Analysis of SDI/DCLK Issue for RH1020 and RT1020

Background
The SDI and DCLK pins (pin numbers 61 and 62, respectively) do not function properly when configured as outputs on all Actel RT1020 devices and older RH1020 devices. This problem does not exist on RH1020 devices manufactured in mid-1999 or later and designated as "pass 8" silicon. In normal mode, the user must program the security fuse ("program fuse") in order to configure SDI and DCLK pins as outputs. However, as a result of the issue described in this report, the SDI/DCLK output configuration is not supported in the affected devices. This technical brief discusses the cause of this phenomenon, and its impact on reliability.

Functional Description
When SDI and DCLK are configured as outputs, the "program fuse" must be blown, as discussed in the RadHard/RadTolerant Programming Guide in table 1-2 on page 22, located on Actel's web site. When the "program fuse" is programmed, node 1 (as shown in Figure 1) becomes a logic "0." Node "SFUSBLO," which is the output-enable for SDI and DCLK pins should become a logical "1" (5 volts). In the design, there exists a latch that consists of inverters 2 and 3. The latch's function is to pull and keep node "SFUSBLO" at VCC (logical "1").

Failure Description
SDI and DCLK become tristated when configured as outputs and the supply voltage is below 5.0 volts. However, if the voltage is increased to 6.0 volts and then decreased to 3.5 volts, the two outputs function properly.

Analysis
An experiment was performed to determine the state of the special I/Os: SDI and DCLK. A simple design was generated to use the SDI and DCLK pins as outputs ("program fuse" was blown). In addition, a 10K Ohm resistor was placed in series with the output pins (SDI/DCLK) to limit current flow. The output of SDI and DCLK could be pulled up in the experiment (resistor connected to VCC), a characteristic of a tristated output.

Failure Mechanism
Figure 1 shows a simplified schematic diagram of the silicon signature portion of the circuit. Note: SFUSBLO is the point of interest since it must be a logic "1" to enable the output buffers of SDI and DCLK. This condition occurs when the "program fuse is blown."

Initially, the anomalous behavior was attributed to the high fuse resistance (due to the non-ideal programming path). However, an experiment proved this assumption inaccurate. Node 1 was shorted to GND, thus bypassing the fuse, using Focus Ion Beam (FIB) technology. With node 1 at logic "0," the output of SDI and DCLK remained tristated. This was further supported by SPICE simulation. (See "Appendix A" on page 4)

Figure 1 • Simplified Silicon Signature Circuit
Initially, when the "program fuse" is not blown, (unblown program fuse symbolized as a capacitor in Figure 1 on page 1, from node 1 to ground) node 1 is a logic "1." Nodes SFUSBLO and 2 (because the pass device is turned on) will be at logic "0" (0 volts).

For the purpose of this discussion, assume that nodes SFUSBLO and 2 are the same, since the pass device is on. When the "program fuse" is blown, node 1 has a path to ground, by way of a ruptured program fuse, and becomes a logic "0." Node SFUSBLO will begin making a transition from L->H (logic "0" to "1"). Simultaneously, since node 3 is initially "1," the NLV (NMOS, low voltage device in inverter 3) device is fully turned on, thereby causing the output of inverter 3 (SFUSBLO) to be "0." Since the output of inverter 3 is a logical "0" (0 volts) and the output of inverter 1 is a logical "1" (5 volts) (due to the programmed antifuse), we now have a state of contention. Bench microprobing of the SFUSBLO signal at Actel indicates that node SFUSBLO is at ~2.0V when the SDI/DCLK pins are not functioning as outputs. Please refer to Figure 2 for a simplified drawing of this effect. The p-channel of inverter 1 is constructed with a thick oxide of 350 angstroms.

This is a high voltage p-channel (PHV) device. The n-channel device in inverter 3 is a standard low voltage (oxide thickness of 190 angstroms) n-channel device, referred to as NLV. The final state is determined by the strongest device (NLV in this circuit, since PHV is especially weak in the RH process), which will cause SFUSBLO to stay at logic "0." Hence, it is crucial that the ratio of the Idsat(NLV)/Idsat(PHV) is correct. From previous simulations, the optimum Idsat(NLV)/Idsat(PHV) was found to be 4.7 for a commercial 1020 device. However, due to the difference in processes between commercial and RadHard devices, the Idsat(NLV)/Idsat(PHV) ratio is 7.9 (for the RH process).

Effects On Reliability

Figure 3 shows the resultant circuit when the aforementioned phenomenon occurs. The current passes through a high-voltage PMOS pull-up, an NMOS pass transistor, and a NMOS pull down to ground. Although the potential increase in current is likely, it is not significant enough to be measured on the bench. SPICE simulations (refer to "Appendix B" on page 5) show that the worst case increase in ldd is 240µA (at +25°C) and 350µA (-55°C). However, analyses performed by Actel (including radiation effects) indicate that this current is too low to cause any reliability issue, such as dielectric rupture, hot carrier degradation, or electromigration. Explanations are as follows:

Figure 2 • State of nodes 1, 2, and 3 when "program fuse" is programmed

Figure 3 • Schematic Diagram of the Effects of Both NLV and PHV on
Hot Carrier (Figure 4)

Electromigration refers to the displacement of atoms within the conducting material (metals). This displacement is due to the transfer of momentum from the mobile carriers to the atomic lattices and vice versa. When a high current passes through thin metal conductors in integrated circuits, metal ions in some regions will pile up and voids will form in other regions. Thus, discontinuity in metal conductors can occur.

In the case of the circuit shown above, the maximum current through simulation was found to be 240µA at +25°C and 350µA at -55°C. Based on the layout dimensions, the maximum current density, J (mA/µm), through this circuit is:

$$J = \frac{I_{dd} \text{ (worst case)}}{W_{min}}; \text{ where } W_{min} = 2.7\mu m$$

was calculated to be 0.09mA/µm (+25°C) and 0.13mA/µm (-55°C), where the process was designed for a minimum current density of 1.0mA/µm. For room temp, there is 10X margin to electromigration. It is known that electromigration is a function of temperature as illustrated in the following equation:

$$MTF \sim \frac{1}{J^2} \rightarrow \frac{1}{J^2}$$

thus there is additional margin at -55°C due to the temperature effects. At hot temp, the Idd current is significantly reduced as both the n-channel and the p-channel devices become weaker.

Conclusion

The security feature of blowing the program fuse is functional for all RT1020 and RH1020 devices. There is no impact on the performance or reliability of these devices by programming the security fuse (program fuse). The feature of the SDI/DCLK pins functioning as outputs is not supported in the RT1020 or early (“pass 7”) RH1020 devices.

Corrective Action

Actel has implemented a fix for RH1020 devices to allow designers to use the SDI/DLK pins as outputs designated as "pass 8" material. No silicon fix is planned for RT1020 devices. We have also reviewed the circuitry to ensure that no other similar failures exist due to the weakness of the PHV devices.
Appendix A
Analysis of SDI/DCLK Issue for RH1020 and RT1020

Appendix B
Analysis of SDI/DCLK Issue for RH1020 and RT1020

Table:

<table>
<thead>
<tr>
<th>Time</th>
<th>Voltage</th>
<th>Power</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>9V</td>
<td>0.5W</td>
<td>70°C</td>
</tr>
<tr>
<td>01:00</td>
<td>10V</td>
<td>1.0W</td>
<td>80°C</td>
</tr>
<tr>
<td>02:00</td>
<td>11V</td>
<td>1.5W</td>
<td>90°C</td>
</tr>
</tbody>
</table>

Test concludes power qualifications met.