Power-Up/-Down Behavior of Low Power Flash Devices

Introduction

Microsemi's low power flash devices are flash-based FPGAs manufactured on a 0.13 µm process node. These devices offer a single-chip, reprogrammable solution and support Level 0 live at power-up (LAPU) due to their nonvolatile architecture.

Microsemi's low power flash FPGA families are optimized for logic area, I/O features, and performance. IGLOO® devices are optimized for power, making them the industry's lowest power programmable solution. IGLOO PLUS FPGAs offer enhanced I/O features beyond those of the IGLOO ultra-low power solution for I/O-intensive low power applications. IGLOO nano devices are the industry’s lowest-power cost-effective solution. ProASIC3®L FPGAs balance low power with high performance. The ProASIC3 family is Microsemi's high-performance flash FPGA solution. ProASIC3 nano devices offer the lowest-cost solution with enhanced I/O capabilities.

Microsemi’s low power flash devices exhibit very low transient current on each power supply during power-up. The peak value of the transient current depends on the device size, temperature, voltage levels, and power-up sequence.

The following devices can have inputs driven in while the device is not powered:

- IGLOO (AGL015 and AGL030)
- IGLOO nano (all devices)
- IGLOO PLUS (AGLP030, AGLP060, AGLP125)
- IGLOOe (AGLE600, AGLE3000)
- ProASIC3L (A3PE3000L)
- ProASIC3 (A3P015, A3P030)
- ProASIC3 nano (all devices)
- ProASIC3E (A3PE600, A3PE1500, A3PE3000)
- Military ProASIC3EL (A3PE600L, A3PE3000L, but not A3P1000)
- RT ProASIC3 (RT3PE600L, RT3PE3000L)

The driven I/Os do not pull up power planes, and the current draw is limited to very small leakage current, making them suitable for applications that require cold-sparing. These devices are hot-swappable, meaning they can be inserted in a live power system.1

1. For more details on the levels of hot-swap compatibility in Microsemi’s low power flash devices, refer to the “Hot-Swap Support” section in the I/O Structures chapter of the FPGA fabric user’s guide for the device you are using.
Flash Devices Support Power-Up Behavior

The flash FPGAs listed in Table 1 support power-up behavior and the functions described in this document.

Table 1 • Flash-Based FPGAs

<table>
<thead>
<tr>
<th>Series</th>
<th>Family*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGLOO</td>
<td>IGLOO</td>
<td>Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology</td>
</tr>
<tr>
<td></td>
<td>IGLOOe</td>
<td>Higher density IGLOO FPGAs with six PLLs and additional I/O standards</td>
</tr>
<tr>
<td></td>
<td>IGLOO nano</td>
<td>The industry’s lowest-power, smallest-size solution</td>
</tr>
<tr>
<td></td>
<td>IGLOO PLUS</td>
<td>IGLOO FPGAs with enhanced I/O capabilities</td>
</tr>
<tr>
<td>ProASIC3</td>
<td>ProASIC3</td>
<td>Low power, high-performance 1.5 V FPGAs</td>
</tr>
<tr>
<td></td>
<td>ProASIC3E</td>
<td>Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards</td>
</tr>
<tr>
<td></td>
<td>ProASIC3 nano</td>
<td>Lowest-cost solution with enhanced I/O capabilities</td>
</tr>
<tr>
<td></td>
<td>ProASIC3L</td>
<td>ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology</td>
</tr>
<tr>
<td></td>
<td>RT ProASIC3</td>
<td>Radiation-tolerant RT3PE600L and RT3PE3000L</td>
</tr>
<tr>
<td></td>
<td>Military ProASIC3/EL</td>
<td>Military temperature A3PE600L, A3P1000, and A3PE3000L</td>
</tr>
<tr>
<td></td>
<td>Automotive ProASIC3</td>
<td>ProASIC3 FPGAs qualified for automotive applications</td>
</tr>
</tbody>
</table>

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s Lowest Power FPGAs Portfolio.
Power-Up/-Down Sequence and Transient Current

Microsemi's low power flash devices use the following main voltage pins during normal operation:

- VCCPLX
- VJTAG
- VCC: Voltage supply to the FPGA core
 - VCC is 1.5 V ± 0.075 V for IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3 devices operating at 1.5 V.
 - VCC is 1.2 V ± 0.06 V for IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices operating at 1.2 V.
 - V5 devices will require a 1.5 V VCC supply, whereas V2 devices can utilize either a 1.2 V or 1.5 V VCC.
- VCCIBx: Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number.
- VMVx: Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. (Note: IGLOO nano, IGLOO PLUS, and ProASIC3 nano devices do not have VMVx supply pins.)

The I/O bank VMV pin must be tied to the VCCI pin within the same bank. Therefore, the supplies that need to be powered up/down during normal operation are VCC and VCCI. These power supplies can be powered up/down in any sequence during normal operation of IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, ProASIC3, and ProASIC3 nano FPGAs. During power-up, I/Os in each bank will remain tristated until the last supply (either VCCIBx or VCC) reaches its functional activation voltage. Similarly, during power-down, I/Os of each bank are tristated once the first supply reaches its brownout deactivation voltage.

Although Microsemi’s low power flash devices have no power-up or power-down sequencing requirements, Microsemi identifies the following power conditions that will result in higher than normal transient current. Use this information to help maximize power savings:

Microsemi recommends tying VCCPLX to VCC and using proper filtering circuits to decouple VCC noise from the PLL.

- a. If VCCPLX is powered up before VCC, a static current of up to 5 mA (typical) per PLL may be measured on VCCPLX.
 - The current vanishes as soon as VCC reaches the VCCPLX voltage level.
 - The same current is observed at power-down (VCC before VCCPLX).

- b. If VCCPLX is powered up simultaneously or after VCC:
 - i. Microsemi’s low power flash devices exhibit very low transient current on VCC. For ProASIC3 devices, the maximum transient current on VCC does not exceed the maximum standby current specified in the device datasheet.

The source of transient current, also known as inrush current, varies depending on the FPGA technology. Due to their volatile technology, the internal registers in SRAM FPGAs must be initialized before configuration can start. This initialization is the source of significant inrush current in SRAM FPGAs during power-up. Due to the nonvolatile nature of flash technology, low power flash devices do not require any initialization at power-up, and there is very little or no crossbar current through PMOS and NMOS devices. Therefore, the transient current at power-up is significantly less than for SRAM FPGAs. Figure 1 on page 4 illustrates the types of power consumption by SRAM FPGAs compared to Microsemi’s antifuse and flash FPGAs.

2. For more information on Microsemi FPGA voltage supplies, refer to the appropriate datasheet located at http://www.microsemi.com/soc/techdocs/ds.
Transient Current on VCC

The characterization of the transient current on VCC is performed on nearly all devices within the IGLOO, ProASIC3L, and ProASIC3 families. A sample size of five units is used from each device family member. All the device I/Os are internally pulled down while the transient current measurements are performed. For ProASIC3 devices, the measurements at typical conditions show that the maximum transient current on VCC, when the power supply is powered at ramp-rates ranging from 15 V/ms to 0.15 V/ms, does not exceed the maximum standby current specified in the device datasheets. Refer to the DC and Switching Characteristics chapters of the ProASIC3 Flash Family FPGAs datasheet and ProASIC3E Flash Family FPGAs datasheet for more information.

Similarly, IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current on VCC. The transient current does not exceed the typical operating current of the device while in active mode. For example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the transient current on VCC is typically in the range of 1–5 mA.

Transient Current on VCCI

The characterization of the transient current on VCCI is performed on devices within the IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, ProASIC3 nano, and ProASIC3L groups of devices, similarly to VCC transient current measurements. For ProASIC3 devices, the measurements at typical conditions show that the maximum transient current on VCCI, when the power supply is powered at ramp-rates ranging from 33 V/ms to 0.33 V/ms, does not exceed the maximum standby current specified in the device datasheet. Refer to the DC and Switching Characteristics chapters of the ProASIC3 Flash Family FPGAs datasheet and ProASIC3E Flash Family FPGAs datasheet for more information.

Similarly, IGLOO, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current on VCCI. The transient current does not exceed the typical operating current of the device while in active mode. For example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the transient current on VCCI is typically in the range of 1–2 mA.
I/O Behavior at Power-Up/-Down

This section discusses the behavior of device I/Os, used and unused, during power-up/down of V\text{CC} and V\text{CCI}. As mentioned earlier, VMVx and V\text{CCIBx} are tied together, and therefore, inputs and outputs are powered up/down at the same time.

I/O State during Power-Up/-Down

This section discusses the characteristics of I/O behavior during device power-up and power-down. Before the start of power-up, all I/Os are in tristate mode. The I/Os will remain tristated during power-up until the last voltage supply (V\text{CC} or V\text{CCI}) is powered to its functional level (power supply functional levels are discussed in the "Power-Up to Functional Time" section on page 6). After the last supply reaches the functional level, the outputs will exit the tristate mode and drive the logic at the input of the output buffer. Similarly, the input buffers will pass the external logic into the FPGA fabric once the last supply reaches the functional level. The behavior of user I/Os is independent of the V\text{CC} and V\text{CCI} sequence or the state of other voltage supplies of the FPGA (VPUMP and VJTAG). Figure 2 shows the output buffer driving HIGH and its behavior during power-up with 10 k\(\Omega\) external pull-down. In Figure 2, V\text{CC} is powered first, and V\text{CCI} is powered 5 ms after V\text{CC}. Figure 3 on page 6 shows the state of the I/O when V\text{CCI} is powered about 5 ms before V\text{CC}. In the circuitry shown in Figure 3 on page 6, the output is externally pulled down.

During power-down, device I/Os become tristated once the first power supply (V\text{CC} or V\text{CCI}) drops below its brownout voltage level. The I/O behavior during power-down is also independent of voltage supply sequencing.

![Figure 2 • I/O State when VCC Is Powered before VCCI](image-url)
I/O Behavior at Power-Up/-Down

6 December 2008

Power-Up to Functional Time

At power-up, device I/Os exit the tristate mode and become functional once the last voltage supply in the power-up sequence (VCCI or VCC) reaches its functional activation level. The power-up–to–functional time is the time it takes for the last supply to power up from zero to its functional level. Note that the functional level of the power supply during power-up may vary slightly within the specification at different ramp-rates. Refer to Table 2 for the functional level of the voltage supplies at power-up.

Typical I/O behavior during power-up–to–functional time is illustrated in Figure 2 on page 5 and Figure 3.

Table 2 • Power-Up Functional Activation Levels for VCC and VCCI

<table>
<thead>
<tr>
<th>Device</th>
<th>VCC Functional Activation Level (V)</th>
<th>VCCI Functional Activation Level (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProASIC3, ProASIC3 nano, IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices running at VCC = 1.5 V*</td>
<td>0.85 V ± 0.25 V</td>
<td>0.9 V ± 0.3 V</td>
</tr>
<tr>
<td>IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices running at VCC = 1.2 V*</td>
<td>0.85 V ± 0.2 V</td>
<td>0.9 V ± 0.15 V</td>
</tr>
</tbody>
</table>

Note: *V5 devices will require a 1.5 V VCC supply, whereas V2 devices can utilize either a 1.2 V or 1.5 V VCC.

Microsemi’s low power flash devices meet Level 0 LAPU; that is, they can be functional prior to VCC reaching the regulated voltage required. This important advantage distinguishes low power flash devices from their SRAM-based counterparts. SRAM-based FPGAs, due to their volatile technology, require hundreds of milliseconds after power-up to configure the design bitstream before they become functional. Refer to Figure 4 on page 7 and Figure 5 on page 8 for more information.
Figure 4 • I/O State as a Function of VCCI and VCC Voltage Levels for IGLOO V5, IGLOO nano V5, IGLOO PLUS V5, ProASIC3L, and ProASIC3 Devices Running at VCC = 1.5 V ± 0.075 V

- **Region 1**: I/O Buffers are OFF
- **Region 2**: I/O Buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI / VCC are below specification. For the same reason, input buffers do not meet VIH/VIL levels, and output buffers do not meet VOH/VOL levels.
- **Region 3**: I/O Buffers are ON. I/Os are functional but slower because VCCI / VCC are below specification. For the same reason, input buffers do not meet VIH/VIL levels, and output buffers do not meet VOH/VOL levels.
- **Region 4**: I/O Buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI / VCC are below specification. For the same reason, input buffers do not meet VIH/VIL levels, and output buffers do not meet VOH/VOL levels.
- **Region 5**: I/O Buffers are ON and power supplies are within specification. I/Os meet the entire datasheet and timer specifications for speed, VIH/VIL, VOH/VOL, etc.

Activation trip point: $V_a = 0.85 \text{ V} \pm 0.25 \text{ V}$

Deactivation trip point: $V_d = 0.75 \text{ V} \pm 0.25 \text{ V}$

Activation trip point: $V_a = 0.9 \text{ V} \pm 0.3 \text{ V}$

Deactivation trip point: $V_d = 0.8 \text{ V} \pm 0.3 \text{ V}$

Min VCCI datasheet specification voltage at a selected I/O standard: i.e., 1.425 V or 1.7 V or 2.3 V or 3.0 V

VCC = VCCI + VT
Where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
Figure 5 I/O State as a Function of VCCI and VCC Voltage Levels for IGLOO V2, IGLOO nano V2, IGLOO PLUS V2, and ProASIC3L Devices Running at VCC = 1.2 V ± 0.06 V
Brownout Voltage

Brownout is a condition in which the voltage supplies are lower than normal, causing the device to malfunction as a result of insufficient power. In general, Microsemi does not guarantee the functionality of the design inside the flash FPGA if voltage supplies are below their minimum recommended operating condition. Microsemi has performed measurements to characterize the brownout levels of FPGA power supplies. Refer to Table 3 for device-specific brownout deactivation levels. For the purpose of characterization, a direct path from the device input to output is monitored while voltage supplies are lowered gradually. The brownout point is defined as the voltage level at which the output stops following the input. Characterization tests performed on several IGLOO, ProASIC3L, and ProASIC3 devices in typical operating conditions showed the brownout voltage levels to be within the specification. During device power-down, the device I/Os become tristated once the first supply in the power-down sequence drops below its brownout deactivation voltage.

Table 3 • Brownout Deactivation Levels for VCC and VCCI

<table>
<thead>
<tr>
<th>Devices</th>
<th>VCC Brownout Deactivation Level (V)</th>
<th>VCCI Brownout Deactivation Level (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProASIC3, ProASIC3 nano, IGLOO, IGLOO nano, IGLOO PLUS and ProASIC3L devices running at VCC = 1.5 V</td>
<td>0.75 V ± 0.25 V</td>
<td>0.8 V ± 0.3 V</td>
</tr>
<tr>
<td>IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices running at VCC = 1.2 V</td>
<td>0.75 V ± 0.2 V</td>
<td>0.8 V ± 0.15 V</td>
</tr>
</tbody>
</table>

PLL Behavior at Brownout Condition

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels mentioned above for 1.5 V and 1.2 V devices, the PLL output lock signal goes LOW and/or the output clock is lost. The following sections explain PLL behavior during and after the brownout condition.

VCCPLL and VCC Tied Together

In this condition, both VCC and VCCPLL drop below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level. During the brownout recovery, once VCCPLL and VCC reach the activation point (0.85 ± 0.25 V or ± 0.2 V) again, the PLL output lock signal may still remain LOW with the PLL output clock signal toggling. If this condition occurs, there are two ways to recover the PLL output lock signal:

1. Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
2. Turn off the input reference clock to the PLL and then turn it back on.

Only VCCPLL Is at Brownout

In this case, only VCCPLL drops below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level and the VCC supply remains at nominal recommended operating voltage (1.5 V ± 0.075 V for 1.5 V devices and 1.2 V ± 0.06 V for 1.2 V devices). In this condition, the PLL behavior after brownout recovery is similar to initial power-up condition, and the PLL will regain lock automatically after VCCPLL is ramped up above the activation level (0.85 ± 0.25 V or ± 0.2 V). No intervention is necessary in this case.

Only VCC Is at Brownout

In this condition, VCC drops below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level and VCCPLL remains at nominal recommended operating voltage (1.5 V ± 0.075 V for 1.5 V devices and 1.2 V ± 0.06 V for 1.2 V devices). During the brownout recovery, once VCC reaches the activation point again (0.85 ± 0.25 V or ± 0.2 V), the PLL output lock signal may still remain LOW with the PLL output clock signal toggling. If this condition occurs, there are two ways to recover the PLL output lock signal:

1. Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
2. Turn off the input reference clock to the PLL and then turn it back on.

It is important to note that Microsemi recommends using a monotonic power supply or voltage regulator to ensure proper power-up behavior.
Internal Pull-Up and Pull-Down

Low power flash device I/Os are equipped with internal weak pull-up/-down resistors that can be used by designers. If used, these internal pull-up/-down resistors will be activated during power-up, once both VCC and VCCI are above their functional activation level. Similarly, during power-down, these internal pull-up/-down resistors will turn off once the first supply voltage falls below its brownout deactivation level.

Cold-Sparing

In cold-sparing applications, voltage can be applied to device I/Os before and during power-up. Cold-sparing applications rely on three important characteristics of the device:

1. I/Os must be tristated before and during power-up.
2. Voltage applied to the I/Os must not power up any part of the device.
3. VCCI should not exceed 3.6 V, per datasheet specifications.

As described in the "Power-Up to Functional Time" section on page 6, Microsemi's low power flash I/Os are tristated before and during power-up until the last voltage supply (VCC or VCCI) is powered up past its functional level. Furthermore, applying voltage to the FPGA I/Os does not pull up VCC or VCCI and, therefore, does not partially power up the device. Table 4 includes the cold-sparing test results on A3PE600-PQ208 devices. In this test, leakage current on the device I/O and residual voltage on the power supply rails were measured while voltage was applied to the I/O before power-up.

<table>
<thead>
<tr>
<th>Device I/O</th>
<th>Residual Voltage (V)</th>
<th>Leakage Current</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VCC</td>
<td>VCCI</td>
</tr>
<tr>
<td>Input</td>
<td>0</td>
<td>0.003</td>
</tr>
<tr>
<td>Output</td>
<td>0</td>
<td>0.003</td>
</tr>
</tbody>
</table>

VCCI must not exceed 3.6 V, as stated in the datasheet specification. Therefore, ProASIC3E devices meet all three requirements stated earlier in this section and are suitable for cold-sparing applications. The following devices and families support cold-sparing:

- IGLOO: AGL015 and AGL030
- All IGLOO nano
- All IGLOO PLUS
- All IGLOOe
- ProASIC3L: A3PE3000L
- ProASIC3: A3P015 and A3P030
- All ProASIC3 nano
- All ProASIC3E
- Military ProASIC3EL: A3PE600L and A3PE3000L
- RT ProASIC3: RT3PE600L and RT3PE3000L
The following devices and families do not support cold-sparing:

- IGLOO: AGL060, AGL125, AGL250, AGL600, AGL1000
- ProASIC3: A3P060, A3P125, A3P250, A3P400, A3P600, A3P1000
- ProASIC3L: A3P250L, A3P600L, A3P1000L
- Military ProASIC3: A3P1000

Hot-Swapping

Hot-swapping is the operation of hot insertion or hot removal of a card in a powered-up system. The I/Os need to be configured in hot-insertion mode if hot-swapping compliance is required. For more details on the levels of hot-swap compatibility in low power flash devices, refer to the "Hot-Swap Support" section in the I/O Structures chapter of the user’s guide for the device you are using.

The following devices and families support hot-swapping:

- IGLOO: AGL015 and AGL030
- All IGLOO nano
- All IGLOO PLUS
- All IGLOOe
- ProASIC3L: A3PE3000L
- ProASIC3: A3P015 and A3P030
- All ProASIC3 nano
- All ProASIC3E
- Military ProASIC3EL: A3PE600L and A3PE3000L
- RT ProASIC3: RT3PE600L and RT3PE3000L

The following devices and families do not support hot-swapping:

- IGLOO: AGL060, AGL125, AGL250, AGL400, AGL600, AGL1000
- ProASIC3: A3P060, A3P125, A3P250, A3P400, A3P600, A3P1000
- ProASIC3L: A3P250L, A3P600L, A3P1000L
- Military ProASIC3: A3P1000

Conclusion

Microsemi’s low power flash FPGAs provide an excellent programmable logic solution for a broad range of applications. In addition to high performance, low cost, security, nonvolatility, and single chip, they are live at power-up (meet Level 0 of the LAPU classification) and offer clear and easy-to-use power-up/-down characteristics. Unlike SRAM FPGAs, low power flash devices do not require any specific power-up/-down sequencing and have extremely low power-up inrush current in any power-up sequence. Microsemi low power flash FPGAs also support both cold-sparing and hot-swapping for applications requiring these capabilities.
Related Documents

Datasheets

ProASIC3 Flash Family FPGAs

ProASIC3E Flash Family FPGAs

List of Changes

The following table lists critical changes that were made in each revision of the chapter.

<table>
<thead>
<tr>
<th>Date</th>
<th>Changes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1.2</td>
<td>IGLOO nano and ProASIC3 nano devices were added to the document as</td>
<td></td>
</tr>
<tr>
<td>(December 2008)</td>
<td>supported device types.</td>
<td></td>
</tr>
<tr>
<td>v1.1</td>
<td>The "Introduction" section was updated to add Military ProASIC3EL and RT</td>
<td>1</td>
</tr>
<tr>
<td>(October 2008)</td>
<td>ProASIC3 devices to the list of devices that can have inputs driven in while the device is not powered.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The "Flash Devices Support Power-Up Behavior" section was revised to include</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>new families and make the information more concise.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The "Cold-Sparing" section was revised to add Military ProASIC3/EL and RT</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>ProASIC3 devices to the lists of devices with and without cold-sparing support.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The "Hot-Swapping" section was revised to add Military ProASIC3/EL and RT</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>ProASIC3 devices to the lists of devices with and without hot-swap support.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGL400 was added to the list of devices that do not support hot-swapping.</td>
<td></td>
</tr>
<tr>
<td>v1.0</td>
<td>This document was revised, renamed, and assigned a new part number. It now</td>
<td>N/A</td>
</tr>
<tr>
<td>(August 2008)</td>
<td>includes data for the IGLOO and ProASIC3L families.</td>
<td></td>
</tr>
<tr>
<td>v1.3</td>
<td>The "List of Changes" section was updated to include the three different I/O</td>
<td>12</td>
</tr>
<tr>
<td>v1.2</td>
<td>The first sentence of the "PLL Behavior at Brownout Condition" section was</td>
<td>9</td>
</tr>
<tr>
<td>(February 2008)</td>
<td>updated to read, "When PLL power supply voltage and/or V_CC levels drop below the VCC brownout levels (0.75 V ± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost."</td>
<td></td>
</tr>
<tr>
<td>v1.1</td>
<td>The "PLL Behavior at Brownout Condition" section was added.</td>
<td>9</td>
</tr>
<tr>
<td>(January 2008)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2011 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.