
SmartFusion Bus Functional Model
User’s Guide

SmartFusion Bus Functional Model User’s Guide

Revision 0 3

Table of Contents

Introduction . 5

1 Overview of SmartFusion BFM . 7

2 BFM usage Flow . 9

3 SmartFusion BFM Commands . 11
Basic Read and Write Commands . 11

Enhanced Read and Write Commands . 11

Burst Support . 13

Flow Control . 14

Variables . 15

BFM Control . 16

BFM Compiler Directives . 18

Parameter Formats . 18

$ Variables . 19

4 BFM Example. 21
Writing and Verifying Fabric . 21

A Product Support . 25
Customer Service . 25

Customer Technical Support Center . 25

Technical Support . 25

Website . 25

Contacting the Customer Technical Support Center . 25

ITAR Technical Support . 26

Index . 27

Introduction

This document describes the Bus Functional Model (BFM) solution for the SmartFusion® device. BFM
models microcontroller subsystem (MSS) bus cycles without modelling other Cortex-M3 processors and
other MSS peripherals behavior and replaces the Cortex-M3 processor core when simulating design.
This BFM simulation enables the SmartFusion device customers to verify and simulate communication
between MSS and fabric logic.

Note: The complete verification of MSS, fabric and their interfaces and protocol compliance is outside the
scope of the BFM solution.

This document describes the following:

• Overview of SmartFusion BFM

• BFM usage flow

• SmartFusion BFM commands

• BFM examples
Revis ion 0 5

1 – Overview of SmartFusion BFM

The BFM acts as a pin-for-pin replacement for the MSS in the project system. It initiates cycle-accurate
bus transactions on the MSS Advanced Microcontroller Bus Architecture (AMBA®) High-Performance
Bus (AHB) matrix and thus allows customers to verify and simulate communication between
SmartFusion MSS and fabric logic.

To minimize simulation time, certain peripherals in the SmartFusion MSS do not have full behavioral
models. Instead they are replaced with memory models that output a message indicating when the
memory locations inside the peripheral have been accessed. This means that the peripheral signals do
not toggle based on any writes to registers, or react to any signal inputs on the protocol pins. The
peripherals that fall into this group include:

• Universal asynchronous receiver/transmitter (UART)

• Serial peripheral interface bus (SPI)

• Integrated circuits (I2C)

• Media access control (MAC)

• Peripheral direct memory access (PDMA)

• WatchDog Timer

• Real-time counter (RTC)

The peripherals that have full behavioral models include:

• Clock management

• Embedded nonvolatile memory (eNVM)

• External memory controller

• Analog compute engine (ACE)

• General purpose input/output (GPIO)

• Fabric interface controller

• Embedded FlashROM (eFROM)

• AMBA AHB bus matrix

The eNVM simulation model is not initialized with data storage or initialization client data. Similarly,
eFROM simulation model is not initialized with region configuration data. You can write and read to both
peripherals as memory elements.
Revis ion 0 7

2 – BFM Usage Flow

Figure 2-1 shows a typical BFM simulation. The BFM is scripted through a text file containing a list of bus
cycles. The BFM script is converted to a binary sequence by the BFM Compiler; it also verifies the syntax
of the script. The binary file (*.vec) contains a sequence of 32-bit values, each represented by an 8 digit
hexadecimal value. Libero® System-on-Chip (SoC) is configured to automatically compile the BFM script
when simulation using Modlesim™ is invoked.

The BFM files are generated in Libero when the MSS is created. The SmartDesign generates the
following files when the MSS is generated:

1. Test.bfm: This contains the BFM commands to initialize the simulation model. The BFM
commands in this file are generated based upon your MSS configuration. This file is analogous to
the system boot code, as it initializes the MSS and calls your user application. Do not modify this
file.

2. User.bfm: You can customize this file to emulate Cortex-M3 processor transactions in your
system. This contains an include directive to the subsystem.bfm that needs to be uncommented if
you have any fabric peripherals that you wish to simulate. The memory map of the fabric
peripherals is specified inside subsystem.bfm, you can refer to those defines inside this BFM file.
This file is analogous to your user application code.

3. Subysystem.bfm: Contains the fabric memory map. Do not modify this file.

These files are automatically passed to ModelSim during simulation in the Libero SoC. The default
user.bfm does not have any script for the user system. So, you need to modify the user.bfm script and
add your own script to test the system before running the ModelSim.

Figure 2-1 • BFM Tool Flow

HALL Based
C Scripting

BFM Script

BFM
Computer

BFM
Vectors

Simulation
Revis ion 0 9

BFM Usage Flow
The user.bfm script can be accessed through the File Hierarchy, below your MSS component in the
Simulation Files node (as shown in Figure 2-2).

The BFM source files are automatically recompiled every time the simulation is invoked from the Libero
SoC by the bfmtovec.exe executable, if running on a Windows® platform, or by the bfmtovec.lin
executable, if running on a Linux® platform.

Refer to www.microsemi.com/ipdocs/CoreAMBA_BFM_UG.pdf for more information.

Figure 2-2 • BFM Tool Flow
10 Revis ion 0

3 – SmartFusion BFM Commands

The following commands are supported by the SmartFusion BFM. The Clocks column indicates the
number of clock cycles an instruction can accommodate; V indicates that it is variable based on the
instruction parameters or AHB/Advanced Peripheral Bus (APB) response times.

Basic Read and Write Commands
The commands mentioned in Table 3-1 provide basic read and write functions.

Enhanced Read and Write Commands
The commands mentioned in Table 3-2 provide enhanced read and write functions.

Table 3-1 • Basic Read and Write Functions

Basic Read and Write
Commands Description Clocks

memmap resource
address

Sets the base address of the associated with the resource. 0

write width resource
address data

Sets the base address of the associated with the resource. V

read width resource
address

Performs a read cycle and echoes the read data to the simulation log. V

readcheck width resource
address data

Performs a read cycle and checks the read data. V

poll width resource
address data

Performs a read cycle until the read data matches the specified value. In
this case a match is read_data & data=data.

V

wait cycles Waits for the specified number of clock cycles. The allowed value for clock
cycle is 1 to 510. Use multiple wait statements for implementing a wait
statement with a value greater the upper limit, that is, divide the wait cycles
and write multiple wait statements

V

Table 3-2 • Enhanced Read and Write Functions

Enhanced Read and
Write Commands Description Clocks

readstore width
resource address
variable

Performs a read cycle and stores the data in the specified variable. V

Readmask width
resource address data
mask

Performs a read cycle and checks the read data. The data is masked as
follows: read_data & mask=data & mask.

V

pollmask width resource
address data mask

Performs a read cycle until the read data matches the specified value. The
data is masked as follows: read_data & data=data & mask.

V

pollbit width resource
address bit val01

Performs a read cycle until the specified bit matches the specified value. V
Revis ion 0 11

SmartFusion BFM Commands
memtest resource addr
size align cycles seed

Performs a random based memory test. The BFM performs a sequence of
mixed random byte, half and word, read or write transfers keeping track of the
expected read values. It is ensured that a write occurs prior to a read of an
address.

Resource: base address of resource

Addr: address offset in resource

Size: size of block to be tested, must be power of 2. The maximum supported
memory size is set by the MAX_MEMTEST generic.

Align Bits [15:0]

0: No special alignment occurs

1: All transfers are forced to be APB byte aligned

2: All transfers are forced to be APB half word aligned

3: All transfers are forced to be APB word aligned as per Microsemi norms

4: Byte writes are prevented

Align Bits [18:16]

16: fill - the memory array is pre-filled before random read/write cycles starts

17: scan - the memory array is verified after the random read/write cycles
complete

18: restart - the memory test restarts, expecting the memory contents to
remain unchanged from the previous memtest

Cycles: Specifies the number of accesses to be performed. May be set to zero
allowing just fill or scan operation.

Seed: Specified the seed value for the random sequence, any non zero
integer.

V

memtest2 baseaddr1
baseaddr2 size align
cycles seed

Similar to memtest command but two separate memory blocks are tested at
the same time, set by the two baseaddr values. The same size and alignment
is used for each block. The maximum size supported is MAX_MEMTEST/2.

V

ahbcycle width resource
address data control

Performs an AHB cycle setting the address, data and control lines to the
specified values. This command may be used to insert IDLE cycles etc.

The control value is as follows:

Bit 0: HWRITE

Bits [5:4]: HTRANS; this sets the value placed on the HTRANS signals during
the AHB cycle

Bits [10:8]: HBURST; this sets the value placed on the HBURST signals during
the AHB cycle

Bit 12: HMASTLOCK; this sets the value placed on the HMASTLOCK signal
during the AHB cycle

Bits [19:16]: HPROT; this sets the value placed on the HPROT signals during
the AHB cycle

Multiple ahbcycle commands can be used to create non-standard AHB test
sequences.

V

Table 3-2 • Enhanced Read and Write Functions (continued)

Enhanced Read and
Write Commands Description Clocks
12 Revis ion 0

SmartFusion Bus Functional Model User’s Guide
When the write, read, readcheck, or readmask and all the following burst commands are used, the AHB
BFM pipelines the AHB bus operation, it starts the next command in the following clock cycle, and
checks the read data in a following clock cycle. A wait or flush command can cause AHB idle cycles to be
inserted between cycles. The poll, pollmask, pollbit, and readstore instructions are not pipelined, the
AHB master inserts idle bus operations until the read operation completes and the read data has been
checked.

Burst Support
These commands allow AMBA burst instructions to be created. They also simplify filling of memory and
creation of data tables as shown in Table 3-3.

Burst Operation Notes

1. Default operation of the BFM is to perform AHB BURST operations with HBURST="001", setting
HTRANS to NONSEQ for the first transfer and to SEQ for all following transfers.

2. During burst transfers the address increments based on the required transfer width. Thus, if a
byte transfer is requested the address increments by 1.

3. A table may only contain 255 values.

4. Arrays are declared using int blah[100] instruction. In the read and writearray instructions the
command transfers data from the array element provided, the following starts the transfer at array
item 0

— int array[100]

— writearray w ahbslave 0x1000 array[0] 16

Table 3-3 • Burst Support

Burst Support Description Clocks

writemult width resource address data1
data2 data3 … data4

Writes multiple data values to consecutive addresses using a
burst AMBA cycle.

V

fill width resource address length start
increment

Fills memory starting with start value and increments each
value as specified. To zero fill the last two values should be 0 0.

V

writetable width resource address tableid
length

Writes the data specified in the specified tableid to consecutive
addresses using a burst AMBA cycle.

V

readmult width resource address length Reads multiple data values from consecutive addresses using a
burst AMBA cycle. Data is discarded.

V

readmultchk width resource address
data1 data2 data3

Reads multiple data values from consecutive locations and
compares against the provided values.

V

fillcheck width resource address length
start increment

Reads multiple data values from consecutive compares against
the specified sequence specified as per the fill command.

V

readtable width resource address tableid
length

Reads multiple data values from consecutive compares against
the specified table values.

V

table tableid data1 data2 data3
data4…datan

Specifies a table of data containing multiple data values. V

writearray width resource address array
length

Writes the data contained in the array to consecutive addresses
using a burst AMBA cycle.

V

readarray width resource address array
length

Reads the AHB bus and stores the data in the array. V
Revis ion 0 13

SmartFusion BFM Commands
Flow Control
Table 3-4 • Flow Control

Flow Control Description Clocks

label labelid Sets a label in the BFM script, used to label instructions for jumps within a
procedure. A label's scope is limited to the procedure it is used in.

0

procedure labelid para1
para3 … para8

Sets a label in the BFM script for a call and name its parameters. 0

jump labelid Jumps to the specified label within the current procedure. 0

jumpz labelid data Jumps if the specified data value is zero. 0

jumpnz labelid data Jumps if the specified data value is non zero. 0

call procedure para1 para2
para3 para4 etc

Call the routine at the specified procedure in the BFM script. Up to eight
parameters may be passed to the called routine. Calls can be recursive.

0

return Returns from the routine. 0

return data Returns from the routine returning the data value or variable. Return value
is accessed using the $RETVALUE variable.

0

loop para1 start end inc Repeats the instructions between loop and end loop. Para1 must have been
declared using the int command.

If not all the parameters are specified then the command is interpreted as
below:

loop para 8: loop para 1 8 1

loop para 1 5: loop para 1 5 1

loop para 5 1: loop para 5 1 -1

loop para 1 5 1: loop para 1 5 1

The loop parameter can be used and modified within the loop. To exit a loop
early set the loop variable to the termination value using the set command.

0

endloop End of loop. 0

if variable The instructions between if and the following endif are performed if variable
is non zero. If/endif can be nested.

0

endif End of If. 0

while variable The instructions between while and endwhile is performed as long as
variable is non zero. While/endwhile can be nested.

0

endwhile End of while loop. 0

compare variable data
mask

Compares variable to the specified data value. The mask value is optional.
If the compare fails then an error is recorded.

0

nop Do nothing for a clock cycle (same as wait 1). 1

stop N Stop the simulation. N specifies the VHDL assertion level or the Verilog
generated message.

0:Note, 1:Warning, 2:Error, 3:Failure

0

wait N Pauses the BFM script operation for N clock cycles. V

waitns N Pauses the BFM script operation for N nano seconds.

Note: The BFM waits for the specified time to expire and then restart at the
next clock edge.

V

14 Revis ion 0

SmartFusion Bus Functional Model User’s Guide
A subroutine is declared using the procedure command then the passed parameters may be referred to
by the declared name.

— procedure example address data

— write b UART address data

— return

Up to eight parameters may be passed.

Variables
The commands, mentioned in Table 3-5, allow a BFM script to use variables etc. If variables are declared
within a procedure, they are local to the procedure; if declared outside a procedure then they are global.
Variables may only be assigned (set) within a procedure.

waitus N Pauses the BFM script operation for N micro seconds.

Note: The BFM waits for the specified time to expire and then restart at the
next clock edge.

V

flush N Wait sfor any pending read or write cycles to complete, and then wait for N
additional clock cycles.

V

quit Terminates the BFM and assert the FINISHED output. 1

Table 3-4 • Flow Control (continued)

Flow Control Description Clocks

Table 3-5 • Variables

Parameters Description Clocks

int para1 … paran Declare variable. 0

int array[N] Declares an array variable of N elements. The maximum supported array
size is 8192.

0

set para1 value Sets a variable to have an integer value. The parameter must have been
declared with the int command.

0

compare variable data
mask

Compares variable to the specified data value. The mask value is optional.
If the compare fails then an error is recorded.

0

cmprange variable datalow
datahigh

Checks the variable is in the data range specified. If not, an error is
recorded.

0

Revis ion 0 15

SmartFusion BFM Commands
The supported operators for the set command are shown in Table 3-6; these are evaluated during run
time by the BFM.

BFM Control
The commands mentioned in Table 3-7 are extended control functions for corner testing etc.

Table 3-6 • The Supported Operators for the Set Command

Operator Function

None

+ A+B

- A-B

* A * B

/ A / B (integer division)

MOD Modulus (remainder)

** A ** B

AND A and B

OR A or B

XOR A xor B

& A and B

| A or B

^ A xor B

CMP A == B (uses XOR operator - result is zero if A==B)

<< A shifted left by B bits (infill is 0)

>> A shifted right by B bits (infill is 0)

== Equal (result is 1 if true else 0)

!= Not Equal (result is 1 if true else 0)

> Greater than (result is 1 if true else 0)

< Less than (result is 1 if true else 0)

>= Greater than or equal (result is 1 if true else 0)

<= Less than or equal (result is 1 if true else 0)

Table 3-7 • BFM Control

BFM Control Description Clocks

version Prints versioning information for the BFM in the simulation and log file,
allows later verification.

0

timeout N Sets an internal timeout value in clock cycles that triggers if the BFM stalls.
Default timeout is 512 clocks.

0

print “string” Prints the string in the simulation log, max string length is 256 characters. 0

Header “string” Prints a separating line off hash's in the simulation log followed by the
string, max string length is 256 characters.

0

16 Revis ion 0

SmartFusion Bus Functional Model User’s Guide
Print “string %d %08x”
para1 para2

Print with support of print formatting. Up to 7 parameters may be used. 0

Header “string %d %08x”
para1 para2

Header with support of print formatting. Up to 7 parameters may be used. 0

lock N Lock 1 asserts LOCK on the next AHB cycle and stay on until a LOCK 0
command is executed, typical operation is

Lock 1

Read w ahbslave

Write w ahbslave

Lock 0

0

Echo D0 D1 D2 .. D7 Simply list the parameter values in the simulation log window. The
command can help in the debug of bfm scripts using calls etc.

0

checktime min max Allows the number of clock cycles that the previous instruction took to be
executed, the two parameters specify the allowed min and max values (in
clock cycles). The instruction waits for any internal pipelined activity to
complete.

The command can be used to verify the number of clock cycles that an
AHB cycle took to complete, and includes both the address and data
phases. A 16-word burst with zero wait states takes 17 cycles.

It can also be used to check the how long a poll, waintint, waitirq, waitfiq,
iowait or extwait instruction took to complete.

An error is recorded if the check fails.

1

starttimer Starts an internal timer (clock cycles). 0

checktimer min max Allows the number of clock cycles since the starttimer instruction was
executed to be checked. The two parameters specify the allowed min and
max values (in clock cycles). The instruction waits for any internal
pipelined activity to complete.

An error is recorded if the check fails.

1

setfail Sets the BFM FAILED output. 1

Setrand para Sets the internal random number seed. 0

Table 3-7 • BFM Control (continued)

BFM Control Description Clocks
Revis ion 0 17

SmartFusion BFM Commands
BFM Compiler Directives
Table 3-8 shows the instructions used by the compiler rather than used in the vector files.

Note: MEMMAP, SET and CONSTANT all declare symbol values. Once declared, the symbol can be
used for any integer like parameter. The same SYMBOL name cannot be used with memmap, set
or constant commands.

Parameter Formats
Table 3-9 describes the parameter formats used in the above command description.

Table 3-8 • BFM Compiler Directives

BFM Compiler Directives Description Clocks

include filename
include “filename”

Includes another BFM file, include files may also contain include files. The
filename should be double quoted when filenames are case sensitive

C header files may also be included that have been generated by the IP
core packaging system.

0

memmap resource address Enumerates the base address of a resource. If a resource is declared
within a procedure then its scope is limited to that procedure.

Once declared the resource cannot be changed.

0

constant symbol value Sets a symbol to have an integer value. If a constant is declared within a
procedure then its scope is limited to that procedure.

Once declared the constant cannot be changed.

0

; Commands may be terminated by a semicolon. 0

Comment, may also be in the middle of a line, must be followed by a
space.

0

-- Comment, may also be in the middle of a line. 0

// Comment, may also be in the middle of a line. 0

/*

*/

All code between these symbols is commented out. 0

\ Instruction continued on next line, useful for table commands. 0

Table 3-9 • Parameter Formats

Parameters Type/Values Description

Integer Integer value using the following syntax,
0x1245ABCD: hexadecimal
0d12343456: decimal
0b101010101: binary
12345678: decimal
$XYZ: Special value.
Mnopq: symbol, procedure parameter or declared variable.
(12+67): If a value is contained in parenthesis the compiler attempts to
evaluate the expression. The expression evaluator supports the same
set of operators as the set command. In this case additional parenthesis
may be used.
Mnopq[100]: An array element, the index may be variable, but not
another array, that is, only single dimensional arrays are supported.

Symbol ASCII string staring with a letter.
18 Revis ion 0

SmartFusion Bus Functional Model User’s Guide
Note: All commands, labels and parameters are case insensitive.

$ Variables
The BFM supports some special integer values that may be specified rather than immediate or variables.
The supported $ variables are mentioned in Table 3-10.

Resource Integer Integer specifying the base address of a resource.

Microsemi recommends that the base address is declared using the
memap command and symbol is used for the resource parameter.

Address Integer Specifies the address offset from its base address.

Width b, h, w Specifies whether byte, half word, or word access.

Cycles Integer -

Mask Integer -

Bit 0 to 31 Integer that specifies the bit number.

Tableid Symbol Label used to identify a table.

Val01 0 or 1 Integer, only 0 and 1 are legal.

labelid Symbol Label used by flow control instructions.

String A string must be enclosed in " ".

Table 3-9 • Parameter Formats (continued)

Parameters Type/Values Description

Table 3-10 • $ Variables

$ Variable Description

$RETVALUE Is the value from the last executed return instruction.

$TIME Current simulation time in ns.

$LINENO Current script line number.

$ERRORS Current internal error counter value.

$TIMER Returns the current timer value, see starttimer instruction.

$LASTTIMER Returns the timer value from the last checktimer instruction.

$LASTCYCLES Returns the number of clocks from the last checktime instruction.

$RAND Returns a pseudo random number. The number is a 32-bit value.

$RANDSET Returns a pseudo random number, and remembers the seed value.

$RANDRESET Returns a pseudo random number after first resetting the seed value to that when the
$RANDSET variable was used. This causes the same random sequence to be regenerated.

$RANDn As above but the random number is limited to n bits.

$RANDSETn Same as $RANDRESET, but the random number is limited to n bits

$RANDRESETn Same as $RANDRESET, but the random number is limited to n bits.
Revis ion 0 19

SmartFusion BFM Commands
These variables are can be used as below:

• write b resource address $ARGVALUE5

• compare $RETVALUE 0x5677

• set variable $RETVALUE

• fill w ahbslave 0x30 4 $RANDSET $RAND

• fillcheck w ahbslave 0x30 2 $RANDRESET $RAND

The multiple ARGVALUES can be used to pass core configuration information to the script to allow the
test script to modify its behavior based on the core configuration. In CoreConsole Soft IP environments
the actual core generic values as set by the CoreConsole GUI can be passed to the script if the values
are set in the coreparameters.v/vhd files are used to set the ARGVALUE parameters on the BFM in the
testbench.

Note: The random function is simple CRC implementation.

If $RAND is specified for the data increment field of the fill and fillcheck instructions then the data
sequence increments by the same random value for each word.
20 Revis ion 0

4 – BFM Example

The following section describes an example BFM script that is used for testing a custom advanced
peripheral bus (APB) core from MSS.

Writing and Verifying Fabric
Figure 4-1 shows a simple design with a soft register block (16x8 bit) connected to the fabric. After
creating the design using SmartDesign, click “Generate” to create RTL and all other required files. During
the generation, the subsystem.bfm is automatically generated by the system and contains the memory
map of the custom APB core. The user.bfm is also automatically generated, but does not have any BFM
command. You can add BFM command shown in this example and run simulation.

subsystem.bfm:
#===
Created by Microsemi SmartDesign Tue Jan 03 15:04:43 2012
#
Syntax:

#
memmap resource_name base_address;
#
write width resource_name byte_offset data;
read width resource_name byte_offset;
readcheck width resource_name byte_offset data;
#
#===

Figure 4-1 • ISmartFusion design with a custom APB block connected to MSS

MSS_RESET_N MSS_RESET_N
M2F_RESET_N

M
S

S
_M

A
S

TE
R

_A
P

B

FAB_CLK
UART_0_PADs + + UART_0_PADs

M

S
0

CoreAPB3_0
IP

IP
S

reg_apb_wrp_0

my_mss_0

PCLK
PRESETN
Revis ion 0 21

BFM Example
#---
Memory Map
Define name and base address of each resource.
#---
memmap reg_apb_wrp_0 0x40050000;

The subsystem.bfm file is automatically generated and you do not need to modify it.

user.bfm:
#===
Enter your BFM commands in this file.
#
Syntax:

#
memmap resource_name base_address;
#
write width resource_name byte_offset data;
read width resource_name byte_offset;
readcheck width resource_name byte_offset data;
#
#===
procedure user_main;
uncomment the following include if you have soft peripherals in the fabric
that you want to simulate. The subsystem.bfm file contains the memory map
of the soft peripherals.
include "subsystem.bfm"
add your BFM commands below:

int i;
int j;
wait 5;

print "**";
print "Testing Custom APB slave block";
print "**";
write b reg_apb_wrp_0 0x00 0x01;
write b reg_apb_wrp_0 0x04 0x05;
write b reg_apb_wrp_0 0x08 0x09;
wait 5;
readcheck b reg_apb_wrp_0 0x00 0x01; # Expect value 01
readcheck b reg_apb_wrp_0 0x04 0x05; # Expect value 05
readcheck b reg_apb_wrp_0 0x08 0x09; # Expect value 09
wait 10;

header "Testing reg_apb_wrp_0 in loop mode";
loop j 0 16 4
loop i 0 16
write b reg_apb_wrp_0 j i;
readcheck b reg_apb_wrp_0 j i; # Expect value i
endloop
endloop

header " Current Time is:%0d", $TIME;
wait 100;

return
#===
Created by Microsemi SmartDesign Tue Jan 03 15:04:43 2012
#
Syntax:

#
memmap resource_name base_address;
#

22 Revis ion 0

 SmartFusion Bus Functional Model User’s Guide
write width resource_name byte_offset data;
read width resource_name byte_offset;
readcheck width resource_name byte_offset data;
#
#===
#---
Memory Map
Define name and base address of each resource.
#---
memmap reg_apb_wrp_0 0x40050000;

The subsystem.bfm file is automatically generated and you do not need to modify it.

user.bfm:
#===
Enter your BFM commands in this file.
#
Syntax:

#
memmap resource_name base_address;
#
write width resource_name byte_offset data;
read width resource_name byte_offset;
readcheck width resource_name byte_offset data;
#
#===
procedure user_main;
uncomment the following include if you have soft peripherals in the fabric
that you want to simulate. The subsystem.bfm file contains the memory map
of the soft peripherals.
include "subsystem.bfm"
add your BFM commands below:

int i;
int j;
wait 5;

print "**";
print "Testing Custom APB slave block";
print "**";
write b reg_apb_wrp_0 0x00 0x01;
write b reg_apb_wrp_0 0x04 0x05;
write b reg_apb_wrp_0 0x08 0x09;
wait 5;
readcheck b reg_apb_wrp_0 0x00 0x01; # Expect value 01
readcheck b reg_apb_wrp_0 0x04 0x05; # Expect value 05
readcheck b reg_apb_wrp_0 0x08 0x09; # Expect value 09
wait 10;

header "Testing reg_apb_wrp_0 in loop mode";
loop j 0 16 4
loop i 0 16
write b reg_apb_wrp_0 j i;
readcheck b reg_apb_wrp_0 j i; # Expect value i
endloop
endloop

header " Current Time is:%0d", $TIME;
wait 100;

return
Revis ion 0 23

A – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the website.

Website
You can browse a variety of technical and non-technical information on the SoC home page, at
www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.

The technical support email address is soc_tech@microsemi.com.
Revision 0 25

http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

Product Support
My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms
Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select
Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR
web page.
26 Revision 0

http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/

Index

A
API Usage Description 9

B
Basic Read and Write Commands 11
BFM Compiler Directives 18
BFM Control 16
Block Diagram of the Display Solution Using the

SmartFusion cSoC 7
BURST OPERATION NOTES 13
Burst Support 13

C
contacting Microsemi SoC Products Group

customer service 25
email 25
web-based technical support 25

customer service 25

D
Display Solutions 7

E
Enhanced Read and Write Commands 11

F
Flow Control 14

I
installation and setup 21
Introduction 5

K
kit

uses 11

M
Microsemi SoC Products Group

email 25
web-based technical support 25
website 25

P
Parameter Formats 18
product support

customer service 25
email 25
My Cases 26

outside the U.S. 26
technical support 25
website 25

S
SmartFusion BFM Commands 11

T
tech support

ITAR 26
My Cases 26
outside the U.S. 26

technical support 25
TFT Soft Controller Driver 9

V
Variables 15, 19

W
web-based technical support 25
Write 11
Writing and Verifying Fabric 21
Revision 0 27

crosemi

ductor
ial and
nd RF
mplete
re at

Microsem
One Ente
Within the
Sales: +1
Fax: +1 (
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Mi

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semicon
solutions for: aerospace, defense and security; enterprise and communications; and industr
alternative energy markets. Products include high-performance, high-reliability analog a
devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and co
subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn mo
www.microsemi.com.

i Corporate Headquarters
rprise, Aliso Viejo CA 92656 USA
50200321.0/7.12

Corporation. All other trademarks and service marks are the property of their respective owners. USA: +1 (949) 380-6100
 (949) 380-6136
949) 215-4996

http://www.microsemi.com

	Introduction
	1 – Overview of SmartFusion BFM
	2 – BFM Usage Flow
	3 – SmartFusion BFM Commands
	Basic Read and Write Commands
	Enhanced Read and Write Commands
	Burst Support
	Flow Control
	Variables
	BFM Control
	BFM Compiler Directives
	Parameter Formats
	$ Variables

	4 – BFM Example
	Writing and Verifying Fabric

	A – Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

	Index

