
Copyright © 2007, SynaptiCAD, Inc.

BugHunter Pro and the
VeriLogger Simulators

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written
permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective
owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly
by this document.

Printed: December 2007 in (whereever you are located)

BugHunter Pro and the VeriLogger
Simulators
Copyright Copyright © 2007, SynaptiCAD, Inc., version 12

Welcome to the BugHunter Pro, VeriLogger Extreme, and
VeriLogger Pro manual. This manual covers using the
BugHunter Pro graphical simulation and debugging
interface. This is the interface for both VeriLogger Extreme
and VeriLogger Pro and can also be used with most
commercial simulators.

BugHunter uses the SynaptiCAD graphical environment and
supports all major HDL simulators. It has the ability to
launch the simulator, provide single step debugging,
unit-level test bench generation, streaming of waveform
data, project management, and a hierarchy tree. The
unit-level test bench generation is unique in that it lets the
user draw stimulus waveforms and then generates the
stimulus model and wrapper code and launches the code. It
is one of the fastest ways to test a model and make sure
that everything is working correctly. The debugger also has
exceptional support for VCD waveform files.

With an integrated debugging environment you can
graphically build a project, launch a simulation, and view the
results in just a few minutes. The interface also manages
the test bench interface so that it is easy to create a set of
regression tests to run the design through

BugHunter Pro, VeriLogger Extreme, VeriLogger Pro

BugHunter Pro and Verilog Simulators

BugHunter Pro and the VeriLogger Simulators4

Copyright © 2007, SynaptiCAD, Inc.

Table of Contents

Foreword 0

Chapter 1: A Quick Start to VeriLogger & BugHunter 7

... 7Step 1: Setup the Simulator Path

... 8Step 2: Setup the Simulator Options

... 12Step 3: Create a Project

... 13Step 4: Add Source Files to the Project

... 14Step 5: Draw a Test Bench (optional)

... 15Step 6: Build the Project and Set the top

... 17Step 7: Simulate and Debug

... 18Step 8: Save the Project, Code and Waveform Files

Chapter 2: Simulation and Debugging Functions 20

... 212.1 Build and Simulate

... 222.2 Watching Signal and Component Waveforms

... 242.3 Breakpoints

... 262.4 Inspect Values

... 282.5 Report Window Error and Log file tabs

... 292.6 Console Window for Interactive Debugging

Chapter 3: Waveforms and Test Bench Generation 32

... 323.1 Stimulus and Results Diagram

... 333.2 Drawing Waveforms for Stimulus Generation

... 343.3 Working with the Diagram Window

... 343.4 Waveform Comparisons (Optional Features)

... 363.5 Generating and Reading VCD Files

Chapter 4: Editor Functions 37

... 374.1 Opening, Saving, and Creating New Source Code

... 374.2 Displaying or Finding a Specific Line of Code

... 384.3 Using the Editor/Report Preferences Dialog

... 394.4 Editor Cursor Commands

... 404.5 XEmacs Integration

... 424.6 Using an External Editor

Chapter 5: VeriLogger Command Line Simulators 43

... 435.1 Preparing Verilog Source files

... 435.2 Using the Command Line Simulator

5Contents

5

Copyright © 2007, SynaptiCAD, Inc.

... 445.3 Command Line Simulation Options

... 455.4 Predefined Plus Options

... 465.5 VeriLogger Extreme tools: Simx and Simxsim

... 465.6 Simx Simulation Build Command Line Options

... 475.7 Simx Debug and Logging Options

... 485.8 Simx Specify block and SDF Timing Options

... 495.9 Simx Miscellaneous Options

... 505.10 Simx On-Event and On-Detect Pulse Filtering

... 505.11 Simulator Control Commands

Chapter 6: VeriLogger SDF Support 51

... 516.1: Using a Standard Delay File (SDF)

Chapter 7: VeriLogger Pro Notes (vlogcmd) 52

... 527.1 Compilation Process

... 527.2 User-Defined Primitives and Memory Usage

... 527.3 Notes on Using Specify Blocks

... 537.4: IEEE-1364 LRM Standardization

... 547.5 Implementation Differences from Verilog-XL

Chapter 8: VHDL <=> Verilog Translation 56

... 568.1: Setup Project for Translation

... 578.2: Verilog to VHDL

... 598.3: VHDL to Verilog

Appendix A: BugHunter System Tasks 63

... 64init_syncad

... 64btim_dumpfile

... 64btim_closedumpfile

... 64btim_AddDumpSignal

... 64db_getcurrenttime

... 65db_printinteractivescope

... 65db_finish

... 65db_addtimebreak

... 65db_removetimebreak

... 66db_enabletimebreak

... 66db_disabletimebreak

... 66db_getbasictype

... 66db_getvalue

... 67db_printinternaltimeprecision

... 67db_setinteractivescope

BugHunter Pro and the VeriLogger Simulators6

Copyright © 2007, SynaptiCAD, Inc.

... 67Command Line Simulator Support

Index 69

Chapter 1: A Quick Start to VeriLogger & BugHunter 7

Copyright © 2007, SynaptiCAD, Inc.

Chapter 1: A Quick Start to VeriLogger & BugHunter

This chapter covers the basic steps involved in setting up BugHunter to work with your simulator
and how to create and debug a project. Each step is listed in the suggested order that you will want
to perform the functions.

Step 1: Setup the Simulator Path

Step 2: Setup the Simulator Options

Step 3: Create a Project

Step 4: Add Source Files to the Project

Step 5: Draw a Test Bench (optional)

Step 6: Build the Project and Set the top

Step 7: Simulate and Debug

Step 8: Save the Project, Code and Waveform Files

Step 1: Setup the Simulator Path

BugHunter Pro needs to know where your VHDL/Verilog simulator or C++ compiler is located. If
you are using VeriLogger Extreme or VeriLogger Pro you can skip this section because the
simulator was setup during installation. BugHunter saves the paths for each external simulator or
compiler in the syncad.ini file each time the program is closed.

Set the Path to the Simulator:

· Choose the Options > Simulator / Compiler Settings menu option to open a dialog of that
name.

· In the Tools drop-down choose your simulator or compiler.

· In the Simulator Path edit box either type in the path name or use the browse button to search
for the path.

BugHunter Pro and the VeriLogger Simulators8

Copyright © 2007, SynaptiCAD, Inc.

· Continue to setup the paths for each tool that you are interested in using. When you are done
click OK button to close the dialog.

Step 2: Setup the Simulator Options

Generally the default settings for each simulator will be sufficient to properly simulate a project, so
you can skip this section. However, if you you are moving projects back and forth between different
machines and simulators you may wish to create configuration templates for each machine. Also
you may wish to have different settings for different debug setups. The Project Simulation
Properties dialog determines the simulator run time options and which simulator to use for projects
and diagrams.

Open the Project Simulation Dialog:

· Select the Project > Project Simulation Properties menu option to open the dialog.

Global versus Project Settings

· Select Settings Template to edit the default settings that are used by new projects. These are
stored in the INI file each time the program is closed. The Restore Default Templates button
is used to reset the INI file to the factory default settings for this dialog.

· Select Global Diagram Settings to edit the options for how transactions are simulated
(simulated signals in a Diagram window). These are stored in the INI file.

· Select Current Project Settings to edit the project settings for the current project. These
settings are stored in the Project HPJ file when you save the project.

Chapter 1: A Quick Start to VeriLogger & BugHunter 9

Copyright © 2007, SynaptiCAD, Inc.

Configurations:

If you are moving projects to different machines or if you want to have different settings for
debugging and releasing a project you may want to create a new configuration to store the different
settings. The Debug Configuration holds the default settings. If you need to define a new
configuration:

· Press the Add button to open the Add New Configuration dialog, that lets you specify a name
and the default configuration to copy the settings from.

· Rename button lets you change the name of the current configuration.

· Delete removes the current configuration.

· Use the Configurations drop-down to choose which configuration you will be editing.

The General Tab:

The General tab contains simulation options that are standard across all of the simulators.

· Grab Top Level Signals
causes signals in the
top-level component to be
automatically added as
Watch signals in the stimulus
and results diagram
whenever the project is
rebuilt.

· Capture and Show Watched
Signals enables the display
of waveform results from a
simulation run.

· Dump Watched Signals
generates a dump file for any
watched signals in the
diagram. The generated file
will named diagramName
.VCD.

· Break at Time Zero is the equivalent of setting a breakpoint at time zero. This starts the
simulator and allows you to enter commands into the console window that will be executed
during simulation.

· Clear Log File Before Compile clears the simulation log just prior to a new compilation being
performed. This log maintains compilation notes, as well as some simulation notes. Note that in
this dialog you can also change the name of this log (see Logfile below).

· When the Auto Parse Project on Load box is checked, user source files are automatically
parsed and built when the project is loaded. The top-level component is the first component
that is not included by another for Verilog; it is the first entity/architecture pair parsed for VHDL.
This is mainly used by Actel Libero customers with WaveFormer Lite.

· Generate Test Bench on Build Project automatically updates the test bench for changes to
timing diagrams. Turn this off if you want to temporarily change some of the generated source
code manually or to avoid updating the test bench on diagram changes.

· Log File specifies the name of the log file that receives all the simulation results and
information. By default BugHunter uses simulation.log.

Verilog Tab:

BugHunter Pro and the VeriLogger Simulators10

Copyright © 2007, SynaptiCAD, Inc.

The Verilog tab specifies the simulator and simulation options used for Verilog projects.

· Simulator Type specifies the simulator

· The Simulator
Settings
button opens
the Simulator /
Compiler
Settings dialog
where you can
edit the
simulator
paths.

· Include
Directories
specifies the
directories
where
BugHunter
searches for
included files.
The following
is a Windows
example (Unix
users should
use the /
slashes):

C:\design\project;c:\design\library

· The Library Directories box lists the path and directories where the program searches for
library files. BugHunter will try to match any undefined components with the names of the files
that have one of the file extensions listed in the Lib Extensions edit box. The simulator does not
look inside a file unless the undefined component name exactly matches a file name. The
simulator does not look at any files unless there are file extensions listed in the Lib Extensions
edit box. The following is a Windows example (Unix users should use the / slashes):
C:\design\project;c:\design\library

· The Lib Extensions box specifies the file name extension used when searching for library files
in the library directory. Each library extension should begin with the period character followed
by the extension name. Use a semicolon to separate multiple file extensions.
.v;.vo

· The Delay Settings radio buttons determines which delay value is used in min:typ:max
expressions. These settings are output as either the +maxdelays, +mindelays, or +typdelays
command line simulator option.

· Compile, Elaborator, and Simulator option edit boxes allow you to write additional command
line options that will be passed to the tool when it is run. Most simulators do not support all
three phases of command line options.

· When the Generate Command File button is pushed, the text contained in the Simulator
Options edit box along with the list of Verilog files specified in the Project window are written to
a Command File. This file can then be used with the Command Line version of your simulator
to run a simulation without the BugHunter GUI.

· The Make Parameters Watchable determines whether or not parameters will be included with
the automatic monitoring of ports and internal signals in the top-level component.

Chapter 1: A Quick Start to VeriLogger & BugHunter 11

Copyright © 2007, SynaptiCAD, Inc.

VHDL Tab:

The VHDL tab contains the simulation options and simulator used for VHDL projects.

· Simulator Type determines the simulator.

· The Simulator Settings button opens the Simulator / Compiler Settings dialog where you can
edit the simulator paths.

· The VHDL 93 checkbox specifies that the project dialect for the generated files is VHDL 93.

· The Compile, Elaborator, and Simulator options edit box allow you to write additional
command line options that will be passed to the tool when it is run. Most simulators do not
support all three phases of command line options.

TestBuilder Tab:

The TestBuilder tab contains the compiler options and compiler used for C++ projects.

· Compiler Type
specifies the C++
compiler.

· The Compiler
Settings button
opens the
Simulator /
Compiler
Settings dialog
where you can
review and edit
the compiler
paths.

· The Compile,
Linker, and Run
Time options edit
box allow you to
write additional
command line
options that will
be passed to the
tool when it is
run.

BugHunter Pro and the VeriLogger Simulators12

Copyright © 2007, SynaptiCAD, Inc.

Step 3: Create a Project

BugHunter Pro uses a project file to store the list of files to be simulated and the simulation options.
The Project window right-click context menus give access to functions that can be applied to a
specific node in the tree like setting watches on signals and viewing source code files.

Create a New Project:

· Choose the Project > New Project menu to open the New Project Wizard dialog.

· In the Project Name box, enter the name of the project file.

· Enter the base path for the new project in the Project Directory edit box. Note that the Project
Location displays the full path to the project. BugHunter will create a directory that is named
after the project at the end of the path specified in the Project Directory edit box.

· If you are running VeriLogger Extreme or VeriLogger Pro the Project Language and a
Simulator will already be set, otherwise set these properties.

· Press the Finish button to create
a new project with several empty
folders and a default Stimulus and
Results timing diagram.

Working with the Project Window:

The Project window can be used to open source code editors, set watches on signals, and set the
Stimulus and Results diagram. After a project is built as described in Step 6, the Project window
can be used to investigate the hierarchical structure of the design. Each node in the tree has a
context sensitive pop-up menu that can be opened by right clicking on the node.

Chapter 1: A Quick Start to VeriLogger & BugHunter 13

Copyright © 2007, SynaptiCAD, Inc.

· Expand or Hide a branch by
pressing + or - symbols.

· View Source Code by double
clicking on a file name, port,
signal, component, or port to
open an editor window (see
Chapter 4: Editor Functions).

· View Simulation results by
opening the Stimulus & Results
diagram.

· Right click on a node to view
all of the available menu
options.

Most of the project level features
like saving, opening, creating, and
editing the settings are accessed
through the Project menu options.

· The bottom of the Project menu
has a list of recently opened
projects.

· All projects should have an file
extension of HPJ.

Step 4: Add Source Files to the Project

Once the project is created you can create new source files using the built in editors. Then add the
source code files to the project so that BugHunter will know the location of the files to compile.

To create a new source file:

· Choose the Editor > New HDL File menu option to open an editor window. Type in your
source code and then save the file. Usually you will save the file in the project directory, but it is
not required.The Editor menu contains functions that act on the editor windows and Chapter
4: Editor Functions covers all of the editing features.

Add the source files to the project:

BugHunter Pro and the VeriLogger Simulators14

Copyright © 2007, SynaptiCAD, Inc.

· Right click on the User Source Files
folder and choose one of the FIles
to Source File Folder menus to
open a file dialog.

· The Copy menu copies the source
file to the project folder and adds it
to the project list.

· The Add function adds the file and its path without moving it to the project folder. Files can also
be added by choosing the Project > Add User Source File(s) menu from the main bar.

· When files are first added to the project, you
can see the filename but you cannot see a
hierarchical view of the components inside
the files. This is shown by the pink X on the
node. To view the internal components on
the project tree you must first build or run a
simulation as described in Step 6: Build the
Project.

· Once the files are added to the project, double clicking on a source file name in the Project
window automatically launches an editor window.

Step 5: Draw a Test Bench (optional)

If your top-level component has input ports, BugHunter can take drawn waveforms and generate a
test bench model that can be used to test your model. The VeriLogger Basic Verilog Simulation
tutorial (part 2) demonstrates this feature. Each time a simulation is run (see Step 7: Simulate and
Debug), BugHunter will create a test bench component from the drawn waveforms. A wrapper
component that hooks up the test bench component to the design model is created at the same
time.

Draw a Stimulus Test Bench for unit level testing:

· Make sure the simulation mode is
set to Debug Run, rather than Auto
Run, so that the simulator does not
re-simulate while you are drawing.

· Press the Parse MUT button to extract the port signal names and sizes
and put them in the Stimulus and Results diagram. This will also
populate the project window with the hierarchical.

Chapter 1: A Quick Start to VeriLogger & BugHunter 15

Copyright © 2007, SynaptiCAD, Inc.

· Draw waveforms on
the input signals,
which will be drawn
in black.

· If you have the
Reactive Test Bench
option then you may
also wish to draw
waveforms on input
signals to indicate
the expected inputs
to the testbench (or
outputs from the
model under test),
and these
waveforms will be
drawn in blue.

Changing the Model Under Test:

· The Parse MUT function
makes a guess as to which
model is the model under
test and displays that model
with single brackets, <>,
underneath the Simulated
Model folder.

· To pick a different model under test, first right click on the MUT and choose Unset Current
Model Under Test, and then right click on a different model under the User Source Files list
and pick Set as Model Under Test.

· Then press Parse MUT button to re-populate the Stimulus and Results diagram.

Step 6: Build the Project and Set the top

Building the project compiles the source files, fills the Project window with the hierarchical structure
of the design, and sets watches on all the signals and variables in the top-level component. A build
will automatically be done each time the simulation is run, but having a separate build button
enables you to create the project tree without having to wait for a simulation to run. After the build
you are also able to set the top level component for the project and/or select additional signals to
watch using the project tree context menus.

Three ways to build a project:

· Click the yellow Build button on the simulation button bar, select
the Simulate > Build menu, or press the <F7> key.

Set the <<<Top Level Component>>>:

In languages that support multiple top-level components, BugHunter will find all of of the
components that are not instantiated in any other component and list them under the Simulated
Model tree without any brackets. If the language only supports one top-level, the program will grab
the first that it finds in the files. All the top-level components will be simulated. Any component can

BugHunter Pro and the VeriLogger Simulators16

Copyright © 2007, SynaptiCAD, Inc.

be specified as top-level, by using the context menu.

· In this example,
after the first build,
both top1 and top2
will be listed under
Simulated Model,
because neither
component is
instantiated in
another
component. Both
are default
top-level modules
and will be
simulated
simultaneously.

· To set one component as the
top level, find the component
under the Simulated Model
or the User Source Files
folders and right click and
choose the Set as Top Level
Component from the context
menu.

Chapter 1: A Quick Start to VeriLogger & BugHunter 17

Copyright © 2007, SynaptiCAD, Inc.

· The top level component is
displayed with triple brackets
<<<>>> around the name.

· Now, only top1 will be simulated.
The top2 component will not be
simulated because it is not
instantiated within top1.

· To undo this operation so that the
default top-level components are
automatically chosen by the tool,
right click on the component and
choose Unset as Current
Top-level or Clear all Top Level
Components.

Step 7: Simulate and Debug

BugHunter can perform a variety of graphical debugging functions which are covered in detail in
Chapter 2: Simulate and Debugging Functions. Basically, you will start the simulator and view the
results either in the Stimulus and Results diagram or in one of the tabs of the Report window.

Start the Simulator:

· Start the simulator by pressing one of the green buttons on the Build and Simulate button bar.
 Section 2.1 Build and Simulate explains the differences between the types of single stepping
and running.

· When single stepping, the yellow arrow in the editor window indicates the line of code that will
be simulated next. The red dots are breakpoints. And variables can be inspected by moving
the mouse cursor over the variable in the editor window.

Check for Errors:

· The status bar in the lower right hand corner displays a red message if an error is found during
the build or simulation.

· In the Errors tab of the Report window, double click on an error to open an editor window that
will display the code the caused the error. If you cannot see the Report window, select
Window > Report menu to bring the window to the front.

BugHunter Pro and the VeriLogger Simulators18

Copyright © 2007, SynaptiCAD, Inc.

· The Simulation Log tab also displays error messages and other messages that are produced
by the simulator, however these are not linked to the code.

· The Waveperl Log tab will display error messages that are associated with test bench code
generation. Usually, only TestBencher Pro and Reactive Test Bench users need to check this
tab.

View Waveform Simulation Results:

The signals in the top-level module will automatically be put into the Stimulus and Results diagram
and waveforms will be displayed as the simulation progresses. Signals can be added to the
diagram by right clicking on the desired signal in the Project window and setting a watch on it.
Signals can be removed by deleting them from the Stimulus and Results diagram. See Chapter 3
for information on using multiple Stimulus and Results diagrams.

Step 8: Save the Project, Code and Waveform Files

In BugHunter there are three types of files associated with a project.

· Project files have an extension of hpj and are saved by using the Project > Save HDL Project
menu option. This saves the list of files that compose the current project and related simulation
options. It does not save the watched signals list.

· HDL Source code files usually have an extension of v, vhd or cpp (depending on the
language) and are saved by selecting the editor window and choosing the Editor > Save HDL
Code menu option.

· Stimulus and Results diagram files have an extension of btim and are saved using the File >
Save Timing Diagram menu option. This file saves any watched signals.

Saving watched signals in separate diagram files allows you to build several different test cases so

Chapter 1: A Quick Start to VeriLogger & BugHunter 19

Copyright © 2007, SynaptiCAD, Inc.

you can compare and contrast future simulation results.

BugHunter Pro and the VeriLogger Simulators20

Copyright © 2007, SynaptiCAD, Inc.

Chapter 2: Simulation and Debugging Functions

The Simulation Button Bar controls when and how simulations are performed. The interactive
command console window can be used to enter simulator commands to observe and control
variables and models during simulation. The Search Active Window box will search diagrams for
signals, or the project window for anything.

The Stimulus and Results diagram shows the simulated waveforms. Additional signals can be
added by right clicking on the signal or component in the Project window and setting a watch on
the object and then re-simulating (or continue simulating).

Quickly inspect a variables current value by placing the mouse over a variable in the Edit window.
Or use the Simulate > Inspect values menu to investigate variables values at different times
during the simulation. Breakpoints can be added to the source code by placing red dots in the grey
bar to the left of the code. The current simulation line is indicated by the yellow arrow.

The Report window manages several tab windows are important to simulation and debugging. The
simulation.log file displays the default log file for the simulator. The Breakpoints tab displays all
of the breakpoints that are set on the code in the editor windows and the components in the project
file. And the Errors tab displays any compile or simulation bugs that are found in the design.

Chapter 2: Simulation and Debugging Functions 21

Copyright © 2007, SynaptiCAD, Inc.

2.1 Build and Simulate

BugHunter has two simulation modes, Auto Run and Debug Run that determine when a
simulation is performed. In the Debug Run simulation mode, simulations are started only when the
user clicks the Run or Single Step buttons (similar to a standard HDL simulator). In the Auto Run
simulation mode, the simulator will automatically run a simulation each time a waveform is added
or modified in the Diagram window. The Auto Run mode makes it easy to quickly test small
components and do bottom-up testing. Click the mode button to toggle between the two simulation
modes.

The active simulation mode is displayed on the left most
button on the simulation button bar.

The build and simulate functions are accessed from the simulation button bar located at the top of
the main window.

Build - compiles the project files, builds the hierarchical tree, populates the Stimulus
and Results diagram, and if necessary generates a testbench. It does not run a
simulation. The <F7> key and the Simulate > Build menu also perform the same
function.

Run/Resume - compiles the files (if there have been changes since the last build)
and then runs a simulation until it is stoped by a breakpoint, the pause button, the
stop button, or the end of the simulation is reached. This button also continues a
simulation when it is currently paused. The <F5> key and the Simulate > Run menu
also perform the same function.

Step Into - steps to the next line of code and will also step into function calls.

Step Into With Trace Calls - steps to the next line of code and also sends a trace
statement to the simulation.log file. This button will also step into function calls.

Step Over Calls - steps to the next line of code. It does not step into function calls.

Pause - stops the simulation and places the simulator into interactive debugging
mode. This button is only active during a simulation.

End - exits the simulation.

Goto - opens an editor at the line that will execute next. Use this button when the
simulation is stopped.

Run To Time button bar runs the simulation for the specified
time. Type in a time into the time box, pick the units of time, and
then click the green triangle with the hourglass button.

First Build to debug syntax errors:

BugHunter Pro and the VeriLogger Simulators22

Copyright © 2007, SynaptiCAD, Inc.

· Normally you will first press the Build button to compile the code and
debug any syntax errors. The status of the build is reported in the
lower right hand corner of the screen.

· Simulation Building means
that the compile is still
compiling.

· Simulation Built means that
the compile succeeded and you
are ready to simulate

· Compile Error means that the compile failed and the syntax errors will be listed in the Error
tab of the Report window (see 2.5 Report Window Error and Log file tabs). Double click on an
error to be taken to the code that caused the error.

Then Run the simulation:

· Press one of the green Run buttons to start the simulator. The status of the simulator is
reported in the lower right hand corner of the screen

· Simulation Started shows
that the simulation has been
paused by either a breakpoint
or the pause button.

· Simulation Running shows
that the simulation is currently
running and may be stoped
using the pause or stop button.

· When single stepping through
a simulation, the simulation
time and scoping level are
listed in the status bar.

· Simulation Good is displayed
when the simulator is
completed without errors.

2.2 Watching Signal and Component Waveforms

After compiling the project, use the Project window to pick signals to be watched and placed in the
Stimulus and Results diagram. To maximize simulation speed, simulators do not automatically
store signal transition times unless a signal is specifically tagged as one to watch. Chapter 3:
Waveforms and Test Bench Generation covers all the the intricacies of managing multiple Stimulus

Chapter 2: Simulation and Debugging Functions 23

Copyright © 2007, SynaptiCAD, Inc.

and Results diagrams.

Watch anything under Simulated Model: signals, ports, variables, or components

· Expand the Simulated Model folder
until you locate something that you
would like to watch.

· Right-click on the node and choose
one of the Watch menus, which will
vary according to what type of object
is selected.

· After setting the watch, the signal
name will appear in the Stimulus
and Results diagram. The
waveform data will be displayed
during the next simulation run.

· To remove a watched signal,
just delete it from the Stimulus
and Results diagram.

· To temporarily stop watching a
signal, double click on the signal
name to open the Signal
Properties dialog and change the
signal type from watch to drive or
compare.

Top-level Models are automatically watched:

After you build the project, the signals or the ports in the top-level component are automatically
added to the Diagram window. If the top-level component does not have port signals, the internal
signals of the component are viewed. If the top-level component has port signals, the output ports
are viewed as purple signals and input ports are viewed as black signals. You can edit the black
input signals to provide stimulus to the top-level component. The waveform drawing functions are
covered in Section 3.2 Drawing Waveforms for Stimulus Generation.

Global Settings for watch signals:

BugHunter Pro and the VeriLogger Simulators24

Copyright © 2007, SynaptiCAD, Inc.

· Select the Project > Project Simulation
Properties menu to open the Project
Simulations Properties dialog.

· Grab Top Level Signals allows
BugHunter to grab the signals in the
top-level components and set them as
the default watch signals.

· Capture and Show Watched Signals
causes watched signals to display their
waveform data in the Stimulus and
Results Diagram. Normally this is
unchecked if the Dumped Watch
Signals is checked.

· Dump Watched Signals will cause the
watched signal data to be written to a
Verilog dump file. This is normally
unchecked because the Stimulus and
Results Diagram is a much faster and
more compressed format than VCD.

2.3 Breakpoints

Breakpoints pause the simulation at a particular source code line, simulation time, or activity on a
particular variable. The Report window displays the list of breakpoints in the Breakpoints tab.
Each break point can be also be temporally made inactive without having to remove the breakpoint
from the project.

Add Source Code Breakpoints through the Editor Windows:

Source code breakpoints stop the simulator each time a particular line of code is executed.

· In an Editor window, click
on the gray line on the
left side of the window, to
add a breakpoint,
indicated by the red circle
on the line.

· During simulation, a
source code breakpoint
can turn grey to indicate
that it is on an invalid line
of code.

Add Time Breakpoints through the Report Window Breakpoint Tab:

Time based breakpoints stop the simulator at a particular simulation time.

Chapter 2: Simulation and Debugging Functions 25

Copyright © 2007, SynaptiCAD, Inc.

· Right-click anywhere in the
Breakpoints tab window and
select the Add Breakpoint
option from the pop-up
menu to the Add/edit
Breakpoint dialog.

· Select the Time
radio button to
change the dialog
to the time
configuration.

· Enter a time and a
time unit, then
press Ok to close
the dialog.

Add Condition Breakpoints through the Project window:

Condition breakpoints will break every time a particular variable/signal changes or every time it
reaches a specific value.

· The easiest way to add a
Condition breakpoint is to
find the variable in the
Project tree and right click
and choose choose
Add/Toggle Condition
Breakpoint menu. This
will open the Add/Edit
Breakpoint dialog with the
Expr box filled.

BugHunter Pro and the VeriLogger Simulators26

Copyright © 2007, SynaptiCAD, Inc.

· If the Event
condition type is
chosen, then the
simulation will
break on any
change in the
expression listed in
the Expr box.

· If the Value
condition type is
chosen, then the
simulation will
break only when
the expression
matches the value
in the Value edit
box.

· Most simulators only accept a hierarchical signal name for the Expr in a condition breakpoint,
but some simulators accept more complicated expressions. Graphical breakpoints generate
simulator stop console commands, so these condition breakpoints should have the same
functionality as that command. Below is an example of a console command for a value based
on a bit slice of the variable. In the breakpoint GUI, you would enter testbed.A1.sum[2:1] into
the Expr box, and 2'b11 into the value box.

Turn Breakpoints ON and OFF using the Breakpoint Tab window:

· Each breakpoint, regardless of how or where it is added, will be listed in the Break points tab
in the Report window.

· Clicking on a red breakpoint button will toggle it between active and inactive states. An inactive
breakpoint is displayed as a small red circle and is ignored in a simulation.

· Double-clicking on a source code breakpoint will open an editor starting at that line in the
source code.

· Right-clicking anywhere in the tab window will open a menu allowing you to add, edit, or delete
breakpoints.

2.4 Inspect Values

During a paused simulation, BugHunter supports inspecting values of variables and signals in both
the Editor windows and in the Inspect Values dialog. The Editor window displays only the current
values for the simulation. The Inspect Values dialog can be used to inspect both the current and
past values.

Use the Editor window to inspect current values:

· Put the mouse over a variable or signal name. This will cause a tool tips to pop-up and display

Chapter 2: Simulation and Debugging Functions 27

Copyright © 2007, SynaptiCAD, Inc.

the value and the type of the variable.

Use Inspect Values dialog to inspect at previous simulation times:

· Choose Simulate > Inspect Values menu option to open the dialog.

BugHunter Pro and the VeriLogger Simulators28

Copyright © 2007, SynaptiCAD, Inc.

· Drag and Drop signals from
the Stimulus and Results
diagram into the Signal
Name box. Use the green
bar at the top of the signals
when doing the drag.

· You may also type variable
names into the Signal
Name boxes. However, only
variables that are also
displayed in the Stimulus
and Results diagram will be
able to view previous
values. In order to speed
simulation times, the tool
only remembers the current
values for all of the variables
and the diagram stores the
previous values for just the
signals that are specified as
important.

· The Event section changes the value display to different simulation times. As you go back in
time, the icons will change from blue OR gates to waveforms to indicate whether the
information is coming from the simulator or from previous results stored in the diagram window.
The Prev and Next move the simulation time to the closest event in the diagram window.

· The "S" top-level scope and "s" local scope buttons on the simulation
button bar affect the scope of the variables in the dialog. and

· There are 7 different inspect tabs that let you group a set of related variables together for
easier debugging.

· When Simulator: Time is checked each tab will continue to update its values to the current
simulation time. The Goto Current button updates a tab to the current simulation time.

· The Time Line: Left click and Time Line: Cursor Move affect how the mouse changes the
Time for the dialog. Left click down in the time line on the top of the diagram window, causes a
value display to appear across waveforms. If these check boxes are checked then the
corresponding mouse action cause the values in the dialog to change.

2.5 Report Window Error and Log file tabs

The Report window manages several tab windows, three of which are important to simulation and
debugging: simulation.log, Errors and Breakpoints.

Chapter 2: Simulation and Debugging Functions 29

Copyright © 2007, SynaptiCAD, Inc.

· The simulation.log tab contains the default log file for BugHunter. All information generated by
the simulator, such as compiler messages, and all user-generated messages from $display
tasks and traces are sent to this file. During a simulation run you should watch the
simulation.log file for important messages.

· The Errors tab displays errors an warnings that are hyperlinked to the actual code that threw
the message. Double-clicking on an error in the Errors tab will open an editor starting at the
line of source code where the error was found.

· The Breakpoints tab is shows a tabular form for all the breakpoints in the current project. This
is covered in Section 2.3: Breakpoints.

2.6 Console Window for Interactive Debugging

BugHunter has an interactive command console for entering simulator commands to observe,
control, and debug a simulation. For example, during an interpreted Verilog simulation, you can
enter a Verilog command such as $finish; (to end the simulation) or $display; (to display the value
of a variable). The command console is used to enter commands that are not available in a
graphical environment. The types of commands that are supported are dependent on your
particular simulator. BugHunter takes the commands and hands them directly to the simulator
console.

To use the command console window:

· Stop the simulator during a simulation run by either (1) single stepping into the design, (2)
hitting a breakpoint, (3) pressing the pause button, or (4) inserting a $stop system task into the
code. When a simulation is stopped, the simulation display on the status bar turns bright green
and displays the current simulation time and scoping level.

BugHunter Pro and the VeriLogger Simulators30

Copyright © 2007, SynaptiCAD, Inc.

· Type a command into the
console window or pick one
from the drop-down list and
press the <Enter> key.

· The scope buttons change
the scoping level for the
commands in the console
window. The "S" changes
the scope to the top-level
component. The "s"
changes scope to the
current simulation level.

· Type the help command to retrieve a
list of available commands for your
simulator. BugHunter just passes the
command to the simulator and there is
not a standard list of commands that
all simulators support. The list is
displayed in the simulation.log tab of
the Report window.

· To get more information about a
specific command, type help
name_of_command.

Some VeriLogger Pro and Cadence Verilog XL commands:

Chapter 2: Simulation and Debugging Functions 31

Copyright © 2007, SynaptiCAD, Inc.

Interpreted Verilog simulators such as VeriLogger Pro and VerilogXL can execute lines of Verilog
behavioral code entered into the console window. These commands will not work with VeriLogger
Extreme and other compiled simulators.

Generally, any behavioral statement used within an initial or always block can be entered into the
console window. Statements that affect the project structurally, such as instantiating a model, are
not allowed. All system tasks are accepted in the console window. Compiled code simulators can
not do this because all code must be compiled before simulation begins.

Because all Verilog commands require a terminating semicolon, the semicolon must be entered in
the console window. Below are some examples of useful interactive commands:

· For example: would cause the simulator to execute five lines of code.

· To continue the simulation, type the period (.) character, or press the green Run button.

· To step to the next statement in the code, type the semicolon (;) character, or press the Step
Over button.

· To step-and-trace (step to the next statement in the code and generate a trace message in
the verilog.log file) type the comma (,) character, or press the Step Into button.

· To display the current code-line execution, (open an editor window and display the currently
executing line of HDL code) type the colon (:) character, or press the Goto button (the
magnifying glass).

· To terminate the simulation, type the $finish; command or press the red STOP button.

· Displaying Variables: Use the $display(...); system task to view a variable's current value.
Make sure that the scope is correct. A common mistake is to view a trace, pause the
simulation, and type $display; without realizing that the variable may not be in the current
scope. In interactive mode, the current scope is set using the scope buttons or the $scope
system task. By default, the scope is set to the top-level component, not the scope at the
current execution line. For example, the following statement could be used to view the variable
ireg:

$scope (top.cpu1.iunit);
$display (ireg);
// OR, this can be expressed as a single statement
$display (top.cpu1.iunit.ireg);

All the variables in a given scope can be displayed using the $showvars system task.
$showvars also displays the information about when the variable was last modified,
specifically, the simulation time, the file name, and the line number of the reference.

· Changing Variables: Use an assignment statement to change a variable's value.

ireg = 4 * bar;

· Variable Watches (breakpoints): Interactive statements can be used to stop the simulation
when a particular variable, or combination of variables, changes. For example:

@(top.cpu1.iunit.ireg) $stop;

This code will continue the simulation until the variable changes. However, this statement
will not necessarily be the first statement executed after the variable changes. Due to the
non-determinacy of Verilog code execution, other statements scheduled to execute at the
same time unit may execute before the $stop statement is performed.

· Timed simulations: A simulation can be set to run for a certain length of simulation time using
a delay and the $stop directive. The following statement suspends and waits for 1000
simulation time units to pass. After 1000 time units, the simulation is stopped.

#1000 $stop;

BugHunter Pro and the VeriLogger Simulators32

Copyright © 2007, SynaptiCAD, Inc.

Chapter 3: Waveforms and Test Bench Generation

BugHunter uses the current Stimulus and Results diagram to list the simulation watch signals,
display simulation results, and graphically generate stimulus vectors for the simulation. The
Stimulus and Results diagrams can be archived to separate directories and used for regression
testing.

If your top-level component has input ports, BugHunter can take the drawn waveforms in the
stimulus and results file and create a stimulus component and a wrapper component that hooks the
stimulus up to the model under test. This makes it very fast to test individual models and small
designs.

If you have purchased the Waveform Comparison Option for BugHunter, then you can perform
automated comparisons between different Stimulus and Results diagrams. Also if you have
purchased the Reactive Test Bench Generation option you can create test benches that check the
simulation output and create pass/fail logs.

If your simulations are big enough to start slowing down because of the memory limitations of your
system there are several methods for reducing the memory requirements for a simulation. The first
method is to dump the waveform data to a BTIM or VCD waveform file and turn off the graphical
display of waveform data during simulation. After the simulation you can load in the waveform file
and view it graphically. Also, you can run Verilog simulations from the command line as described
in Chapter 5: VeriLogger Command Line Simulators.

3.1 Stimulus and Results Diagram

The Stimulus and Results diagram lists the watched signals for the simulation and displays the
waveform results for these signals after simulation. This diagram is also the place where you can
draw the stimulus waveforms to create unit-level test benches as described in Section 3.2: Drawing
Waveforms for Stimulus Generation.

The Project window folder Stimulus & Results defines the current stimulus and results diagram. It is
often useful to have several different diagrams for a design that define different sets of watched
signals and different unit-level test benches. Each diagram can be used to test a different aspect of
your design. Once you have created stimulus and results diagram that you want to keep for
regression testing you can save it to a Stimulus and Results Archive folder.

Each time an Archive folder is made, a new subdirectory is created in the project directory. The
stimulus and results diagram and the simulation.log file are copied into the archive directory. The
archived files are displayed in the Project window under the Stimulus & Results Archive folder.

There are several ways to set a new Stimulus & Results diagram:

· In the Project window, right click on the Stimulus & Results folder and choose Replace
Current Result Diagram from the context menu. This opens a file dialog that lets you choose
a timing diagram.

OR

· Open a timing diagram and right click in the label window and choose Set Diagram as
Stimulus and Results from the context menu.

OR

· Right click on a timing diagram name listed in Stimulus & Results Archive folder and choose
Set Diagram as New Stimulus and Results from the context menu. This option will copy the
archived diagram and log file back the main Project directory (the original archive files will not
be changed by subsequent simulations).

To archive the current Stimulus & Results diagram:

Chapter 3: Waveforms and Test Bench Generation 33

Copyright © 2007, SynaptiCAD, Inc.

· In the Project window, right click on the Stimulus & Results folder and select the Save Current
Result Diagram in an Archive from the context menu. This will open the Save the current
Stimulus & Results file in an Archive dialog.

· Enter the name of the archive in the edit box. This will become the name of the directory that
the archived files are saved in.

· Click OK to copy the Stimulus & Results diagram and log file to the new directory and close the
dialog. You may be asked to save the diagram and log file before they are archived.

3.2 Drawing Waveforms for Stimulus Generation

BugHunter can generate stimulus code for signals drawn in the Stimulus and Results diagram and
use that code as inputs to the project. At the beginning of a compile, BugHunter will take the drawn
waveforms and create a stimulus component. It will also create a top-level component that will
hook up the stimulus component to your design models.

Input Signals: After you build the project, the input and output ports of the top-level component
are automatically added to the Stimulus & Results diagram. You can draw the waveforms for these
signals using the cursor and the waveform buttons on the diagram window.

The basic steps for creating a stimulus test bench are:

The simulation mode button, generation language and Parse MUT buttons are used for the
simulation and generation of testbenches

· Make sure the simulation mode is set to
Debug Run, rather than Auto Run, so that
the simulator does not re-simulate while
you are drawing.

· The testbench generation language is listed in the drop-down.

· Press the Parse MUT button to populate the Stimulus and Results
diagram with the component’s input and output ports.

· Draw waveforms on the input signals. Timing Diagram Editors manual Chapter 1: Signals has
information on drawing waveforms. The gray signals are outputs of the MUT and will turn
purple after the simulation begins. If you have the Reactive Test Bench option then all of the
signals will come in as black so that you can draw expected response from the MUT (which will
draw in blue).

· Verify that the Simulate > Simulate Diagram With Project menu item is checked. This option
lets BugHunter create the stimulus and wrapper components.

· Run a Simulation.

· The Auto Run /Debug Run button determines if simulations are automatically rerun each time
you change the drawn waveforms or if you will be required to start a simulation with the green
simulation button.

Internal Signals: BugHunter can generate stimulus for internal signal nodes (Verilog only). To do
this, add the signal (using the full hierarchical name) to the Stimulus & Results diagram. The best
way to add a signal is to first find the signal in the Project window under the <<<top-level>>> tree
branch and use the context menu to set a watch on the signal (See Section 2.2: Watching Signals
and Components).

Inout Signals: BugHunter can graphically generate stimulus for inout ports and simultaneously
watch the port's simulated output using another signal with the same name. To do this, add two
signals with the same full hierarchical name. Make one signal a watch signal and the other a drive
signal. Remember to draw tri-state values on the drive signal when that signal should not be driving

BugHunter Pro and the VeriLogger Simulators34

Copyright © 2007, SynaptiCAD, Inc.

the inout port.

3.3 Working with the Diagram Window

The Diagram window in BugHunter is the same timing diagram editor that is the basis of
SynaptiCAD's WaveFormer Pro and Timing Diagrammer Pro products. Because of this, BugHunter
users have access to many of the timing diagram editor drawing features. Some features of the
Timing Diagram editor such as Timing Diagram Analysis, Reactive Test Bench Generation, and
GigaWave require optional feature licenses. The timing diagram editor is described in the Timing
Diagram Editors manual on-line help.

There are several features that are particularly useful for viewing lengthy simulated signals. We
have listed them here for your convenience.

Viewing all signal values

· Click in the time line in the Diagram window. This displays a marker line that shows the value
of each signal at that particular time.

Zooming in the Drawing window

· Click-and-drag in the time line to zoom. Click and hold inside the time line and drag the
mouse to indicate the range in which to zoom. When you release the mouse, the diagram will
zoom to show the range you selected. This provides a quick way to graphically specify the
zoom level and range for a section in a large timing diagram.

· The Zoom In and Zoom Out buttons, located on the right of the button bar, change the zoom
level in the timing diagram.

· The Zoom Range button opens a dialog that lets you specify the starting and ending times
displayed in the Diagram window.

· The Zoom Full button displays the entire timing diagram on the screen.

Scrolling to a specific time or offset position:

· The two buttons directly above the signal label window provide an
absolute time readout and a relative time readout. The Time
Button, with the black writing, displays the current position of the
mouse cursor in the drawing window. The Delta Button, with the
blue writing, displays the difference between the mouse cursor
and the delta mark (an upside-down, blue triangle) on the timeline
above the drawing window. These buttons can also be used for
quick scrolling in very long timing diagrams.

· Clicking on either button opens an edit box that accepts time values.

· Entering a value in the Time button causes the drawing window to scroll to that exact time.

· Entering a value in the Delta button causes the drawing window to scroll that amount from its
current position.

3.4 Waveform Comparisons (Optional Features)

If you have purchased the Comparison option then VeriLogger can graphically display the
differences between compared waveforms for two timing diagrams or individual signals. This
feature is exceptionally useful comparing two different simulation runs, as well as for comparing
logic analyzer data to a simulation run. The specific regions where waveforms differ will turn red
when the two waveforms are compared. By using the navigation buttons on the compare toolbar,
you will be able to jump to the first difference and browse to each subsequent difference. The

Chapter 3: Waveforms and Test Bench Generation 35

Copyright © 2007, SynaptiCAD, Inc.

tolerance range can be set using the compare signal settings in the Signal Properties dialog in the
Timing Diagram Editors manual (these settings will appear when the signal is made into a compare
signal).

The compare toolbar contains five buttons. The compare button, with the yel low lightning bolt,
performs the waveform comparison. The next three buttons are used to browse through the
regions of difference on the signals. The last button on the toolbar, labeled SET ALL, is used to
open the signal properties dialog with all of the compare signals selected so that matching
tolerance ranges (and other signal properties) can be set. The selection is performed
automatically.

When comparing two waveforms, the signal names must match. This can be accomplished by
changing the names of the compare signals in the Signal Properties dialog (see below) or by
ensuring that the signal names in the two files match.

Comparing two timing diagrams

The timing diagrams that are being compared can be the result of two different simulation runs, or
one or both could contain the data from a logic analyzer. To compare two timing diagrams:

· Load the first timing diagram. Either use the File > Open Timing Diagram… menu option to
load a new file or use the current timing diagram.

· Select the File > Compare Timing Diagram… menu option to load in the signals to be
compared. This opens a File dialog which lets you select the file to be compared. Closing this
dialog loads the second set of signals and sets their signal type to compare. Any two signals
that have matching names will automatically be compared. The compare signal will appear in
red under the original signal.

Comparing two signals in the same timing diagram

A signal can be changed to a compare signal to be used for comparison. This method works for
both unmatched signals in files that you are comparing, or for signals that you have created in this
file. To compare two signals, the signals must have the same name and one signal must have a
signal type of compare.

· Double-click on the signal name to open the Signals Properties dialog.

· Change the name of the signal to match the signal you want to compare with.

· Select the Compare radio button located in the top part of the dialog. This action will make the
Signals Properties dialog display the tolerance controls used to define how the compare will be
done.

· Click the Compare button to run a comparison.

Finding Compare Errors

Once you have made modifications, you can rerun the comparison by clicking the Compare button
on the compare toolbar (far right toolbar; the Compare button has a lightning bolt icon). Other
buttons on the compare toolbar allow you to quickly find and move to the differences that are
located. The three buttons are:

· First, which moves to the first difference that has occurred,

· Previous, which moves back one, and

· Next, which moves forward one difference.

Adjusting Comparison Tolerances

Ranges may also be used for comparisons. Instead of looking for comparisons directly on an edge,

BugHunter Pro and the VeriLogger Simulators36

Copyright © 2007, SynaptiCAD, Inc.

you can allow a tolerance within a set range of the edge. To set the tolerance on a compare signal:

· Open the Signal Properties dialog by double clicking left on the compare signal name. Note:
the tolerance can only be set on the compare signal, not on the original signal.

· Specify the tolerance range previous to the edge by typing a value into the –Tol: textbox. (The
value will be ns.)

· Specify the tolerance range after the edge by typing a value into the +Tol: textbox. (This value
will also be in ns.)

· Click the OK button to close the dialog. Now when you run the comparison a tolerance will be
provided as specified.

The tolerance for multiple signals can be set simultaneously with the following steps:

· If the Signal Properties dialog is open, close it.

· Click the names of the compare signals in the signal window to select the signals to be edited.
Notice that each signal can be selected individually.

· Right-click one of the highlighted signal names and select Edit Selected Signal(s) from the pop
up menu.

· Proceed with steps outlined above for editing signals.

3.5 Generating and Reading VCD Files

The VCD format is a standard Verilog file format that can be used with external waveform viewers,
static timing analyzers, or VeriLogger's graphical display. Watched signals in VeriLogger are
displayed graphically, and by default are NOT dumped to a VCD file. Two check boxes in the
Project Simulation Properteis dialog control the output of data gathered by watched signals.

To determine the output of watched signals:

· Select the Project > Project Simulation Properties dialog to open a dialog of the same
name.

· Check the Capture and Show Watched Signals checkbox to view watched signals in the
Diagram window.

· Check the Dump Watched Signals checkbox to return data from watched signals to a VCD
file.

It is less memory intensive to dump files than it is to actively view the data in the Diagram window.
To speed up large simulations, turn off the waveform display and dump the watched signals. After
the simulation import the VCD file:

· Select the Export > Import Timing Diagram From menu option. This Open dialog is special in
that it remembers the file type of the last file imported.

· Type the name of the VCD file you wish to open in the File name: edit box.

· Click the Open button to load the file. The waveforms are now visible in the Diagram window.

If you are using Verilog, VCD files can also be generated by using the Verilog system tasks
$dumpvars, $dumpfile, $dumpall, $dumpon, and $dumpoff to save waveform data. See the
Verilog Language Overview for more information on the syntax of these statements.

Chapter 4: Editor Functions 37

Copyright © 2007, SynaptiCAD, Inc.

Chapter 4: Editor Functions

BugHunter's editor windows are an integrated part of the simulation environment. Double-clicking
in the Project, Errors, or Breakpoints windows will open an editor and display the relevant source
code. The editor windows are also used to display the current execution line for single-step
debugging.

All editor windows provide color-syntax highlighting, search, single-click breakpoint placement,
goto lines, and font control. The simulator automatically recognizes when a file is modified in an
editor window, and will warn you when it needs to be saved.

4.1 Opening, Saving, and Creating New Source Code

Source code files are opened and saved using the Editor menu options. When BugHunter starts a
new simulation, it checks for any unsaved files and automatically prompts you to save them.

To open an existing source code file use one of the following methods:

· Double-click on the filename in the Project window,

· OR, choose the Editor > Open HDL file menu option.

To create a new source code file:

· Select the Editor > New HDL file menu option.

To save an open source code file:

· Select the Editor > Save HDL file menu option to open a Save dialog. By default, Verilog file
names have an extension of v, VHDL file names have vhd and C++ files have cpp.

To close the editor window and save the source code:

· Select the Editor > Close menu option. If the file has been altered, you will be prompted to
save the file.

4.2 Displaying or Finding a Specific Line of Code

Most BugHunter display windows are linked directly to an editor window, making it easy to view
relevant source code. Below is a list of windows and buttons that can be used to jump directly to a
particular line of code.

· The Errors tab in the Report window displays compilation errors. Double-click on an error to
open an editor and display the line where the error was found.

· The Breakpoints tab in the Report window displays all the breakpoints in the current project.
Double-click on a breakpoint to open an editor and display the line where the breakpoint is
located.

· The Goto button opens an editor starting at the last line executed. This button is only
active during a simulation.

· The Project Window displays all signals, ports, and components used in the project.

There are also several ways to search for line numbers or character strings in a file. Use the
following keyboard combinations inside an active editor window to locate source code.

Move to a specific line in your code:

· Press <Ctrl> + G to open the Jump To dialog. Enter the line number to view.

Search for a character string:

BugHunter Pro and the VeriLogger Simulators38

Copyright © 2007, SynaptiCAD, Inc.

· Press <Ctrl> + F to open the Search dialog. Enter the character string to locate.

· To perform another search, press the <F3> key.

Find in Files:

The Find in Files feature allows you to search through a specific directory, with or without its
subdirectories, in search of a particular text string in a file. This feature can be used to search all
files in the directory, or files with a particular file extension.

· Select the Editor > Find in Files… menu option. This will open the Find In Files dialog.

· Type the test phrase that you are searching for in the Find what: combo box. Note: the drop
down list can be used to select a search that was previously performed. If you want to redo a
search or modify a previous search you can select that search from the drop down menu.

· Type the name filter for the type of file that you want to search in the In files/file types: combo
box. You can select from a value entered in a previous search here by using the drop-down
list.

· Type the directory or folder that you want to search in the In folder: combo box, or select a
directory used in a previous search from the drop down list. The default value for this is the
current working directory.

· If you want to search subfolders (or subdirectories), make sure that the Look in subfolders
checkbox is enabled. If you only want to search a specific directory, disable this checkbox.

· Click the Search button to perform the search.

The results of the search will be displayed in the Report window on the Grep tab. Double-click any
reported instance to open the appropriate file and jump to that line number in the file.

4.3 Using the Editor/Report Preferences Dialog

The Editor/Report Preferences dialog controls options for the Editor and Report windows. This
information is stored inside the project HPJ file.

· Select the Editor > Editor/Report Preferences menu option to open the Editor/Report
Preferences dialog:.

· The Color Highlighting radio
buttons determine when color syntax
editing is active. By default, the
When not building option is
selected so that the color syntax
editing does not slow the build time
of large projects.

· The Background Color button
opens the Color dialog. From this
dialog you can set the background
color of the Editor and Report
windows.

· The Font button opens the Font
dialog. From this dialog you can set
the font type, size, and color of the
text in the Editor and Report

Chapter 4: Editor Functions 39

Copyright © 2007, SynaptiCAD, Inc.

windows.

· The Color Printing checkbox prints the source code in color. If unchecked, all code is printed
in black.

· The Show Line Numbers checkbox determines whether or not line numbers are displayed in
the editor window.

· The Tab Width edit box sets the number of spaces that the tab key will generate. The default
setting is two spaces, but it can be set to match the tab width of an external editor.

· The Insert Spaces and Keep Tabs radio buttons determine whether spaces or tab characters
are inserted when the <Tab> key is pressed.

· If the Use XEmacs Editor box is checked, BugHunter will use the XEmacs editor to edit HDL
files instead of its internal editor. For more information on this feature see Section 4.5 XEmacs
Integratior.

· The XEmacs Path edit box contains the location of the XEmacs executable to use (when
XEmacs is enabled).

4.4 Editor Cursor Commands

The Report window displays are full-featured editor windows. Listed below are the keyboard and
mouse commands supported by the editor window.

Key Purpose

Left/right arrow
keys

Moves the cursor one space left or right

Up/down arrow
keys

Moves the cursor one line up or down

Page Up Moves the cursor one page up

Page Down Moves the cursor one page down

Home Move to the beginning of the current line

End Move to the end of the current line

Backspace Deletes the character to the left of the cursor

OR deletes the selected text

Delete Deletes the character to the right of the cursor

OR deletes the selected text

Shift+Left Selects text one character at a time to the left

Shift+Right Selects text one character at a time to the right

Shift+Down Selects one line of text down

Shift+Up Selects one line of text up

Shift+End Selects text to the end of the line

BugHunter Pro and the VeriLogger Simulators40

Copyright © 2007, SynaptiCAD, Inc.

Shift+Home Selects text to the beginning of the line

Shift+Page Down Selects text down one window

OR, cancels the selection if the next window is already selected

Shift+Page Up Selects text up one window

OR, cancels the selection if the previous window is already selected

Ctrl+Shift+Left Selects text to the previous word

Ctrl+Shift+Right Selects text to the next word

Ctrl+Shift+Up Selects text to the beginning of the paragraph

Ctrl+Shift+Down Selects text to the end of the paragraph

Ctrl+Shift+End Selects text to the end of the document

Ctrl+Shift+Home Selects text to the beginning of the document

Ctrl+A Selects all of the text in the document

F1 Opens help for editor

F4 Print from window

Shift+F4 Print options

Ctrl+F Search and/or Replace Dialog

Tab Tab

Ctrl+X Cut

Ctrl+C Copy

Ctrl+V Paste

Ctrl+Z Undo

Ctrl+Y Redo

Ctrl+G Jump to line#

4.5 XEmacs Integration

BugHunter supports complete editing and debugging integration with the popular XEmacs text
editor.

Enabling XEmacs Integration

Chapter 4: Editor Functions 41

Copyright © 2007, SynaptiCAD, Inc.

· Install XEmacs onto the computer that is running BugHunter.

· Note: XEmacs Integration requires version 21.2 or later of XEmacs.

· Select the Editor > Editor/Report Preferences menu option to open the Editor/Report
Preferences dialog.

· Check the Use XEmacs Editor checkbox.

· Enter the path to the XEmacs editor in the XEmacs Path edit box, or click the Browse (...)
button to locate the XEmacs files.

· Click the OK button to enable XEmacs integration and close the Editor/Report Preferences
dialog.

For information on XEmacs, including installation information, see the official XEmacs website at
http://www.xemacs.org/. All the files needed to install XEmacs are available by anonymous FTP
from ftp.xemacs.org/.

Windows users will only need to install the basic XEmacs package. Unix users will also need to
install two libraries, annotations and derived, available from ftp.xemacs.org/. Unix users will also
need to make sure that global support for the XPM image format is installed before attempting to
configure XEmacs. The most recent version of the global XPM support library can be obtained from
ftp.x.org/contrib/libraries/. Consult your system administrator if you have any questions.

Using XEmacs with BugHunter

The XEmacs Integration feature allows you to control project functions and simulate the project
from within XEmacs. The use of breakpoints in HDL files is also supported. For more information
on breakpoints, see Section 3.4: Breakpoints.

To add an HDL file created in XEmacs to the active BugHunter project:

· Select the Syncad > Add to Project... menu option.

To run a BugHunter simulation from within XEmacs:

· Press the <F5> key. (This is identical to selecting Simulate > Run from BugHunter's Simulate
menu.)

To single-step through a BugHunter simulation from within XEmacs:

· Press the <F10> key. (This is identical to selecting Simulate > Step Over from BugHunter's
Simulate menu.)

To single-step through a BugHunter simulation from within XEmacs and send a trace statement to
the verilog.log file:

· Press the <F11> key. (This is identical to selecting Simulate > Step Into from BugHunter's
Simulate menu.)

Note that simulation from XEmacs can also be carried out by means of the XEmacs simulation bar
located at the bottom of the XEmacs editor window. These buttons function identically to the
buttons on the Simulation Button Bar in BugHunter.

To add or remove a breakpoint in XEmacs:

· Click in the margin of the XEmacs editor to the left of the line that the breakpoint should be
added to or removed from.

OR

· Right-click in the margin of the XEmacs editor to the left of the line that the breakpoint should

BugHunter Pro and the VeriLogger Simulators42

Copyright © 2007, SynaptiCAD, Inc.

be added to or removed from.

· Select Insert/Remove Breakpoint from the context menu.

OR

· Place the cursor in the line that the breakpoint should be added to or removed from.

· Press the <F9> key.

To enable or disable a breakpoint in XEmacs:

· Right-click in the margin of the XEmacs editor next to the breakpoint that should be enabled or
disabled.

· Select Enable/Disable Breakpoint from the context menu.

OR

· Place the cursor in the same line as the breakpoint that should be enabled or disabled.

· Press the <Ctrl> and <F9> keys.

An enabled breakpoint is represented by a red dot in the left margin, and a red circle represents a
disabled breakpoint.

4.6 Using an External Editor

External editors can be used with BugHunter. If you use an external editor, make sure it is
configured to detect when other programs externally modify a file. While simulating and debugging
in BugHunter, you will want to use the internal editors to make quick fixes to the code so you can
continue simulating. If your editor does not detect that you have modified a file, it may overwrite
your fixes.

Chapter 5: VeriLogger Command Line Simulators 43

Copyright © 2007, SynaptiCAD, Inc.

Chapter 5: VeriLogger Command Line Simulators

This chapter describes how to launch the VeriLogger command line simulators (vlogcmd and simx)
and the command line options to control the simulation. Vlogcmd is the interpreted simulator that
comes with VeriLogger Pro. Simx is the compiled-code simulator that comes with VeriLogger
Extreme.

You can enter most of the command options directly into BugHunter’s Command Console window
on the simulation button bar (see Section 2.6: Console Window for Interactive Debugging). If you
are using BugHunter as the graphical interface for another simulator, you can glance through the
chapter to get an idea of what kinds of features that might be available in your simulator. The
syntax for the commands depends on the simulator.

5.1 Preparing Verilog Source files

Before using the command line simulator you may want to add statements to the Verilog source
code to generate simulation display statements. Signals that were watched in the graphical
simulator will not automatically generate output in the command line simulator.

There are several Verilog statements that will generate output:

· The $monitor system task is used to continuously monitor a signal and produce an output
message every time the signal changes.

$monitor("Counter = %d", count);

· The $display system task is used to print text messages and look at values on signals. The
$display statements write the results to the verilog.log file. This statement is similar to a
debug statement used to debug program flow in a standard programming language. See the
Verilog Language Overview for more information on the syntax. An example of a display
statement used inside a module is:
$display("Counter = %d", count);

· The $dumpvars, $dumpfile, $dumpall, $dumpon, and $dumpoff system tasks are used to
save waveform data in to a value change dump (VCD) file. The VCD format is a standard
Verilog file format that can be used with external waveform viewers, static timing analyzers, or
VeriLogger's graphical display. See the Verilog Language Overview for more information on
the syntax of these statements.

5.2 Using the Command Line Simulator

The examples show how to run the interpreted vlogcmd simulator. Wherever you see vlogcmd, the
equivalent can be done with the compiled code simulator by replacing vlogcmd with simx.

To run the command line simulator:

· Open a command line window on your operating system. Windows users should open a DOS
prompt.

· Navigate to the VeriLogger directory.

· Next, invoke the command line simulator with one or more source files and any desired
simulation options. The following example starts the simulator, and executes the source file
model.v:

vlogcmd model.v

If there is more than one file, then each file needs to be specified on the command line. The order
that the files are entered in the command line is the order in which they are compiled. In most
cases the order is irrelevant, but there are some cases where it is significant, particularly when
using the same macros (`define) across files.

BugHunter Pro and the VeriLogger Simulators44

Copyright © 2007, SynaptiCAD, Inc.

vlogcmd cpu.v memory.v io.v

Using_Command_filesTo avoid retyping the same source files and simulation options every time
you perform a simulation, you can create a command file. A command file is a simple text file that
contains a list of source files and simulation options used in the simulation. To call a command file,
use the -f simulation option (all simulation options are listed in Section 5.3) followed by the name of
the command file. The use of a command file is demonstrated below:

vlogcmd -f command.vc

A complete list and description of the commands available for command files can be obtained by
entering vlogcmd at the command prompt without any options.

Command files are user-created text files with a *.vc file extension. They consist of Verilog source
files, simulator options, and other command files. When creating a command file, list only one file
or simulation option per line. The following is an example of a command file with three Verilog
source files and two simulation options:

cpu.v
memory.v
io.v
-s
-t

Automatically generate a command file that contains all project settings project files:

· Select the Project > Project Settings menu option to open the Project Settings dialog.

· Click the Generate Command File button. This takes all the project commands and file names
contained in the Command Line Options edit box and creates a command file.

5.3 Command Line Simulation Options

The VeriLogger command line simulator supports several simulation options that can be used to
control and debug simulations. The simulation options may be displayed in any order and
anywhere on the command line (vlogcmd can be replaced with simx in the commands below to run
the compiled-code simulator). To the simulator, the following statements are identical:

vlogcmd -t -s cpu.v memory.v io.v
vlogcmd cpu.v memory.v io.v -s -t
vlogcmd cpu.v -t memory.v -s io.v

Listed below are the simulation options supported by VeriLogger:

· Use a command file, - f <command filename> runs the simulator with the designated
commend file. All of the following simulation options can be used in a command file.

vlogcmd –f commfile.vc

· Stop, -s compiles the source code then enters the interactive mode before the execution
begins.

vlogcmd -s cpu.v memory.v io.v

· Trace, -t enables a tracing mode that returns a trace history of each line executed into the log
file.

vlogcmd -t cpu.v memory.v io.v

· Compile only, -c compiles the source code and exits without performing a simulation.

vlogcmd -c cpu.v memory.v io.v

· Key filename, -k <key filename> changes the name of the key file that contains a log of all
keystrokes entered during the simulation run. By default, the key file is called verilog.key.

vlogcmd -k mykey.key -c cpu.v memory.v io.v

· No Key, -k nokey disables the key file.

vlogcmd -k nokey -c cpu.v memory.v io.v

Chapter 5: VeriLogger Command Line Simulators 45

Copyright © 2007, SynaptiCAD, Inc.

· Log filename, -l <log filename> changes the name of the log file that contains all output
generated during a simulation. By default, the log file is called verilog.log.

vlogcmd -l mylog.log -c cpu.v memory.v io.v

· No log, -l nolog disables the log file.

vlogcmd -l nolog -c cpu.v memory.v io.v

· Library filename, -v <filename> specifies the name of a library file. If this option is used,
VeriLogger will try to match any undefined modules to modules inside the library files.

· Library directory, -y <directory> specifies the directory path where searches for library files are
made. If this option is used, the simulator will attempt to match any undefined modules with
files that have one of the file extensions set with the +libext option. The simulator does not
look inside a file unless the undefined module name exactly matches the filename. The
simulator will not look at any files unless file extensions have been set using the +libext
option. The following examples show how to specify a directory path, a directory path with
spaces, and how to use the +libext option (UNIX users should use a backslash):

vlogcmd model.v -y\mylibs +libext+.v
vlogcmd model.v -y"\My Libraries" +libext+.v

· Interactive Command filename, -i <filename.vi> allows the simulator to accept interactive
commands from a file. Any legal interactive mode command can be included in the interactive
command file. The file is submitted to the simulator before the simulation begins and starts to
execute as soon as the simulator enters an interactive simulation mode. Therefore the -i
command must be paired with a statement that stops the simulator and enters the interactive
mode. There are two ways to do this:

· Use the -s option to stop VeriLogger and enter the interactive mode before execution begins,

· OR, embed the $stop system task into a Verilog source code file and use it with a delay to
stop the system at a later time. For example, assume the file cpu.v contains the following code
fragment to stop the system 1000 time units after the simulation begins:

#1000 $stop;

This file is submitted with the following command:

vlogcmd -i interactive.vi cpu.v memory.v io.v

5.4 Predefined Plus Options

The VeriLogger simulator supports the following Verilog run time simulation options:

+maxdelays | +mindelays |+typdelays determines which delay used in the min:typ:max
expressions. In the graphical simulator this command is set using the Project > Project
Simulation Properties menu option. In the command line simulator add the option to the
command line:

 vlogcmd cpu.v memory.v io.v +mindelays

+define+<macro name>+<macros name> ... defines macro names from the command line,
generally for use with conditional compilation directives. Any number of macros can be defined by
adding another +<macro name> to the list. For example, the count.v Verilog source code file had
the following code fragment:

 'ifdef EXTEND
 $display("Using extended mode");
 'else
 $display("Using normal mode");

Then the following command will execute the first display statement:
 vlogcmd count.v +define+EXTEND

+synopsys (vlogcmd only) displays warnings for constructs that are either not supported or
ignored by the Synopsys HDL Compiler.

+noshow_var_change (vlogcmd only) disables the tracking of variable changes. By default,

BugHunter Pro and the VeriLogger Simulators46

Copyright © 2007, SynaptiCAD, Inc.

VeriLogger keeps track of the location and simulation time where variables are last written. This
information can be displayed using the $showvars directive. This feature may cause slight
performance degradation, so it can be disabled with this option.

+libext+<ext>+<ext> ... specifies the filename extension used when searching for libraries in the
library directory. This is most often used with the -y option. The following example will search the
directory \design\libs for libraries whose filename ends with .vl and .vv:

 vlogcmd cpu.v -y \design\libs +libext+.vl+.vv

+incdir+<directory1>+<directory2>+... specifies the directories that VeriLogger will search for
included files. All the characters between the pluses are used in the directory name.

 vlogcmd cpu.v +incdir+\design\project1+ -y \design\libs +libext+.vl+.vv

+loadpli1=<pli_library_name.dll>:<register_function1>, <register_function2>, … Specifies the
PLI library name that contains a list of PLI tasks and functions to execute. VeriLogger is expecting
the library to contain a s_tcell array called veriusertfs that contains a list of PLI user tasks and
functions. You can also group related PLI commands into register functions so that you can
partially load commands from the PLI library. The register function should contain a veriusertfs
array and return a pointer to that veriusertfs array. Here are some examples of using the option:

vlogcmd +loadpli1=myplilib.dll
vlogcmd +loadpli1=myplilib.dll:register_my_tasks
vlogcmd +loadpli1=myplilib.dll:register_my_tasks1,register_my_tasks2

Here is a code example of a register function containing the veriusertfs array:
 s_tfcell* register_syncad_tasks()
 {
 static s_tfcell veriusertfs[30] =
 {
 /*** Template for an entry:
 { usertask|userfunction, data, checktf(), sizetf(), calltf(),
 misctf(), "$tfname", forwref?, Vtool?, ErrMsg? },
 Example:
 { usertask, 0, my_check, 0, my_func, my_misctf, "$my_task" },
 ***/
 /*** final entry must be 0 ***/
 {0}
 }
 return veriusertfs;
 }

5.5 VeriLogger Extreme tools: Simx and Simxsim

The command line simulation compiler for VeriLogger Extreme is called simx. Simx compiles the
user's source files into an executable file called simxsim. By default, simx then launches simxsim
to run the actual simulation. Simxsim can subsequently be run again standalone with different
runtime simulation options without re-running simx, when there is no need to change the HDL
source code or compile time simulation options. Running simxsim -h will display a list of the
command line options that are available for use with simxsim.

The next sections describe command line options that are only available with simx and/or simxsim;
they are not supported by the interpreted simulator, vlogcmd.

5.6 Simx Simulation Build Command Line Options

Below are the command line options to control how simx builds the simulation executable (by
default called simxsim):

-o filename

The output option allows the user to set a filename of the generated simulation executable. By
default, the simulation executable is named simxsim.exe.

Chapter 5: VeriLogger Command Line Simulators 47

Copyright © 2007, SynaptiCAD, Inc.

--scd_cleanup_objs

This performs a clean up of the generated files from a simulation build. This is primarily useful for
reclaiming space when finished working with a simulation.

--scd_nosim

Generate the simulation executable (simxsim), but does not start the simulation. The simulation
can later be started by running simxsim from the command line.

--scd_jobs=n

Compile simulation executable with n jobs. Default value is 0 which sets the number of jobs to the
number of processor cores. For example, on a dual core both processors will be used by default to
compile the simulation executable as quickly as possible. To reduce the load on a dual core
machine, n could be set to 1 to keep one processor free.

--scd_usemake

Use make as the build tool. By default, simx uses Scons as the build tool as it will typically reduce
the amount of files that need to be recompiled after edits of the HDL source code.

5.7 Simx Debug and Logging Options

These options control debugging and logging capabilities available during simulation. By default,
many debugging capabilities are disabled when running from the command line simulator to ensure
maximum runtime performance. When simx is run from the BugHunter graphical interface, many of
these options are enabled to allow features such as single-step debugging and watching net
values.

+access [+] [-] access_specification

Sets the visibility access for all objects such as nets and variables in the simulation for PLI/VPI
(also required when using the debugger). The access_specification options are r (read access),
w (write access), and c (connectivity access). Use the plus sign to turn on the specified access.
Use the minus sign to turn off the specified access. If no plus or minus sign is used, + is the
default. By default, objects do not have read, write, or connectivity access, so, the default is
+access -rwc. Objects that are given write access are also given read access. Objects that are
given connectivity access are also given write access, and, therefore, read access. Examples:

- Read access only: +access +r

- Write access: +access +w

- Read/Write access: access +r+w

- Read/Write/Connectivity access: +access +r+w+c

- You can also use multiple +access options: +access +r +access -w

+afile+accessfilename

Use the specified file, accessfilename, to set the visibility access for particular instances or portions
of a design. You can also use the +access option to specify global visibility access for all objects in
the design.

+append_log

Append log information from multiple runs of simx into one log file. Use this option if you are going
to run simx multiple times and you want all the log information in one log file. If you do not use this
option, the log file is overwritten each time you run simx. If you use both +append_log and +nolog
on the command line, +nolog overrides +append_log.

BugHunter Pro and the VeriLogger Simulators48

Copyright © 2007, SynaptiCAD, Inc.

+linedebug

Enable line debugging capabilities (for example, single stepping with a debugger).

+nostdout

Turn off output to the screen (terminal).

+scd_dbgsymbols

Generates symbolic information for all HDL objects from simulated design.

+scd_msg_enable+msg_level=0|1

Enables or disables printing messages at the specified message level. The allowed msg_levels
are: +failure, +error, +warning, +note, +diagnostic.

5.8 Simx Specify block and SDF Timing Options

Below is a short summary of the timing-related command line options. For a full description of
these options, please consult the Specify blocks chaptor of the Verilog 2001 LRM.

+epulse_ondetect

Enables On-Detect filtering of error pulses. This option extends the e state back to the edge of the
event that caused the pulse to occur. See section 6.10 for the differences between on-detect and
on-event pulse filtering.

+epulse_onevent

Enables On-Event filtering of error pulses. See section 6.10 for the differences between on-detect
and on-event pulse filtering.

+epulse_neg

Filter canceled events (negative pulses) to the e state. This option makes canceled events visible.
Using this option overrides any showcancelled and noshowcancelled settings in specify blocks.

+epulse_noneg

Do not filter canceled events (negative pulses) to the e state. Using this option overrides any
showcancelled and noshowcancelled settings in specify blocks.

+notimingcheck

Do not execute timing checks

+notchkmsg

Do not display timing check warning messages.

+no_notifier

Ignore notifiers in timing checks.

+nospecify

Ignores timing checks, path delays, and $sdf_annotate calls.

+pulse_e error_percent

Chapter 5: VeriLogger Command Line Simulators 49

Copyright © 2007, SynaptiCAD, Inc.

Set the percentage of delay for the pulse error limit for both module paths and interconnect. If the
-pulse_int_e option is also used, this option applies only to module paths.

+pulse_int_e error_percent

Sets the percentage of delay for the pulse error limit for interconnects only.

+pulse_int_r reject_percent

Sets the percentage of delay for the pulse reject limit for interconnect only.

+pulse_r reject_percent

Set the percentage of delay for the pulse reject limit for both module paths and interconnect. If the
+pulse_int_r option is also used, this option applies only to module paths.

+pathpulse

Enable PATHPULSE$ declarations. These declarations set the module path pulse control on a
specific module or on specific paths within modules.

5.9 Simx Miscellaneous Options

This section contains miscellaneous comand line optins that do not fit into any of the previous
categories.

+define+macroname

Define a macro name with a blank value for use in conditional compilation. For example:
+define+mymacro

+define+macroname[=macrovalue]

Define a macro name as a string. For example: +define+mymacro=1

+loadpli1=pli_shared_lib_name:boot_function_name[,boot_function_name ...]

Dynamically load the specified PLI application and optionally specify a boot_function that will
execute when the simulation is started. The argument to this option is the name or full path of the
shared library that contains the PLI application followed by the name of the function or functions
that registers the new system tasks. This function, called the boot function, is part of the PLI
application, and is defined in the shared library. Any number of applications can be loaded in the
same statement by separating the names of the bootstrap functions witha comma. No spaces are
allowed in the argument. The file extension of the shared library is optional.

As an example, to load the shared library syncadverilogx.dll, execute the boot function
register_default_tasks, then execute the boot function register_syncad_tasks, use the following
option to simx or simxsim:

+loadpli1=syncadverilogx.dll:register_default_tasks,register_syncad_tasks

+loadvpi=vpi_shared_lib_name

Dynamically load the specified VPI application.

+tcl+filename

Read TCL simulator control commands from a file.

+version

BugHunter Pro and the VeriLogger Simulators50

Copyright © 2007, SynaptiCAD, Inc.

Displays simulator version number.

5.10 Simx On-Event and On-Detect Pulse Filtering

Simx supports two methods of pulse filtering: On-Event and On-Detect. On-event filters pulses so
that transitions to and from X occur after the delay for the originally scheduled transition and the
new output state respectively. On-Detect is more conservative; it filters pulses so that the transition
to the X state occurs immediately on detection of the pulse error. This X state then remains until
the originally calculated delay for the new output state.

The On-Detect method allows more pessimism when filtering pulses to the X state, producing a
longer X region. On-Detect filtering allows for a better understanding of the outputs caused by two
or more changing inputs that result in output scheduling conflicts, but has more impact on
simulation speed and yields more pessimistic results.

5.11 Simulator Control Commands

In addition to the Verilog commands, there are also several VeriLogger specific commands that
can be used to control the simulation:

· To continue the simulation, type the period (.) character.

· To step to the next statement in the code, type the semicolon (;) character.

· To step-and-trace to step to the next statement in the code and generate a trace message in
the verilog.log file type the comma (,) character.

· To display the current code line execution, type the colon (:) character.

· To terminate the simulation, type the $finish; command, or press <Ctrl>+C.

Chapter 6: VeriLogger SDF Support 51

Copyright © 2007, SynaptiCAD, Inc.

Chapter 6: VeriLogger SDF Support

In the initial stages of your design you will be performing "functional" simulations to ensure the logic
in your circuit operates correctly. After your FPGA or ASIC tools generate a layout for your
gate-level design, you may want to perform a final simulation with back-annotated timing
information generated during the layout process to account for real world interconnect and gate
delays. This "timing" simulation is often used as a final check to ensure that unexpected delays
generated during the layout process don’t create timing violations in your design. The layout tools
will create a Standard Delay File (SDF) that includes this timing information. By including this
timing information, the model can be tested based upon these propagation delays. This chapter will
describe how to include the SDF for these tests in VeriLogger. Note: This type of timing simulation
is often unnecessary if you use a static timing analysis tool to verify the critical paths in your design
meet the timing constraints of your design.

6.1: Using a Standard Delay File (SDF)

An SDF can be produced for any module in the hierarchy of your project. For example, if you are
modeling a board-level design that contains an FPGA, your FPGA tools will probably produce an
SDF file for the laid out gate level model of the FPGA. To include the timing from this file into your
design, add an $sdf_annotate command in the FPGA module whose timing is to be modified.
Include the bolded lines in the example FPGA module shown below to tell the simulator to read the
SDF timing information:

module MyFPGA(ports…)
//port declarations…
initial
 begin
 $sdf_annotate("mydesign.sdf");
 end
//other code…
endmodule

(Note: If you have an initial block already in the module to be annotated, you can include the
$sdf_annotate line in the existing block. Also note that "mydesign.sdf" shown above should be
replaced with whatever filename your tool generated. The file extension .sdf should be used.)

BugHunter Pro and the VeriLogger Simulators52

Copyright © 2007, SynaptiCAD, Inc.

Chapter 7: VeriLogger Pro Notes (vlogcmd)

VeriLogger Pro is an interpreted simulator. When vlogcmd starts, it reads the source models,
compiles them into internal data structures, and then executes them from these structures. The
structures contain enough information that the source can be reproduced from the structures
(minus formatting and comments.)

While the model is running, the simulation can be interrupted at any time by pressing <Ctrl>+C.
This puts the simulator in an interactive command mode. From here VeriLogger commands and
Verilog statements can be entered to debug, modify, or control the course of the simulation.

7.1 Compilation Process

VeriLogger uses a three-phase compilation process:

· Phase 1: The files are read and converted into an internal data structure. Syntax errors and
semantic errors regarding undeclared variables or illegal use of variables are reported in this
phase.

· Phase 2: In this phase the model hierarchy is built, module ports are connected, and storage
for variables is allocated. If any module is instantiated more than once, its structure is copied
as many times as needed. Also, module parameters are propagated. Errors reported in this
phase deal with missing modules, irregularities of the parameters, and out-of-memory errors
during the allocation. The project tree is built during this phase.

· Phase 3: The entire structure is re-parsed during which time-forward references to tasks and
functions are resolved, hierarchical names are resolved, and expression sizes are determined.
Errors detected in this phase include semantic errors dealing with hierarchical references that
could not be detected in Phase 1, illegal references to functions and tasks, port size
discrepancies, and illegal expression sizes.

Note: Most memory is allocated in the first two phases of the compilation.

7.2 User-Defined Primitives and Memory Usage

User-Defined Primitives (UDPs) are used to define combinatorial primitives and two-state devices.
In VeriLogger, UDPs are optimized for performance. This is accomplished by creating a table in
memory for each UDP definition. Only one such table is used for each UDP definition; every
instance of the definition uses the same table. When there are more than six inputs, the size of the
table is very large. For this reason, the maximum number of inputs is ten (nine for state UDPs).
The maximum table size is approximately 256K.

7.3 Notes on Using Specify Blocks

Specify blocks are used to define pin-to-pin timings and setup-and-hold checks. In VeriLogger,
specify blocks function similarly to those described in the Verilog Language Reference Manual.
However, there are some differences. In VeriLogger, there is no concept of expanded nets. Nets
that are defined as vectors are not split into individual nets and cannot have their own timing
information. Therefore, certain combinations of timing specifications will be ignored. Specifically,
there are two ways to describe module paths. One is the parallel case (=>), and the other is the full
case (*>). In VeriLogger, both cases are treated as if they were defined as the parallel case. This
does not pertain to scalar nets. VeriLogger supports all of the defined setup and hold systems
tasks.

Chapter 7: VeriLogger Pro Notes (vlogcmd) 53

Copyright © 2007, SynaptiCAD, Inc.

7.4: IEEE-1364 LRM Standardization

Except for the following discrepancies, VeriLogger behaves exactly as specified by the IEEE-1364
LRM and Verilog-XL standards.

Port Collapsing

In certain versions of Verilog, if two nets are connected together via a port, the port is collapsed
(combined to form one net). In VeriLogger, module ports are connected using transparent
continuous assignments. If a register is connected to a net, then the port propagation does not
occur immediately after the port changes. Instead, the port propagation is scheduled for later in the
same simulation time. However, when a net is connected to a net, then a collapsed port is
emulated by forcing the propagation to occur instantly. The effect of this implementation does not
affect the functionality of the model being simulated, but becomes visible during trace.

Port Connections of Different Net Types

VeriLogger does not check the legality of the connections of different net types in the hierarchy. For
example, if a parent module instantiates a child module, and the net on the parent’s side of a port
is a tri1 while the net on the child’s side of a port is a tri0, an oscillation will result. To use tri1, tri0,
triand, and trior as ports effectively in VeriLogger, they should be declared only in the top-most
level in the hierarchy. All lower-level connections should be declared as wire or tri.

Working Around Pullup/Pulldown Gates

When modeling an open-collector bus, a common technique is to have a pullup or pulldown gate
drive a wire net and have drivers pull the bus in the opposite direction with a greater strength when
asserting a signal. In VeriLogger, drive strengths are not implemented. Therefore, this technique
will generate an unknown value (X) when a driver attempts to drive a signal in the opposite
direction as the pull. The preferred method for modeling open-collector buses is to use the triand
nets for pullup buses, and the trior nets for pulldown buses. This net type should only appear in
the highest level of the hierarchy in which the bus exists.

Using Trace Implementation

Trace is an indispensable tool for debugging Verilog programs. It displays each statement as it is
executed, as well as any results returned from the statement. There are three ways to enable a
trace:

1) Specify the -t option at the command line.

2) Execute the system task $settrace from either the program or the interactive command line.

3) Execute and trace a single statement by entering a comma (,) at the interactive command line.
Enter multiple commas to execute the respective number of statements.

If a model uses continuous assignments or ports, VeriLogger displays the activation of these as
part of the trace as soon as the activation occurs. For example, given the continuous assignment
assign test = bar; when bar changes, the continuous assignment is executed immediately and
displayed in the trace. The continuous assignment represents one of possibly many drivers to the
net test; the net itself is scheduled for updating for sometime later in the current simulation time
unit.

Because port connections are implemented as continuous assignments it may take several steps
for a signal to propagate from an output port to an input port, especially in cases where there are
several ports connected to a net. Trace shows part of this propagation. A signal emanating from an
output port travels upward to its parent module; it then travels back down to other connected ports.
Each time a signal reaches a new port, the net connected to that port is evaluated and the results
are displayed in the trace.

Predefined Macro __VERIWELL__

The macro __VERIWELL__ is predefined so that statements such as:

BugHunter Pro and the VeriLogger Simulators54

Copyright © 2007, SynaptiCAD, Inc.

‘ifdef __VERIWELL__

are used for VeriLogger-specific code, such as for waveform display.

Simulation Statistics

The non-standard system task, $showstats, displays statistics about the current simulation,
including the amount of memory used and available. Some of the information is provided for
diagnostic purposes only.

Displaying the Location of the Last Value Edited

The $showvars system task optionally displays the current location in the module and the
simulation time at which the module variables were last changed. This information is updated even
if the value did not change (that is the new data is the same as the old data). Tracking this update
information may affect the performance of the simulation slightly. If this is a problem, this feature
can be disabled with the +noshow_var_change command line option.

User Interrupt

Pressing <Ctrl>+C, COMMAND+C, or <Ctrl>+BREAK (in MS-DOS) during simulation will put the
command line version of VeriLogger into interactive mode. Pressing any of these during
compilation will halt the process and exit to the operating system.

7.5 Implementation Differences from Verilog-XL

This section describes the differences between the way VeriLogger works and the way Verilog-XL
works. Note that these differences are subtle and will not affect the execution of well-written Verilog
models.

Event Ordering

The order of event scheduling and execution is consistent with Verilog-XL in every extent possible.
The reason for doing this is not so that models are guaranteed to work under both VeriLogger and
Verilog- XL but rather because VeriLogger was designed so that users can trace models in both
VeriLogger and in Verilog- XL with little noticeable difference. However, it should be noted that
models that depend on the order of execution are considered to be unwisely written because they
reflect race conditions and may perform unpredictably in other vendors’ Verilog, or even in future
releases of VeriLogger (or Verilog- XL). In some cases, the order of net scheduling may be
different. This is because Verilog- XL schedules nets differently depending on the type of net,
whether it is sourced by a continuous assignment, a net assignment, or a port, and whether a port
is collapsed. In most cases, net scheduling will track that of Verilog- XL.

Module Ports and Port Collapsing

Port connections are implemented as continuous assignments in VeriLogger. Rules for port
connections are similar to those of Verilog-XL, but there are some differences. In Verilog-XL, under
certain circumstances, ports are collapsed, that is, if each side is a net, then one of the nets
disappears and only one is used. This is a performance enhancement. VeriLogger emulates port
collapsing by immediately propagating values across ports that have been collapsed. This is
unlike Verilog-XL, which actually combines nets that have been collapsed. Verilog-XL will expand
vector nets into arrays of scalar nets if a port connects two different sized nets, or if one or both
sides are concatenations or part selects. VeriLogger does not implement expansion of nets, so it
could not handle these cases by building continuous assignments. VeriLogger will collapse a port
if both sides of a port are scalar nets or if both sides are vector nets. Therefore, there are some
cases when VeriLogger will not collapse a port, but where Verilog-XL will. This may cause a
disparity in the way nets are scheduled in the two simulators.

Control Expressions are Limited to 32 Bits

Expressions used by VeriLogger for control are limited to 32 bits. This includes repeat counts,
delay values, part- and bit-select and array index expressions, and shift counts. A compile-time

Chapter 7: VeriLogger Pro Notes (vlogcmd) 55

Copyright © 2007, SynaptiCAD, Inc.

error will result if the expression attempts to evaluate a number greater than 32 bits.

The $monitor System Task

Unlike Verilog-XL, the $monitor system task will be triggered if any variable in the argument list
changes. In Verilog-XL, $monitor changes only when an argument expression changes. For
example, in Verilog-XL the following statement will not be triggered if both a and b changes, and
the sum stays the same. In VeriLogger, the statement will be triggered if both a and b change in
this case.

$monitor (a + b);

BugHunter Pro and the VeriLogger Simulators56

Copyright © 2007, SynaptiCAD, Inc.

Chapter 8: VHDL <=> Verilog Translation

BugHunter Pro can also act as a graphical interface for SynaptiCAD's V2V code translators. To
use the features in this chapter you will need a license for Verilog2VHDL or VHDL2Verilog in
addition to your BugHunter Pro license. The translators can also be run from the command line, but
the graphical interface makes it a lot easier to setup the options and see the results.

8.1: Setup Project for Translation

BugHunter Pro stores the translation options and list of files using the Project *.hpj file. Before
starting a translation create a project and add in the files to be translated.

· Open a project or create a new one using the Project > New Project menu option as
discussed in Step 3: Create a Project.

· Add source code files to the project by right clicking on the User Source Files folder in the
Project Window and choosing one of the FIles to Source File Folder menus to open a file
dialog as discussed in Step 4: Add Source Files to the Project.

· Set the translation options by choosing either Project > Translate Verilog to VHDL or Project
> Translate VHDL to Verilog depending on which direction you plan to translate. This opens
the translate options dialog as described in the next two sections. If you press the Translate
button in this dialog, all the HDL source files in the project will be translated.

· To translate a single source file in your project, right click on one of the source files and choose
a Translate function from the context menu. This will translate the file with the options that
were set in the previous step above.

Chapter 8: VHDL <=> Verilog Translation 57

Copyright © 2007, SynaptiCAD, Inc.

8.2: Verilog to VHDL

Verilog2VHDL provides several options that allow you to tailor the operation of the tool. To enable
an option, select it in the Available V2V Options list and then click the button in the middle to
move it to the Enabled V2V Options list at the top of the screen.

If you are using the command line version of the translator you may list the commands after listing
the files:

 v2v input_file [output_file] [options] [-Help] [-Usage] [-Version]

where options can be a combination of:

[-Replace] [-Silent] [-No_Package] [-No_Extract_comments]

[-Environment {Mentor|Synopsys|Generic}] [-Package {HDL files}]

[-Log {logfile_name}] [-87|-93] [-No_Component_check]

[-Component_check] [-SYNTH] [-Map_Regs_to_Variables]

[-No_Synth] [-No_Zero_wait] [-Make_Defines_Constants] [-Make_Parameters_Constants]

[-Reserved_Identifier_Prefix {prefix string}] [-Reserved_Identifier_Suffix {suffix string}]

[-Preserve_Order] [-Verilog_PreProcessing] [-Architecture_Name] [-No_header]

BugHunter Pro and the VeriLogger Simulators58

Copyright © 2007, SynaptiCAD, Inc.

Command Summary

-Replace (-r):

Replace the existing output_file; default is to backup the output_file to <output_file>.old

-Silent (-s):

Supress printing out of messages indicating translator actions

-No_Package (-np):

Valid with the [-Package] option; suppresses writing out of VHDL packages of Verilog files
supplied with [-Package] option; default is to create VHDL package with filename
<pkgfilename_without_extension>_pack.hdl

-Environment {Mentor|Synopsys|Generic} (-e {m|s|g}):

Prints VHDL which is compliant with specified option, default is Generic

-Package {HDL files} (-p {HDL files}):

Loads the HDL files specified with this option into database

-Log {logfile_name} (-l {logfile name}):

Logs translator messages into file <logfile_name>; default log file is 'v2v.log'

-87:

Produces VHDL compatible with 1076-1987 compliant simulator

-No_Extract_comments (-ne):

Does not preserve comments in Verilog input

-No_Component_check (-ncc):

Does not look for module declarations for modules instantiated in instantiations. This is
useful for translating designs which use large libraries

-SYNTH (-synth):

Produces synthesizable VHDL

-Map_Regs_to_Variables (-mrv):

Produces synthesizable VHDL with procedural assignments being mapped to variable
assignments

-No_Zero_wait (-nz):

Does not print 'WAIT FOR 0 ns;' overridden by -synth option

-Make_Defines_Constants (-mdc):

Makes all `defines encountered in the input file constants in the Architecture; default is to
create Generics in Entity

-Reserved_Identifier_Prefix <prefix string> (-rip <prefix string>):

Prefixes specified string to a reserved verilog2vhdl identifier. (See User's Manual, Chapter
3) for VHDL compliance

-Reserved_Identifier_Suffix <suffix string> (-ris <suffix string>):

Suffixes specified string to a reserved verilog2vhdl identifier. (See User's Manual, Chapter
3) for VHDL compliance

-Preserve_Order (-po):

When printing VHDL, retain the order of concurrent constructs in the Verilog input; default
is to format the output VHDL

Chapter 8: VHDL <=> Verilog Translation 59

Copyright © 2007, SynaptiCAD, Inc.

-Verilog_PreProcessing (-vpp):

Preprocess the Verilog files before translation them so that the Verilog compile directives
can be elaborated and therefore supported

-Architecture_Name (-an):

Set the name of the generated VHDL architecture. The default name is "VeriArch"

-No_header [-nh]

Do not print ASC header in the output file

-No_Verilog_PreProcessing [-novpp]

Disable the Verilog preprocessor (disables compiler directives) By default, the
preprocessor is enabled.

8.3: VHDL to Verilog

VHDL2verilog provides several options that allow you to tailor the operation of the tool. To enable
an option, select it in the Available V2V Options list and then click the button in the middle to
move it to the Enabled V2V Options list at the top of the screen.

BugHunter Pro and the VeriLogger Simulators60

Copyright © 2007, SynaptiCAD, Inc.

If you are using the command line version of the translator you may list the commands after listing
the files:

vhdl2v input_file [output_file] [options] [-Help] [-Usage] [-Version]

where option can be one or all of

[-File {file_name}] [-Replace] [-Silent] [-No_Comments] [-Debug]

[-No_Default_defines] [-No_Package_translation {package_file_names}]

[No_Component_Check] [-Include_Package_files] [-Function_Map {files}]

[-Ignore_Subprogram_Calls] [-Translate_Subprogram_Bodies]

[Preserve_Generate] [Support_Multi-dimensional array] [Ignore_Integer_Range]

[Support_Directives] [-Force_Lower_Case] [-Time_Scale {time}]

[-Log {logfile_name}] [-SYNTHesis] [-87] [-No_header] [-No_timescale]

Command Summary

-File {file_name} [-f {file_name}]:

Read command line arguments from the specified file

-Replace [-r]:

Replace the existing output_file with the new output_file ; default is to backup the
output_file to <output_file_name>.old

-Silent [-s]:

Suppress printing out of messages indicating translator actions

-No_Comments [-nc]:

Supress extraction of comments from input HDL file

-Debug [-d]:

Prints debug messages from the tool

-No_Default_defines [-nd]:

Verilog define directives for TRUE and FALSE are present in all output files; use of this
switch suppresses printing of default defines

-No_Package_translation {package_names} [-np {package_names}]:

Packages with <package_name> or having <package_name> as prefix are not translated;
this can be used to suppress translation of specific packages

-No_Component_Check [-ncc]:

Translation will proceed even if some component definiations or entity declarations are
missing; this can be used to force translation of individual components without all its
components; the translation result might not compile because of the absence of its
conpoment;

-Include_Package_files [-ip]:

Use of this switch will direct the translator to write the translation of packages into files
'<package_name>_package.verilog' and '<package_name>_modules.verilog'; default is to
include them in the output file

-Function_Map {files} [-fm {files}]:

Read the function mapping files specified for translation

-Ignore_Subprogram_Calls [-ssc]:

Chapter 8: VHDL <=> Verilog Translation 61

Copyright © 2007, SynaptiCAD, Inc.

Do not translate the headers of function and procedure calls

-Translate_Subprogram_Bodies [-tsb]:

Translate the bodies of function and procedures into a separate file (override -isc switch).
Translation is done on unconditional basis: Output is not guaranteed to work!

-Preserve_Generate [-pg]:

Preserve generate statement. Generate Statements will not be elaborated if the concurrent
body contains only concurrent assignments

-Support_Multi-dimensional_array [-sm]:

Bit-wise access of multi-dimensional array will be translated. Additional signals or
subprograms may be created for translating multi-dimensional arrays

-Ignore_Integer_Range [-iir]:

Ignore the integer range and translate VHDL integers to 32 bit Verilog integers

-Support_Directives [-sdi]:

Support translation directives, such as translate_off/translate_on

-Force_Lower_Case [-flc]:

Changes all identifiers to lower case

-Time_Scale {timescale} [-ts {timescale}]:

Set the Verilog 'timescale

-Log {logfile_name} [-l {logfile_name}]:

Logs translator messages into file <logfile_name>; default log file is 'vhdl2v.log'

-SYNTHesis [-synth]:

Produces synthesizable code; presently restricted to suppressing initial statements and
using '==' Verilog operators instead of '===' operators

-87 [-87]:

Disable support for VHDL-93; enable VHDL-87 support instead

-No_header [-nh]

Do not print ASC header in the output file.

-No_timescale [-nt]

Do not print timescale directive in the output file. Default is OFF(timescale is printed in the
output file).

-Save_Parenthesis [-sp]

Inserts parenthesis in expressions to prevent confusions about precedence of operators

-Blocking [-bl]

 Use blocking assignments in all combinational procedural blocks

-Force_If_Generate [-fig]

Force translation of 'if_generate' statement, regardless the 'if' conditions. The result might
not be equivalent to the put when this option is set. Manual editing of the translation result
may be necessary."

-VHDL [-VHDL]

 Prints out the VHDL read into filename ,inputfile>, vhdl only

BugHunter Pro and the VeriLogger Simulators62

Copyright © 2007, SynaptiCAD, Inc.

-XML[-XML]

Prints out the XML documents of the input files.

Appendix A: BugHunter System Tasks 63

Copyright © 2007, SynaptiCAD, Inc.

Appendix A: BugHunter System Tasks

This Appendix describes PLI based BugHunter System Tasks. If you are using a Verilog simulator,
you can call these system tasks in your source code by prefixing the function with a $ symbol, for
example: $btim_dumpfile("myfile.btim"); . If you are running from Bug Hunter’s graphical
environment, you can execute these system tasks from the console window on the simulation
button bar. See your simulator’s documentation for how to execute user-written system task using
this method, a few simulators do not support this capability. If you are running your simulator in
command line mode, you can link in the BugHunter dll for your specific simulator and get access to
theses system tasks (the graphical environment does this automatically when it launches the
simulator).

VeriLogge
r

vlogcmd

VerilogX
L

ModelSi
m

NC ActiveH
dl

(Verilog)

init_syncad Yes Yes Yes Yes Yes

btim_dumpfile Yes Yes Yes Yes Yes

btim_closedumpfile Yes Yes Yes Yes Yes

btim_AddDumpSignal Yes *1 Yes Yes Yes Yes

db_getcurrenttime Yes Yes Yes Yes Yes

db_printinteractivescope

Yes Yes Yes Yes Yes

db_finish Yes Yes Yes Yes Yes

db_addtimebreak - Yes Yes Yes -

db_removetimebreak - Yes Yes Yes -

db_enabletimebreak - Yes Yes Yes -

db_disabletimebreak - Yes Yes Yes -

db_getbasictype Yes Yes - Yes *2 -

db_getvalue Yes Yes Yes Yes Yes

db_printinternaltimeprec
ision

Yes Yes Yes Yes -

db_setinteractivescope - Yes Yes Yes -

*1 - You must specify the full path to the signal name.

*2 - Currently supported for NC Verilog but not NC VHDL.

Command Line Simulator Support

BugHunter Pro and the VeriLogger Simulators64

Copyright © 2007, SynaptiCAD, Inc.

init_syncad

Initializes the necessary global variables, etc necessary to run the other SynaptiCAD BugHunter
simulator tasks. None of the other SynaptiCAD tasks can be executed before this task is called.
The BugHunter PLI automatically calls this task.

Syntax:

$init_syncad()

btim_dumpfile

Creates a timing diagram (btim, binary timing diagram) with the specified file name that can be
used to dump signal data. Use btim_AddDumpSignal to specify which signals to dump.

Syntax:

$btim_dumpfile(filename)

Arguments:

char* filename

where filename is the name of the btim file to receive the signal data

Related Functions:

btim_AddDumpSignal, btim_closedumpfile

btim_closedumpfile

If there was a dump file created by calling btim_dumpfile, then this command will write the btim to
disk and close it.

Syntax:

$btim_closedumpfile()

Related Functions:

btim_dumpfile

btim_AddDumpSignal

Adds a signal to the timing diagram that was specified by calling btim_dumpfile. This will dump the
specified signal to the timing diagram during simulation. Once a dump signal has been added using
this command, it can not be removed.

Syntax:

$btim_AddDumpSignal(signalname)

Arguments:

char* signalname
relative or full signal name are accepted. The function outputs an error if the signal doesn't

exist.

Related Functions:

btim_dumpfile, btim_AddDumpSignal

db_getcurrenttime

Outputs the current simulation time as a floating-point number and time unit.

Syntax:

Appendix A: BugHunter System Tasks 65

Copyright © 2007, SynaptiCAD, Inc.

$db_getcurrenttime()

Outputs a string in the following format:

"Current simulation time: <time> <s,ms,us,ns,ps,fs>"

Related Functions:

db_printinternaltimeprecision

db_printinteractivescope

Outputs the current internal time precision (resolution) of the simulator. This is the unit that
db_addtimebreak() expects the time argument to be in.

Syntax:

$db_printinternaltimeprecision()

Outputs a string in the following format:

"Internal time precision: <1,10,100> <s,ms,us,ns,ps,fs>"

Related Functions:

db_getcurrenttime

db_finish

Finishes the current simulation.

Syntax:

$db_finish()

db_addtimebreak

Adds a break point at the absolute time specified. The time should be specified in the internal
simulator time precision that can be retrieved by calling db_printinternaltimeprecision.

Syntax:

$db_addtimebreak(id, time, unit)

Outputs an error if the time specified is less than or equal to the current time.

Arguments:

int id ; // Breakpoint ID
time int64; // absolute time
char* unit; // time unit (TUnit string)

Related Functions:

db_printinternaltimeprecision, db_removetimebreak,
db_enabletimebreak, db_disabletimebreak

db_removetimebreak

Removes the time break point that was added previously with db_addtimebreak using given id of
the break point.

Syntax:

$btim_removetimebreak(id)

Outputs an error if it cannot find the time break point.

Arguments:

int id; //Breakpoint ID

Related Functions:

BugHunter Pro and the VeriLogger Simulators66

Copyright © 2007, SynaptiCAD, Inc.

db_addtimebreak, db_enabletimebreak, db_disabletimebreak

db_enabletimebreak

Enables the time break point that was added previously with the given id.

Syntax:

$db_enabletimebreak(id)

Outputs an error if the time break point was never added.

Arguments:

int id; // Breakpoint ID

Related Functions:

db_addtimebreak, db_removetimebreak, db_disabletimebreak

db_disabletimebreak

Disables the time break point that was added previously with the given id.

Syntax:

$db_disabletimebreak(id)

Output an error if the time break point was never added.

Arguments:

int id; // Breakpoint ID

Related Functions:

db_addtimebreak, db_removetimebreak, db_enabletimebreak

db_getbasictype

Prints the basic type of the given object.

Syntax:

$db_getbasictype(objectname)

Outputs an error if the object cannot be found or if the type cannot be retrieved. Otherwise, if
successful, it prints a string with the following format, where the basic type is either variable, net,
port, reg, or other.

"FullObjectName : basictype"

Arguments:

char* objectname; // path and name of the object

db_getvalue

Outputs the value of a specified signal. This command will output a TState or TExState depending
on the type. The signal name can be relative to the current interactive scope (retrieved by calling
db_printcurrentscope), or an absolute path from the top of the hierarchy. It will first attempt to find
the signal name relative to the current interactive scope. "simple" will be output in parenthesis if the
state represents a TState. "exstate" will be output in parenthesis if the state represents a
TExState.

Syntax:

$getvalue(signalname)

Outputs an error if the signal cannot be found or if the value cannot be retrieved. Otherwise, if
successful, it outputs a string in the following format:

"FullSignalName = value <simple|exstate>"

Appendix A: BugHunter System Tasks 67

Copyright © 2007, SynaptiCAD, Inc.

Arguments:

handle signalname; // signal name with path

db_printinternaltimeprecision

Outputs the current interactive scope to the command line.

Syntax:

$db_printinteractivescope()

Outputs a string in the following format:

Current scope: interactive scope

Related Functions:

db_setinteractivescope

db_setinteractivescope

Sets the interactive scope to the specified scope name. The scope name can be relative to the
current interactive scope or a full scope path.

Syntax:

$db_setinteractivescope(scopename)

Output depends on the simulator.

Arguments:

const char* scopename; // scope name

Related Functions:

db_printinteractivescope

Command Line Simulator Support

You can use SynaptiCAD's btim commands by launching your cmd line simulator with the
appropriate options (the BugHunter/VeriLogger GUI is not required). This is particularly useful for
directly dumping BTIM waveform files instead of dumping VCD files, as the simulation will run
much faster and the resulting files are much smaller.

Below are the appropriate syncad PLI libraries for each simulator and the command line options to
load the library for that simulator. The PLI libraries are located in the Synapticad\bin directory.

VHDL

· ActiveVHDL: vsim -callbacks -pli syncadactivevhdl

· ModelSim SE (PE and XE not supported): vsim.exe -c -foreign "initForeign
syncadmodelsimvhdl"

· Cadence NC VHDL: ncsim.exe -LOADCFC syncadncvhdl:register_syncad_tasks

Verilog

· ActiveVerilog: vlog.exe -pli syncadactiveverilog

· ModelSim Verilog: vsim.exe -c -pli syncadmodelsimverilog

· Cadence NC Verilog: ncverilog.exe +access +rwc
+loadvpi=syncadncverilog:register_syncad_tasks

· VeriLogger Extreme (simx): simxsim.exe +access +rwc
+loadvpi=syncadncverilog:register_syncad_tasks

BugHunter Pro and the VeriLogger Simulators68

Copyright © 2007, SynaptiCAD, Inc.

· Note: simxsim is the simulation-specific exe built by simx.

· VeriLogger (vlogcmd): vlogcmd.exe
+loadpli1=syncadvlogcmd.dll:register_default_tasks,register_syncad_tasks

· VCS: Btim PLI not supported

Index 69

Copyright © 2007, SynaptiCAD, Inc.

Index
- A -
Add 13

files to project 13

- B -
Back-annotated Simulation 51

breakpoints 28

btim_AddDumpSignal 64

btim_closedumpfile 64

btim_dumpfile 64

Building a project 15

- C -
Color Highlighting 38

command line simulator 43

options 44, 45

preparing Verilog source files for 43

simulation control commands 50

using 43

Compiler

options 7, 8

console window 29

controlling simulation from 29

Controlling Simulation 29

- D -
db_addtimebreak 65

db_disabletimebreak 66

db_enabletimebreak 66

db_finish 65

db_getbasictype 66

db_getcurrenttime 64

db_getvalue 66

db_printinteractivescope 65

db_printinternaltimeprecision 67

db_removetimebreak 65

db_setinteractivescope 67

debug 20

breakpoints 28

console window 29

- E -
editor 37

creating files 37

external editors 42

Find in Files 37

Goto 37

keyboard shortcuts 39

opening files 37

saving files 37

XEmacs 40

Editor Preferences dialog 38

editor windows 38

color highlighting 38

font 38

line numbers 38

tab width 38

- F -
Find in Files 37

Font 38

- I -
init_syncad 64

- L -
Line numbers 38

- M -
Memory Usage 52

- O -
On-Event and On-Detect Pulse Filtering 50

- P -
Project Simulation Properties dialog 8

BugHunter Pro and the VeriLogger Simulators70

Copyright © 2007, SynaptiCAD, Inc.

projects 15

adding files 13

building 15

VeriLogger 12

- S -
SDF (Standard Delay File) 51

signals 22

Watch 22

Simulate 20, 29

simulation

back-annotated 51

command-line simulator 43

speeding up 43

Simulator

options 8

path 7

Simulator / Compiler Settings dialog 7

Simx Debug and Logging Command Line Options
47

Simx Miscellaneous Options 49

Simx Simulation Build Command Line Options 46

Simx Specify block and SDF Timing Command Line
Options 48

Specify Blocks 52

Standard Delay File (SDF) 51

Stimulus & Results diagram 14

Syntax Highlighting with Color 38

- T -
Tab Width 38

Top-level module 15

Translation 56

Setup for translation 56

Verilog to VHDL 57

VHDL to Verilog 59

- U -
User-Defined Primatives 52

- V -
VeriLogger 7

compilation 52

memory usage 52

specify blocks 52

technology 52

user-defined primitives 52

VeriLogger Extreme Command Line tools Simx and
Simxsim 46

- W -
Watch signals 22

- X -
XEmacs 40

enabling 38

	Chapter 1: A Quick Start to VeriLogger & BugHunter
	Step 1: Setup the Simulator Path
	Step 2: Setup the Simulator Options
	Step 3: Create a Project
	Step 4: Add Source Files to the Project
	Step 5: Draw a Test Bench (optional)
	Step 6: Build the Project and Set the top
	Step 7: Simulate and Debug
	Step 8: Save the Project, Code and Waveform Files

	Chapter 2: Simulation and Debugging Functions
	2.1 Build and Simulate
	2.2 Watching Signal and Component Waveforms
	2.3 Breakpoints
	2.4 Inspect Values
	2.5 Report Window Error and Log file tabs
	2.6 Console Window for Interactive Debugging

	Chapter 3: Waveforms and Test Bench Generation
	3.1 Stimulus and Results Diagram
	3.2 Drawing Waveforms for Stimulus Generation
	3.3 Working with the Diagram Window
	3.4 Waveform Comparisons (Optional Features)
	3.5 Generating and Reading VCD Files

	Chapter 4: Editor Functions
	4.1 Opening, Saving, and Creating New Source Code
	4.2 Displaying or Finding a Specific Line of Code
	4.3 Using the Editor/Report Preferences Dialog
	4.4 Editor Cursor Commands
	4.5 XEmacs Integration
	4.6 Using an External Editor

	Chapter 5: VeriLogger Command Line Simulators
	5.1 Preparing Verilog Source files
	5.2 Using the Command Line Simulator
	5.3 Command Line Simulation Options
	5.4 Predefined Plus Options
	5.5 VeriLogger Extreme tools: Simx and Simxsim
	5.6 Simx Simulation Build Command Line Options
	5.7 Simx Debug and Logging Options
	5.8 Simx Specify block and SDF Timing Options
	5.9 Simx Miscellaneous Options
	5.10 Simx On-Event and On-Detect Pulse Filtering
	5.11 Simulator Control Commands

	Chapter 6: VeriLogger SDF Support
	6.1: Using a Standard Delay File (SDF)

	Chapter 7: VeriLogger Pro Notes (vlogcmd)
	7.1 Compilation Process
	7.2 User-Defined Primitives and Memory Usage
	7.3 Notes on Using Specify Blocks
	7.4: IEEE-1364 LRM Standardization
	7.5 Implementation Differences from Verilog-XL

	Chapter 8: VHDL <=> Verilog Translation
	8.1: Setup Project for Translation
	8.2: Verilog to VHDL
	8.3: VHDL to Verilog

	Appendix A: BugHunter System Tasks
	init_syncad
	btim_dumpfile
	btim_closedumpfile
	btim_AddDumpSignal
	db_getcurrenttime
	db_printinteractivescope
	db_finish
	db_addtimebreak
	db_removetimebreak
	db_enabletimebreak
	db_disabletimebreak
	db_getbasictype
	db_getvalue
	db_printinternaltimeprecision
	db_setinteractivescope
	Command Line Simulator Support

