
Synopsys, Inc. Application Note 1
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Inferring Actel RTAX-DSP MATH Blocks

Actel® RTAX-DSP devices support 18x18-bit signed multiply-accumulate blocks. The archi-
tecture includes dedicated components called RTAX-DSP MATH blocks, which can perform
DSP-related operations like multiplication followed by addition, multiplication followed by
subtraction, and multiplication with accumulate. This application note provides a general
description of the Actel RTAX-DSP MATH block component and shows you how to infer it with
the Synplify® Pro synthesis tool.

The application note describes the following:

• The RTAX-DSP MATH Block, on page 2

• Inferring RTAX-DSP MATH Blocks, on page 3

• Controlling Inference with the syn_multstyle Attribute, on page 4

• Coding Style Examples, on page 4

• Inferring RTAX-DSP MATH Blocks for Wide Multipliers, on page 19

• Wide Multiplier Coding Examples, on page 23

• Current Limitations, on page 30

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 2
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

The RTAX-DSP MATH Block
The Actel Axcelerator RTAX2000D and RTAX4000D devices support 18x18-bit signed
multiply-accumulate RTAX-DSP MATH blocks. The multiplier takes two 18-bit signed signals
and multiplies them for a 36-bit result. The result is then extended to 41 bits. In addition to
multiplication followed by addition and multiplication followed by subtraction, the blocks
can also accumulate the current multiplication product with a previous result, a constant, a
dynamic value or a result from another RTAX-DSP MATH block.

All the signals of the RTAX-DSP MATH block (except CIN, CDIN and CDOUT) have optional
registers. All the registers must use the same clock. Each of the registers has enables and
resets, which can differ from each other.

The following figure shows the 18 x 18-bit Actel RTAX-DSP MATH block. For a complete list of
all the block options and their configurations, refer to the Actel documentation.

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 3
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Inferring RTAX-DSP MATH Blocks
Starting with the C2009.03A-2 version of the Synplify Pro synthesis tool, you can now infer
RTAX-DSP MATH block components. This support is not available in the C-2009.06 multi-
vendor version of the tool, but will be available in future multi-vendor releases.

You can write your RTL so that the synthesis tool recognizes the structures and maps them
to RTAX-DSP MATH components. Currently the Synplify Pro tool extracts the following logic
structures from the hardware description and maps them to RTAX-DSP MATH blocks.

• Multipliers

• Mult-adds (multiplier followed by an adder)

• Mult-subs (multiplier followed by a subtractor)

Note the following:

• The synthesis tool supports the inference of both signed and unsigned multipliers.

• The Actel RTAX-DSP MATH blocks support multipliers up to a maximum of 18x18 bits
for signed multipliers and 17x17 bits for unsigned multipliers. The synthesis tool splits
multipliers that exceed these limits between multiple RTAX-DSP MATH blocks, as
described in Inferring RTAX-DSP MATH Blocks for Wide Multipliers, on page 19.

• Starting with the C2009.06A version, the Synplify Pro synthesis tool supports the
inference of RTAX-DSP MATH block components across different hierarchies. The multi-
plier, input registers, output registers, and subtractor/adders are packed into the
same RTAX-DSP MATH block, even if they are in different hierarchies.

• The synthesis tool packs registers at the inputs and outputs of multiplier/multiplier-
adder/multiplier-subtractor into RTAX-DSP MATH blocks.

By default, the tool maps all multiplier inputs with a width of 3 or greater to RTAX-DSP
MATH blocks. If the input width is smaller, it is mapped to logic. You can change this
default behavior with the syn_multstyle attribute (see Controlling Inference with the
syn_multstyle Attribute, on page 4).

• The tool packs registers at inputs and outputs of multipliers/multiplier-adders/multi-
plier-subtractors into RTAX-DSP MATH blocks, as long as all the registers use the same
clock.

– If the registers have different clocks, the clock that drives the output register gets
priority, and all registers driven by that clock are packed into the block.

– If the outputs are unregistered and the inputs are registered with different clocks,
the input registers with input that has a larger width get priority, and are packed in
the RTAX-DSP MATH block.

• The synthesis tool supports register packing across different hierarchies for multipliers
up to a maximum of 18x18 bits for signed multipliers and 17x17 bits for unsigned
multipliers. The synthesis tool pipelines registers for multipliers that exceed these
limits into multiple RTAX-DSP MATH blocks, as described in Inferring RTAX-DSP MATH
Blocks for Wide Multipliers, on page 19.

• The synthesis tool packs different kinds of flip-flops at the inputs/outputs of the multi-
plier/multiplier- adder/multiplier-subtractor into RTAX-DSP MATH blocks:

– D type flip-flop

– D type flip-flop with asynchronous reset

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 4
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

– D type flip-flop with enable

– D type flip-flop with asynchronous reset and enable

– D type flip-flop with synchronous reset

– D type flip-flop with synchronous reset and enable

Controlling Inference with the syn_multstyle Attribute
Use the syn_multstyle attribute to control the inference of RTAX-DSP MATH blocks. By default,
multipliers with input widths of 3 or greater are packed in the RTAX-DSP MATH block, while
smaller input widths are mapped to logic.

There are two values for the syn_multstyle attribute: logic or dsp. You can apply the attribute
globally or to individual modules, as the following sdc syntax examples illustrate:

define_global_attribute syn_multstyle {dsp|logic}

define_attribute {object} syn_multstyle {dsp|logic}

If the multipliers are inferred as RTAX-DSP MATH blocks by default, you can use the
syn_multstyle attribute to map the structures to logic.

If the multipliers are mapped to logic by default, you can use the syn_multstyle attribute to
override this and map the multiplier structures to RTAX-DSP MATH blocks.

For more information and examples, refer to the FPGA Synthesis Reference Manual.

Coding Style Examples
The following code examples demonstrate structures that the synthesis tool can implement
in RTAX-DSP MATH blocks. There are many ways to code your DSP structures, but the
synthesis tool does not map all of them to RTAX-DSP MATH blocks. The examples provided
illustrate coding styles from which the synthesis tool can infer and implement RTAX-DSP
MATH blocks. It is important that you use a supported coding structure so that the synthesis
tool infers the RTAX-DSP MATH blocks.

VHDL attribute syn_multstyle : string ;
attribute syn_multstyle of mult_sig : signal is "logic";

Verilog wire [9:0] mult_sig /* synthesis syn_multstyle = "logic" */;

VHDL attribute syn_multstyle : string ;
attribute syn_multstyle of mult_sig : signal is "dsp";

Verilog wire [1:0] mult_sig /* synthesis syn_multstyle = "dsp" */;

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 5
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Check the results of inference in the log file and the final netlist. The resource usage report
in the synthesis log file (.srr) shows details like the number of blocks. It also reports
whether they are configured as Mult, MultAdd, or MultSub blocks. You should also check the
final netlist to make sure that the structures you want were implemented.

See the following for examples of coding style:

• Example 1: 6x6-Bit Unsigned Multiplier, on page 5

• Example 2: 11x 9-Bit Signed Multiplier, on page 7

• Example 3: 18x18-Bit Signed Multiplier with Registered I/Os, on page 8

• Example 4: 17x17-Bit Unsigned Multiplier with Different Resets, on page 10

• Example 5: Unsigned Multiplier with Registered I/O and Different Clocks, on page 11

• Example 6: Multiplier-Adder, on page 13

• Example 7: Multiplier-Subtractors, on page 15

For other examples, see Wide Multiplier Coding Examples, on page 23.

Example 1: 6x6-Bit Unsigned Multiplier
The following design is a simple 6x6-bit unsigned multiplier:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity unsign_mult is
port (

in1 : in std_logic_vector (5 downto 0);
in2 : in std_logic_vector (5 downto 0);
out1 : out std_logic_vector (11 downto 0)

);
end unsign_mult;

architecture behav of unsign_mult is
begin

out1 <= in1 * in2;
end behav;

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 6
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

The FPGA synthesis tool maps this multiplier into one RTAX-DSP MATH block as shown
below:

Resource Usage Report for Unsigned 6x6-Bit Multiplier
This is an extract from the log file (.srr) and shows resource usage details. It shows that the
multiplier code was implemented in one RTAX-DSP MATH Mult block.

Target Part: rtax2000d_ccga/lga1272-s
Combinational Cells: 0 of 19712 (0%)
Sequential Cells: 0 of 9856 (0%)
Total Cells: 0 of 29568 (0%)
DSP Blocks: 1
Clock Buffers: 0
IO Cells: 0

Details:
MATH18X18: 1 Mults

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 7
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Example 2: 11x 9-Bit Signed Multiplier
This example is a 11x 9-bit signed multiplier. It gets mapped into one RTAX-DSP MATH block,
as shown in the figure.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity sign_mult is
port (

in1 : in signed (10 downto 0);
in2 : in signed (8 downto 0);
out1 : out signed (19 downto 0)

);
end sign_mult;

architecture behav of sign_mult is
begin
out1 <= in1 * in2 ;

end behav;

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 8
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Resource Usage Report for 11x9-Bit Signed Multiplier
Target Part: rtax4000d_ccga/lga1272-s
Combinational Cells: 0 of 36960 (0%)
Sequential Cells: 0 of 18480 (0%)
Total Cells: 0 of 55440 (0%)
DSP Blocks: 1
Clock Buffers: 0
IO Cells: 0

Details:
MATH18X18: 1 Mults

Example 3: 18x18-Bit Signed Multiplier with Registered I/Os
This is code for an 18x18 signed multiplier. The inputs and outputs are registered, with a
synchronous active low reset signal.

module sign18x18_mult (in1, in2, clk, rst, out1);

input signed [17:0] in1, in2;
input clk;
input rst;
output signed [40:0] out1;
reg signed [40:0] out1;
reg signed [17:0] in1_reg, in2_reg;

always @ (posedge clk)
begin

if (~rst)
begin

in1_reg <= 18'b0;
in2_reg <= 18'b0;
out1 <= 41'b0;

end
else
begin

in1_reg <= in1;
in2_reg <= in2;
out1 <= in1_reg * in2_reg;

end
end

endmodule

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 9
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

The synthesis tool fits all this logic into one RTAX-DSP MATH block, as shown below.

Resource Usage Report for Signed 18x18-Bit Multiplier with Registered I/Os
Target Part: rtax4000d_ccga/lga1272-s
Combinational Cells: 0 of 36960 (0%)
Sequential Cells: 0 of 18480 (0%)
Total Cells: 0 of 55440 (0%)
DSP Blocks: 1
Clock Buffers: 0
IO Cells: 0

Details:
MATH18X18: 1 Mults

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 10
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Example 4: 17x17-Bit Unsigned Multiplier with Different Resets
This is a VHDL example of a 17x17-bit unsigned multiplier, which has input and output
registers with different asynchronous resets.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity unsign17x17_mult is
port (

in1 : in std_logic_vector (16 downto 0);
in2 : in std_logic_vector (16 downto 0);
clk : in std_logic;
rst1 : in std_logic;
rst2 : in std_logic;
out1 : out std_logic_vector (33 downto 0)
);

end unsign17x17_mult;

architecture behav of unsign17x17_mult is
signal in1_reg, in2_reg : std_logic_vector (16 downto 0);
begin

process (clk, rst1)
begin

if (rst1 = '0') then
in1_reg <= (others => '0');
in2_reg <= (others => '0');

elsif (rising_edge(clk)) then
in1_reg <= in1;
in2_reg <= in2;

end if;
end process;

process (clk, rst2)
begin

if (rst2 = '0') then
out1 <= (others => '0');

elsif (rising_edge(clk)) then
out1 <= in1_reg * in2_reg;

end if;
end process;

end behav;

Resource Usage Report for Unsigned 17x17-Bit Multiplier
Target Part: rtax4000d_ccga/lga1272-s
Combinational Cells: 0 of 36960 (0%)
Sequential Cells: 0 of 18480 (0%)
Total Cells: 0 of 55440 (0%)
DSP Blocks: 1
Clock Buffers: 0
IO Cells: 0

Details:
MATH18X18: 1 Mults

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 11
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

The tool packs all the logic into one RTAX-DSP MATH block as shown below.

Example 5: Unsigned Multiplier with Registered I/O and Different Clocks
This example shows an unsigned multiplier whose input and outputs are registered with
different clocks: clk1 and clk2, respectively.

module unsign_mult (in1, in2, clk1, clk2, out1);
input [6:0] in1, in2;
input clk1,clk2;
output [13:0] out1;
reg [13:0] out1;
reg [6:0] in1_reg, in2_reg;

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 12
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

always @ (posedge clk1)
begin

in1_reg <= in1;
in2_reg <= in2;

end

always @ (posedge clk2)
begin

out1 <= in1_reg * in2_reg;
end

endmodule

In a case like this one, the synthesis tool only packs the output registers and the multiplier
into the RTAX-DSP MATH blocks. The input registers are implemented as logic outside the
RTAX-DSP MATH block.

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 13
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Resource Usage Report for Unsigned Multiplier with Different Clocks
The log file shows that all 14-input registers are implemented as logic, outside the RTAX-DSP
MATH block.

Target Part: rtax4000d_ccga/lga1272-s
Combinational Cells: 1 of 36960 (0%)
Sequential Cells: 14 of 18480 (0%)
Total Cells: 15 of 55440 (1%)
DSP Blocks: 1
Clock Buffers: 0
IO Cells: 0

Details:
buff: 1 comb:1
df1: 14 seq:1
MATH18X18: 1 Mults

Example 6: Multiplier-Adder
This VHDL example shows a multiplier whose output gets added with another input. The
inputs and outputs are registered, and have enables and synchronous resets.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity mult_add is
port (

in1 : in std_logic_vector (16 downto 0);
in2 : in std_logic_vector (16 downto 0);
in3 : in std_logic_vector (33 downto 0);
clk : in std_logic;
rst : in std_logic;
en : in std_logic;
out1 : out std_logic_vector (34 downto 0)

);
end mult_add;

architecture behav of mult_add is
signal in1_reg, in2_reg : std_logic_vector (16 downto 0);
signal mult_out : std_logic_vector (33 downto 0);
begin

process (clk)
begin

if (rising_edge(clk)) then
if (rst = '0') then

in1_reg <= (others => '0');
in2_reg <= (others => '0');
out1 <= (others => '0');

elsif (en = '1') then
in1_reg <= in1;
in2_reg <= in2;
out1 <= ('0' & mult_out) + ('0' & in3);

end if;
end if;

end process;

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 14
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

mult_out <= in1_reg * in2_reg;
end behav;

Note that the RTAX-DSP MATH block does not support registered CIN inputs. In this example,
if in3 is registered, then the synthesis tool infers flop primitives for in3 outside the RTAX-DSP
MATH block and packs the remaining logic into the block.

The following figure shows how the design gets mapped into a RTAX-DSP MATH block.

Resource Usage Summary for Multiplier-Adder
Target Part: rtax2000d_ccga/lga1272-s
Combinational Cells: 0 of 19712 (0%)
Sequential Cells: 0 of 9856 (0%)
Total Cells: 0 of 29568 (0%)
DSP Blocks: 1
Clock Buffers: 0
IO Cells: 0

Details:
MATH18X18: 1 MultAdds

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 15
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Example 7: Multiplier-Subtractors
There are two ways to implement multiplier and subtract logic. The synthesis tool packs the
logic differently, depending on which way it is implemented.

• Subtract the result of multiplier from an input value (P = Cin - mult)
The synthesis tool packs all logic into the RTAX-DSP MATH block.

• Subtract a value from the result of the multiplier (P = mult - Cin)
The tool packs only the multiplier in the RTAX-DSP MATH block. The subtractor is imple-
mented in logic outside the block.

Unsigned MultSub Verilog Example (P = Cin - Mult)
module mult_sub (in1, in2, in3, clk, rst, out1);
input [16:0] in1, in2;
input [36:0] in3;
input clk;
input rst;
output [39:0] out1;
reg [39:0] out1;
reg [16:0] in1_reg, in2_reg;

always @ (posedge clk)
begin

if (~rst)
begin

in1_reg <= 17'b0;
in2_reg <= 17'b0;
out1 <= 40'b0;

end
else
begin

in1_reg <= in1;
in2_reg <= in2;
out1 <= in3 - (in1_reg * in2_reg);

end
end

endmodule

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 16
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

The following figure shows how all the logic is mapped into the RTAX-DSP MATH block

Resource Usage Report for MultSub (P = Cin - Mult)
The log file resource usage report shows that everything is packed into one RTAX-DSP MATH
block, and one MultSub is inferred.

Target Part: rtax2000d_ccga/lga1272-s
Combinational Cells: 0 of 19712 (0%)
Sequential Cells: 0 of 9856 (0%)
Total Cells: 0 of 29568 (0%)
DSP Blocks: 1
Clock Buffers: 0
IO Cells: 0

Details:
MATH18X18: 1 MultSubs

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 17
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Signed MultSub VHDL Example (P = Cin - Mult)
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity mult_sub is
port (

in1 : in signed (8 downto 0);
in2 : in signed (8 downto 0);
in3 : in signed (16 downto 0);
out1 : out signed (17 downto 0)
);

end mult_sub;

architecture behav of mult_sub is
begin
out1 <= in3 - (in1 * in2);
end behav;

Resource Usage Report for MultSub (P = Cin - Mult)
The log file resource usage report shows that everything is packed into one RTAX-DSP MATH
block, and one MultSub is inferred.

Target Part: rtax2000d_ccga/lga1272-s
Combinational Cells: 2 of 19712 (0%)
Sequential Cells: 0 of 9856 (0%)
Total Cells: 2 of 29568 (1%)
DSP Blocks: 1
Clock Buffers: 0
IO Cells: 0

Details:
buff: 2 comb:1
MATH18X18: 1 MultSubs

Signed MultSub Verilog Example (P = Mult - Cin)
module mult_sub (in1, in2, in3, clk, rst, out1);
input signed [16:0] in1, in2;
input signed [36:0] in3;
input clk;
input rst;
output signed [39:0] out1;
reg signed [39:0] out1;
reg signed [16:0] in1_reg, in2_reg;

always @ (posedge clk)
begin

if (~rst)
begin

in1_reg <= 17'b0;
in2_reg <= 17'b0;
out1 <= 40'b0;

end
else
begin

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 18
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

in1_reg <= in1;
in2_reg <= in2;
out1 <= (in1_reg * in2_reg) - in3;

end
end

endmodule

Resource Usage Report for MultSub (P = Mult - Cin)
In this case, the log file shows that only the multiplier and input registers are mapped to the
RTAX-DSP MATH block. The subtractor and output registers are mapped to logic.

Target Part: rtax2000d_ccga/lga1272-s
Combinational Cells: 90 of 19712 (0%)
Sequential Cells: 40 of 9856 (0%)
Total Cells: 130 of 29568 (1%)
DSP Blocks: 1
Clock Buffers: 0
IO Cells: 0

Details:
and2: 40 comb:1
buff: 9 comb:1
inv: 1 comb:1
sub1: 40 comb:1

df1: 40 seq:1

MATH18X18: 1 Mults

Unsigned MultSub VHDL Example (P = Mult - Cin)
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity mult_sub is
port (

in1 : in std_logic_vector (8 downto 0);
in2 : in std_logic_vector (8 downto 0);
in3 : in std_logic_vector (16 downto 0);
out1 : out std_logic_vector (17 downto 0)
);

end mult_sub;

architecture behav of mult_sub is
begin

out1 <= (in1 * in2) - in3;
end behav;

Resource Usage Report for MultSub (P = Mult - Cin)
In this case, the log file shows that only the multiplier is mapped to the RTAX-DSP MATH
block. The subtractor is mapped to logic.

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 19
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Target Part: rtax2000d_ccga/lga1272-s
Combinational Cells: 35 of 19712 (0%)
Sequential Cells: 0 of 9856 (0%)
Total Cells: 35 of 29568 (1%)
DSP Blocks: 1
Clock Buffers: 0
IO Cells: 0

Details:
add1: 18 comb:1
inv: 17 comb:1

MATH18X18: 1 Mults

Inferring RTAX-DSP MATH Blocks for Wide Multipliers
Starting with the C2009.06A version, the Synplify Pro synthesis tool fractures wide multi-
pliers and packs them into multiple RTAX-DSP MATH block components, using the cascade
and shift functions of the RTAX-DSP MATH block.

A wide multiplier is one where the width of any of its inputs is larger than 18 bits (signed) or
17 bits (unsigned). A wide multiplier can be configured as either of the following:

• Just one input as wide

• Both inputs as wide

Wide multipliers are implemented by cascading multiple RTAX-DSP MATH blocks, using the
CDOUT and CDIN pins to propagate the cascade output of result P from one RTAX-DSP MATH
block to the cascade input for operand C to the next RTAX-DSP MATH block. The tool also
performs the appropriate shifting.

The maximum size for a cascaded RTAX-DSP MATH block structures is 52-bit x 52-bit signed
multipliers or 51-bit x 51-bit unsigned multipliers. If the multiplier input widths exceed
these limits, the tool first fractures the multiplier and determines the exact number of RTAX-
DSP MATH block structures needed. (See Example 12: 69x53-Bit Signed Multiplier (Inputs
Wider than 52 Bits), on page 27 for an example.)

If a and b are the inputs of such a mult, they are fractured as follows:

B1 = 51-bit x 51-bit
B2 = (a - 51) -bit x 51-bit
B3 = 51-bit x (b - 51)-bit
B4 = (a - 51) -bit x (b - 51)-bit

A 60x60 signed multiplier is first fractured into multiple blocks:

B1 = 51-bit x 51-bit
B2 = (60 - 51)-bit x 51-bit = 9-bit x 51-bit
B3 = 51-bit x (60 - 51)-bit = 51-bit x 9-bit
B4 = (60 -51)-bit x (60 - 51)-bit = 9-bit x 9-bit

Each block is further fractured using the algorithm described in Fracturing Algorithm, on
page 20.

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 20
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Fracturing Algorithm
To be a candidate for fracturing on both inputs, an m-bit x n-bit multiplier must first meet
these size requirements:

• For unsigned multipliers, either m or n or both must be greater than 17 bits and less
than or equal to 51 bits

• For signed multipliers, either m or n or both must be greater than 18 bits and less than
or equal to 52 bits.

For an m-bit x n-bit multiplier that is a candidate for fracturing on both inputs, there are
four multiplications. The final output is computed with these multipliers after performing
the appropriate shifting.

Mult1 = 17-bit x 17-bit
Mult2 = (m-17)-bit x 17-bit
Mult3 = 17-bit x (n-17)-bit
Mult4 = (m-17)-bit x (n - 17)-bit

If the input widths of a fractured multipliers is more than 17 bits (unsigned) or 18 bits
(signed), that multiplier is fractured again as needed, until the fractured multiplier can be
packed into a single RTAX-DSP MATH block.

Mapping Fractured Multipliers
The following sections describe how the tool maps fractured multipliers with input widths
less than or greater than 51 bits (unsigned) or 52 bits (signed).

Multipliers with Input Widths Less than 51/52 Bits (Unsigned/Signed)
When an unsigned multiplier with an input width between 18 and 51 bits or a signed multi-
plier with an input width between 19 and 52 bits is fractured into multiple multipliers,
these multipliers are always packed in multiple RTAX-DSP MATH blocks. During packing, the
tool uses cascade and shift functions without considering the input bit width of fractured
multipliers. You can override this default behavior with the syn_multstyle attribute, as
described in Controlling Inference with the syn_multstyle Attribute, on page 4.

The number of RTAX-DSP MATH blocks used for packing depends on whether one or both
multiplier inputs are configured as wide.

• One input wide

If only one input is a candidate for fracturing, just that input is fractured. For example,
the tool fractures a 20x4-bit unsigned multiplier as follows:

Mult1= 17-bit x 4-bit multiplier
Mult2= 3-bit x 4-bit multiplier

Both these multipliers are packed into RTAX-DSP MATH blocks using cascade and shift
functions. See Example 8: Unsigned 20x17-Bit Multiplier (One Wide Input), on page 23
and Example 9: 21x18-Bit Signed Multiplier (One Wide Input), on page 24 for examples.

• Both inputs wide

If both inputs are candidates for fracturing, they are fractured according to the
fracturing algorithm.

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 21
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

A 51x26 wide multiplier is fractured as follows:

Mult1= 17-bit x 17-bit
Mult2= 34-bit x 17-bit
Mult3= 17-bit x 9-bit
Mult4= 34-bit x 9-bit

Mult2 & Mult4 are further fractured:

Based on this fracturing, you get 6 multipliers, which are packed into 6 RTAX-DSP
MATH blocks using cascade and shift functions. See Example 10: Unsigned 26x26-Bit
Multiplier (Two Wide Inputs), on page 25 and Example 11: 35x35-Bit Signed Multiplier
(Two Wide Inputs), on page 26 for examples.

Multipliers with Input Widths Greater than 51/52 Bits (Unsigned/Signed)
When a multiplier with input width greater than 51 bits (unsigned) or 52 bits (signed) is
fractured into many small multipliers, the width of these multipliers determines whether
they get packed in a single RTAX-DSP MATH block or in multiple blocks using cascade and
shift functions. Fractured multipliers are mapped based on the following rules:

• Fractured multipliers with input widths less than 17 bits (unsigned) or less than 18
bits (signed), are packed into a single RTAX-DSP MATH block.

• If the input width of a fractured multiplier is between 17 and 51 bits (unsigned) or 18
and 51 bits (signed), the tool packs them into multiple RTAX-DSP MATH blocks using
cascade and shift functions.

• If the input width of a fractured multiplier is less than 3, it is mapped to logic by
default. You can override this behavior with the syn_multstyle attribute, as described in
Controlling Inference with the syn_multstyle Attribute, on page 4.

For wide multipliers, the tool always implements final-stage adders to implement the final
output in logic. For example, this is how a 69x53 wide multiplier is fractured:

Mult1= 51-bit x 51-bit
Mult2= 51-bit x 2-bit
Mult3= 18-bit x 51-bit
Mult4= 18-bit x 2-bit

You then get the following:

Mult2 Mult4

Mult2_1 = 17-bit x 17-bit Mult4_1 = 17-bit x 9-bit

Mult2_2 = 17-bit x 17-bit Mult4_2 = 17-bit x 9-bit

Mult1 1 Mult and 8 MultAdds, using cascade and shift functions

Mult3 1 Mult and 2 MultAdds, using cascade and shift functions

Mult2
Mult4

Mapped to logic

Connections 3 adders to connect the four fractured multipliers: Mult 1, Mult2, Mult3, and
Mult4

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 22
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Note: If a wide multiplier is followed by an adder or subtractor, only the wide multi-
plier is packed into the RTAX-DSP MATH blocks using cascade and shift func-
tions. The adder or subtractor is mapped to logic.

Log File Message
For each wide multiplier that is implemented using cascade and shift function, the tool
prints a note in the log file. The following is an example:

@N: : test.v(43) | Multiplier un1_A[51:0] is implemented with multiple MATH18X18
Blocks using cascade/shift feature.

Pipelined Registers with Wide Multipliers
The tool pipelines registers at the inputs and output of wide multipliers in different hierar-
chies into multiple RTAX-DSP MATH blocks. The registers must meet the following require-
ments to be pipelined into wide multiplier structures using cascade and shift functions:

• All the registers to be pipelined must use the same clock.

• Registers to be pipelined in wide multipliers can only be D type flip-flops or D type flip-
flop with asynchronous resets.

• All input and output registers to be pipelined should be of the same type.

• All registers must have the same control signals.

• The tool first considers output registers for pipelining. If those are not sufficient, the
tool considers input registers

• The maximum number of pipeline stages (including input and output registers) that
can be accommodated in wide multiplier structure is <number of MATH blocks> + 1.

Note the following:

• If the input and output registers have different clocks (both inputs have a common
clock and the output has a different clock), the output register gets priority and the tool
pipelines the output registers into multiple RTAX-DSP MATH blocks.

• If the output is unregistered and the inputs are registered with different clocks, the
input registers are not pipelined in the RTAX- DSP MATH block.

• For a wide multiplier with registers at inputs and outputs, and an adder/subtractor
driven by a wide multiplier, the tool only considers the input registers for pipelining
into multiple RTAX-DSP MATH blocks, as long as all the registers use the same clock.
The adder/subtractor and output register are mapped to logic.

• For a wide multiplier with registers at inputs and outputs, and an adder/subtractor
driven by a wide multiplier in a different hierarchy, the tool only considers the input
registers for pipelining into multiple RTAX-DSP MATH blocks, as long as all the registers
use the same clock. The adder/subtractor and output register are mapped to logic.

• The tool does not pipeline registers at the inputs and outputs of wide multipliers whose
widths exceed 51 bits (unsigned) or 52 bits (signed).

See Example 13: 35x35-Bit Signed Multiplier with 2 Pipelined Register Stages, on page 28 for
an example.

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 23
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Wide Multiplier Coding Examples
The following examples show how to code wide multipliers so that they are inferred and
mapped to RTAX-DSP MATH blocks, according to the guidelines explained in Inferring RTAX-
DSP MATH Blocks for Wide Multipliers, on page 19.

• Example 8: Unsigned 20x17-Bit Multiplier (One Wide Input), on page 23

• Example 9: 21x18-Bit Signed Multiplier (One Wide Input), on page 24

• Example 10: Unsigned 26x26-Bit Multiplier (Two Wide Inputs), on page 25

• Example 11: 35x35-Bit Signed Multiplier (Two Wide Inputs), on page 26

• Example 12: 69x53-Bit Signed Multiplier (Inputs Wider than 52 Bits), on page 27

• Example 13: 35x35-Bit Signed Multiplier with 2 Pipelined Register Stages, on page 28

Example 8: Unsigned 20x17-Bit Multiplier (One Wide Input)
library iEEE;
use iEEE.std_logic_1164.all;
use iEEE.std_logic_unsigned.all;

entity unsign20x17_mult is
port (

in1 : in std_logic_vector (19 downto 0);
in2 : in std_logic_vector (16 downto 0);
out1 : out std_logic_vector (36 downto 0)

);
end unsign20x17_mult;

architecture behav of unsign20x17_mult is
begin
out1 <= in1 * in2;
end behav;

After synthesis, the log report shows that the synthesis tool split this multiplier and mapped
it to two RTAX-DSP MATH blocks.

Resource Usage Report for Unsigned 20x17-Bit Multiplier
The report shows that the synthesis tool inferred 1 MultAdd and 1 Mult, as described in
Mapping Fractured Multipliers, on page 20.

Target Part: rtax4000d_ccga/lga1272-s
Combinational Cells: 0 of 36960 (0%)
Sequential Cells: 0 of 18480 (0%)
Total Cells: 0 of 55440 (1%)
DSP Blocks: 2
Clock Buffers: 0
IO Cells: 0

Details:
MATH18X18: 1 MultAdds
MATH18X18: 1 Mults

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 24
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Example 9: 21x18-Bit Signed Multiplier (One Wide Input)
module sign21x18_mult (in1, in2, out1);

input signed [20:0] in1;
input signed [17:0] in2;
output signed [38:0] out1;
wire signed [38:0] out1;
assign out1 = in1 * in2;

endmodule

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 25
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Resource Usage Report for Signed 21x18-Bit Multiplier
In accordance with the fracturing algorithm, synthesis tool reports the inference of 1 Mult
and 1 MultAdd:

Target Part: rtax4000d_ccga/lga1272-s
Combinational Cells: 1 of 36960 (0%)
Sequential Cells: 0 of 18480 (0%)
Total Cells: 1 of 55440 (1%)
DSP Blocks: 2
Clock Buffers: 0
IO Cells: 0

Details:
buff: 1 comb:1
MATH18X18: 1 MultAdds
MATH18X18: 1 Mults

Example 10: Unsigned 26x26-Bit Multiplier (Two Wide Inputs)
library iEEE;
use iEEE.std_logic_1164.all;
use iEEE.std_logic_unsigned.all;

entity unsign26x26_mult is
port (

in1 : in std_logic_vector (25 downto 0);
in2 : in std_logic_vector (25 downto 0);
out1 : out std_logic_vector (51 downto 0)

);
end unsign26x26_mult;

architecture behav of unsign26x26_mult is
begin
out1 <= in1 * in2;
end behav;

Resource Usage Report for Unsigned 26x26-Bit Multiplier
After synthesis, the log report shows that the synthesis tool split this multiplier and mapped
it to four RTAX-DSP MATH blocks. It infers 1 Mult and 3 MultAdd blocks.

Target Part: rtax2000d_ccga/lga1272-s
Combinational Cells: 0 of 19712 (0%)
Sequential Cells: 0 of 9856 (0%)
Total Cells: 1 of 29568 (1%)
DSP Blocks: 4

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 26
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Details:
MATH18X18: 3 MultAdds
MATH18X18: 1 Mults

Example 11: 35x35-Bit Signed Multiplier (Two Wide Inputs)
module sign35x35_mult (in1, in2, out1);
input signed [34:0] in1;
input signed [34:0] in2;
output signed [69:0] out1;
wire signed [69:0] out1;
assign out1 = in1 * in2;
endmodule

Resource Usage Report for Signed 35x35-Bit Multiplier
The synthesis tool infers 1 Mult and 3 MultAdd blocks.

Target Part: rtax2000d_ccga/lga1272-s
Combinational Cells: 0 of 19712 (0%)
Sequential Cells: 0 of 9856 (0%)
Total Cells: 0 of 29568 (1%)
DSP Blocks: 4

Details:
MATH18X18: 3 MultAdds
MATH18X18: 1 Mults

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 27
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Example 12: 69x53-Bit Signed Multiplier (Inputs Wider than 52 Bits)
module sign69x53_mult (in1, in2, out1);
input signed [68:0] in1;
input signed [52:0] in2;
output signed [121:0] out1;
wire signed [121:0] out1;
assign out1 = in1 * in2;
endmodule

Resource Usage Report for Signed 69x53-Bit Multiplier
The synthesis tool fractures the 69x53 multiplier into many multipliers. It infers 1 Mult and
8 MultAdds for the 51x51 multiplier and 1 Mult and 2 MultAdds for the 18x51 multiplier.
The 51x2 and 18x2 multipliers are mapped to logic.

Target Part: rtax2000d_ccga/lga1272-s
Combinational Cells: 388 of 19712 (0%)
Sequential Cells: 0 of 9856 (0%)
Total Cells: 388 of 29568 (1%)
DSP Blocks: 12

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 28
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

Details:
add1: 250 comb:1
and2A 4 comb:1
buff 21 comb:1
cm8 92 comb:1
cm8inv 26
xor2 21 comb:1

MATH18X18: 10 MultAdds
MATH18X18: 2 Mults

Example 13: 35x35-Bit Signed Multiplier with 2 Pipelined Register Stages
module sign35x35_mult (in1, in2, clk, rst, out1);
input signed [34:0] in1, in2;
input clk;
input rst;
output signed [69:0] out1;
reg signed [69:0] out1;
reg signed [34:0] in1_reg, in2_reg;

always @ (posedge clk or negedge rst)
begin

if (~rst)
begin

in1_reg <= 35'b0;
in2_reg <= 35'b0;
out1 <= 41'b0;

end
else
begin

in1_reg <= in1;
in2_reg <= in2;
out1 <= in1_reg * in2_reg;

end
end

endmodule

The register pipelining algorithm first pipelines registers at the output of the RTAX-DSP MATH
block, and controls pipeline latency by balancing the number of register stages. To balance
the stages, the tool adds registers at either the input or output of the RTAX-DSP MATH block
as required.

For example, this 35x35 signed multiplier requires four MATH blocks, so the tool can
pipeline a maximum of 5 register stages. The outputs of instances Widemult_0_0 and
Widemult_2_0 are registered. The tool packs the registers at the inputs of the RTAX-DSP MATH
blocks and infers sequential primitives at the output of the RTAX-DSP MATH blocks for
register balancing.

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc. Application Note 29
Copyright © 2009 Synopsys, Inc. All Rights Reserved. November 2009

The following figure shows part of the results; not all the registers are shown in the
Technology view:

Resource Usage Report for Signed 35x35-Bit Multiplier
The synthesis tool infers 1 Mult and 3 MultAdd blocks.

Target Part: rtax2000d_ccga/lga1272-s
Combinational Cells: 0 of 19712 (0%)
Sequential Cells: 34 of 9856 (0%)
Total Cells: 34 of 29568 (1%)
DSP Blocks: 4

Details:
dfc1b: 34 Seq:1
MATH18X18: 3 MultAdds
MATH18X18: 1 Mults

LO

 Inferring Actel RTAX-DSP MATH Blocks

Synopsys, Inc.
700 E. Middlefield Rd, Mountain View, CA 94043 USA
Phone: +1 650 584-5000
www.synopsys.com

Copyright © 2009 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Behavior Extracting Synthesis Technology, Certify, DesignWare, HDL Analyst, Iden-
tify, SCOPE, “Simply Better Results”, SolvNet, Synplicity, the Synplicity logo, Synplify, Synplify ASIC, Synplify Pro, Synthesis Constraints Optimization Environment, and VCS are regis-
tered trademarks of Synopsys, Inc. BEST, Confirma, HAPS, HapsTrak, High-performance ASIC Prototyping System, IICE, MultiPoint, Physical Analyst, System Designer, and
TotalRecall are trademarks of Synopsys, Inc. All other names mentioned herein are trademarks or registered trademarks of their respective companies.

Current Limitations
For successful RTAX-DSP MATH inference with the Synplify Pro software, it is important that
you use a supported coding structure, as there are some limitations to what the synthesis
tool infers. See Coding Style Examples, on page 4 and Wide Multiplier Coding Examples, on
page 23 for examples of supported structures. Currently, the tool does not support the
following:

• Multiplier-Accumulators (MACs)

• Dynamic Mult-AddSubs

• Overflow extraction

• SIMD (Single Instruction Multiple Data) mode
In this mode, the RTAX-DSP MATH block is fractured into two 9-bit x 9-bit multipliers.

• Arithmetic right shift for operand C
When asserted, the tool performs a 17-bit arithmetic right shift on operand C going
into the accumulator. In SIMD mode this is ignored.

	Inferring Actel RTAX-DSP MATH Blocks
	The RTAX-DSP MATH Block
	Inferring RTAX-DSP MATH Blocks
	Controlling Inference with the syn_multstyle Attribute
	Coding Style Examples
	Example 1: 6x6-Bit Unsigned Multiplier
	Example 2: 11x 9-Bit Signed Multiplier
	Example 3: 18x18-Bit Signed Multiplier with Registered I/Os
	Example 4: 17x17-Bit Unsigned Multiplier with Different Resets
	Example 5: Unsigned Multiplier with Registered I/O and Different Clocks
	Example 6: Multiplier-Adder
	Example 7: Multiplier-Subtractors

	Inferring RTAX-DSP MATH Blocks for Wide Multipliers
	Wide Multiplier Coding Examples
	Example 8: Unsigned 20x17-Bit Multiplier (One Wide Input)
	Example 9: 21x18-Bit Signed Multiplier (One Wide Input)
	Example 10: Unsigned 26x26-Bit Multiplier (Two Wide Inputs)
	Example 11: 35x35-Bit Signed Multiplier (Two Wide Inputs)
	Example 12: 69x53-Bit Signed Multiplier (Inputs Wider than 52 Bits)
	Example 13: 35x35-Bit Signed Multiplier with 2 Pipelined Register Stages

	Current Limitations

