected/unimplemented memory regions
When accessing memory contents – e.g. using a Memory Monitor view on a specific region of memory –

unconnected/unimplemented memory regions always read as zeros and writes are ignored. For example

SmartFusion system registers are located at 0x60000000 and the memory region preceding this is

unconnected but a Memory Monitor will display the following:

Useful tips

56 SoftConsole v3.4 User's Guide

Keep only one project open at a time
To avoid confusion due to breakpoints set in one project taking effect while debugging another it is often a

good idea to close all projects other than the one(s) that you are working on at the time. To do this right-click

the project in the Project Explorer view and select Close Unrelated Projects.

Use “fine grained” linking to reduce executable image size
By default GCC generates an object module per compilation module (source file) and puts each object

module into its own input section. The GNU ld linker then links the whole of an input section if any function

or data symbol that it contains is referenced. This can lead to linked executable images that are larger than

absolutely necessary. For example if an input section contains three different symbols only one of which is

actually referenced then all three will be linked into the resulting output image.

“Fine grained” linking can be used to circumvent this issue without having to otherwise change the way that

programs are structured and compiled. The GCC options -ffunction-sections and -fdata-

sections put all function and data symbols respectively into their own separate input sections. The GNU

ld linker option -gc-sections “garbage collects” (omits) unused input sections. In the previous example if

these options were used to build the program each of the three symbols would have its own input section

and only those symbols actually referenced would be linked into the resulting executable output image.

To use these options:

 Under Properties > C/C++ Build > Settings > GNU C[++] Compiler > Optimization > Other

optimization flags add -ffunction-sections -fdata-sections

 Under Properties > C/C++ Build > Settings > GNU C[++] Linker > Miscellaneous > Linker flags add

-gc-sections

 If one or more library projects are used in conjunction with an application project then repeat the previous

steps for each library project.

 Perform a clean build of the project.

One caveat that applies is that so called “magic sections” that are required in the output image but are not

explicitly referenced by symbol will be omitted when using these compiler/linker options.

Avoid unnecessary use float/double
Only use floating point variables and arithmetic when absolutely necessary as doing so can cause a

significant amount of floating point support library overhead to be linked in. In many cases integer only

arithmetic will suffice and will yield significantly smaller executable images.

newlib integer only *printf()/*scanf() support
If you choose to use newlib for formatted input/output then bear in mind that it supports integer only versions

of the *printf()/*scanf() methods which are lighter weight than the full blown (including float support)

versions and which may be more suitable for use on an embedded platform. For more information refer to

the newlib documentation at http://sourceware.org/newlib/ – in particular the documentation on viprintf()

and viscanf().

Remember that to use newlib for such input/output you will still need to retarget the relevant newlib Syscalls

(e.g. write(), write_r(), read(), read_r()) to route input/output via your device.

The SmartFusion CMSIS-PAL and SmartFusion2 CMSIS Hardware Abstraction Layer firmware cores

support redirection of newlib *printf() output to an MSS UART/MMUART through the use of specific

#define manifest constants outlined in the CMSIS/startup_gcc/newlib_stubs.c source file. Refer

to the CMSIS-PAL documentation for more information. Refer to the relevant CMSIS documentation and

sample projects for more information.

http://sourceware.org/newlib/
http://sourceware.org/newlib/libc.html#viprintf
http://sourceware.org/newlib/libc.html#viscanf
http://sourceware.org/newlib/libc.html#Syscalls

Use a lightweight [s]printf() implementation

SoftConsole v3.4 User's Guide 57

Use a lightweight [s]printf() implementation
In many cases only basic [s]printf() support is required for embedded applications – e.g. integer only

and/or only a limited set of formatting specifiers and options. As mentioned above the integer only

*printf() support in Newlib can be useful in this context and reduce the size of the linked executable

image compared to one that uses the “full blown” *printf() library support. In some cases even more

limited [s]printf() support will suffice in which case an even smaller implementation can be used. For

example:

 Kustaa Nyholm‟s tiny [s]printf() licensed under GPL:

 Initial version: http://www.sparetimelabs.com/tinyprintf/index.html

 Subsequent smaller and more limited (e.g. no sprintf() support) version:

http://www.sparetimelabs.com/printfrevisited/index.html

 georges@menie.org‟s small printf() licensed under LGPL:

 http://www.menie.org/georges/embedded/index.html#printf

http://www.sparetimelabs.com/tinyprintf/index.html
http://www.sparetimelabs.com/printfrevisited/index.html
mailto:georges@menie.org
http://www.menie.org/georges/embedded/index.html#printf

Licensing

58 SoftConsole v3.4 User's Guide

Licensing

The individual licenses for the elements that make up SoftConsole are presented during the installation

process for review and acceptance. SoftConsole includes tools covered by the following licenses:

 Eclipse Foundation Software User Agreement

 Eclipse Public License - v 1.0

 CodeSourcery Sourcery G++ Software License Agreement

 GNU GENERAL PUBLIC LICENSE, Version 2, June 1991

 GNU LIBRARY GENERAL PUBLIC LICENSE, Version 2, June 1991

 GNU LESSER GENERAL PUBLIC LICENSE, Version 2.1, February 1999

 expat license

 newlib license

 Oracle Java JRE license

 Oracle Java JRE Third Party Licenses

 GNU GENERAL PUBLIC LICENSE, Version 3, 29 June 2007

 GNU RUNTIME LIBRARY EXCEPTION, Version 3.1, 31 March 2009

 GNU LESSER GENERAL PUBLIC LICENSE, Version 3, 29 June 2007

 Libgloss license

 GNU Free Documentation License, Version 1.3, 3 November 2008

 GNU Free Documentation License, Version 1.2, November 2002

SoftConsole v3.4 User's Guide 59

Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer

Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This

appendix contains information about contacting Microsemi SoC Products Group and using these support

services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,

update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers

who can help answer your hardware, software, and design questions about Microsemi SoC Products. The

Customer Technical Support Center spends a great deal of time creating application notes, answers to

common design cycle questions, documentation of known issues and various FAQs. So, before you contact

us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support
Visit the Microsemi SoC Products Group Customer Support website for more information and support

(http://www.microsemi.com/soc/support/search/default.aspx). Many answers available on the searchable

web resource include diagrams, illustrations, and links to other resources on website.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group

home page, at http://www.microsemi.com/soc/.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted

by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email,

fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We

constantly monitor the email account throughout the day. When sending your request to us, please be sure

to include your full name, company name, and your contact information for efficient processing of your

request.

The technical support email address is soc_tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My

Cases.

http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
http://www.microsemi.com/soc/
file:///C:/Documents%20and%20Settings/alim/Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/BPCDM203/soc_tech@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/

Product Support

60 SoftConsole v3.4 User's Guide

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email

(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at

www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations

(ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR

drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/mycases/
http://www.microsemi.com/soc/ITAR/

XXXXXXX-X/MM.YY

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor

solutions for: aerospace, defense and security; enterprise and communications; and industrial

and alternative energy markets. Products include high-performance, high-reliability analog and

RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and

complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at

www.microsemi.com.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

http://www.microsemi.com/

	Table of Contents
	Prerequisite knowledge 5
	Overview 5
	Supported platforms 5
	Supported CPUs 5
	Installing 6
	Java 7
	Eclipse 7
	Eclipse CDT 7
	CodeSourcery Sourcery G++ Lite – GNU Toolchain for ARM Processors 8
	8051 development tools 8
	Hardware target debug support tools 9
	Firmware cores 10
	Libero 11
	Firmware Catalog 11
	FlashPro 12
	Suggested firmware development flow 12
	Workbench 14
	Workspace 14
	Perspectives 15
	Views 17
	Editors 18
	Notebooks 18
	Resources 19
	Getting help 21
	Launching SoftConsole 21
	Managing workspaces 22
	Managing projects 23
	Project build settings 29
	Building a project 31
	Debugging 37
	ARM projects 48
	8051 projects 49
	Linker Map files vs memory-map.xml 52
	How to verify program downloads 52
	How to enable verbose logging and capture logging to a file 53
	Launch debugger in background 54
	Access to unconnected/unimplemented memory regions 55
	Keep only one project open at a time 56
	Use “fine grained” linking to reduce executable image size 56
	Avoid unnecessary use float/double 56
	newlib integer only *printf()/*scanf() support 56
	Use a lightweight [s]printf() implementation 57
	Customer Service 59
	Customer Technical Support Center 59
	Technical Support 59
	Website 59
	Contacting the Customer Technical Support Center 59
	ITAR Technical Support 60

	Introduction
	Prerequisite knowledge
	Overview
	Supported platforms
	Supported CPUs
	Installing
	Constituent components
	Java
	Eclipse
	Eclipse CDT
	CodeSourcery Sourcery G++ Lite – GNU Toolchain for ARM Processors
	8051 development tools
	Hardware target debug support tools
	Related Microsemi tools and resources
	Firmware cores
	Libero
	Firmware Catalog
	FlashPro
	Suggested firmware development flow
	Eclipse concepts and GUI overview
	Workbench
	Workspace
	Perspectives
	Views
	Editors
	Notebooks
	Resources
	Files
	Folders
	Projects

	Using SoftConsole
	Getting help
	Launching SoftConsole
	Managing workspaces
	Managing projects
	Creating projects
	Importing and exporting projects
	Opening, closing and deleting projects
	Other common operations on projects

	Project build settings
	ARM projects
	8051 projects
	Application and library project dependencies

	Building a project
	Build configurations
	Matching firmware to target hardware
	Memory map and linker scripts
	Building projects
	Build artifacts
	ARM and 8051 projects
	ARM projects
	8051 projects

	Dealing with build problems

	Debugging
	Installing FlashPro programmer and drivers
	Building a project for debugging
	Creating a debug launch configuration
	Launching a debug session
	Using a debug session
	Debug view
	Editors
	Variables view
	Breakpoints view
	Registers view
	Outline view
	Disassembly view
	Console view
	Memory view

	Terminating a debug session

	Flash programming
	ARM projects
	Building for flash download
	CMSIS/HAL example linker scripts

	8051 projects
	Specifying CODE memory in flash
	Adjusting build for flash
	Debugging in flash with Core8051s

	Useful tips
	Linker Map files vs memory-map.xml
	How to verify program downloads
	How to enable verbose logging and capture logging to a file
	Launch debugger in background
	Access to unconnected/unimplemented memory regions
	Keep only one project open at a time
	Use “fine grained” linking to reduce executable image size
	Avoid unnecessary use float/double
	newlib integer only *printf()/*scanf() support
	Use a lightweight [s]printf() implementation
	Licensing
	Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

