
Application Note AC227

How To Use UJTAG

Introduction
UJTAG is an embedded macro for the ProASICPLUS® and ProASIC®3 device families. It is
implemented in unused I/O tiles and used as the interface between external JTAG ports and
internal logic. This macro can be used to shift in data or OPCODEs through JTAG ports for the
purpose of uploading some internal logic or controlling the internal functionality. For example,
the UJTAG macro can be used to preload the ProASICPLUS RAM, using RAM to emulate ROM
or using UJTAG to control the PLL for dynamic configuration. This macro can also be used to
shift out data from internal logic to an external JTAG port for the purpose of driving LEDs, or it
can be monitored by an oscilloscope as a test point. UJTAG is an extension of standard JTAG
ports, passing data in or out with the help of a TAP (Test Access Port) controller. There are
multiple Application Notes demonstrating specific applications using UJTAG. Links to these can
be found in the reference section.

This document references a sample application to help illustrate the use of the UJTAG macro to
shift in and shift out data as well as the Libero® Integrated Development Environment (IDE)
design flow. The Design source files and a Libero IDE project are provided.

Sample Design
The sample design used in this application note is a flip-flop array in a ProASICPLUS device.
The inputs of these three flip-flops are loaded by the TDI pin of the JTAG circuit through the
UJTAG and UJTAG_Interface macros. The UJTAG_Interface macro contains a 3-bit Serial-In-
Parallel-Out (SIPO) shift register, which starts to load the flip-flop series when a user defined
UJTAG OPCODE is applied. The outputs of the flip-flops are routed to external pins to drive
LEDs separately. When all three flip-flop outputs are '1', the AND3 gate will be turned on to drive
another LED by the TDO pin via the UJTAG macro. Figure 1 shows the sample design.

Figure 1 • Top-Level Diagram of Sample Design

TRST

TDO

TDI

TMS

TCK

UIREG[7:0]
URSTB

UDRUPD
UTDI

UTDO

UDRSH
UDRCAP
UDRCK

TRST

TDO

TDI

TMS

TCK

UJTAG

SHIFTIN Q[2:0]

UJTAG_Interface

SIPO

UTDO

D Q D Q D Q

LOAD [0] LOAD [2]LOAD [1]

LOAD [0] LOAD [1] LOAD [2]

UTDO/LED3

LED O
Existing JTAG I/Os

Built-In UJTAG
Macro

User-Defined
UJTAG_Interface LED 1 LED 2

LOAD[2:0]
April 2015 1
© 2015 Microsemi Corporation

How To Use UJTAG
Design Implementation
As a unique macro, UJTAG can be instantiated in HDL design entry (as the sample code shows in
"Appendix B" on page 7) or can be found within the ViewDrawTM actelcells library and connected in the
schematic design.

For the sample design, instantiate the UJTAG macro in the top-level schematic as shown in Figure 2.

Stimulus
Figure 3 demonstrates the TAP controller state machine.

Figure 2 • Libero IDE Top-Level Schematic Design

UTOI
UASTB

UOACK
UDACAP

UDASH
UDAUPO

TOO

THS
TOI
TCK
TAST

UIRE 60

UIRE 66

UIRE 62
UIRE 61

UIRE 63

UIRE 67

UIRE 65
UIRE 64

UTOO
THS
TOI
TCK
TASTB

UJTAG

UIR (0)

UIR (7)
UIR (6)
UIR (5)
UIR (4)
UIR (3)
UIR (2)
UIR (1)

UIR (7·0)

UJTAG_INTERFACE

LOAD (2·0)

UULOAD (2·0)

UUTOI

UUOACK

UUDASH
UUOACAP

UUIR (7·0)

LOAD (0)

LOAD (3)

LOAD (2) D Q

DCLK
OFF

D Q

DCLK
OFF

D Q

DCLK
OFF

C

A
B AND3

UORUPO

LED (2)

LED (3)

LED (0)

LED (1)

Figure 3 • TAP Controller State Machine

Select
IR_Scan

Capture_IR

Update_IR

Exit2_IR

Pause_IR

Exit1_IR

Shift_IR

Select
DR_Scan

Capture_DR

Update_DR

Exit2_DR

Pause_DR

Exit1_DR

Shift_DR

10

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

0

0

00

0

Test_Logic_Reset

Run Test/
Idle
2

Design Implementation
In order to run the simulation, an appropriate stimulus file must be generated to control the TAP controller
state machine. Figure 4 shows the stimulus file used to run simulation of the sample design. The
combination of TCK and TMS toggles can move the TAP controller into different states.

The TCK and TMS signals generated in Figure 3 on page 2 are used to manipulate the TAP Controller
State Machine (SM) to achieve the following functions:

1. The first five assertions of '1' on TMS are used to reset the SM to Test-Logic-Reset state.

2. The following '0' moves SM to Run-Test-Idle state.

3. An additional '1' sets SM to Select-DR-Scan state.

4. Followed by '00', SM is in Shift-DR state.

5. Shift in of n bits of TDI so TMS is kept at '0' for 'n-1' TCK cycles.

6. The following '1' on TMS, clocked by the rising edge of TCK, starts to transfer SM to Exit-DR
state.

7. The following '10' puts SM back to the Run-Test-Idle state and there it waits for the next
instruction.

According to the logic design of the sample design, if 111 is shifted in through TDI, then all 3 inputs of the
AND3 gate will be driven to '1', and the output '1' will be shifted out through TDO.

Figure 4 • Stimulus for Sample Design

TCK

TMS 0 1 0 0 1 1 0 1 0 0 1 1 011111

TDI 1 0 1 1 1 1

TDO
0

1

Test-Logic-Reset Se
le

ct
-D

R
-S

ca
n

C
ap

tu
re

-D
R

R
u

n
-T

es
t/

Id
le

Se
le

ct
-D

R
-S

ca
n

C
ap

tu
re

-D
R

Shift-DR Ex
it

-D
R

U
p

d
at

e-
D

R

R
u

n
-T

es
t/

Id
le

Shift-DR Ex
it

-D
R

U
p

d
at

e-
D

R

R
u

n
-T

es
t/

Id
le

Sh
if

t
'1

'

Sh
if

t
'1

'

Sh
if

t
'1

'

Sh
if

t
'1

'

Sh
if

t
'0

'

Sh
if

t
'1

'

Extra Shift-DR Time to
Allow TDI to be
Propagated to

LOAD [2:0] Registers

When LOAD [2:0] = "101,"
TDO = UTDO =

LOAD[2], LOAD[1], and LOAD[0] = '0'

When LOAD [2:0] = "111,"
TDO = UTDO =

LOAD[2], LOAD[1],
and LOAD[0] = '1'
3

How To Use UJTAG
The TCK and TMS signals are also used to control the SM to shift in OPCODEs to the Instruction
Registers (IR) through the UJTAG shift register SHREG[7:0]. OPCODEs 16–127 are reserved for user-
defined applications. In the sample design, OPCODE 18 (decimal) or 00010010 is used to start loading
data from TDI. Figure 5 on page 4 shows the TCK/TMS/TDI signals used to shift in OPCODE 00010010
to initiate loading data into the flip-flop array. Since SHREG[7:0] = TDI & SHREG[7:1] (TDI concatenated
with SHREG[7:1]), TDI should be shifted in LSB first.

Simulation
Invoking ModelSim from the Libero IDE project will automatically execute the simulation. The simulation
result appears, as shown in Figure 6.

Synthesis and Layout
To complete the project, follow the Libero synthesis and layout design flow. For more details on the
Libero design flow, refer to the Libero IDE User’s Guide. The ADB file included with this project targets
the APA evaluation board, so specific I/O constraints are applied. Refer to "Appendix C" on page 10 for
more information. The TDO (LED[3]) signal is connected to pin 91 or DS3 on the eval board through a
jumper wire.

Figure 5 • Use TCK/TMS/TDI Signals to Shift in OPCODE

11111 1 10 0 0 1 1 0

TCK

TMS

TDI
10 0 0 1 0 0 0

UIREG[7:0]

Shift-in '00010010' to SHREG
starting from TDI LSB

SHREG[7:0] = TDI & SHREG[7:1]

R
u

n
-T

es
t/

Id
le

Se
le

ct
-D

R
-S

ca
n

Se
le

ct
-I

R
-S

ca
n

C
ap

tu
re

-I
R

Shift-IR Ex
it

-I
R

U
p

d
at

e-
IR

R
u

n
-T

es
t/

Id
le

Sh
if

t
'0

'

Sh
if

t
'0

'

Sh
if

t
'1

'

Sh
if

t
'1

'

Sh
if

t
'0

'

Sh
if

t
'0

'

Sh
if

t
'0

'

Sh
if

t
'0

'

(OPCODE)
"00010010"

Figure 6 • Simulation Result of Sample Application

/testbench/trst

/testbench/tms

/testbench/tck

/testbench/udrupt

/testbench/tdi

/testbench/top_0/\$1I5Wshreg
/testbench/top_0/\$1I76Wuuload

1
1
0
1
0
z
1
1
0
100
00011100

/testbench/\LED[2]\
/testbench/\LED[1]\
/testbench/\LED[0]\

/testbench/\LED[3]\

+
+

4

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130848

On-Board Testing
On-Board Testing
This design targets the Microsemi APA Eval Board. After completing layout, generate the STAPL
programming files to program the eval board with FlashPro Lite. FlashPro Lite can also be used to
control the TAP controller state machine of the APA device. Another STAPL file, UJTAG_Eval.stp (used
to control the TAP controller), can be found in the project, in the \how2useUJTAG\designer\impl1 folder. It
contains instructions on TCK/TMS/TDI signals that are similar to those in the simulation stimulus file. The
DRSCAN value inside the STAPL file can also be changed to achieve a different display on the LEDs.
For more details, refer to "Appendix D" on page 11.

Summary
The UJTAG macro is an extension to the external JTAG port of the ProASICPLUS and ProASIC3 device
families, controlled by the TAP controller. It can be used to shift in and shift out data/OPCODEs to and
from the internal logic, PLL, and RAM block. Using the UJTAG macro in a design enables real-time
updating and monitoring of the internal behavior of a Flash device.

Related Documents
ProASIC3 FPGA Fabric User’s Guide, "UJTAG Applications in Microsemi’s Low Power Flash Devices"
chapter

ProASIC3 FPGA Fabric User’s Guide

ProASICPLUS PLL Dynamic Reconfiguration Using JTAG

RAM Initialization and ROM Emulation in ProASICPLUS Devices
5

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130889
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129865
http://www.actel.com/documents/PA3_UG.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129860

How To Use UJTAG
Appendix A

Libero IDE Project Design Hierarchy

Design Files Directory Hierarchy

Figure 7 • Libero IDE Design Hierarchy of the Sample Application

Figure 8 • Design Files Directory Hierarchy
6

Appendix B
Appendix B

Top Level HDL Code for Sample Application
-- Version: 6.1 SP1 6.1.1.108

library ieee;
use ieee.std_logic_1164.all;
library APA;

entity TOP is

port(\LED[2]\, \LED[1]\, \LED[0]\, UDRUPD, \LED[3]\ : out
std_logic; TRST, TCK, TDI, TMS : in std_logic; SEL_ON :

 out std_logic);

end TOP;

architecture DEF_ARCH of TOP is

 component ujtag_interface
 port(UUIR : in std_logic_vector(7 downto 0); UUDRCK, UUDRCAP,
 UUDRSH, UUTDI : in std_logic; UULOAD :
 out std_logic_vector(2 downto 0); SEL_ON : out std_logic);
 end component;

 component DFF
 port(CLK, D : in std_logic; Q : out std_logic);
 end component;

 component UJTAG
 port(URSTB : out std_logic; UTDO : in std_logic; UDRCK,
 UDRCAP, UDRSH, UDRUPD, UTDI, UIREG0, UIREG1, UIREG2,
 UIREG3, UIREG4, UIREG5, UIREG6, UIREG7 : out std_logic;
 TDO, TMS, TDI, TCK, TRSTB : inout std_logic);
 end component;

 component AND3
 port(A, B, C : in std_logic; Y : out std_logic);
 end component;

 signal \$1N29\, \$1N60\, \$1N63\, \$1N66\, \$1N79\,
 \LED[0]_net_1\, \LED[1]_net_1\, \LED[2]_net_1\,
 \LED[3]_net_1\ : std_logic;
 signal LOAD : std_logic_vector(2 downto 0);
 signal \LOAD\, LOAD_net_1, \TCK\, \TDI\, \TMS\, \TRST\
 : std_logic;
 signal UIR : std_logic_vector(7 downto 0);
 signal \UIR\, UIR_net_1, UIR_net_2, UIR_net_3, UIR_net_4,
 UIR_net_5, UIR_net_6 : std_logic;

begin

 \LED[2]\ <= \LED[2]_net_1\;
 \LED[1]\ <= \LED[1]_net_1\;
 \LED[0]\ <= \LED[0]_net_1\;
 \LED[3]\ <= \LED[3]_net_1\;
 \TRST\ <= TRST;
 \TCK\ <= TCK;
 \TDI\ <= TDI;
 \TMS\ <= TMS;

 \$1I91\ : ujtag_interface
7

How To Use UJTAG
 port map(UUIR(7) => UIR_net_6, UUIR(6) => UIR(6), UUIR(5)
 => \UIR\, UUIR(4) => UIR_net_1, UUIR(3) => UIR_net_2,
 UUIR(2) => UIR_net_3, UUIR(1) => UIR_net_4, UUIR(0) =>
 UIR_net_5, UUDRCK => \$1N79\, UUDRCAP => \$1N63\, UUDRSH
 => \$1N66\, UUTDI => \$1N60\, UULOAD(2) => LOAD_net_1,
 UULOAD(1) => LOAD(1), UULOAD(0) => \LOAD\, SEL_ON =>
 SEL_ON);

 \$1I85\ : DFF
 port map(CLK => \$1N79\, D => \LOAD\, Q => \LED[0]_net_1\);

 \$1I5\ : UJTAG
 port map(URSTB => OPEN, UTDO => \$1N29\, UDRCK => \$1N79\,
 UDRCAP => \$1N63\, UDRSH => \$1N66\, UDRUPD => UDRUPD,
 UTDI => \$1N60\, UIREG0 => UIR_net_5, UIREG1 => UIR_net_4,
 UIREG2 => UIR_net_3, UIREG3 => UIR_net_2, UIREG4 =>
 UIR_net_1, UIREG5 => \UIR\, UIREG6 => UIR(6), UIREG7 =>
 UIR_net_6, TDO => \LED[3]_net_1\, TMS => \TMS\, TDI =>
 \TDI\, TCK => \TCK\, TRSTB => \TRST\);

 \$1I84\ : DFF
 port map(CLK => \$1N79\, D => LOAD(1), Q => \LED[1]_net_1\);

 \$1I6\ : AND3
 port map(A => \LED[2]_net_1\, B => \LED[1]_net_1\, C =>
 \LED[0]_net_1\, Y => \$1N29\);

 \$1I83\ : DFF
 port map(CLK => \$1N79\, D => LOAD_net_1, Q =>
 \LED[2]_net_1\);

end DEF_ARCH;

HDL Code for UJTAG_Interface
-- UJTAG_Interface.vhd
library ieee;
use ieee.std_logic_1164.all;
library apa;

entity UJTAG_Interface is
port (uuir: in std_logic_vector(7 downto 0);
 uudrck: in std_logic;
 uudrcap: in std_logic;
 uudrsh: in std_logic;
 uutdi: in std_logic;
 uuload: out std_logic_vector(2 downto 0);
 sel_on: out std_logic
);
end UJTAG_Interface;

architecture Behav of UJTAG_Interface is

component SIPO
port (Shiften : in std_logic;
 Shiftin : in std_logic;
 Aclr : in std_logic;
 Clock : in std_logic;
 Q : out std_logic_vector(2 downto 0)) ;
end component;
8

Appendix B
signal uudrsh_in: std_logic;
signal uuir_in: std_logic_vector(7 downto 0);

signal uusrsel : std_logic;
signal uuclr : std_logic;
signal uushiftin : std_logic;

begin

uuir_in <= uuir;
uudrsh_in<= uudrsh;

inst_SIPO: SIPO
port map (Shiften=>uudrsh_in,
 Shiftin=>uushiftin,
 Aclr=>uuclr,
 Clock=>uudrck,
 Q=>uuload(2 downto 0)) ;

uusrsel<= '1' when uuir_in="00010010" else '0'; -- Start loading when OPCODE=18;
sel_on <= uusrsel;

process (uudrcap) is
begin
 if (uudrcap='1' and uusrsel='1') then
 uuclr<='1';
 else
 uuclr<='0';
 end if;
end process;

process (uudrck) is
begin
 if (uudrck'event and uudrck='1') then
 if (uudrsh_in='1' and uusrsel='1') then
 uushiftin<=uutdi;
 else
 uushiftin<='0';
 end if;
 end if;
end process;

end Behav;
9

How To Use UJTAG
Appendix C

I/O Constraints
// Version: 6.1 SP1 6.1.1.108

//
// I/O constraints
//
set_io "96" "LED[0]";
set_io "94" "LED[2]";
set_io "95" "LED[1]";
set_io "90" "UDRUPD";
set_io "87" "SEL_ON";
10

Appendix D
Appendix D

STAPL Code for Sample Application
NOTE "CREATOR" "map2bitstream 5_2_0.1";
NOTE "DEVICE" "APA075";
NOTE "PACKAGE" "APA075-PQ208";
NOTE "DATE" "2005/04/22";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "01A081CF";
NOTE "DESIGN" "UJTAG";
NOTE "CHECKSUM" "1111";
NOTE "SAVE_DATA" "BITSTREAM";
NOTE "AMHOME" "D:\Tools\Libero60\Designer/am";
NOTE "SECURITY" "DISABLE";
NOTE "ALG_VERSION" "16";
NOTE "MAX_FREQ" "10000000";
NOTE "TRACKING_SAR" "34881";

ACTION LOADTDI = LOADZB;

DATA PARAMETERS;
BOOLEAN ULOP=1;
INTEGER freq = 4; ' RCK frequency 1-4 MHz
BOOLEAN USE_RCK=0;
ENDDATA;

PROCEDURE LOADZB USES PARAMETERS;

WAIT RESET, 5 CYCLES;
IRSCAN 8,$12; fl shift IR, SHREG=00010010
DRSCAN 8, #00000001;fl turn on LED[2]

WAIT 1000000 USEC;
DRSCAN 8, #00000010;fl turn on LED[1]

WAIT 1000000 USEC;
DRSCAN 8, #00000011;fl turn on LED[2],LED[1]

WAIT 1000000 USEC;
DRSCAN 8, #00000100;fl turn on LED[0]

WAIT 1000000 USEC;
DRSCAN 8, #00000101;fl turn on LED[2],LED[0]

WAIT 1000000 USEC;
DRSCAN 8, #00000110;fl turn on LED[1],LED[0]

WAIT 1000000 USEC;
DRSCAN 8, #00000111;fl turn on LED[2],LED[1],LED[0]. LED[3] is also turned on under this
condition.
ENDPROC;

CRC 0000;
11

How To Use UJTAG
List of Changes
The following table shows important changes made in this document for each revision.

Revision* Changes Page

Revision 1
(April 2015)

Non-technical Updates. N/A

Revision 0
(July 2005)

Initial Release. N/A
12

51900101-01/04.15

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world’s standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

© 2015 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	How To Use UJTAG
	Introduction
	Sample Design
	Design Implementation
	Stimulus
	Simulation
	Synthesis and Layout

	On-Board Testing
	Summary
	Related Documents
	Appendix A
	Libero IDE Project Design Hierarchy
	Design Files Directory Hierarchy

	Appendix B
	Top Level HDL Code for Sample Application
	HDL Code for UJTAG_Interface

	Appendix C
	I/O Constraints

	Appendix D
	STAPL Code for Sample Application

	List of Changes

