
Application Note AC319

May 2020 1
© 2020 Microsemi, a Microchip company

Using EDAC RAM for RadTolerant RTAX-S/SL and
Axcelerator® FPGAs
Applies to EDAC Core from Libero IDE v7.2 and Newer

Table of Contents

Introduction
The newest Actel designed-for-space field programmable gate array (FPGA) family, RTAX-S/SL, is a
high-performance, high-density, antifuse-based FPGA with embedded user static RAM (SRAM). Based
on the new Actel AX architecture, the RTAX-S/SL family is the high-reliability version of its commercial
counterpart—the Axcelerator FPGA family. RTAX-S/SL is single event upset (SEU)–enhanced,
specifically designed for space, and contains embedded triple modular redundancy (TMR) registers,
transparent to the user, which provide protection against heavy ions. In space applications, storage
elements like SRAMs are susceptible to the impact of heavy ions from cosmic galactic rays (CGRs).
CGRs can collide with the silicon lattice of a RAM cell with sufficient photovoltaic energy to produce a
change of state, thus invalidating the stored data and producing bit errors. These errors are called soft
errors.

Introduction . 1
Coding Theory Background . 2
EDAC . 2
Regular Hamming Codes and Shortened Hamming Codes . 3
User Word, EDAC RAM Word, and RTAX-S/SL or Axcelerator RAM Word 3
Implementation of Shortened Hamming Encoding and Decoding . 4
Functional Overview of EDAC RAM . 6
Features of EDAC RAM from SmartGen . 7
Scrubbing Control Block . 8
Scrubbing with EDAC RAM Using Independent Read and Write Clocks 8
Refresh Rate . 9
Test Ports . 9
Error Flags . 9
EDAC RAM Generation Using SmartGen . 10
Limitations of the SmartGen GUI . 11
Detecting Simultaneous User Reads and Writes . 11
Core Utilization of EDAC RAM . 12
Modifying the EDAC RAM Generated in SmartGen . 14
Simulating EDAC Using Libero IDE v7.2 and v7.3 . 14
Simulating EDAC Using Libero IDE v8.0 . 16
Timing Waveforms . 17
Radiation Performance Calculations for RTAX-S/SL/DSP FPGAs 18
Conclusion . 20
List of Changes . 20
Appendix A . 21
Appendix B . 23
References . 23

2

There are several ways to implement static RAM in space devices. One option is to do nothing to mitigate
soft errors. This is acceptable if the quality of the data stored in the SRAM is insensitive to single-bit
changes, such as an image comprising millions of pixels or a streaming video feed. However, it is not
acceptable if data is sensitive to single-bit changes, such as communication packet headers. Another
option is to implement a special hardened SRAM circuit. This consumes more chip real estate and may
require custom or boutique processing, and therefore is an expensive proposition.
Actel has chosen to use a combination of the Axcelerator standard SRAM circuits and an error detection
and correction (EDAC) intellectual property (IP) core. The core is accessed via the Actel SmartGen
Macro Builder software and implements a class of linear block codes called shortened Hamming codes
(see the "Regular Hamming Codes and Shortened Hamming Codes" section on page 3). The
SRAM/EDAC core combination greatly mitigates the effects of soft errors. Error rates are better than 10–
10 errors/bit-day.

Coding Theory Background
In recent years, there has been an increasing demand for efficient, reliable digital data transmission and
storage systems. A major concern is the control of errors so as to obtain reliable data reproduction.
Coding refers to a class of signal transformations designed to improve communications or data reliability.
The object of channel encoding is to reduce the probability of bit errors. Linear sums (using modulo-2
arithmetic) of the parity bits are called parity-check codes. Parity-check codes are widely used for EDAC.
Linear block codes are a class of parity-check codes that are usually represented with an (n,k) notation,
where k denotes the number of message digits in a longer code word of n digits. Each unique message
of k digits maps to a unique code word of n digits. The entire potential message space consists of 2k

distinct message sequences, with each sequence forming what is referred to as a k-tuple (sequence of k
digits or bits). Similarly, the entire code word space has 2n code words or n-tuples. The mapping between
the 2k possible messages and the 2k code word n-tuples can be implemented with a lookup table.
An important parameter of a block code is called the minimum distance. Minimum distance determines
the random-error-detecting and random-error-correcting capabilities of a code. The greater the distance,
the less likely an error will be made in the decoding process, as no two valid codes can exist within dmin
bits of each other.
When a single-bit error is added to a code word, the resultant code word differs from the original in one
position. If the minimum distance of a block code C is dmin, any two distinct code vectors of C differ in at
least dmin places. For example, if u = (1010010) and v = (1110011), the minimum distance is two, since
the second and last bits differ. For this example code C, no error pattern of dmin – 1 or fewer errors can
change one code vector into another.1

EDAC
As mentioned earlier, heavy ions lead to soft errors in memory subsystems. In many computer systems,
the memory contents are protected effectively by EDAC codes. These codes are usually implemented by
employing redundant bits.
An error-correcting coding technique specifies how to add redundant bits to data to allow error detection
and correction if one (or possibly more) of the resulting bits are changed. Linear block codes are so
named because each code word or vector is a linear combination of a set of generator code words that
are segmented into a message of separate blocks of a finite length. One class of linear block codes is
SEC/DED (single-error-correcting/double-error-detecting). One application of EDAC calls for the use of
SEC/DED codes in memory and storage applications where data may become corrupted. The following
section discusses the widely used Hamming codes and methods of implementing them.

1. Lin and Costello, Error Control Coding.

Regular Hamming Codes and Shortened Hamming Codes

3

Regular Hamming Codes and Shortened Hamming Codes
Hamming codes are the first class of linear block systematic codes devised for error correction; these
codes and their variations are widely used for error correction. For any positive integer m > 3, there
exists a Hamming code with the following parameters:

Code length: n = 2m – 1
Number of data bits: k = 2m – m – 1
Number of parity-check symbols: n – k = m
Error correction capability: one error (dmin = 3)

The first several members of the class are (7,4), (15,11), (31,26), (63,57), and (127,120). The parity-
check matrix can be used to generate parity-check bits during the process of encoding and to generate
bits indicating the presence and location of errors—"syndrome bits"—during the decoding process. The
total number of ones in a given row is related to the number of logic levels required to generate the parity-
check or syndrome bits for the row. Hsiao developed a new class of SEC/DED codes obtained by
shortening the Hamming codes. He showed that by deleting columns from H, a new matrix H0 could be
developed such that the code length could be reduced by L bits, where L is the number of deleted
columns, thus reducing the number of logic levels and minimizing the complexity of the hardware
implementation. A modified coding scheme was developed from the regular Hamming codes, called
shortened Hamming codes.2
Shortened Hamming codes can have arbitrary code lengths.

Code length: n = 2m – L – 1
Number of information symbols: k = 2m – m – 1 – L
Number of parity-check symbols: n – k = m
Minimum distance: dmin = 4

This code has a minimum distance of four and can correct one error and detect two errors.

User Word, EDAC RAM Word, and RTAX-S/SL or Axcelerator
RAM Word

The RTAX-S/SL and Axcelerator FPGA families contain 36 (RTAX1000S/SL, RTAX4000S, and AX1000)
or 64 (RTAX2000S/SL, AX2000) blocks of embedded memory. Each block is a 4.5 k variable-aspect-
ratio, dual-port RAM. The allowable variable aspect ratios are 128×36, 256×18, 512×9, 1k×4, 2k×2, and
4k×1. However, only the memory blocks in one column can be cascaded in both width and depth to build
larger blocks. This allows a maximum of 16 blocks in the AX2000 to be cascaded in both width and depth
to build larger blocks.
For EDAC RAM, Actel used the shortened Hamming code, which fully utilizes the data width of RTAX-
S/SL or Axcelerator RAM.
Actel chose shortened Hamming codes (18,12), (36,29), and (54,47) for RTAX-S/SL RAMs with data
widths of 18, 36, and 54 bits, respectively. The relationship between different data port widths is shown in
Table 1.

As a result, if a user requests a 16-bit EDAC-protected RAM, the backend Axcelerator RAM has a word
length of 36. Although SmartGen generates EDAC modules assuming input data word widths of 8, 16, or
32 bits, the designer can use up to 12, 29, or 47 bits of input data for the EDAC module. See the

2. Hsiao, "Optimal Minimum Odd-Weight-Column SEC-DED Codes."

Table 1 • Relationship of Different Data Port Widths

Data Port Width

User wdata/rdata width 8 16 32

EDAC module wdata/rdata width 12 29 47

Axcelerator RAM wdata/rdata width 18 36 54

4

"Modifying the EDAC RAM Generated in SmartGen" section on page 14 for more information. Refer to
"Appendix B" on page 23 for more information on shortened Hamming codes.

Implementation of Shortened Hamming Encoding and Decoding
To implement shortened Hamming codes, you need an encoder that converts the input data to coded
words. The encoding can be done by matrix multiplication of the input word by a generator matrix. The
encoding process is essentially the same as the original Hamming code.
The following is an example given in systematic form of matrix multiplication for an (n,k) code.
Specifically, this example addresses a (7,4) code. Let u = (u0, u1, u2, u3) be the message to be encoded,
and let v = (v0, v1, v2, v3, v4, v5, v6) be the corresponding code word. Then

By matrix multiplication, the digits of the code word v were obtained:

The code word corresponding to the message (1 0 1 1) is (1 0 0 1 0 1 1).
The following example shows the generator matrix for shortened Hamming code (18,12):3

Therefore, if the input data is '100000000000', the coded word is '111000100000000000'. Note that there
are six extra bits in the coded word—these are the syndrome bits, which indicate the presence and
location of errors.
During decoding, the coded bits enter the decoding circuit; the syndrome bits are computed using a
parity-check matrix. The single-bit error correction is accomplished with a lookup table (Table 2). For
example, if the six syndrome bits are '000000', the coded bits are correct. If the syndrome bits are
'100000', an error exists in the first bit of the coded word. For any possible sequence of syndrome bits,
Table 2 indicates which bits need to be corrected. Double-error detection is accomplished by examining

v6 = u3
v5 = u2
v4 = u1
v3 = u0
v2 = u1 + u2 + u3
v1 = u0 + u1 + u2
v0 = u0 + u2 + u3

3. Hsiao, "Optimal Minimum Odd-Weight-Column SEC-DED Codes."

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

v = (v0, v1, v2, v3, v4, v5, v6) = (u0, u1, u2, u3) ×

1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Implementation of Shortened Hamming Encoding and Decoding

5

the number of ones in the syndrome vector. If the syndrome contains an even number of ones, then
either a double-error pattern or a multiple-even-error pattern has occurred.

Syndrome (1 × n – k) = coded word (1 × n) × parity check matrix (n – k × n)T, where T denotes the
transpose of the matrix.
This parity-check matrix was derived from the method by Hsiao and was generated to result in the
smallest circuit implementation. The parity-check matrix for the same shortened Hamming code (18,12)
is as follows:

In summary, during decoding, perform the following:
Syndrome (1 × n – k) = coded word (1 × n) × parity check matrix (n – k × n)T

Decoded word (1 × n) = lookup table (syndrome) + coded word
The following sections discuss how to generate EDAC RAM for prototyping the RTAX-S/SL FPGA family
with the RTAX-S/SL or Axcelerator families, employing Actel software. The next sections also describe
how you can instantiate these components in the code. Since the EDAC RAM uses the shortened
Hamming code described above, the hardware performs single-bit error correction and double-bit error
detection.

Table 2 • Syndrome Bits and Lookup Table
Syndrome Bits Lookup Table
0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1
0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1

6

Functional Overview of EDAC RAM
The EDAC RAM provides an interface compatible with the RTAX-S/SL or Axcelerator RAM transparent
access mode. In addition to encoding and decoding, it reads the contents of memory periodically and
resolves all correctable errors where possible. This periodic operation is called scrubbing. The EDAC
RAM block, shown in Figure 1, consists of an RTAX-S/SL or Axcelerator RAM block and an EDAC block.
The EDAC block, which is the heart of the EDAC RAM, contains a shortened Hamming code encoder, a
shortened Hamming code decoder, a background scrubbing control unit, two sets of multiplexers, and a
timer. The background scrubbing control block controls the multiplexers that provide access to the user
memory and the background scrubbing process.

Figure 1 • Functional Diagram of EDAC RAM

Encoder

Decoder

wdata

rdata

waddr, raddr, we,re

wdata

rdata

waddr, raddr
we,re Timer

A

slowdown flag

B
Scrubbing

Control

R

error flags

Testing, error and
optional ports

Axcelerator
RAM
Block

edaci/edacii Block

Features of EDAC RAM from SmartGen

7

During a user write, the write data is encoded by the encoder and then fed into the RTAX-S/SL RAM
block. The write address and enable (waddr and we) are fed into the RAM block through the B set of
multiplexers, as shown in Figure 1 on page 6. During a user read, the read address and enable (raddr
and re) are fed into the RAM block through MUX B, then a coded word is read into the decoder and
reconstructed into its original word. In addition, during this process, the decoder corrects any error
detected in the coded word. During a user read/write, the scrubbing control block halts the background
scrubbing process until there is no user read/write access. The background scrubbing process only runs
when the read and write enable signals for memory (we and re) are inactive. The user read/write always
takes priority over background scrubbing.
The user RAM interface to the EDAC RAM is identical to RTAX-S/SL and Axcelerator RAM access, but
access time is increased due to the additional encoding, decoding, and scrubbing processes.
You can generate an EDAC RAM using the SmartGen tool. When you generate an EDAC RAM from
SmartGen, the tool generates a top-level wrapper for RAM encoding, an RTAX-S/SL or Axcelerator RAM
block, and an EDAC module. Figure 2 shows the EDAC module and RAM block inside the EDAC
wrapper. SmartGen allows you to generate two clock mode types for the EDAC RAM: single clock mode
and independent read and write clock mode. For single clock mode, the same clock will be used for read
and write, and the user will see one clock port called CLK. For independent read and write clock mode,
the user will see RCLK and WCLK ports. Refer to Appendix ”Appendix A” on page 21 for the EDAC RAM
port definitions.

Features of EDAC RAM from SmartGen
The SmartGen core generator can generate an EDAC module with various configurations. The main
features of the EDAC module are as follows:

• 8-, 16-, and 32-bit word widths
• Background refreshing with variable refresh rate
• Read and write clocks from the same clock source, or separate read and write clocks
• Encoder/decoder support for correction of one error and detection of two errors
• Variable RAM depth support from 256 to 4 k words

Figure 2 • EDAC Module in EDAC RAM

WCLK, RCLK

AXWE

AXRE

AXRDATA

AXRADDR

AXWADDR

AXWDATA

Axcelerator
RAM

edacrami

AXWE

AXRE

AXWADDR

AXRADDR

AXRDATA

AXWDATA

RSTN

CLK

WE

RE

WADDR

RADDR

WDATA

RDATA

Optional Ports

Test Ports

Error Ports

CLK
RSTN

CLK

WE

RE

WADDR

RADDR

WDATA

RDATA

Optional Ports

Test Ports

Error Ports

SmartGen Generated Wrapper

edaci

8

Scrubbing Control Block
The scrubbing control block handles access to the memory background scrubbing process. During
scrubbing, the background scrubbing control generates control signals for two sets of multiplexers (A and
B in Figure 1 on page 6). These control signals switch the generation of the read/write data, read/write
addresses, and read/write enables of the RTAX-S/SL or Axcelerator RAM to the background scrubbing
control unit. A read address counter inside the background scrubbing control unit generates addresses,
which sweep through all RAM locations. Meanwhile, the control unit monitors the decoder's error flag to
determine whether or not to write the corrected data back into the RTAX-S/SL or Axcelerator RAM.
When STOP_SCRUB is set HIGH, the scrubbing stops. Note that for independent read and write clock
mode, when STOP_SCRUB is turned off and the scrubber restarts, the scrubber picks up from the
address where it was stopped. However, for single clock mode, the scrubber starts from address zero
when it restarts. The output signal SCRUB_DONE indicates that the scrubbing logic has gone through all
RAM addresses. You can monitor the SCRUB_DONE signal and turn the STOP_SCRUB signal on or off
accordingly. The scrub logic also sets the SCRUB_CORRECTED flag HIGH when the scrubbing logic
has corrected a data error; the output bus CADDR indicates the address of the corrected error. Table 3
describes the scrubbing signals. Timing diagrams of scrubber and read/write activity are shown in
Figure 4 on page 17 through Figure 9 on page 18.
You need to be careful about RAM access when scrubbing is on. "Scrubbing with EDAC RAM Using
Independent Read and Write Clocks" goes over the recommended usage. You should not perform reads
from or writes to the RAM while the scrubber is active in either single or independent read and write clock
mode.

Scrubbing with EDAC RAM Using Independent Read and
Write Clocks

The independent read and write clock EDAC RAM has some additional restrictions beyond those for the
single-clocked core.

• Scrubbing must be stopped before user accesses can take place (i.e., no background scrubbing
is allowed).

• After STOP_SCRUB is asserted, you must wait for two WCLK and two RCLK clock edges before
asserting WE or RE.

• When STOP_SCRUB is asserted (assuming BYPASS stays inactive), the current scrub address
is not reset. When STOP_SCRUB is deasserted, scrubbing will continue at the next address,
allowing the entire memory to be scrubbed. On the single-clock version of the core, whenever
STOP_SCRUB is asserted, the scrub address is reset to zero.

• If BYPASS is asserted when STOP_SCRUB is asserted, the scrub address will be reset. To have
access to the BYPASS input, the Test Ports option must be set within SmartGen; otherwise,
BYPASS is permanently inactive.

Table 3 • Scrubbing Signals

Signal Description

STOP_SCRUB LOW to turn on scrubbing; HIGH to turn off scrubbing

SCRUB_DONE Transition from LOW to HIGH means scrubbing is done.

SLOWDOWN HIGH indicates scrubbing logic has corrected one error; sample with the write clock.

SCRUB_CORRECTE
D

HIGH indicates scrubbing logic has corrected one error.

CADDR The address being corrected; sample with write clock.

TMOUTFLG HIGH indicates timer is timed out.

Refresh Rate

9

Refresh Rate
You can control the scrubbing rate to help reduce power consumption. The maximum allowable
refresh period is given by

Refresh period = clock period × tmout
where tmout is the refresh timer's timeout value (set in the SmartGen GUI; see the "EDAC RAM
Generation Using SmartGen" section on page 10).
When the read address counter returns to zero (the condition for asserting the STOP_SCRUB
signal), the scrubbing process will stop until it receives a timeout from the EDAC timer. This
implementation helps the background scrubbing process save power because needless refresh
cycles are eliminated. When a timer timeout is indicated (TMOUTFLG is asserted HIGH; see
Table 4) and the read address counter has NOT returned to zero, the SLOWDOWN flag is
asserted (Table 4). This warns the system to slow down memory accesses or risk losing data. If
the system can guarantee idle time to memory access, the SLOWDOWN flag can be ignored
(this is the exception rather than the rule; monitoring SLOWDOWN is necessary in most
systems). Note that if STOP_SCRUB is asserted when SLOWDOWN has already been
asserted, SLOWDOWN will remain asserted until STOP_SCRUB is deasserted. The tmout
setting should be larger than the RAM depth to ensure that a complete refresh cycle can be
completed within the refresh period. See Figure 8 on page 18 and Figure 9 on page 18 for
timing diagrams of the SLOWDOWN and TMOUTFLG flags.

Test Ports
The EDAC RAM is capable of reading the coded data directly from the RTAX-S/SL or
Axcelerator memory, which is useful during debugging. If the input signal BYPASS is set to 1,
the user has direct access to the RTAX-S/SL or Axcelerator RAM block. During this time, the
scrubbing process is stopped. To access the full coded word, port WP is used to write to the
coded parity bits directly, and port RP is used to read the coded parity bits directly. The widths of
WP and RP are given in Table 5 for various data widths.

Error Flags
The EDAC RAM has two error flags, CORRECTABLE and ERROR, which allow you to monitor
error correction and detection (Table 6 and Figure 4 on page 17 through Figure 7 on page
17).

Table 4 • TMOUTFLG Signal and SLOWDOWN Signal

Signal Type Active Size Description

SLOWDOWN Out HIGH 1 Optional flag when scrubbing cannot finish within designated period

TMOUTFLG Out HIGH 1 HIGH indicates timer has expired.

Table 5 • Relationship of User Ports and Test Ports

Data Signals Width

User WDATA/RDATA 8 16 32

EDAC module WDATA/RDATA 18 36 54

EDAC module WP/RP 6 7 7

Table 6 • Error Flags

CORRECTABLE ERROR Description

0 0 No error has occurred.

1 0 One bit error occurred.

0 1 Two or more bit errors detected.

10

EDAC RAM Generation Using SmartGen
The SmartGen tool enables you to generate the EDAC RAM. You can generate an EDAC RAM with
either a single read/write clock or independent read and write clocks. Figure 3 shows the SmartGen GUI
for EDAC RAM generation, and Table 7 lists the user-definable fields. The Test Ports and Error Flags
check boxes allow you to generate additional ports. You cannot generate a Test Port without selecting
Error Flags. Use the generated netlist in the design to go through the complete design flow.

Figure 3 • SmartGen GUI for EDAC Module

Table 7 • User-Definable Fields for the EDAC RAM Module
Selection Description
Clocks Single Read/Write Clocks

Independent Read/Write Clocks (The default value is "Single Read/Write" clocks)
Width RAM word width 8, 16, or 32; the default is 8.
Depth Data word depth 256×N, where

• N is from 1 to 16 when Width is 8
• N is from 1 to 8 when Width is 16
• N is from 1 to 5 when Width is 32; the default value of N is 1 (Depth = 256)

Test Ports Enables or disables Test Ports; requires Error Flags.
Error Flags Yes or No; default is No. If Test Ports is selected (Yes), Error Flags will be selected

automatically. Error Flags cannot be selected as long as Test Ports is selected.
Refresh Period Refresh Period is equal to the refresh rate multiplied by the clock period. Refresh rate is a

hexadecimal number between 0 and 3FFFFFFFFFF. The data entry box for the value is limited
to 11 characters. There is no default value for refresh rate.

Limitations of the SmartGen GUI

11

Limitations of the SmartGen GUI
The SmartGen GUI has the following limitations:

• Supports only predefined width and depth values
• Does not support pipelined read for RTAX-S/SL or Axcelerator RAM
• Read and write enables must always be present
• The No-Enable case is not supported

To change the input word width or add more Test Ports, you need to modify the SmartGen HDL file as
shown in the "Adding More User Ports" section on page 14.

Detecting Simultaneous User Reads and Writes
The RTAX-S/SL and Axcelerator RAM does not support simultaneous read and write accesses to the
same address. If this should occur, the write will take place correctly, but the read data may contain one
of the following:

1. The old data
2. The new data
3. A mixture of old and new data

Cases (1) and (2) do not create any issues; however, in case (3), the data value contains a mixture of the
old and new data and will result in erroneous data that the EDAC will fail to correct. You should ensure,
through the system design, that simultaneous user reads and writes to the same address do not occur
and do not access the EDAC RAM while the scrubber is on. You can include the following RTL code in
your design to detect this condition.

Single Clock Example
-- synthesis translate_off
process(rstn,clk)
begin
if rstn = '0' then
samerw <= '0';

elsif clk'event and clk = CLKP then
samerw <= '0';
if re = '1' and we = '1' and raddr = waddr then
samerw <= '1';
assert FALSE
report "EDAC Detected Simultanous User Read and Write Cycle.
See EDAC Application Note."

severity WARNING;
end if;

end if;
end process;
--synthesis translate_on

12

Independent Clock Example
--synthesis translate_off
process(rstn,wclk)
begin
if rstn = '0' then
samerw_w <= '0';

elsif wclk'event and wclk = CLKP then
samerw_w <= '0';
if re = '1' and we = '1' and raddr = waddr then
samerw_w <= '1';
assert FALSE
report "EDAC Detected Simultaneous User Read and Write Cycle.
See EDAC Application Note."

severity WARNING;
end if;

end if;
end process;

process(rstn,rclk)
begin
if rstn = '0' then
samerw_r <= '0';

elsif rclk'event and rclk = CLKP then
samerw_r <= '0';
if re = '1' and we = '1' and raddr = waddr then
samerw_r <= '1';
assert FALSE
report "EDAC Detected Simultaneous User Read and Write Cycle.
See EDAC Application Note."

severity WARNING;
end if;

end if;
end process;

samerw <= samerw_r or samerw_w;
--synthesis translate_on

This code can be used either for simulation only or to create a flag detecting the condition. For
use just in simulation, the "synthesis translate_off" and "synthesis translate_on" directives
prevent synthesis. The code will generate a simulation warning message should simultaneous
accesses occur. Alternatively, the code can be included in your design and the samerw signal
used to indicate a potential system failure. It is not recommended that the independent clock
logic example be synthesized, since the comparison logic is not protected from metastable
conditions.

Core Utilization of EDAC RAM
You can generate the EDAC RAM from SmartGen and instantiate it in your code. However, you
should be cautious about the core utilization and ensure that it has enough space to fit the
EDAC RAM. Table 8 describes the utilization for three configurations of the EDAC RAM. Note
that the utilization table was generated using Actel Libero® Integrated Design Environment
(IDE) v7.2.

Core Utilization of EDAC RAM

13

Table 8 • EDAC Core Utilization

EDAC RAM Block Data Depth Utilization

Same read and write clock 8 4,096 Sequential (R-cells):
Combinatorial (C-
cells):
RAM/FIFO blocks:
I/O with clocks:

81
308
16
76

16 2,048 Sequential (R-cells):
Combinatorial (C-
cells):
RAM/FIFO blocks:
I/O with clocks:

99
397
16
91

32 1,280 Sequential (R-cells):
Combinatorial (C-
cells):
RAM/FIFO blocks:
I/O with clocks:

117
528
15
123

Independent read and write clocks 8 4,096 Sequential (R-cells):
Combinatorial (C-
cells):
RAM/FIFO blocks:
I/O with clocks:

103
290
16
77

16 2,048 Sequential (R-cells):
Combinatorial (C-
cells):
RAM/FIFO blocks:
I/O with clocks:

124
386
16
92

32 1,280 Sequential (R-cells):
Combinatorial (C-
cells):
RAM/FIFO blocks:
I/O with clocks:

146
510
15
124

14

Modifying the EDAC RAM Generated in SmartGen
You can modify the VHDL/Verilog EDAC RAM netlist generated from SmartGen to add ports for more
data inputs or debugging. The following examples contain code showing how to modify the VHDL netlist.
Use a similar procedure to modify the Verilog netlist.

Adding More User Ports
SmartGen allows you to generate a word width of 8, 16, or 32 bits. However, you can use up to 12, 29, or
47 bits of input data by modifying the netlist. Open the top-level netlist and modify the port width and
component port map as follows:
……………………….
entity edacrami_top is
port(WDATA : in std_logic_vector(11 downto 0); --modified

--WDATA : in std_logic_vector(7 downto 0); --modified
……………………….
uedaci : edaci
port map(
……………………

wdata(11 downto 0)=>WDATA (11 downto 0),
-- wdata(8)=>gnd_1_net, --modified
-- wdata(9)=>gnd_1_net, --modified
-- wdata(10)=>gnd_1_net, --modified
-- wdata(11)=>gnd_1_net, --modified

Adding Optional Ports
SmartGen ties some EDAC ports to GND at the top level. However, you can open the top-level netlist
and use these ports. For example, to bring out the RDS and TMOUT ports, you must modify the top-level
file as shown in the following code:
……………………….
entity edacrami_top is
port(……………………….

TMOUT : in std_logic_vector (41 downto 0); --added
RDS : in std_logic_vector (3 downto 0); --added

……………………….
uedaci : edaci
port map(
…………………………

tmout(41 downto 0) => TMOUT (41 downto 0),
-- tmout(0)=>gnd_1_net,
-- tmout(1)=>gnd_1_net,
.
.
.
tmout(41)=>gnd_1_net,
.
.
rds (3 downto 0) => RDS (3 downto 0),
-- rds(0)=>gnd_1_net,
-- rds(1)=>gnd_1_net,
-- rds(2)=>gnd_1_net,
-- rds(3)=>vcc_1_net,

…………………………..

Simulating EDAC Using Libero IDE v7.2 and v7.3
To simulate the single-clock EDAC RAM macros targeted for the RTAX-S/SL or Axcelerator device
family, follow the steps below:

1. Invoke Libero IDE.

Simulating EDAC Using Libero IDE v7.2 and v7.3

15

2. Create a new project with following settings:
HDL type = VHDL, Family = Axcelerator, Die = RTAX1000S/SL, Package = 352 CQFP

3. Once the project is created, invoke SmartGen in the Libero IDE Design Flow window.
4. Invoke EDAC RAM from Core Varieties in the Axcelerator Family window and enter the following:

– Single read/write clock
– Depth: 256
– Width: 8 bits
– Refresh period: 3FFFFFFFFFF cycles
– Select the Test Ports and Error Flags check boxes

5. Generate the EDAC RAM with core name "edac_256_8". The following files are generated:
– edac_256_8_top.vhd: EDAC wrapper
– edac_256_8.vhd: RAM block
– edaci_18.vhd: EDAC core

6. Import the package edacconfig.vhd as a stimulus file and modify as follows:
package edacconfig is
constant ML : integer := 8;-- user data length
constant CL : integer := 14;-- coded word length
constant SL : integer := CL-ML;-- ecc syndrome length
constant AL : integer := 8;-- address bus width
constant TL : integer := 42;-- timer length
constant CLKP : std_logic := '1';-- clock polarity
constant CLKPN : std_logic := '0';-- clock polarity NOT CLKP
end edacconfig;

7. Import the testbench edactb.vhd as a stimulus file and modify as follows:
……………………….
entity testbench is --modified edactb
end testbench; --modified edactb
architecture edactb_behav of testbench is

component edac_256_8_top --modified edacrami
……………………….
begin
--modified --tmout : in std_logic_vector(TL-1 downto 0); -- TL=42 : 2^42*2*10^-8
--/24/3600 = 1 day, period = tout*period of
--modified --rds : in std_logic_vector(3 downto 0); -- RAM depth selection,
--total RAM words=(rds+1)*256
……………………….

end component;

……………………….

uedacrami : edac_256_8_top -modified edacrami
port map(
-- tmout => drvsig.tmout, --modified
-- rds => drvsig.rds, --modified
……………………….

8. Open Option > Project Settings Simulation and change the following:
Top-level instance name in the testbench: uedacrami
Simulation run time: 2 ms

9. Right-click the top level and create Post-Synthesis Simulation.
10. When prompted to organize the stimulus file, add both edacconfig.vhd and edactb.vhd to

associated files.
Libero IDE will launch ModelSim® and run simulation for 2 ms.

16

Simulating EDAC Using Libero IDE v8.0
To simulate the single-clock EDAC RAM macros targeted for the RTAX-S/SL or Axcelerator device
family, follow the steps below:

1. Invoke Libero IDE.
2. Create a new project with following settings:

HDL type = VHDL, Family = Axcelerator, Die = RTAX1000S/SL, Package = 352 CQFP
3. Once the project is created, expand the SmartGen Cores List in the Catalog window
4. Invoke EDAC RAM and enter the following:

– Single read/write clock
– Depth: 256
– Width: 8 bits
– Refresh period: 3FFFFFFFFFF cycles
– Select the Test Ports and Error Flags check boxes

5. Generate the EDAC RAM with core name "edac_256_8". Select Show Modules under Design
Explorer to see the following files that are generated:
– edac_256_8.vhd: EDAC wrapper
– edac_256_8_RAM.vhd: RAM block
– edaci_18.vhd: EDAC core

6. Import the package edacconfig.vhd as a stimulus file and modify as follows:
package edacconfig is
constant ML : integer := 8;-- user data length
constant CL : integer := 14;-- coded word length
constant SL : integer := CL-ML;-- ecc syndrome length
constant AL : integer := 8;-- address bus width
constant TL : integer := 42;-- timer length
constant CLKP : std_logic := '1';-- clock polarity
constant CLKPN : std_logic := '0';-- clock polarity NOT CLKP
end edacconfig;

7. Import the testbench file edactb.vhd as a stimulus file and modify as follows.
……………………….
entity testbench is --modified edactb
end testbench; --modified edactb
architecture edactb_behav of testbench is
component edac_256_8 --modified edacrami
……………………….
begin
--modified --tmout : in std_logic_vector(TL-1 downto 0); -- TL=42 : 2^42*2*10^-8
--/24/3600 = 1 day, period = tout*period of
--modified --rds : in std_logic_vector(3 downto 0); -- RAM depth selection,
--total RAM words=(rds+1)*256
……………………….
end component;
……………………….
uedacrami : edac_256_8 -modified edacrami
port map(
-- tmout => drvsig.tmout, --modified
-- rds => drvsig.rds, --modified
……………………….

8. Open Project > Project Settings Simulation and change the following:
Top-level instance name in the testbench: uedacrami
Simulation run time: 2 ms

9. Right-click the top level and create Pre-Synthesis Simulation.

Timing Waveforms

17

10. When prompted to organize stimulus file, add both edacconfig.vhd and edactb.vhd to associated
files.
Libero IDE will launch ModelSim and run simulation for 2 ms.

Note that the file name for the EDAC wrapper generated by SmartGen has been changed in Libero IDE
v8.0. If you regenerated the EDAC macro in Libero IDE v8.0 for an existing design, make the necessary
changes to match the file name.

Timing Waveforms
Figure 4 through Figure 9 on page 18 show various EDAC activities.

Figure 4 • Normal Read Cycle

Figure 5 • Normal Write Cycle

Figure 6 • Read Cycle with Correctable Error

Figure 7 • Read Cycle with Uncorrectable Error

 CLK

RE

RADDR[9:0]

RDATA[9:0]

CORRECTABLE

ERROR

 CLK

WE

WADDR[9:0]

WDATA[9:0]

 CLK

RE

RADDR[9:0]

RDATA[9:0]

CORRECTABLE

ERROR

CLK
RE

RADDR[9:0]
RDATA[9:0]

CORRECTABLE
ERROR

18

Figure 8 shows a scrub cycle that completes within the timeout period. When scrub activity completes at
2.2 µs, the EDAC core asserts SCRUB_DONE and then waits for the internal timer to timeout at 3.3 µs.
At this point, TMOUTFLG is asserted and the scrub cycle is repeated.

Figure 9 shows a scrub cycle that fails to complete within the timeout period, as not enough spare
memory cycles are available to scrub all RAM locations. In this case, when the timeout occurs at 3.3 µs,
the EDAC core asserts SLOWDOWN and continues scrubbing until the top of memory is reached, at
which point it asserts SCRUB_DONE and the TMOUTFLG, indicating that the scrub cycle is complete. In
this case, if possible, the user access rate to the memory should be decreased to allow the scrubbing to
complete within the desired time.

Figure 9 shows STOP_SCRUB being asserted for two RCLK and WCLK clock edges before RE is
asserted. At 60 ns, STOP_SCRUB is asserted; the two RCLK edges occur at 90 and 135 ns, but the
read access must wait for the two WCLK edges to occur, at 100 and 200 ns. This means that RE must be
asserted after 200 ns in this case. The external read enable RE is now valid on the RCLK edge occurring
at 225 ns, with valid output data being provided just after the clock edge.

Radiation Performance Calculations for RTAX-S/SL/DSP
FPGAs

For an EDAC-protected SRAM word of N bits (data and syndrome bits) with scrubbing (or refreshing)
period of X days, the upset rate can be estimated as follows:

Probability of upset (P) = 1-exp(-); if << 1, P

Where , is the rate of upset/bit-day of non-mitigated SRAM

EQ 1

Upset per bit in X days •X

EQ 2

Figure 8 • Scrub Cycle that Completes within Timeout Period

500 ns 1.0 us 1.5 us 2.0 us 2.5 us 3.0 us 3.5 us 4.0 us

CLK

STOP_SCRUB

SCRUB_DONE

SLOWDOWN

TMOUTFLG

Scrub_Activity

Figure 9 • STOP_SCRUB Assertion Prior to Memory Access (independent clocked EDAC)

 0 ns 50 ns 100 ns 150 ns 200 ns 250 ns 300 ns 350 ns

WCLK

STOP_SCRUB

RCLK

RE

RADDR[9:0]

RDATA[9:0]

CORRECTABLE

ERROR

Radiation Performance Calculations for RTAX-S/SL/DSP FPGAs

19

Probability (rate) of two bits in an N-bit word upset in X days [N (N-1)/2]•(•X)2

EQ 3

Example of Upset Rate Calculation
Assuming the following radiation environment conditions:

Scenario 1 (Geostationary Orbit (GEOMIN)):
• Altitude:22,236 miles/ 35,786 km
• Inclination: 0 degrees

The calculated rate of upset of non-mitigated SRAM for this scenario based on the above conditions is
Rate () = 2.41E-7 upset/bit-day

Scenario 2 (Typical Low Earth Orbit):
• Altitude:500 miles/ 800 km
• Inclination: 85 degrees

The calculated rate of upset of non-mitigated SRAM for this scenario based on the above conditions is
Rate () = 7.12E-8 upset/bit-day

Scenario 3:
• Orbit: 150 nmi circular at 57 degrees inclination
• Shielding: Spherical shield with total of 160 mils of aluminum
• Minimum solar and quiet geomagnetic conditions
• Daily average trapped proton flux

The calculated rate of upset of non-mitigated SRAM for this scenario based on the above conditions is
Rate () = 2.61E-8 upset/bit-day

Scenario 4:
• Orbit: 150 nmi circular at 57 degrees inclination
• Shielding: Spherical shield with total of 160 mils of aluminum
• Maximum solar and stormy geomagnetic conditions
• Worst day trapped proton flux

The calculated rate of upset of non-mitigated SRAM for this scenario based on the above conditions is
Rate () = 3.67E-6 upset/bit-day

EDAC Mitigated SRAM
Given the rate of upset/bit-day (of non-mitigated SRAM, EQ3 above can be used to calculate the
upset rate for EDAC mitigated RAM.
The following examples demonstrate how to calculate the upset rate using EQ3 and the non-mitigated SRAM
upset/bit-day rate (for the different scenarios shown above.
Example 1:
For an EDAC mitigated RAM where EDAC RAM word of N = 14 bits (8 data, 6 protection bits) and
scrubbing period is 1 day, using EQ3 above the upset rate calculation for scenario 1 will be
((14x13)/2)x(2.41E-7)2 = 5.29E-12 per word-day

Example2:
For an EDAC mitigated RAM where EDAC RAM word of N = 14 bits (8 data, 6 protection bits) and scrubbing period
is 1 day, using EQ3 above the upset rate calculation for scenario 4 will be ((14x13)/2)x(3.67E-6)2 = 12.26E-10 per
word-day

20

Conclusion
Semiconductor memories are susceptible to errors when exposed to radiation. The use of error-
correcting codes to improve semiconductor memory reliability is becoming a standard design feature.
This application note presented a hardware-implemented EDAC technique for protecting memories.
Users can employ the Actel SmartGen tool and generate the EDAC module, which checks all the data
read from memory and corrects single-bit errors. Also, the EDAC module enables users to control the
background scrubbing. Further, users can add Test Ports for debugging. The Actel EDAC RAM module
provides better reliability and, when possible, should be the first choice for protecting the main memory.

List of Changes
The following table lists critical changes that were made in the current version of the document.

Revision Changes in Current Version (51900041-0/7.03*) Page

Revision 3
May 2020

Information about "EDAC Mitigated SRAM" was updated. 19

Revision 2
January 2014

The "Radiation Performance Calculations for RTAX-S/SL/DSP FPGAs" section is
added (SAR 36425).

18

Revision 1
May 2007

2n and 2k were changed to 2n and 2k in the "Coding Theory Background" section. 2

Revision 0
June 2006

Figure 3 was updated. 10

In the "Adding Optional Ports" section, the following statement was changed from:
TMOUT: out std_logic_vector (41 downto 0); --added
to
TMOUT: in std_logic_vector (41 downto 0); --added

14

Software version numbers were added to the title:"Simulating EDAC Using Libero
IDE v7.2 and v7.3" section.
The text was corrected in instruction 4 to the following:
Depth: 256
Width: 8 bits
The text was corrected in instruction 5 to the following:
edac_256_8.vhd: RAM block
edaci_18.vhd: EDAC core
Instruction 10 is new.

14

The "Simulating EDAC Using Libero IDE v8.0" section is new. 16

Figure 6 was updated. 17

Appendix A

21

Appendix A
Table 9 • I/O Definitions for EDAC RAM

Port Name Signal Type Active Size Description

Regular Ports CLK In Rising 1 Same clock for read/write

WE In HIGH 1 Write enable

RE In HIGH 1 Read enable

WADDR Out N/A 12 Write address bus

RADDR In N/A 12 Read address bus

WDATA In N/A 12,29,47 Write data bus

RDATA In N/A 12,29,47 Read data bus

RSTN In LOW 1 Asynchronous reset

STOP_SCRUB In N/A 1 HIGH to stop scrubbing

Test Ports BYPASS In N/A 1 Bypass mode

WP In N/A 6,7,7 Write ports for parity bits in bypass mode

RP Out N/A 6,7,7 Read ports for parity bits in bypass mode

Error Ports SLOWDOWN Out HIGH 1 Optional flag when scrubbing cannot finish within
designated period

ERROR Out HIGH 1 HIGH when two or more errors occurred during one
read. Sample with read data.

CORRECTABLE Out HIGH 1 LOW when two or more errors occurred during one
read. HIGH when one correctable error occurred.
Sample with read data.

SCRUB_CORREC
TED

Out HIGH 1 HIGH indicates scrubbing logic has corrected one
error. Sample with write clock.

CADDR Out N/A 12 The address being corrected; sample with write
clock.

SCRUB_DONE Out HIGH 1 HIGH indicates scrub is done; wait for timer timeout,
or user can turn off scrubbing. Sample with read
clock.

TMOUTFLG Out HIGH 1 HIGH indicates timer is timed out.

Optional
Ports

RDS In N/A 4 Depth setting; RAM depth = (RDS + 1) × 256

TMOUT In N/A 42 Refresh period = TMOUT × clk period extra

22

The W2R port is not used with the version of the EDAC core provided with Libero IDE v7.2 and later. The
port should be tied LOW or HIGH rather than left disconnected.

Table 10 • I/O Definitions for EDAC RAM with Independent Read and Write Clocks

Port Name Signal Type Active Size Description

Regular Ports RCLK In Rising 1 Read clock

WCLK In Rising 1 Write clock

WE In HIGH 1 Write enable

RE In HIGH 1 Read enable

WADDR Out N/A 12 Write address bus

RADDR In N/A 12 Read address bus

WDATA In N/A 12,29,47 Write data bus

RDATA In N/A 12,29,47 Read data bus

RSTN In LOW 1 Asynchronous reset

SCRUB_STOP In N/A 1 HIGH to stop scrubbing

Test Ports BYPASS In N/A 1 Bypass mode

WP In N/A 6,7,7 Write ports for parity bits in bypass mode

RP Out N/A 6,7,7 Read ports for parity bits in bypass mode

Error Ports SLOWDOWN Out HIGH 1 Optional flag when scrubbing cannot finish within
designated period

ERROR Out HIGH 1 HIGH when two or more errors occurred during one
read. Sample with read data.

CORRECTABLE Out HIGH 1 LOW when two or more errors occurred during one
read. HIGH when one correctable error occurred.
Sample with read data.

SCRUB_CORREC
TED

Out HIGH 1 HIGH indicates scrubbing logic has corrected one
error. Sample with write clock.

CADDR Out N/A 12 The address being corrected; sample with write
clock.

SCRUB_DONE Out HIGH 1 HIGH indicates scrub is done; wait for timer timeout,
or user can turn off scrubbing. Sample with read
clock.

TMOUTFLG Out HIGH 1 HIGH indicates timer is timed out.

Optional
Ports

RDS In N/A 4 Depth setting; RAM depth = (RDS + 1) × 256

TMOUT In N/A 42 Refresh period = TMOUT × clk period extra

Notes:
1. WE, WADDR, WADATA, and WP are synchronous to WCLK.
2. RE, RADDR, RDATA, and RP are synchronous to RCLK.
3. STOP_SCRUB and BYPASS are double-sampled internally by both RCLK and WCLK to avoid any timing issues.

However, the signal pulse widths must be greater than both clock periods to ensure that they are correctly sampled.

Appendix B

23

Appendix B
Parity-check matrix for shortened Hamming code (18,12):

Parity-check matrix for shortened Hamming code (36,29):

Parity-check matrix for shortened Hamming code (54,47):

References
Hsiao, M.Y. "A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes" [online]. IBM Journal
of Research and Development 14, no. 4 (July 1970). Available from World Wide Web:
http://www.research.ibm.com/journal/rd/144/ibmrd1404I.pdf
Lin, Shu and Daniel J. Costello, Jr. Error Control Coding: Fundamentals and Applications. New Jersey:
Prentice Hall, 1983.

1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1
0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1

1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0
0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1
0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 1
0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 1

1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1
0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1
0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1
0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1

http://www.research.ibm.com/journal/rd/144/ibmrd1404I.pdf

51900145-3/05.20

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2020 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

	Introduction
	Coding Theory Background
	EDAC
	Regular Hamming Codes and Shortened Hamming Codes
	User Word, EDAC RAM Word, and RTAX-S/SL or Axcelerator RAM Word
	Implementation of Shortened Hamming Encoding and Decoding
	Functional Overview of EDAC RAM
	Features of EDAC RAM from SmartGen
	Scrubbing Control Block
	Scrubbing with EDAC RAM Using Independent Read and Write Clocks
	Refresh Rate
	Test Ports
	Error Flags
	EDAC RAM Generation Using SmartGen
	Limitations of the SmartGen GUI
	Detecting Simultaneous User Reads and Writes
	Single Clock Example
	Independent Clock Example

	Core Utilization of EDAC RAM
	Modifying the EDAC RAM Generated in SmartGen
	Adding More User Ports
	Adding Optional Ports

	Simulating EDAC Using Libero IDE v7.2 and v7.3
	Simulating EDAC Using Libero IDE v8.0
	Timing Waveforms
	Radiation Performance Calculations for RTAX-S/SL/DSP FPGAs
	Example of Upset Rate Calculation
	EDAC Mitigated SRAM

	Conclusion
	List of Changes
	Appendix A
	Appendix B
	References

