UG0293 User Guide ARM Cortex-M1-Enabled IGLOO Development Kit

Power Matters."

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2017 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Contents

1	Revisi 1.1 1.2 1.3 1.4	on Hist Revisior Revisior Revisior Revisior	tory 1 3.1 1 3.0 1 2.0 1 1.0	1 1 1 1
2	Introd 2.1 2.2 2.3	UCtion Key Fea Cortex-N System	ntures M1–Enabled IGLOO Development Kit Contents Requirements	2 2 3
3	Hardw 3.1 3.2 3.3 3.4	/are Co Ideal Us Applicat M1AGL 3.3.1 3.3.2 Power . 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 3.4.8	Demponents ions Development Board Detailed Board Description and Usage Block Diagram Accessory Card Power Supply Connections Cortex-M1 Support USB Serial Interface Measuring Current Other Features Programming or Reprogramming the Sample Design Test Points Physical Characteristics of Board	4 4 4 4 4 5 5 6 6 6 7 7 8 9 9
4	Install 4.1 4.2 4.3 4.4 4.5 4.6	ation a Installing Installing Initial M Powerin Determi Factory	nd Setup 1 g Libero IDE v8.x 1 g the Cortex-M1–Enabled Development Kit Using the Install CD 1 1AGL Development Board Configuration 1 g Up the M1AGL Development Board 1 ning the Serial COM Port 1 Configuration 1	0 0 1 1 2
5	Samp 5.1 5.2 5.3 5.4	le Desi Sample 5.1.1 5.1.2 Program 5.2.1 Sample Libero II 5.4.1 5.4.2 5.4.3	gn Tutorial1System Hardware Overview1Libero IDE Project1SmartDesign Design1Iming the FPGA on the M1AGL Development Board1SoftConsole Designs1System Hardware Overview1DE Project1Top-Level Design1Additional Source Files1Device Options1	3 333333333466
	5.5	SmartDe 5.5.1 5.5.2	esign Subsystem	7 8 8

		5.5.3	Метогу Мар	19
	5.6	Progra	mming the FPGA on the M1AGL Development Board	19
	5.7	SoftCo	nsole Designs	20
		5.7.1	Importing and Compiling the SoftConsole Designs	21
		5.7.2	Debugging the Traffic Light Design Example	23
	5.8	Using t	the Memory Loader Utility	27
		5.8.1	Rebooting the Board to Run the Traffic Light Software from Flash	29
		5.8.2	Restoring Factory Default Settings	29
6	Appe	ndix: F	G484 Package for the M1AGL FPGAs	30
7	Appe	ndix: B	oard Schematics	38

Figures

Figure 1	Cortex-M1–Enabled IGLOO Development Kit Board	2
Figure 2	M1AGL Development Board Block Diagram	5
Figure 3	M1AGL Development Board Power Configuration	6
Figure 4	Schematic of Jumpers	7
Figure 5	Installed Directory Structure	10
Figure 6	Running the Device Manager	12
Figure 7	Finding the COM Port	12
Figure 8	Libero IDE Project	14
Figure 9	Libero IDE Device Options	16
Figure 10	SmartDesign Example_M1AGL_UJTAG Project	17
Figure 11	Sample Design Block Diagram	18
Figure 12	FlashPro3 Programmer Application	20
Figure 13	SoftConsole Workspace Launcher	21
Figure 14	SoftConsole Import Window	21
Figure 15	Next SoftConsole Import Window	22
Figure 16	SoftConsole Workspace with New Projects Added	23
Figure 17	SoftConsole Debug Configuration Window	24
Figure 18	Traffic Light Program Selection	25
Figure 19	SoftConsole Debug Window	25
Figure 20	SoftConsole Main Debug Screen	26
Figure 21	Traffic Light Application	27
Figure 22	Memory Loader Utility SoftConsole Setup	28
Figure 23	Memory Loader Application	<u>29</u>
Figure 24	M1AGL1000 Layout	30
Figure 25	484-Pin FBGA Package	31
Figure 26	M1AGL Development Board Top Assembly Drawing	38

Tables

Table 1M1AGL Development Board Jumper Descriptions8Table 2FPGA Pin Connections to M1AGL Development Board Signals and Sample Design Signals32

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 3.1

CD is no longer included in the kit. For more information, see Installation and Setup, page 10.

1.2 Revision 3.0

The following is a summary of the changes in revision 3.0 of this document.

- The Cortex-M1–Enabled IGLOO Development Kit Contents, page 2 was revised. DVDs are no longer included in the kit.
- References throughout the document to M1AGL600 were changed to M1AGL1000 and notes made on the change (SAR 46898).

1.3 Revision 2.0

The following is a summary of the changes in revision 2.0 of this document.

- Modified Table 2, page 32 (SAR 26067).
- Modified Power, page 5 (SAR 36252).

1.4 Revision 1.0

The following is a summary of the changes in revision 1.0 of this document.

- SmartDesign replaced references to CoreConsole in a number of places throughout the document, and screen shots have been replaced where appropriate.
- The Functional Description, page 18 was revised to state that Cortex-M1 has one functioning interrupt.
- The Memory Map, page 19 was revised to add the statement, "CoreMemCtrl is connected to slot 0 on the AHBLite bus and is used to interface to external SRAM and flash." A statement on the function of the Remap switch was revised. The memory locations for external SRAM for SW2 #9 ON and external FLASH for SW2 #9 OFF were revised.
- The Debugging the Traffic Light Design Example, page 23 was revised extensively. Text and screen shots were removed and replaced.
- The Using the Memory Loader Utility, page 27 was revised extensively.
- M1AGL Development Board User Tests appendix was removed.

2 Introduction

The Cortex-M1–Enabled IGLOO Development Kit is an advanced microprocessor-based FPGA development and evaluation kit. The purpose of the kit is to help the user become familiar with the IGLOO FPGA features by providing a useful Sample Design, with a "How To" tutorial for implementing the FPGA hardware design using Microsemi Libero[®] System-on-Chip (SoC) Project Manager. The user's guide also shows how to implement Cortex-M1 processor embedded software using SoftConsole.

Figure 1 • Cortex-M1–Enabled IGLOO Development Kit Board

2.1 Key Features

- Ultra-low power in Flash*Freeze mode
- Low-power active capability
- Small footprint packages
- Reprogrammable flash technology
- 1.2 V or 1.5 V operation
- High capacity, advanced I/O
- Clock conditioning circuit (CCC) and PLL
- Embedded SRAM and nonvolatile memory (NVM)
- In-system programming (ISP) and security
- Cortex-M1 processor

2.2 Cortex-M1–Enabled IGLOO Development Kit Contents

The Cortex-M1–Enabled IGLOO Development Kit includes the following:

- M1AGL Development Board
- +5.0 V external power supply with international adapters
- 2 USB A to Mini-B cables
- 4 self-adhesive rubber pads
- Quickstart Guide

2.3 System Requirements

The Cortex-M1–Enabled IGLOO Development Kit requires the following:

- PC or laptop running Windows XP or Windows 2000
- 2 USB ports (connectors) on the PC or laptop

3 Hardware Components

This chapter describes the hardware components of the Cortex-M1–Enabled IGLOO Development Kit.

3.1 Ideal Uses for the Development Kit

Ideal uses for the Cortex-M1–Enabled IGLOO Development Kit are the following:

- Development and verification of embedded microprocessor based systems or subsystems
- Product development platform
- Algorithm development

3.2 Applications

The Cortex-M1–Enabled IGLOO Development Kit is ideal for use in the following applications:

- Smartphones, GPS, DCAM, and PDA
- · Portable industrial and medical equipment
- PC laptops and PCMCIA
- Any ultra-low power devices

3.3 M1AGL Development Board

The Cortex-M1–Enabled IGLOO development board has these features:

- Microsemi M1AGL1000 IGLOO FPGA
- 1 MByte SRAM
- 16 MByte flash
- USB–RS232 converter chip
- GPIO connectors
- Ultra-low power with Flash*Freeze technology
- On-board FlashPro3 circuitry
- 20-Pin Cortex-M1 JTAG connector
- Socketed crystal oscillator
- Push-button power-on reset circuit
- 10 test LEDs
- 10 test switches
- Expansion connectors

Note: Previous versions of the board used M1AGL600, but the current version uses M1AGL1000.

3.3.1 Detailed Board Description and Usage

The Cortex-M1–Enabled IGLOO Development Kit has various advanced features that are covered in later sections of this chapter. The architecture provides access to a one-chip FPGA solution containing a Cortex-M1 32bit RISC processor, and digital peripheral components.

Note that the Microsemi FPGA is soldered directly to the board. The development board is available only in a directly soldered configuration. A socketed configuration is not available.

Full schematics are available on the Development Kit website at:

https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo/cortex-m1-enabled-igloodevelopment-kit#documents. See the Appendix: Board Schematics, page 38 for M1AGL Development Board schematics contents.

3.3.2 Block Diagram

The simplified block diagram in the following figure shows the main features of the M1AGL Development Board. The blocks in dashed lines are not normally installed.

Figure 2 • M1AGL Development Board Block Diagram

3.4 Power

The development kit may only be powered through J3 with the external +5.0 V 2.1 mm positive-center power supply that is included with the kit. Jumper JP22 should be installed in the 1-4 position to allow this. This jumper is a convenient place to measure the input current. The board was originally designed to allow USB powering options; however, the USB inrush current was too high so these options were removed.

2 USB mini-B to A cables are supplied but are only used to power the FlashPro3 and Serial-USB circuitry. Both USB ports can be used simultaneously. The FlashPro3 logic is only powered when USB power is applied through J1. Similarly, the serial USB interface is only powered when USB power is applied through J2. It is also possible to use no USB after the M1AGL1000 is programmed.

There are two USB power rails on the board. Refer to Figure 3, page 6. The FlashPro3 logic uses 3 voltage regulators. A 3.3 V regulator provides power to the USB interface. The USB interface can then enable 2.5 V and 3.3 V regulators for the APA150 FPGA which implements the JTAG programming logic for the IGLOO FPGA.

Q1, a P-channel MOSFET device, is used to hold off powering up most of the FlashPro3 logic until the USB interface has had a chance to ask for an increase from 100 mA to 500 mA of 5 V current.

Aside from the regulators for the FlashPro3 circuit, there are three regulator components on the board to provide 1.5 V and/or 1.2 V, 2.5 V, and 3.3 V to the IGLOO FPGA.

LED D6 indicates that the 3.3 V regulator is operating. The 3.3 V supply is used to provide the V_{PUMP} programming voltage.

The IGLOO FPGA's core voltage is provided by voltage regulator U12. The output voltage of this regulator depends on the setting of jumper JP5. This voltage can be either fixed 1.5 V, fixed 1.2 V, or can automatically switch to 1.5 V during FPGA configuration, then switch to 1.2 V for operation. See jumper settings in Table 1, page 8.

Figure 3 • M1AGL Development Board Power Configuration

3.4.1 Accessory Card Power Supply Connections

Limited power may be supplied by the IGLOO Development Kit to an accessory card. Connectors for accessory cards (headers P1, P2, and P5) are shown on page 2 of the schematics (see Appendix: Board Schematics, page 38). The 5 V input voltage and the 2.5 V and 3.3 V regulated voltages are provided to the accessory card connectors.

3.4.2 Cortex-M1 Support

A standard 20-pin Cortex-M1 JTAG header (P3) is supplied to enable use of any ARM standard emulator and debug environment. Alternatively, USB connector J1 (PROG) and the on-board FlashPro3 circuitry may be used as a debug path to the Cortex-M1's internal debug interface. Note that the FPGA design must instantiate the Cortex-M1 SmartDesign component to include the debug logic for software development.

Connected to the FPGA for use by the Cortex-M1 are flash and SRAM memories. The SRAM configuration is a byte-addressable 256Kx32, or 1MB. The flash configuration is 4Mx32 or 16MB (expandable to 32MB). The flash is not byte-addressable, but each 16-bit word can be individually addressed. All memories are asynchronous. Access times may vary due to component availability so check the datasheets for the memories installed.

The clock for the FPGA logic can come from U20, a socketed 48 MHz 3.3 V, 50% duty cycle crystal oscillator. This frequency can be modified inside the FPGA.

Two power-on resets are provided to the FPGA. One has a push-button feature to provide a warm reset. The non-push-button reset is usually used for the Cortex-M1's JTAG nTRST signal. Other reset schemes may also be used.

3.4.3 USB Serial Interface

USB Connector J2 (SERIAL) provides a USB-to-RS-232 interface through U4. In this configuration, the IGLOO FPGA should contain a UART core.

3.4.4 Measuring Current

The FPGA I/O banks are powered separately through jumpers. See the schematic excerpt below. The jumpers are four pins instead of two, to allow connection of an ammeter on the outer two pins and subsequent removal of the shunt. This way current can be measured without shutting down power. Note that the DMM must have a microammeter setting.

Figure 4 • Schematic of Jumpers

If you are not using the PLL, be sure that jumper JP20 is installed on pins 2 and 3. This will disable power to the PLL.

Be sure to measure current in Flash*Freeze mode also by sliding switch SW3 toward the bottom of the board. You can also use the push-button reset switch (SW1) to stop the flip-flops from toggling and measure idle current. For more information about power modes and measuring current, see the Sample Design Tutorial, page 13.

3.4.5 Other Features

The development kit also contains a 10-position DIP switch bank and a 10-LED module for general purpose use. All signals are connected to the FPGA. The LEDs and switches are active High and the switches have 10K pull-down resistors.

3.4.6 **Programming or Reprogramming the Sample Design**

On the Cortex-M1–Enabled IGLOO Development Kit at: https://www.microsemi.com/products/fpgasoc/design-resources/dev-kits/igloo/cortex-m1-enabled-igloo-development-kit#documents. you will find a Sample Design file containing a STAPL file for programming the target design. Select the STP file and use that as the STAPL file in the FlashPro software. Selecting PROGRAM will erase, program, and verify the part.

Table 1 • M1AGL Development Board Jumper Descriptions

Jumper	Development Kit Function	Factory Default	Notes
JP1	Provides 3.3 V to Prog. USB interface	Installed	Current can be measured at this point.
JP2	Provides 2.5 V to FlashPro3 FPGA	Installed	Current can be measured at this point.
JP3	Provides 1.2 V and/or 1.5 V core voltage to IGLOO	Installed 2-3	Current can be measured at this point.
JP4	Provides 3.3 V to FlashPro3 FPGA	Installed	Current can be measured at this point.
JP5	Selects 1.2 V and/or 1.5 V core voltage for IGLOO FPGA	Depends on whether FPGA is V2 or V5. V2: Installed 2-3 V5: Not installed (auto switch mode	No jumper installed = 1.5 V fixed (use this for V5 parts) Jumper pins 2 to 3 = 1.2 V fixed Jumper pins 1 to 2 = 1.5 V during configuration, then 1.2 V for operation
JP6	Connects 3.3 V to pin 2 of P1 connector	Installed	Current can be measured at this point.
JP7	Connects VIN (5 V) to pin 1 of P1 connector	Installed	Current can be measured at this point.
JP8	Connects push-button reset to P3	Not installed	This functionality is usually not required and can add noise to the reset.
JP9	Connects 3.3 V to V_{PUMP} pin on FPGA	Installed 2-3	Current can be measured at this point.
JP10	Connects 2.5 V to pin 2 of P2 connector	Installed	Current can be measured at this point.
JP11	Connects RS232_TX signal from FPGA to RXD input of serial-to-USB chip.	Installed	Jumper can be removed so FPGA I/O can be used for another purpose.
JP12	Connects RS232_RX signal from FPGA to TXD input of serial-to-USB chip.	Installed	Jumper can be removed so FPGA I/O can be used for another purpose.
JP13	Connects 3.3 V to bank 3 of IGLOO FPGA	Installed 2-3	Current can be measured at this point.
JP14	Connects VIN (5 V) to pin 1 of P2 connector	Installed	Current can be measured at this point.
JP15	Provides 3.3 V to non-FlashPro3 portion of board	Installed	Current can be measured at this point.
JP16	Connects 3.3 V to bank 0 of IGLOO FPGA	Installed 2-3	Current can be measured at this point.
JP17	Connects 2.5 V to bank 1 of IGLOO FPGA	Installed 2-3	Current can be measured at this point.
JP18	Connects 3.3 V to bank 2 of IGLOO FPGA	Installed 2-3	Current can be measured at this point.

Jumper	Development Kit Function	Factory Default	Notes
JP19	Connects 3.3 V to IGLOO FPGA	Installed 2-3	Current can be measured at this point.
JP20	Supplies voltage to PLL	Installed 1-2 to enable PLL	1-2 connects core voltage to PLL 2-3 shorts VCCPLF to GND to disable PLL and insure it does not consume power.
JP21	Selects source of Flash*Freeze pin.	Installed 2-3	1-2 connects GPIOB_0 to FF pin. 2-3 connects push-button circuit with RC and Schmitt trigger buffer.
JP22	Selects input power (5 V) to the main board logic	Installed 1-4	Factory installed between pins 1 and 4 to select power from 2.1 mm external power supply connector. Other jumper positions have been removed and are no longer supported.
JP23	Connects VIN (5 V) to pin 1 of P5 connector	Installed	Current can be measured at this point.
JP24	Connects 3.3 V to pin 2 of P5 connector	Installed	Current can be measured at this point.

Table 1 • M1AGL Development Board Jumper Descriptions (continued)

3.4.7 Test Points

All ground test points on the board are fitted with small test loops. They are labeled only as GND. Signal test points are labeled on the silkscreen as TP1, TP2, etc. The test points have holes that a scope probe can access. Power voltages may be probed at the jumpers that connect them to the circuitry that they power. Voltages will be 5.0 V, 3.3 V, 2.5 V, 1.5 V, or GND. When measuring the voltage at a test point with a DVM (digital voltage multimeter), the ground lead should be connected to a test point labeled GND and the voltage lead should be connected to the voltage to be tested. All voltage labels on the board are relative to a 0 V ground reference or GND.

3.4.8 Physical Characteristics of Board

The printed circuit board assembly, including all components, is completely lead-free and RoHS compliant.

The board is fabricated with six copper layers. The layers are arranged as follows from top to bottom:

- Layer 1 Top Signal Layer
- Layer 2 Ground Plane
- Layer 3 Signal and Ground Reference for LVDS
- Layer 4 Signal Layer LVDS, etc.
- Layer 5 Ground Plane, Power Plane cutouts
- Layer 6 Power Plane, LVDS signals
- Layer 7 Signal and Ground Reference for LVDS
- Layer 8 Signal and Local Powers and Grounds
- Layer 9 Ground Plane
- Layer 10 Bottom Signal Layer

4 Installation and Setup

This chapter outlines how to set up the Cortex-M1–Enabled IGLOO Development Kit using the Install CD and the Libero IDE DVD. This chapter also describes the initial M1AGL Development Board configuration and power sequence.

- **Note:** The latest revision of this kit is not shipped with a CD. Please download the Libero SoC software at: https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc.
- Note: Sample design files and other related documents can be downloaded at: https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo/cortex-m1-enabled-igloodevelopment-kit#documents.

4.1 Installing Libero IDE v8.x

Place the Libero IDE DVD in the DVD drive on your personal computer or laptop. The DVD should automatically start an auto-run session. At this point, follow the instructions (prompts) on the Libero IDE dialog box.

For more Libero IDE v8.x software installation instructions, refer to the documentation supplied in the Libero IDE DVD case or refer to the Libero IDE / Designer Installation and Licensing Guide for Software v8.x.

Note: Libero IDE, SmartDesign, and SoftConsole tools will be used in for the Sample Design Tutorial in the Sample Design Tutorial, page 13.

4.2 Installing the Cortex-M1–Enabled Development Kit Using the Install CD

Place the Development Kit Install CD in the CD drive on your PC (PC refers to either your personal computer or laptop). The CD should automatically start an auto-run session. Follow the instructions (prompts) on the Install dialog box.

The Install application will properly place all the documentation and sample project files in the *C:\Actel_M1AGL* folder (default) or the user selected folder. The following figure shows the installed directory structure.

Figure 5 • Installed Directory Structure

The Install application will also install the SFE USB to RS232 controller driver set for the serial USB connector J2 (SERIAL). The drivers are copied to C:\Program Files\SparkFunElectronics\USB (default location).

Note: The FlashPro3 USB drivers for the J1 USB (PROG) interface are located in the Libero IDE Installation location.

The Install CD contains the following documentation:

- This Cortex-M1–Enabled IGLOO Development Kit User Guide
- Cortex-M1–Enabled IGLOO Development Kit Quickstart Guide
- M1AGL board schematics
- Available IP marketing briefs from Microsemi and also third party IP vendors

4.3 Initial M1AGL Development Board Configuration

Before powering up the M1AGL Development Board for the first time, make sure the switches and jumpers are in the following factory set positions:

SW2: All switches (0-9) are in the ON position.

JP1, JP2, JP3(2-3), JP4, JP6, JP7, JP9(2-3), JP10, JP11, JP12, JP13(2-3), JP14, JP15, JP16(2-3), JP17(2-3), JP18(2-3), JP19(2-3), JP20(1-2), JP21(2-3), JP22(1-4) JP23, JP24 are installed.

All others are not installed.

4.4 **Powering Up the M1AGL Development Board**

Apply power to the board by connecting one end of the 5-Volt power supply to the J3 connector on the M1AGL board and the other end to a power outlet.

Next, connect one end of a supplied USB cable to a USB port (connector) on your PC or laptop. Connect the other end to M1AGL connector J1 (PROG). After a few seconds, you should see the big yellow ON LED at the top right of the board illuminate.

The PC will detect that new hardware is installed. The Add New Hardware Wizard will take care of the Microsemi FlashPro3 driver installation. The wizard will ask for a location for the drivers.

Note: See the FlashPro3 documentation for the location of these drivers. These are usually located in the *<FlashPro install location>\Drivers* folder.

Now connect one end of the second supplied USB cable to a second USB port (connector) on your PC or laptop. Connect the other end to M1AGL Development Board port J2 (SERIAL). You should see the LED closest to the J2 connector illuminate. This USB port is used to transport a serial RS-232 interface over USB 2.0. The PC will recognize this interface as a COM port.

4.5 Determining the Serial COM Port

Verify the PC COM port that was enumerated with the RS-232 USB chip at J2.

 On the PC, click the Start button and open up the Device Manager by navigating to Control Panel > System. Then click the Hardware tab, and the Device Manager button, as shown in the following figure.

Figure 6 • Running the Device Manager

- 2. Expand the Ports (COM & LPT) tree in the view.
- 3. The following figure shows the COM port associated with the SFE USB to RS232 Controller. This is the COM port associated with the J2 USB (Serial) Connector.

Figure 7 • Finding the COM Port

Note: Concerning the SFE USB to RS232 Controller, if the board is powered down while any PC application is using this resource, then the PC application will need to close the COM port and reopen the COM port after the board has been powered up again. In general, adhere to the following sequence: close COM port, power-down board, power-up board, open COM port. Otherwise, the communication channel will not function if the COM port is not restarted after a board power-down/power-up sequence.

4.6 Factory Configuration

The M1AGL Development Board is shipped from the manufacturer with the Sample Design loaded in the M1AGL FPGA. Also the Traffic Light Controller embedded software image is loaded into external flash. See the Sample Design Tutorial, page 13.

After powering up the M1AGL Development Board for the first time, you will be able to see the Traffic Light Sample Design executing by observing the timed sequence of LEDs illuminating on U8.

5 Sample Design Tutorial

This sample design is created specifically for the Cortex-M1–Enabled IGLOO Development Kit. This tutorial will guide you though the sections listed below.

5.1 Sample System Hardware Overview

5.1.1 Libero IDE Project

- Top-level file
- Additional source files
- Constraints files
- Device options

5.1.2 SmartDesign Design

- Sample Design Hardware Overview
- Functional description
- Memory map

5.2 Programming the FPGA on the M1AGL Development Board

5.2.1 SoftConsole Designs

- Importing and compiling the SoftConsole designs
- Debugging the Traffic Light design example
- Using the Memory Loader Utility to program the on-board flash with the Traffic Light embedded code image
- Rebooting the board to run the Traffic Light software from flash

5.3 Sample System Hardware Overview

The Sample system hardware design was produced using two tools in the standard Microsemi toolchain: Libero IDE Project Manager and SmartDesign.

The Libero IDE design contains the top-level file, other source files, the SmartDesign subsystem, constraints files, and build scripts. These are used by Libero IDE to compile, synthesize, and place-and-route the sample design. The Libero IDE project used in the sample hardware design is provided for reference in the development kit installation.

The SmartDesign component contains the processor, memory controller(s), UART, timer, and interrupt controller, as well as instantiations of the AHB and APB buses. The SmartDesign component contains the bulk of the functionality and logic of the sample design. The SmartDesign project used in the sample hardware design is provided for reference in the development kit installation.

Note: It is not necessary to synthesize, place-and-route, or generate a programming file for the sample hardware design. Also, it is not necessary to regenerate the SmartDesign subsystem. These files are included in the M1AGL Development Kit installation.

5.4 Libero IDE Project

Start Libero IDE Project Manager by selecting **Microsemi Libero IDE 8.x** > **Project Manager** from the Start Menu.

Open the Libero IDE project file, Example_M1AGL_UJTAG.prj, by selecting the **Project** > **Open Project** menu item and then selecting **Example_M1AGL_UJTAG.prj**. The project is shown in the following figure.

The Project Manager - La Werktopment Well (2004) AGL Metel _ Mit AGL Sample Design Utilitero Dro 多 Drotet: Ele Eat: Yew Tools: Window Help 日本語名(1): 新聞日本語名(1): 新聞日本語名(1): 新聞日本語名(1): 新聞語名(1): Enable Desi	jectNexample_M1AGL_UJTAGNexample_M1AGL_UJTAG.prj - [Project Flow]
ge groect gie got gew Loois gondow Help Ro Ro Ro D Ro 문 문 또 한 만 이 유용과 등 등 유용을 가 Enable Desi	
	(=)=).
	igner Block creation
Current Designer view: Impl1 🔄 😒 😒 🔯 🗟	
Vesign Explorer g • ×	
Show: Components Design Entry Tools	Root:socTop
🖃 👹 work 🔤 👘 🔛 👘 👘 👘 🐨 📢	Pre-Synthesis
Bartel of 1904 104 104 Hz HDLEditor SmartDesign CoreConsole ViewOrar	W Post-Synthesis Configure Project Flow
Exemple MIAGL UJTAG	> Post-Layout
🔝 sync (sync.v)	
Source Files	
	* Simulation
Synthesis	
Supplie	Simulation Stimulus Stimulus
socTop.edn 💌	MadelSin Stimulus Editor WaveFormer
Hierarchy DFiles	
Post-Synthesis	
* * Options	
A Function, Name:	
Basic Blocks	
the Bus Interfaces	<u></u>
E Clock & Management socTop.adb V	yout Files
🗉 🌋 Memory & Controllers	Ro I I I I I I I I I I I I I I I I I I I
🗉 😫 Peripherals	Debugging Debugging Debugging
+ D Power Management PD	8 File FlashPro I dentity Debuccer Silicon Scubtor
Project Flow	
nformation Window p + x	
Properties (a) * Look for: * Lb	rary: * Type: Al Find Options >>
File Path:	
.:\\hdl\socTop.v . Reading file 'CoreGPIO.v'. Reading file 'sortel nll 48MHz 15	MH# st
.ibrary: work * Reading file 'socTop.v'.	
Created: Mon Dec 17 14:14:15 20(Reading file 'sync.v'.	
ast Modified: Mon Feb 18 13:22:56 200	was opened.
8	
S () All (France) Warringer) Info) Find 1 (
Tall - L (with V succes V resultings V and V succes V	

Figure 8 • Libero IDE Project

This project file is located in the following folder:

<install folder>\Sample Design\LiberoProject\Example_M1AGL_UJTAG\

5.4.1 Top-Level Design

The socTop.v design, supplied in the *Sample Designs\Hardware\Source* folder, instantiates the following modules:

- PLL module (SmartGen component)
- Clock buffers
- Cortex-M1 subsystem
- Synchronizing module (for the switch inputs)

The following code is from the socTop Verilog module.

// Cortex-M1 SAMPLE DESIGN

`define N_EXT_ADDR 26
module socTop (
 pbRstN,
 poRstN,

• • •


```
// I/O definitions:
    // System clocks:
    input sysClk;
    // Resets:
   input pbRstN;
                                 // external reset connected to pushbutton
    input poRstN;
                                  // external reset not connected to
pushbutton
   output flashRstN;
                                   // reset to FLASH
    // RS232 connections:
    output rs232Atx;
                                   // serial transmit line
    input rs232Arx;
                                  // serial receive line
  . . .
// Instantiations:
    // Instantiate PLL:
    actel pll 48MHz 16MHz pll1 (.POWERDOWN(poRstNi), .CLKA(sysClk 48MHz),
.LOCK(pllLock), .GLA(sysClk_16MHz));
    CLKINT ci0 (.A(sysClk), .Y(sysClk_48MHz));
    CLKINT cil (.A(poRstN),
                                .Y(poRstNi));
    CLKINT ci2 (.A(pbRstN),
                                .Y(pbRstNi));
    // Instantiate Cortex-M1 Subsystem:
    Example_M1AGL_UJTAG Example_M1AGL_UJTAG_00(
        // Inputs
        .APBmslave0 PRDATA
                              (APBmslave0 PRDATA),
        .CoreUARTapbRX
                              (rs232Arx),
. . .
    // Instantiate Synchronizers
    sync #(10) sync0
```

```
(
```


.outClk (sysClk_16MHz),

• • •

5.4.2 Additional Source Files

The following is the list of additional Verilog HDL files need for Libero IDE:

- sync.v
 - Switch input synchronizers

The sync.v file is located in the following folder: <install folder>\Sample Design\LiberoProject\Example_M1AGL_UJTAG\HDL

Constraints Files

The following is the list of the Libero IDE constraint files for the Sample Design:

- constraints.sdc
 - Timing constraints for synthesis
 - socTop.pdc
 - Physical design constraints for place and route (I/O placement)

These files are located in the following folder:

<install folder>\Sample Design\LiberoProject\Example_M1AGL_UJTAG\Constraints.

5.4.3 Device Options

Select Project > Settings from the menu to view the Libero IDE device options.

Figure 9 • Libero IDE Device Options

5.5 SmartDesign Subsystem

To open the SmartDesign portion of the Example_M1AGL_UJTAG project, expand the top level of the design in Libero IDE Project Manager (Hierarchy window), right-click on **Example_M1AGL_UJTAG**, and select **Open Component.** The project is shown in the following figure.

Figure 10 • SmartDesign Example_M1AGL_UJTAG Project

5.5.1 SmartGen Components

The Sample Hardware design contains this SmartGen component:

- actel_pll_48MHz_16MHz (phase-locked loop module to convert 48 MHz input clock to 16 MHz)
- To explore this module and its options, expand the top level of the design in Libero IDE Project Manager (Hierarchy window), right-click on **actel_pll_48MHz_16MHz**, and select **Open Component**.

5.5.2 Functional Description

The Sample Hardware design is a basic microcontroller subsystem design. This design contains hardware that is typically used for supporting software, such as real-time operating systems (RTOS) or basic controller software. This design specifically supports a Cortex-M1 processor based system.

The following blocks are contained in the SmartDesign sample design:

- Cortex_M1 (processor)
- CoreAHB2APB (AHB to APB bridge)
- CoreMemCtrl (External SRAM and flash controller)
- CoreAhbSram (internal memory controller)
- CoreGPIO
- CoreUARTapb
- CoreTimer
- CoreInterrupt
- CoreAHBLite (bus)
- CoreAPB (bus)

The Cortex-M1 processor has one functioning interrupt input (IRQ0). There are two interrupt sources in the design that share this Cortex-M1 interrupt via CoreInterrupt (interrupt controller module). The two interrupt sources are the Receive Ready interrupt from the CoreUARTapb peripheral, and the Timer Expired interrupt from the CoreTimer peripheral.

The Sample subsystem interfaces to both internal SRAM memory and external SRAM and flash memory. The internal SRAM is connected to the CoreAHBLite bus through the CoreAhbSram internal memory controller. The external (off chip) SRAM and flash are also connected to the CoreAHBLite bus through the CoreAHBLite bus through the CoreMemCtrl module.

The slower peripherals, CoreUARTapb, CoreTimer, CoreInterrupt, and CoreGPIO modules, are connected to the CoreAPB bus. The CoreAPB bus is connected to the CoreAHBLite bus through the CoreAHB2APB bridge.

5.5.3 Memory Map

The memory map is largely determined by what slot on the AHB/APB bus a particular module occupies. CoreMemCtrl is connected to slot 0 on the AHBLite bus and is used to interface to external SRAM and flash. A Remap switch toggles the mapping of SRAM and FLASH between addresses 0x00000000 and 0x08000000.

The following memory locations are determined by the position of switch SW2 as follows: With SW2 #9 in the ON position:

- External FLASH 0x0000000
- External SRAM 0x08000000

With SW2 #9 in the OFF position:

- External SRAM 0x0000000
- External FLASH 0x08000000

The rest of the memory map is fixed:

- Internal SSRAM 0x20000000
- CoreGPIO 0xA0000000
- CoreUARTapb 0xA1000000
- CoreTimer 0xA2000000
- CoreInterrupt 0xA3000000

See the SmartDesign project for additional settings and connections.

5.6 Programming the FPGA on the M1AGL Development Board

This section describes how to load the FPGA with the sample hardware design. It is necessary for the FPGA to be programmed with the Sample Design load before running the example software described later in the SoftConsole Designs, page 20.

Note: The M1AGL Development Board is shipped from the manufacturer with the Sample Design loaded in the M1AGL FPGA.

Apply power to the board by connecting one end of the external 5-Volt power supply to the J3 connector on the M1AGL board and the other end to a power outlet.

Next, connect one end of a supplied USB cable to a USB port (connector) on your PC or laptop. Connect the other end to M1AGL connector J1 (PROG). After a few seconds, you should see the big yellow ON LED at the top right of the board illuminate.

Make sure that switch SW2 is set for switches 0–8 in the ON position, and switch 9 in the OFF position. This places RAM at address 0 for the debug session.

Follow the *FlashPro for Software User Guide* to program the M1AGL1000. The socTop.stp STPL file is in the *<install folder>\Sample Design\LiberoProject\Example_M1AGL_UJTAG\designer\impl1* folder.

Run the FlashPro Programmer from the Start Menu under **Microsemi Libero IDE v8.x** > **FlashPro v6.x** > **FlashPro v6.x**. Use the FlashPro window to program the FPGA, as shown in the following figure.

Figure 12 • FlashPro3 Programmer Application

🚺 FlashPro - [socTop] *				
<u>File Edit View Tools Programmers Configuration Customize H</u> elp				
	MR			
New Project	vice 🔈	PBOGB	AM 🔤	
Open Project 🕞 View Program	mers 🐝		~	
Programmer	Programmer	Port	Programmer	Programmer
Name 1 EEE/2	I ype	where to flice 2.0	Status DUM DASSED	Enabled
Refresh/Rescan	for Programmers			
0 - 0 - 0 - 0 - 0 - 0				× >
Dandy LuDavelopmeth(stal/M1020) Astal M102	P\Sample Decim\1 ib	eroProject\Evample_M1(39 LITTAG decigner/impl	1) socTop pdb SINGLE

5.7 SoftConsole Designs

There are two SoftConsole embedded software designs provided with the development kit: a simple traffic light example and a memory loader utility for programming on-board flash.

The traffic light example will demonstrate the Cortex-M1 system executing a traffic light sequence to blink LEDs on U8. The traffic light example will also transmit control characters through the UART (COM port) to an optional Traffic Light application running on a PC. While this design is rather simple, it will demonstrate the basics of creating a Cortex-M1 based system FPGA design using the embedded software to run the on the hardware using SoftConsole.

The memory loader utility provides a convenient method for programming the on-board flash.

For the traffic light example, the Cortex-M1 software will periodically write data to the CoreGPIO via the CoreAHB2APB module to the APB bus. The periodic data transactions will blink the LEDs which are tied directly to the CoreGPIO.

Both designs execute software instructions from external SRAM via the CoreMemCtrl block and AHB Lite bus. The external SRAM will contain the software program, data variables, and software stacks.

5.7.1 Importing and Compiling the SoftConsole Designs

 Start SoftConsole by selecting Actel SoftConsole v2.x > Actel SoftConsole from the Start Menu. Browse to your SoftConsoleWorkspace folder, as shown in the following figure. Click OK.

Figure 13 • SoftConsole Workspace Launcher

SC Workspace Launcher	×
Select a workspace	
Actel SoftConsole stores your projects in a folder called a workspace. Choose a workspace folder to use for this session.	
Workspace: C:\SoftConsoleWorkspace	
Use this as the default and do not ask again OK Cancel	

2. Now import the Traffic Light Example and the Memory Loader Utility project into SoftConsole by selecting **File** > **Import** item from the menu.

The following figure shows the resulting window.

Figure 14 • SoftConsole Import Window

SC Import	
Select Create new projects from an archive file or directory.	2
Select an import source: type filter text General General File System File System Preferences C/C++ Cys SVN Cys Team	
Image: Care of the second s	cel

3. Select **Existing Projects into Workspace** in the SoftConsole Import window and then click **Next**. The following figure shows the next window.

Figure 15 • Next SoftConsole Import Window

SC Import		
Import Projects Select a directory to searc	h for existing Eclipse projects.	
• Select root directory: • Select archive file: Projects:	AGL\Actel_M1AGL\Sample Design\SoftConsole	Browse Browse
MemoryLoaderM1		Select All Deselect All Refresh
✓ Copy projects into wo	rkspace	
0	< Back Next > Finish	Cancel

4. Click the **Select root directory** radio and browse to the following folder: <*install folder>* \Sample Design\SoftConsole

Ensure the MemoryLoaderM1 and TrafficLightM1 check boxes are checked.

5. Select the Copy projects into workspace check box and then click Finish.

By clicking Finish, the projects will be copied into the Workspace and then compiled automatically.

The following figure shows the SoftConsole Workspace after these projects have be imported and compiled.

Figure 16 • SoftConsole Workspace with New Projects Added

5.7.2 Debugging the Traffic Light Design Example

- 1. Configure the Debug session for the TrafficLightM1 example by right-clicking the **TrafficLightM1** project and selecting **Debug As** > Open **Debug Dialog** from the menu.
- 2. Right-click **Actel Cortex-M1 Target** and choose **New**. Debug configuration window should look like the following window, with the Name and Project fields automatically filled in.

Figure 17 • SoftConsole Debug Configuration Window

SC Debug	
Create, manage, and run c	onfigurations
Image: Sec Actel Core8051s Target Sc Actel Core8051s Target Sc Actel CoreNP7 Target Sc Actel CoreNP7 Target Sc Actel Cortex-M1 Target Sc Creating the sec for the sec	Main Debugger Commands Source Common Project (optional): TrafficLightM1 Browse C/C++ Application: C/C++ Application: Search Project Browse Application console Search Project Browse
Filter matched 8 of 8 items	Apply Reyert
0	Debug Close

3. Click the **Search Project** next to the C/C++ Application text box. Select **armle -TrafficLightM1/Debug/TrafficLightM1** and click **OK**.

Figure 18 • Traffic Light Program Selection

SC Program Selection
Choose a program to run:
Binaries:
TrafficLightM1
Qualifier:
armle - /TrafficLightM1/Debug/TrafficLightM1 armle - /TrafficLightM1/Release/TrafficLightM1
OK Cancel

Figure 19 • SoftConsole Debug Window

SC Debug					
Create, manage, and run configurations					
Image: Second Secon	Name: TrafficLightM1 Main				
?	Apply Revert Debug Close				

4. Click **Apply** to save these settings, then click **Debug** to start the debugging session for the TrafficLightM1 example.

The following figure shows the main Debug screen in SoftConsole.

Figure 20 • SoftConsole Main Debug Screen

SC Debug - TrafficLightM1/TrafficLightMain.c - Actel SoftConsole IDE						
Elle Edit Refactor Navigate Search Run Project Window Help						
📸 • 🔛 🖆 📾 竣 • O • O • O • I 🔗 ½ - 🖓 - 🖓 - ↔ -				😭 🏇 Debug 🗟 C/C++		
🏇 Debug 🛛 🛛 🍇 🔗 🕪 💷 🖷 🖉 🔍 🖘 📑 😥 🍸 🏴 🗒 🍸 🏴 🗒	(x)= Variables 🕅	💊 Breakpoints 🚻 Registr	ers 🛋 Modules	;		
SC TrafficLightM1 Debug [Actel Cortex-M1 Target]				🗄 🏘 🖂 🦨 💥 💥 🏹		
Embedded GDB (4/24/09 1:41 PM) (Suspended)	Name		Valu	Je		
Hindea (U) (suspendeo)	(x)= m_Lstate	9	'E'			
C:\Program Fifes\Actel\SoftConsole v2.2\Sourcerv-G++\bin\arm-none-eabi-gdb.exe (4/24/09 1:41 PM)	(×)• m_Sstab	0	4			
	<			>		
				_		
				<u></u>		
			10			
📄 Welcome 📄 only-ram-memory.ld 🚺 sys_boot.c 🚺 default_handlers.c 🚺 TrafficLightMain.c 🛛			E Outline	8		
60// The main function		^		J ^a z 😿 🖋 ⊖ ▽		
61int main(void)				socDefs.h		
62 (AP8_Interrupt.h		
64 64 64			- 11	APB_Timer.h		
65 // Configure UART to operate at 57600				APB_UART.h		
66 uart_cfg(UART_BASE_ADDR, BR_57600_16MHZ);				evternals b		
67 Time Peccale						
68 // Configure Timer: Continuous mode, IRQ Enable, Timer Enable, Prescale as defined above # TIMER_TIMEOUT_100_5						
69 timer_load(THEER BASE ADDR, THEOUT_SCALE(glb1SpeedVal)); 70 timer_cfcr(THEE BASE ADDR THEE CONTROL CONTINUES I THEE CONTOOL DOFNAELF THEE CONTOOL ENABLE THE						
70 CIMEE_CIG(TIMER_BASE_ADDR, TIMER_CONTROL_CONTINUOUS TIMER_CONTROL_IRGENAL	TT I TIMER_C	CONTROL_ENABLE, TIP-	#	TIMER_TIMEOUT_0_12_5		
72 // Enable interrupts						
73 interrupt_irq_enable(INTERRUPT_BASE_ADDR, IRQ_UART_RX_MASK IRQ_TIMER_TICK_MASK); # IMECOLUPSALE						
74 cm1_irq_enable(CM1_IRQ0_MASK); # # RESTOLUTION						
75 • • • • gbl5peet/vi : unsigned						
75 // Initialize m_Sstate			😑	glblTimerCount : unsigned		
78			- 0	IRQ_Handler(void) : void		
79 // The main (forever) loop				main(void) : Inc		
80 for(;;)		*				
🖳 Console 🛛 🧑 Tasks 🔝 Problems 🔋 Memory		🔳 🗶 🍇 📑	🚮 🔛 🖳			
TrafficLightMI Debug [Actel Cortex:MI Target] C:/Program Fles/Actel/SoftConsole v2.2[Sourcery-G++]bin]arm-none-eabl-gdb.exe (4/24/09 1:41 PM)						
tb main						
Breakpoint 1 at 0x32a: file/TrafficLightHain.c, line 66.						
cont main () at /TrafficliphtMain giff						
66 uart cf.u(UART BASE ADDR, BR 57600 16HHZ);						
(*)				>		
1 D*	Writable	Smart Insert 1:1				

Program execution stops automatically at the beginning of the main() function. It is now possible to set breakpoints, single-step through the program or simply run the program.

The TrafficLightM1 example program has a forever loop inside main() function which executes the following:

- Sequences the state of the traffic light
- Puts out the traffic light state to the LEDs and to the UART

The frequency at which this loop is executed is governed by a timer interrupt.

As an option, run the Traffic Light Application on the PC by running the Traffic_Light.exe application located in the folder <install folder>\ Sample Design\PC_Software\TrafficLight.

The following figure shows the PC Traffic Light Application. Ensure that a USB cable is connected from the J2 USB (SERIAL) connector to the PC. Reference the Determining the Serial COM Port, page 11 for determining which COM port to use. Click the **Run** button in the Traffic Light PC application to connect to the M1AGL board. The PC application will now read the state of the traffic light from the embedded software.

Figure 21 • Traffic Light Application

Close the Traffic Light application and terminate the SoftConsole debugging session.

5.8 Using the Memory Loader Utility

Create a SoftConsole debug session similar to the one created for the TrafficLightM1 Example by rightclicking on the MemoryLoaderM1 project and selecting **Debug As > Open Debug Dialog** from the menu.

Right-click on Actel Cortex-M1 Target and choose **New**. The Name and Project fields are automatically filled in.

Click the **Search Project** button next to the C/C++ Application text box. Select **armle -MemoryLoaderM1/Debug/MemoryLoaderM1** and click **OK**.

Click **Apply** to save these settings, then click **Debug** to start the debugging session for the MemoryLoaderM1 example.

Figure 22 • Memory Loader Utility SoftConsole Setup

SC Debug			
Create, manage, and run configuration	าร		Ť.
Yupe filter text SC Actel Core8051s Target SC Actel CoreMP7 Target SC Actel CoreMP7 Target SC Actel CoreMP7 Target SC Actel CoreMP7 Target SC TrafficLightM1 Debug SC (/C++ Attach to Local Application C (/C++ Local Application C (/C++ Postmortem debugger C GDB Hardware Debugging	Name: MemoryLoaderM1 Debug Image: Main	Search Project)	Browse Browse
Filter matched 9 of 9 items		whhix	<u>Ke</u> Teir
0		Debug	Close

Run the MemoryLoaderM1 embedded application by selecting **Run > Resume** from the menu. The MemoryLoaderM1 application configures the UART in the example system, then enters a forever loop listening for commands from the Memory Loader PC application.

Now you are ready to execute the Memory Loader PC application by running Memory_Loader.exe from the *<install folder>\Sample Design\PC_Software\MemoryLoader* folder. The following figure shows the Memory Loader PC Application.

Ensure that a USB cable is connected from the J2 USB (SERIAL) connector to the PC. Reference Determining the Serial COM Port, page 11 for determining which COM port to use. Select the appropriate COM port from the drop-down box, and click the **Connect to Target** button to connect to the M1AGL board. If the connection to the M1AGL board is successful, a status message will appear in the lower left of the Memory Loader Utility.

In the Load Memory section, set the Base Address to 0800000 (Hex), and click the **Select File to Load** button. Browse to the file TrafficLightM1.bin located in the following folder: <SoftConsole workspace folder>\ TrafficLightM1\Release

Note: TrafficLightM1.bin was automatically created by the Release version of the TrafficLightM1 SoftConsole project.

Click the **Load Memory** button to erase and load the external Flash with the TrafficLightM1 image for the Cortex-M1.

Figure 23 • Memory Loader Application

For more information about the Memory Loader Utility for the PC, select Help > Help from the menu.

Close the Memory Loader Utility and terminate the SoftConsole debugging session.

5.8.1 Rebooting the Board to Run the Traffic Light Software from Flash

The Release version of the TrafficLightM1 example software has been loaded into external flash. To run the TrafficLightM1 application, toggle SW2 #9 to the ON position. This remaps external Flash to memory address 0x00000000. Then press and release the system reset button at SW1 to start program execution. Now observe the LEDs at U8 sequence through the traffic light states as in the debug session for the TrafficLightM1 example. Optionally, run the Traffic Light PC application.

5.8.2 Restoring Factory Default Settings

The completion of the procedure documented in this chapter restores factory default settings for the M1AGL FPGA and the on-board flash.

6 Appendix: FG484 Package for the M1AGL FPGAs

The following figure shows the MIAGL1000 layout.

Figure 24 • M1AGL1000 Layout

The following figure shows the bottom view of the 484-Pin FBGA.

Figure 25 • 484-Pin FBGA Package

Due to the comprehensive and flexible nature of M1AGL FPGA device user I/Os, a naming scheme is used to show the details of the I/O. The name identifies to which I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.

IO Nomenclature = Gmn/IOuxwBy

Gmn is only used for I/Os that also have CCC access – i.e., global pins.

Where,

G = Global

m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle)

n = Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1, or C2

u = I/O pair number in the bank, starting at 00 from the northwest I/O bank in a clockwise direction x = P (Positive) or N (Negative) for differential pairs, or R (Regular – single-ended) for the I/Os that support single-ended and voltage-referenced I/O standards only. U (Positive-LVDS only) or V (Negative-LVDS only) restrict the I/O differential pair from being selected as LVPECL pair.

w = D (Differential Pair) or P (Pair) or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out. For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements for a true differential pair.

B = Bank

H5

J5

H3

H1

J1

L8

M8

L6

L4

M4

memAddr[19]

memAddr[20]

memAddr[21]

memAddr[22]

memAddr[23]

y = Bank number [0..3]. Bank number starting at 0 from the northwest I/O bank in a clockwise direction.

The following table lists the FPGA pin connections to the M1AGL1000 Development Board signals and the Sample Design signals. Note that the board also allows use of the FG256 BGA package although the FG484 is supplied.

Preloaded Design FG256 Ball FG484 Ball Signal **Schematic Signal** I/O **Development Kit Function** N6 Т9 pbRstN BUF2 PBRST N **Push Button Reset** Т R4 V7 PORESET N Power on Reset poRstN Т N4 Τ7 flashRstN FLASH RST N 0 Reset to Flash Chips B1 E4 extClk OSC CLK I System Clock D9 A6 rs232Arx **RS232 RX** Т **UART** Receive RS232_TX D6 G9 rs232Atx 0 **UART Transmit** N3 Τ6 memAddr[2] MEM ADDR2 0 SRAM / flash address R7 M4 MEM ADDR3 0 SRAM / flash address memAddr[3] C5 F8 MEM ADDR4 0 SRAM / flash address memAddr[4] C6 F9 0 SRAM / flash address memAddr[5] MEM ADDR5 B4 E7 MEM_ADDR6 0 SRAM / flash address memAddr[6] D7 A4 memAddr[7] MEM ADDR7 0 SRAM / flash address C2 F5 MEM ADDR8 0 SRAM / flash address memAddr[8] C1 F4 memAddr[9] MEM ADDR9 0 SRAM / flash address MEM ADDR10 SRAM / flash address D4 G7 memAddr[10] 0 D2 G5 memAddr[11] MEM ADDR11 0 SRAM / flash address D1 G4 memAddr[12] MEM ADDR12 0 SRAM / flash address E4 H7 memAddr[13] MEM ADDR13 0 SRAM / flash address E3 H6 MEM_ADDR14 0 SRAM / flash address memAddr[14] E2 H5 0 memAddr[15] MEM ADDR15 SRAM / flash address F2 J5 MEM ADDR16 0 SRAM / flash address memAddr[16] K1 N4 memAddr[17] MEM_ADDR17 0 SRAM / flash address G4 K7 memAddr[18] MEM_ADDR18 0 SRAM / flash address

Table 2 • FPGA Pin Connections to M1AGL Development Board Signals and Sample Design Signals

MEM ADDR19

MEM ADDR20

MEM ADDR21

MEM ADDR22

MEM ADDR23

0

0

0

0

0

SRAM / flash address

FG256 Ball	FG484 Ball	Preloaded Design Signal	Schematic Signal	I/O	Development Kit Function
J2	M5	memAddr[24]	MEM_ADDR24	0	SRAM / flash address
M2	R5	memAddr[25]	MEM_ADDR25	0	SRAM / flash address
Т8	W11	memData[0]	MEM_DATA0	I/O	SRAM / flash data
P8	U11	memData[1]	MEM_DATA1	I/O	SRAM / flash data
R8	V11	memData[2]	MEM_DATA2	I/O	SRAM / flash data
R7	V10	memData[3]	MEM_DATA3	I/O	SRAM / flash data
T7	W10	memData[4]	MEM_DATA4	I/O	SRAM / flash data
P7	U10	memData[5]	MEM_DATA5	I/O	SRAM / flash data
N8	T11	memData[6]	MEM_DATA6	I/O	SRAM / flash data
Т6	W9	memData[7]	MEM_DATA7	I/O	SRAM / flash data
R6	V9	memData[8]	MEM_DATA8	I/O	SRAM / flash data
P6	U9	memData[9]	MEM_DATA9	I/O	SRAM / flash data
N7	T10	memData[10]	MEM_DATA10	I/O	SRAM / flash data
T5	W8	memData[11]	MEM_DATA11	I/O	SRAM / flash data
R5	V8	memData[12]	MEM_DATA12	I/O	SRAM / flash data
B5	E8	memData[13]	MEM_DATA13	I/O	SRAM / flash data
T4	W7	memData[14]	MEM_DATA14	I/O	SRAM / Flash Data
B6	E9	memData[15]	MEM_DATA15	I/O	SRAM / flash data
N10	T13	memData[16]	MEM_DATA16	I/O	SRAM / flash data
T11	W14	memData[17]	MEM_DATA17	I/O	SRAM / flash data
R11	V14	memData[18]	MEM_DATA18	I/O	SRAM / flash data
P10	U13	memData[19]	MEM_DATA19	I/O	SRAM / flash data
T10	W13	memData[20]	MEM_DATA20	I/O	SRAM / flash data
M9	R12	memData[21]	MEM_DATA21	I/O	SRAM / flash data
P9	U12	memData[22]	MEM_DATA22	I/O	SRAM / flash data
R10	V13	memData[23]	MEM_DATA23	I/O	SRAM / flash data
N9	T12	memData[24]	MEM_DATA24	I/O	SRAM / flash data
Т9	W12	memData[25]	MEM_DATA25	I/O	SRAM / flash data
R9	V12	memData[26]	MEM_DATA26	I/O	SRAM / flash data
M8	R11	memData[27]	MEM_DATA27	I/O	SRAM / flash data
A5	D8	memData[28]	MEM_DATA28	I/O	SRAM / flash data
C4	F7	memData[29]	MEM_DATA29	I/O	SRAM / flash data
L3	P6	memData[30]	MEM_DATA30	I/O	SRAM / flash data
M1	R4	memData[31]	MEM_DATA31	I/O	SRAM / flash data
N2	Т5	flashHiCeN	FLASH_HCE_N	0	Flash Chip Enable (high chip)
M3	R6	flashLoCeN	FLASH_LCE_N	0	Flash Chip Enable (low chip)
L4	P7	flashWeN	FLASH_WE_N	0	Flash Write Enable

Table 2 • FPGA Pin Connections to M1AGL Development Board Signals and Sample Design Signals

FG256 Ball	FG484 Ball	Preloaded Design Signal	Schematic Signal	I/O	Development Kit Function
N1	T4	flashOeN	FLASH_OE_N	0	Flash Output Enable
N11	T14	sramCeN	SRAM_CE_N	0	SRAM Chip Enable
T14	W17	sramBsN[0]	SRBS0_N	0	SRAM Byte Select 0
R13	V16	sramBsN[1]	SRBS1_N	0	SRAM Byte Select 1
T12	W15	sramBsN[2]	SRBS2_N	0	SRAM Byte Select 2
T13	W16	sramBsN[3]	SRBS3_N	0	SRAM Byte Select 3
R12	V15	sramWeN	SRAM_WE_N	0	SRAM Write Enable
P11	U14	sramOeN	SRAM_OE_N	0	SRAM Output Enable
B7	E10	ledOut[0]	LED0	0	Drives LED 0
C7	F10	ledOut[1]	LED1	0	Drives LED 1
P5	U8	ledOut[2]	LED2	0	Drives LED 2
T2	W5	ledOut[3]	LED3	0	Drives LED 3
P4	U7	ledOut[4]	LED4	0	Drives LED 4
R3	V6	ledOut[5]	LED5	0	Drives LED 5
P2	U5	ledOut[6]	LED6	0	Drives LED 6
P1	U4	ledOut[7]	LED7	0	Drives LED 7
R1	V4	ledOut[8]	LED8	0	Drives LED 8
R2	V5	ledOut[9]	LED9	0	Drives LED 9
A15	D18	switchIn[0]	SWITCH0	I	Switch Input 0
A14	D17	switchIn[1]	SWITCH1	I	Switch Input 1
B14	E17	switchIn[2]	SWITCH2	I	Switch Input 2
C13	F16	switchIn[3]	SWITCH3	I	Switch Input 3
A12	D15	switchIn[4]	SWITCH4	I	Switch Input 4
D11	G14	switchIn[5]	SWITCH5	I	Switch Input 5
B11	E14	switchIn[6]	SWITCH6	I	Switch Input 6
C11	F14	switchIn[7]	SWITCH7	I	Switch Input 7
D10	G13	switchIn[8]	SWITCH8	I	Switch Input 8
A11	D14	switchIn[9]	SWITCH9	I	Switch Input 9
Unused	Unused	gpio0[9:0]	Unused	I/O	General Purpose I/O
N/A	P3	gpio0[10]	IOS_P5 (unused)	I/O	General Purpose I/O
N16	T19	gpio0[11]	DIFFB2PRX	I/O	General Purpose I/O
P16	U19	gpio0[12]	DIFFB2NRX	I/O	General Purpose I/O
J14	M17	gpio0[13]	DIFFA1P	I/O	General Purpose I/O
K15	N18	gpio0[14]	DIFFA1N	I/O	General Purpose I/O
N/A	K1	gpio0[15]	IOS_P6 (unused)	I/O	General Purpose I/O
L15	P18	gpio0[16]	DIFFA2P	I/O	General Purpose I/O
L14	P17	gpio0[17]	DIFFA2N	I/O	General Purpose I/O

Table 2 • FPGA Pin Connections to M1AGL Development Board Signals and Sample Design Signals

FG256 Ball	FG484 Ball	Preloaded Design Signal	Schematic Signal	I/O	Development Kit Function
L16	P19	gpio0[18]	DIFFB1P	I/O	General Purpose I/O
M16	R19	gpio0[19]	DIFFB1N	I/O	General Purpose I/O
Unused	Unused	gpio0[31:20]	Unused	I/O	General Purpose I/O
A2	D5	gpio1[0]	GPIOA_0	I/O	General Purpose I/O
A3	D6	gpio1[1]	GPIOA_1	I/O	General Purpose I/O
A7	D10	gpio1[2]	GPIOA_2	I/O	General Purpose I/O
D7	G10	gpio1[3]	GPIOA_3	I/O	General Purpose I/O
D8	G11	gpio1[4]	GPIOA_4	I/O	General Purpose I/O
B8	E11	gpio1[5]	GPIOA_5	I/O	General Purpose I/O
A8	D11	gpio1[6]	GPIOA_6	I/O	General Purpose I/O
C8	F11	gpio1[7]	GPIOA_7	I/O	General Purpose I/O
E8	H11	gpio1[8]	GPIOA_8	I/O	General Purpose I/O
C9	F12	gpio1[9]	GPIOA_9	I/O	General Purpose I/O
B9	E12	gpio1[10]	GPIOA_10	I/O	General Purpose I/O
A9	D12	gpio1[11]	GPIOA_11	I/O	General Purpose I/O
D9	G12	gpio1[12]	GPIOA_12	I/O	General Purpose I/O
E9	H12	gpio1[13]	GPIOA_13	I/O	General Purpose I/O
C10	F13	gpio1[14]	GPIOA_14	I/O	General Purpose I/O
A10	D13	gpio1[15]	GPIOA_15	I/O	General Purpose I/O
B10	E13	gpio1[16]	GPIOA_16	I/O	General Purpose I/O
B13	E16	gpio1[17]	GPIOA_17	I/O	General Purpose I/O
A13	D16	gpio1[18]	GPIOA_18	I/O	General Purpose I/O
C12	F15	gpio1[19]	GPIOA_19	I/O	General Purpose I/O
B12	E15	gpio1[20]	GPIOA_20	I/O	General Purpose I/O
K4	N7	gpio1[21]	GPIOA_21	I/O	General Purpose I/O
K2	N5	gpio1[22]	GPIOA_22	I/O	General Purpose I/O
J4	M7	gpio1[23]	GPIOA_23	I/O	General Purpose I/O
G1	K4	gpio1[24]	GPIOA_24	I/O	General Purpose I/O
G2	K5	gpio1[25]	GPIOA_25	I/O	General Purpose I/O
G3	K6	gpio1[26]	GPIOA_26	I/O	General Purpose I/O
F4	J7	gpio1[27]	GPIOA_27	I/O	General Purpose I/O
F3	J6	gpio1[28]	GPIOA_28	I/O	General Purpose I/O
F1	J4	gpio1[29]	GPIOA_29	I/O	General Purpose I/O
E1	H4	gpio1[30]	GPIOA_30	I/O	General Purpose I/O
B2	E5	gpio1[31]	GPIOA_31	I/O	General Purpose I/O
E13	H16	gpio2[0]	GPIOB_0	I/O	2.5 V I/O

Table 2 • FPGA Pin Connections to M1AGL Development Board Signals and Sample Design Signals

		Preloaded Design			
FG256 Ball	FG484 Ball	Signal	Schematic Signal	I/O	Development Kit Function
C16	F19	gpio2[1]	GPIOB_1	I/O	LVDS I/O
D16	G19	gpio2[2]	GPIOB_2	I/O	
G15	K18	gpio2[3]	GPIOB_3	I/O	LVDS I/O
G16	K19	gpio2[4]	GPIOB_4	I/O	Transmit Pair with termination
E16	H19	gpio2[5]	GPIOBRX_5	I/O	LVDS I/O
F16	J19	gpio2[6]	GPIOBRX_6	I/O	Receive Pair with termination
B15	E18	gpio2[7]	GPIOB_7	I/O	LVDS I/O
B16	E19	gpio2[8]	GPIOB_8	I/O	- Transmit Pair with termination
D14	G17	gpio2[9]	GPIOB_9	I/O	LVDS I/O
C15	F18	gpio2[10]	GPIOB_10	I/O	Transmit Pair with termination
E14	H17	gpio2[11]	GPIOBRX_11	I/O	LVDS I/O
H15	L18	gpio2[12]	GPIOBRX_12	I/O	Receive Pair with termination
E15	H18	gpio2[13]	GPIOB_13	I/O	LVDS I/O
F14	J17	gpio2[14]	GPIOB_14	I/O	Transmit Pair with termination
F15	J18	gpio2[15]	GPIOB_15	I/O	LVDS I/O
G14	K17	gpio2[16]	GPIOB_16	I/O	Transmit Pair with termination
J15	M18	gpio2[17]	GPIOBRX_17	I/O	LVDS I/O
K14	N17	gpio2[18]	GPIOBRX_18	I/O	Receive Pair with termination
G13	K16	gpio2[19]	GPIOB_19	I/O	LVDS I/O
H12	L15	gpio2[20]	GPIOB_20	I/O	Transmit Pair with termination
H13	L16	gpio2[21]	GPIOB_21	I/O	LVDS I/O
H16	L19	gpio2[22]	GPIOB_22	I/O	Transmit Pair with termination
J13	M16	gpio2[23]	GPIOBRX_23	I/O	LVDS I/O
H14	L17	gpio2[24]	GPIOBRX_24	I/O	Receive Pair with termination
J16	M19	gpio2[25]	GPIOB_25	I/O	LVDS I/O
K16	N19	gpio2[26]	GPIOB_26	I/O	Transmit Pair with termination
M14	R17	gpio2[27]	GPIOB_27	I/O	LVDS I/O
L13	P16	gpio2[28]	GPIOB_28	I/O	Transmit Pair with termination
M15	R18	gpio2[29]	GPIOBRX_29	I/O	LVDS I/O
N15	T18	gpio2[30]	GPIOBRX_30	I/O	Receive Pair with termination
F13	J16	gpio2[31]	GPIOB_31	I/O	2.5 V I/O
N/A	A6	P5_ODD_35_5[0]	GPIOC_1	I/O	General Purpose I/O
N/A	A7	P5_ODD_35_5[1]	GPIOC_3	I/O	General Purpose I/O
N/A	A10	P5_ODD_35_5[2]	GPIOC_5	I/O	General Purpose I/O
N/A	A11	P5_ODD_35_5[3]	GPIOC_7	I/O	General Purpose I/O
N/A	B6	P5_ODD_35_5[4]	GPIOC_9	I/O	General Purpose I/O
N/A	B7	P5_ODD_35_5[5]	GPIOC_11	I/O	General Purpose I/O

Table 2 • FPGA Pin Connections to M1AGL Development Board Signals and Sample Design Signals

		Preloaded Design			
FG256 Ball	FG484 Ball	Signal	Schematic Signal	I/O	Development Kit Function
N/A	B10	P5_ODD_35_5[6]	GPIOC_13	I/O	General Purpose I/O
N/A	AB17	P5_ODD_35_5[7]	GPIOC_15	I/O	General Purpose I/O
N/A	AB16	P5_ODD_35_5[8]	GPIOC_17	I/O	General Purpose I/O
N/A	AB13	P5_ODD_35_5[9]	GPIOC_19	I/O	General Purpose I/O
N/A	AB12	P5_ODD_35_5[10]	GPIOC_21	I/O	General Purpose I/O
N/A	AA16	P5_ODD_35_5[11]	GPIOC_23	I/O	General Purpose I/O
N/A	Y2	P5_ODD_35_5[12]	GPIOC_25	I/O	General Purpose I/O
N/A	U1	P5_ODD_35_5[13]	GPIOC_27	I/O	General Purpose I/O
N13	T16	P5_ODD_35_5[14]	GPIOC_29	I/O	General Purpose I/O
N/A	M3	P5_ODD_35_5[15]	GPIOC_31	I/O	General Purpose I/O
N/A	A12	P5_EVEN_34_4[0]	GPIOC_0	I/O	General Purpose I/O
N/A	A13	P5_EVEN_34_4[1]	GPIOC_2	I/O	General Purpose I/O
N/A	A16	P5_EVEN_34_4[2]	GPIOC_4	I/O	General Purpose I/O
N/A	A17	P5_EVEN_34_4[3]	GPIOC_6	I/O	General Purpose I/O
N/A	B13	P5_EVEN_34_4[4]	GPIOC_8	I/O	General Purpose I/O
N/A	B16	P5_EVEN_34_4[5]	GPIOC_10	I/O	General Purpose I/O
N/A	B17	P5_EVEN_34_4[6]	GPIOC_12	I/O	General Purpose I/O
N/A	AB9	P5_EVEN_34_4[7]	GPIOC_14	I/O	General Purpose I/O
N/A	AB8	P5_EVEN_34_4[8]	GPIOC_16	I/O	General Purpose I/O
N/A	AB7	P5_EVEN_34_4[9]	GPIOC_18	I/O	General Purpose I/O
N/A	AB6	P5_EVEN_34_4[10]	GPIOC_20	I/O	General Purpose I/O
N/A	AA7	P5_EVEN_34_4[11]	GPIOC_22	I/O	General Purpose I/O
N/A	AA6	P5_EVEN_34_4[12]	GPIOC_24	I/O	General Purpose I/O
N/A	W2	P5_EVEN_34_4[13]	GPIOC_26	I/O	General Purpose I/O
N/A	T1	P5_EVEN_34_4[13]	GPIOC_28	I/O	General Purpose I/O
M13	R16	P5_EVEN_34_4[15]	GPIOC_30	I/O	General Purpose I/O
N/A	J21	P5_38_37[0]	DIFFC1P	I/O	General Purpose I/O
N/A	J22	P5_38_37[1]	DIFFC1N	I/O	General Purpose I/O
N/A	K22	P5_40_39[0]	DIFFC2P	I/O	General Purpose I/O
N/A	K21	P5_40_39[1]	DIFFC2N	I/O	General Purpose I/O

Table 2 • FPGA Pin Connections to M1AGL Development Board Signals and Sample Design Signals

7 Appendix: Board Schematics

For a detailed schematic, refer to the M1AGL Schematics.pdf document in the *Dev Kit Documentation* folder.

There are seven pages to the schematics, titled as follows:

- 1. POWER SUPPLIES
- 2. PWR, HDRS, LVDS
- 3. SRAM & FLASH
- 4. CLK, RESET, USB, ETC.
- 5. FPGA
- 6. FPGA
- 7. FLASHPRO3

The schematic number is SOC-AGL-S-002. Reference this number and the schematic sheet when contacting soc_tech@microsemi.com for M1AGL Development Board and schematic support.

Figure 26 • M1AGL Development Board Top Assembly Drawing

