
Application Note AC343

Accessing Serial Flash Memory Using SPI Interface

Table of Contents

Introduction
The SmartFusion® customizable system-on-chip (cSoC) device contains a hard embedded
microcontroller subsystem (MSS), programmable analog circuitry, and FPGA fabric consisting of logic
tiles, static random access memory (SRAM), and phase-locked loops (PLLs). The MSS consists of a 100
MHz ARM® Cortex™-M3 processor, advanced high-performance bus (AHB) matrix, system registers,
Ethernet MAC, DMA engine, real-time counter (RTC), embedded nonvolatile memory (eNVM),
embedded SRAM (eSRAM), fabric interface controller (FIC), the Philips Inter-Integrated Circuit (I2C),
serial peripheral interface (SPI), and external memory controller (EMC).

The MSS has two identical SPI peripherals. These peripherals provide serial interface compliance with
the Motorola SPI, Texas Instruments synchronous serial, and National Semiconductor MICROWIRE™
formats. The SPI peripherals in SmartFusion cSoC devices can operate as either a Master or a Slave.
When operating in Master mode, the SPI peripherals generate a serial clock and data to the slave device
that needs to be accessed. The SPI peripherals can generate the serial clock from 390 KHz to 50 MHz
by dividing the MSS clock, which can be controlled by software. The peripheral DMA (PDMA) in the MSS
can be used for continuous DMA streaming for large SPI transfers, and thus helps to free up the ARM
Cortex-M3 processor. Refer to the SmartFusion Microcontroller Subsystem User's Guide for more details
on SPI peripherals.

This application note explains how to use the SmartFusion SPI interface to access serial flash memory. A
basic understanding of the SmartFusion design flow is assumed. Refer to the Using UART with a
SmartFusion cSoC - Libero SoC and SoftConsole Flow Tutorial to understand the SmartFusion design
flow.

Design Example Overview
This design example demonstrates using SPI flash on the SmartFusion Development Kit Board and the
SmartFusion Evaluation Kit Board. These kits have an Atmel SPI flash memory, AT25DF641-MWH-T,
which is connected to SPI_0 on the SmartFusion Evaluation Kit Board, and to SPI_1 on the SmartFusion
Development Kit Board. For this reason, this design example is created using two SPI interfaces; so that
the same design can be used with both the kits by changing the macro definition in the SPI flash header
file (spi_flash.h). Atmel SPI flash memory provides flexible, optimized erase architecture, and supports
uniform block erase (4 Kbyte, 32 Kbyte, and 64 Kbyte), and full chip erase. Refer to the Atmel
AT25DF641-MWH-T datasheet, 64-Megabit 2.7-volt Minimum SPI Serial Flash Memory, available at
www.atmel.com.

Introduction . 1
Design Example Overview . 1
Design Description . 2
Interface Description . 3
Software Implementation . 3
Running the Design . 4
Conclusion . 5
Appendix A – Design Files . 5

Appendix B – Driver Application Programming Interfaces (APIs) . 6

List of Changes . 9
January 2013 1

© 2013 Microsemi Corporation

http://www.actel.com/documents/libero_ug.pdf
http://www.microsemi.com/soc/documents/SmartFusion_UART_HW_flow_LiberoSoftConsole_tutorial_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_UART_HW_flow_LiberoSoftConsole_tutorial_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_MSS_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_MSS_UG.pdf
http://www.actel.com/documents/SmartFusion_MSS_UG.pdf
http://www.atmel.com

Accessing Serial Flash Memory Using SPI Interface
Figure 1 shows the top-level interface signals used in this design example. The UART in the MSS acts as
a user interface for writing/reading string data into SPI flash through HyperTerminal.

Design Description
The MSS is configured to use both SPI interfaces (SPI_0 and SPI_1) and one UART interface (UART_0).
SPI_0 is clocked by PCLK0 on APB bus 0 and SPI_1 is clocked by PCLK1 on APB bus 1. PCLK0 and
PCLK1 are derived from clock conditioning circuity (CCC) in the MSS that generates an 80 MHz clock.

The SPI peripherals in the MSS are configured with SPI protocol mode 3 and APB bus clock (PCLK)
divider as 128 to generate 625 KHz serial clocks (SPI_0_CLK and SPI_1_CLK). Refer to the
SmartFusion MSS SPI Drivers v2.0 User's Guide for more details on the SPI driver's API.

This design example uses UART as a user interface for writing string data into SPI flash and reading
string data from SPI flash on HyperTerminal. You can enter a maximum of 4 Kbytes of string data through
HyperTerminal. The application first erases the first 4 Kbyte memory location starting from address
0x0000000, using the block erase command, and then writes the string data into the SPI flash. It then
reads string data from memory after the write operation that prints on HyperTerminal.

Figure 2 shows the string data flow from HyperTerminal to SPI flash memory and vice versa.

The Verilog Libero® System-on-Chip (SoC) projects are provided in the design files associated with this
design example.

Figure 1 • Top-Level Interface Signals

SmartFusion Microcontroller

Subsystem (MSS)

Host PC

MAINXIN

MSS_RESET

UART_0_RXD

UART_0_TXD

SPI_0_DI

SPI_0_DO

SPI_0_CLK

SPI_0_SS

SPI_1_DI

SPI_1_DO

SPI_1_CLK

SPI_1_SS

For Evaluation Kit

For Development Kit

Figure 2 • SPI Flash Memory Read/Write Flow

Microcontroller Subsystem

(MSS)

HyperTerminal

SPI Flash Memory
Writing

String Data

Reading

String Data
2

http://www.microsemi.com/soc/documents/MSS_SPI_Driver_UG.pdf

Interface Description
Interface Description
Table 1 shows the top-level interface signal descriptions.

Software Implementation
The following SPI flash driver APIs are used in the example design to access Atmel SPI flash memory,
AT25DF641-MWH-T.

spi_flash_int ()
This function initializes and configures the SPI peripheral and PDMA for data transfer. It configures the
SPI controller with Protocol mode, serial clock speed, and frame size for SPI flash memory. The design
example is configured with SPI Protocol mode as SPI mode 3, APB bus clock (PCLK) divider as 128, and
frame size as 8 bit.

spi_flash_control_hw ()
This function performs various operations on the serial flash based on the command passed as first
parameter. The operation of the each command is explained in "Appendix B – Driver Application
Programming Interfaces (APIs)" on page 6.

The design example uses the following API call to unprotect and erase flash sectors:

spi_flash_control_hw (SPI_FLASH_SECTOR_UNPROTECT, 0, NULL);
spi_flash_control_hw (SPI_FLASH_4KBLOCK_ERASE, 0, NULL);

spi_flash_write ()
This function writes the content of the buffer passed as a parameter to serial flash. The data is written
from the memory location specified by the first parameter. This address ranges from 0 to SPI flash size
and is not the processor’s absolute range.

Table 1 • Interface Description

Signal Direction Description

MSS_RESET_N Input Active low reset signal for the MSS

MAINXIN Input Main crystal oscillator circuit

Input to the crystal oscillator circuit

Pin for connecting an external crystal, ceramic resonator, or RC network

UART_0_TXD Output UART transmit data

UART_0_RXD Input UART receive data

SPI_0_DI Input Serial data input

SPI_0_DO Output Serial data output

SPI_0_CLK Output Serial clock

SPI_0_SS Output Serial select

SPI_1_DI Input Serial data input

SPI_1_DO Output Serial data output

SPI_1_CLK Output Serial clock

SPI_1_SS Output Serial select
3

Accessing Serial Flash Memory Using SPI Interface
spi_flash_read ()
This function reads the content from the serial flash. The data is read from the memory location specified
by the first parameter. This address ranges from 0 to SPI flash size and is not the processor’s absolute
range.

Refer to "Appendix B – Driver Application Programming Interfaces (APIs)" on page 6 for more details on
SPI initialization and configuration, and SPI flash read and write operations.

Macro Settings
This design example works with the SmartFusion Evaluation Kit Board and the SmartFusion
Development Kit Board. The following macros are to be used in the SPI flash API file (spi_flash.h) to
enable the appropriate board:

• #define SPI_FLASH_ON_SF_DEV_KIT 1: This macro enables the SPI flash driver software for
the SmartFusion Development Kit Board.

• #define SPI_FLASH_ON_SF_EVAL_KIT 1: This macro enables the SPI flash driver software for
the SmartFusion Evaluation Kit Board.

Comment out the macros based on the board used to run this example.

This design example supports the DMA transfer for SPI flash. The following macros are to be used to
enable/disable the DMA:

• #define USE_DMA_FOR_SPI_FLASH 1: This macro enables the PDMA transfer for the SPI
driver.

• #define SPI_FLASH_DMA_CHANNEL 0: This macro represents the DMA channel number.

To disable PDMA transfer, make sure the above macros are commented out; rebuild the project and
launch the debugger.

Running the Design

Board Settings
The design example works on the SmartFusion Development Kit Board and the SmartFusion Evaluation
Kit Board with default board settings. Refer to the following user’s guides for default board settings:

• SmartFusion Development Kit User’s Guide

• SmartFusion Evaluation Kit User’s Guide

Program the Design and Running the Application
Program the SmartFusion Evaluation Kit Board or the SmartFusion Development Kit Board with the
generated/provided *.stp file (refer to "Appendix A – Design Files" on page 5) using FlashPro, and then
power cycle the board. Invoke the SoftConsole IDE by clicking on the Write Application code under
Develop Firmware in Libero SoC tool (refer to "Appendix A – Design Files" on page 5) and launch the
debugger. Start a HyperTerminal with the baud rate set to 57600, 8 data bits, 1 stop bit, no parity, and no
flow control.

If your PC does not have HyperTerminal program, use any free serial terminal emulation program like
PuTTY or Tera Term. Refer to the Configuring Serial Terminal Emulation Programs tutorial for configuring
the HyperTerminal, Tera Term, and PuTTY.

When you run the debugger in SoftConsole, the HyperTerminal window prompts you to enter the string
data to be written into the SPI flash memory. Once you enter the string data, the application reads data
from memory and prints on the HyperTerminal display.
4

http://www.microsemi.com/soc/documents/Configuring_Serial_Terminal_Emulation_Programs.pdf
http://www.microsemi.com/soc/documents/A2F500_DEV_KIT_UG.PDF
http://www.microsemi.com/soc/documents/A2F_EVAL_KIT_UG.pdf

Conclusion
Figure 3 shows a screen shot of HyperTerminal displaying SP flash memory read/write operation.

Release mode
The release mode programming file (STAPL) is also provided. Refer to the Readme.txt file included in the
programming zip file for more information.
Refer to the Building Executable Image in Release Mode and Loading into eNVM tutorial for more
information on building an application in release mode.

Conclusion
This design example demonstrated the usage of SPI peripherals on the SmartFusion cSoC FPGAs to
access serial flash memory with sample software. It also explained the usage of SPI flash driver APIs to
implement memory write/read operations.

Appendix A – Design Files
You can download the design files from the Microsemi SoC Products Group website:

www.microsemi.com/soc/download/rsc/?f=A2F_AC343_DF.

The design file consists of Libero Verilog, SoftConsole software project, programming files (*.stp) for
A2F500-DEV-KIT, and A2F-EVAL-KIT. Refer to the Readme.txt file included in the design file for the
directory structure and description.

You can download the programming files (*.stp) in release mode from the Microsemi SoC Products
Group website: www.microsemi.com/soc/download/rsc/?f=A2F_AC343_PF.

The programming zip file consists of STAPL programming file (*.stp) for A2F500-DEV-KIT and A2F-
EVAL-KIT, and a Readme.txt file.

Figure 3 • The HyperTerminal Display
5

www.microsemi.com/soc/download/rsc/?f=A2F_AC343_DF
http://www.microsemi.com/soc/documents/SmartFusion_Release_Built_Tutorial.pdf
www.microsemi.com/soc/download/rsc/?f=A2F_AC343_PF

Accessing Serial Flash Memory Using SPI Interface
Appendix B – Driver Application Programming Interfaces
(APIs)

This section describes the software driver APIs used in this design to carry out transactions with SPI
flash. These drivers are included in the design files with this design example.

Function Description of Data Structures

Enum: spi_flash_status_t
This enum represents the status of different APIs such as spi_flash_status_t, spi_flash_read, and
spi_flash_write.

typedef enum {
 SPI_FLASH_SUCCESS = 0,
 SPI_FLASH_PROTECTION_ERROR,
 SPI_FLASH_WRITE_ERROR,
 SPI_FLASH_INVALID_ARGUMENTS,
 SPI_FLASH_INVALID_ADDRESS,
 SPI_FLASH_UNSUCCESS
};

Enum: spi_flash_control_hw_t
This enum represents the status of the API spi_flash_control_hw.

typedef enum {
 SPI_FLASH_SECTOR_UNPROTECT = 0,
 SPI_FLASH_SECTOR_PROTECT,
 SPI_FLASH_GLOBAL_UNPROTECT,
 SPI_FLASH_GLOBAL_PROTECT,
 SPI_FLASH_GET_STATUS,
 SPI_FLASH_4KBLOCK_ERASE,
 SPI_FLASH_32KBLOCK_ERASE,
 SPI_FLASH_64KBLOCK_ERASE,
 SPI_FLASH_CHIP_ERASE,
 SPI_FLASH_READ_DEVICE_ID,
 SPI_FLASH_RESET
};

Structure: device_Info
This structure represents the device ID and manufacturing ID of the serial flash device.

device_Info{
uint8_t manufacturer_id;
uint8_t device_id;
};

Function Description of the API

spi_flash_status_t spi_flash_init(void);
This function initializes the SPI peripheral and PDMA for data transfer, SPI 0 for the SmartFusion
Evaluation Kit Board, and SPI 1 for the SmartFusion Development Kit Board.
6

Appendix B – Driver Application Programming Interfaces (APIs)
spi_flash_status_t spi_flash_control_hw(spi_flash_control_hw_t
operation, uint32_t peram1, void * ptrPeram);
This function performs various operations on the serial flash based on the command passed as the first
parameter. The operations supported are as per the enum spi_flash_control_hw_t defined. The
functionality is as follows:

• SPI_FLASH_SECTOR_UNPROTECT: Atmel SPI flash memory, AT25DF641-MWH-T, supports
128 sectors of 64 Kbytes each and there is a corresponding bit set for unprotect of each sector.
You must call this operation to unprotect the block and perform a write or erase operation. The
second parameter for this function, 'peram1', is the block address to unprotect.

• SPI_FLASH_SECTOR_PROTECT: Atmel SPI flash memory, AT25DF641-MWH-T, supports 128
sectors of 64 Kbytes each and there is a corresponding bits set for protection of each sector. You
must call this operation to protect the data from being modified (write/erase). The second
parameter for this function, 'peram1', is the block address to protect.

• SPI_FLASH_GLOBAL_UNPROTECT: This command is used to switch off protect mode for the
entire flash for modify operations.

• SPI_FLASH_GLOBAL_PROTECT: This command is used to protect/lock the entire flash from
modify operations.

• SPI_FLASH_GET_STATUS: This function is used to get the SPI flash status register content for
more details of the status bits. Refer to page 36 of the Atmel AT25DF641-MWH-T datasheet, 64-
Megabit 2.7-volt Minimum SPI Serial Flash Memory, available at www.atmel.com.

• SPI_FLASH_4KBLOCK_ERASE: This command is used to erase the block starting at the 4KB
boundary. The starting address of the 4K block is passed in the second parameter of this API,
peram1.

• SPI_FLASH_32KBLOCK_ERASE: This command is used to erase the block starting at the 32KB
boundary. The starting address of the 32K block is passed in the second parameter of this API,
peram1.

• SPI_FLASH_64KBLOCK_ERASE: This command is used to erase the block starting at the 64KB
boundary. The starting address of the 64K block is passed in the second parameter of this API,
peram1.

• SPI_FLASH_CHIP_ERASE: This command is used to erase the entire flash chip.

• SPI_FLASH_READ_DEVICE_ID: This command is used to read the device properties. The
values are filled in the third parameter of this API, ptrPeram.

• SPI_FLASH_RESET: The Reset command allows program or erase operations in progress to be
ended abruptly and returns the device to an idle state. The return value indicates whether or not
the write was successful. The possible values are as follows:

– SPI_FLASH_SUCCESS: Indicates that the SPI flash operation is correct and complete.

– SPI_FLASH_PROTECTION_ERROR: Indicates that the sector is protected and is not
allowing the operation. Unprotect the sector and perform the operation.

– SPI_FLASH_INVALID_ARGUMENTS: Indicates that invalid arguments have been passed to
the function.

– SPI_FLASH_INVALID_ADDRESS: Indicates that the function has received an invalid
address.

– SPI_FLASH_UNSUCCESS: Indicates that the SPI flash operation is incomplete.

spi_flash_status_t spi_flash_read (uint32_t address,uint8_t * rx_buffer,
size_t size_in_bytes);
This function reads the content from the serial flash. The data is read from the memory location specified
by the first parameter. This address ranges from 0 to SPI flash size and not the processor’s absolute
range.

• @param start_addr: This is the address at which data will be read. This address ranges from 0 to
SPI flash size. This address range is not the processor’s absolute range.

• @param p_data: This is a pointer to the buffer for holding the read data.

• @param nb_bytes: This is the number of bytes to be read from SPI flash.
7

http://www.actel.com/documents/libero_ug.pdf
http://www.actel.com/documents/SmartFusion_MSS_UG.pdf
http://www.atmel.com

Accessing Serial Flash Memory Using SPI Interface
• @return: The return value indicates whether or not the write was successful. The possible values
are as follows:

– SPI_FLASH_SUCCESS: Indicates the SPI flash operation is correct and complete.

– SPI_FLASH_PROTECTION_ERROR: Indicates that the sector is protected and not allowing
the operation. Unprotect the sector and do the operation.

– SPI_FLASH_INVALID_ARGUMENTS: Indicates that invalid arguments have been passed to
the function.

– SPI_FLASH_INVALID_ADDRESS: Indicates that the function has received an invalid
address.

– SPI_FLASH_UNSUCCESS: Indicates that the SPI flash operation is incomplete.

spi_flash_status_t spi_flash_write(uint32_t address,uint8_t *
write_buffer,size_t size_in_bytes);
This function writes the content of the buffer passed as a parameter to serial flash through SPI. The data
is written from the memory location specified by the first parameter. This address ranges from 0 to SPI
flash size and not the processor’s absolute range.

• @param start_addr: This is the address at which data will be written. This address ranges from 0
to SPI flash size. This address range is not the processor’s absolute range.

• @param p_data: This is a pointer to the buffer holding the data to be written into serial flash.

• @param nb_bytes: This is the number of bytes to be written into serial flash.

• @return: The return value indicates whether or not the write was successful. The possible values
are as follows:

– SPI_FLASH_SUCCESS: Indicates that the SPI flash operation is correct and complete.

– SPI_FLASH_PROTECTION_ERROR: Indicates that the sector is protected and is not
allowing the operation. Unprotect the sector and do the operation.

– SPI_FLASH_WRITE_ERROR: Indicates the SPI flash write operation failed.

– SPI_FLASH_INVALID_ARGUMENTS: Indicates that the invalid arguments have been passed
to the function.

– SPI_FLASH_INVALID_ADDRESS: Indicates that the function has received an invalid
address. Address range should be between 0 to 8 MB.

– SPI_FLASH_UNSUCCESS: Indicates that the SPI flash operation is incomplete.
8

List of Changes
List of Changes
The following table lists critical changes that were made in each revision of the document.

Revision* Changes Page

Revision 4
(January 2013)

Added "Board Settings" section and modified "Running the Design" section
(SAR 43469).

4

Revision 3
(February 2012)

Removed ".zip" extension in the links (SAR 36763). 5

Revision 2
(January 2012)

Modified the text below Figure 2 listed under "Design Description" section
(SAR 35785).

2

Modified information related to Libero SoC projects in the "Running the Design" section
(SAR 35785).

4

Added the "Release mode" section (SAR 35785). 5

Modified the "Appendix A – Design Files" section (SAR 35785). 5

Revision 1
(August 2010)

Modified the section "Running the Design" (SAR 27470). 4

Removed Figure 3 • HyperTerminal Settings on page 5 (SAR 27470).

Modified the section "Appendix A – Design Files" (SAR 27470). 5

Removed Table 2 • Design Files Description (SAR 27470).

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.
9

51900211-4/01.13

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

http://www.microsemi.com

	Accessing Serial Flash Memory Using SPI Interface
	Introduction
	Design Example Overview
	Design Description
	Interface Description
	Software Implementation
	spi_flash_int ()
	spi_flash_control_hw ()
	spi_flash_write ()
	spi_flash_read ()
	Macro Settings

	Running the Design
	Board Settings
	Program the Design and Running the Application
	Release mode

	Conclusion
	Appendix A – Design Files
	Appendix B – Driver Application Programming Interfaces (APIs)
	Function Description of Data Structures
	Function Description of the API

	List of Changes

