
Application Note
Designing for Performance on Flash-Based FPGAs

Table of Contents

Abstract
Recently, the market has seen the birth of new FPGAs that embrace for the first time applications and
systems with very stringent timing and power requirements. Novice and experienced FPGA and ASIC
designers face similar problems when it comes to achieving timing closure in a very limited number of
iterations. This paper introduces the main ingredients for tackling this problem without penalties or
frustration. The basic ingredient is a good understanding of the FPGA architecture and its embedded
features. The exploitation of these features is the key to coping with several hurdles. The second
ingredient is a great analysis methodology of the bottlenecks that can be inherent to the design itself,
caused by the tools or by the user settings. The third ingredient is the knowledge and understanding of
the tools’ underlying techniques and potential optimizations and limitations. To make a sauce of these
main ingredients—i.e., quickly converge and meet timing—this paper proposes a methodology using a
combination of synthesis tools and Designer, the Microsemi physical design toolset.

Introduction
FPGA designers often face daunting timing challenges. To reduce their frustration and to shrink their
design time and effort, this application note is intended to help users analyze their design, identify the
root causes associated with the timing issues, and finally cope with them.

One other important goal is to help designers predict the outcome of their design decisions or tools
settings. This paper highlights when a particular user action may be efficient and what is the effect of
combining several user actions. The document will also cover some of the cautions that need to be
considered when dealing with some of the timing-critical situations. User actions described in this
document cover the following:

• RTL coding

• Synthesis options setting

• Place and route constraints and options setting

This document is organized in four sections.

• "Brief Introduction to Flash FPGA Architecture" on page 2 presents the salient architectural
features of the Flash-based Microsemi FPGAs: IGLOO,® Fusion, ProASIC®3, and ProASIC3L.

• "Root Causes of Timing Issues" on page 5 focuses on the main sources of timing challenges and
ways to identify them.

Abstract . 1
Introduction . 1

Brief Introduction to Flash FPGA Architecture . 2

Root Causes of Timing Issues . 5

Main Sources for Design Analysis . 7

Ingredients for Timing Optimizations . 9

Conclusions—Forward Looking . 16
June 2015 1
© 2015 Microsemi Corporation

Designing for Performance on Flash-Based FPGAs
• "Main Sources for Design Analysis" on page 7 introduces various design techniques to cope with
each of these root causes of timing challenges. These techniques include RTL coding, synthesis
flow setting, place-and-route, and physical and routing constraints.

• "Ingredients for Timing Optimizations" on page 9 focuses on inherent design congestion
management and provides various results.

Brief Introduction to Flash FPGA Architecture
This section will only briefly cover some features in the IGLOO, Fusion, ProASIC3, and ProASIC3L Flash
FPGA families. For full details, the reader can refer to the corresponding product handbooks.

Basic Cell
The basic cell, called VersaTile as depicted in Figure 1, is a LUT with three inputs that can indifferently
implement a three-input combinatorial gate or flip-flop with enable. This allows the implementation of any
design with any combinatorial vs. register ratio. The nature of this tile makes it close to basic ASIC cells
in the sense of its fine granularity, thus allowing ASIC-like cell-based mappers to apply all their
optimization potential.

Figure 1 • Logic Cell or Versatile Architecture

Switch (flash connection) GroundVia (hard connection)Legend:

 Y
Pin 1

0
1

0
1

0
1

0
1

Data
 X3

CLK
 X2

 CLR/
Enable
 X1

CLR

XC*

F2

YL
2

http://www.actel.com/techdocs/hb/default.aspx

Brief Introduction to Flash FPGA Architecture
Routing
An abundance of routing resources has been designed to offer the highest routability possible even when
the design’s resources utilization is higher than 95%. The focus of this section is on the global routing
resources and their flexible aggregation. Figure 2 illustrates the span of the various global and quadrant
networks. In essence, each VersaTile in the die can be reached by six global and three quadrant
networks. More importantly, these networks can be aggregated to map local clocks or resets or any high-
fanout net.

Moreover, the aggregation of one, two, four, or any number of spines introduces neither an overhead
insertion delay nor a skew. This is achieved by the embedded MUX tree that offers a local choice
between sourcing from the global network or any local driver. Refer to the IGLOO, Fusion, ProASIC3,
and ProASIC3L product handbooks for more details.

Clock Conditioning Circuitry (CCC)
For clock synthesis, the CCC offers the highest flexibility with a PLL core that supports very low input
frequency and delivers three outputs that can reach 350 MHz (ProASIC3 or ProASIC3L). Figure 3

Figure 2 • Global Networks Distribution

Pad Ring

Pad Ring

Pa
d

 R
in

g
I/O

 R
in

g

I/O
R

in
g

Chip (main)
Global Pads

Global
Pads

High-Performance
Global Network

Global Spine

Global Ribs

Scope of Spine
(shaded area
plus local RAMs
and I/Os)Spine-Selection

MUX

Embedded
RAM Blocks

Logic Tiles

Top Spine

Bottom Spine

T1

B1

T2

B2

T3

B3

Quadrant Global Pads
3

Designing for Performance on Flash-Based FPGAs
illustrates the CCC and is self-explanatory. This is mentioned here as it has a link later in the optimization
flow.

Embedded RAM and FIFOs
Embedded (in fixed locations on the die) dual-port RAMs offer variable aspect ratios, clocking, and
flexible read and write data widths. Moreover, the user does not need to implement the read/write
pointers, and the FIFO flag logic in logic cells as the FIFO controllers are embedded as well. Cascading
for wide and deep RAMs and FIFOs is offered through the Microsemi Libero® Integrated Design
Environment (IDE) core generator tool. Several synthesis tools do not infer RAMs and FIFOs from the
customer code, so users need to instantiate them in the RTL code.

FlashROM
Microsemi IGLOO, Fusion, ProASIC3, and ProASIC3L Flash devices have 1 kbit of on-chip, user-
accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications such as
system calibration settings, device serialization and/or inventory control, or subscription-based business
models (for example, set-top boxes).

I/Os
The I/O tiles are flexible to support a large variety of standards ranging from LVTTL to LVDS. They also
support DDR (double-data-rate) access with the I/O embedded registers, allowing high data rate and
aggressive external timing.

Figure 3 • Clock Conditioning Circuitry

PLL CORE
CLKA

Fixed
Delay

D1

D2

D2

D1

D2

D1

n

m
u

v

w

GLA

GLB

GLC

Primary

Secondary 1

Secondary 2

YB

YC

System
Delay

Output
Delay

Feedback
Delay Output

Delay

Output
Delay

Output
Delay

Output
Delay

270°
180°
90°
0°

D1 = Programmable Delay Type 1
D2 = Programmable Delay Type 2
4

Root Causes of Timing Issues
Root Causes of Timing Issues
The main sources that lead to timing challenges when designing with any FPGA are related to one or a
combination of the following:

• A large number of paths with a high number of logic levels

This may be due to a lack of efficiency in the RTL code, a bad setting of the synthesis option,
or an issue with the synthesis mapper. They can be inherent to the design itself.

• A large number of high fanout nets

This situation is mainly due to the reference to a signal or a variable several times in the RTL
code. It can also be caused by a high sharing of a combinatorial sub-function.

• High congestion

There are two types of congestion: netlist congestion and placement congestion. An
example of netlist congestion is a crosspoint switch. This type of application has a high
degree of interdependence for which the place-and-route engines can do very little.
Placement congestion occurs when you have unassociated logic with high degrees of
congestion placed in the same area, creating an artificially high demand on routing
resources.

It is important to understand netlist congestion for two reasons. The first is to avoid blaming
place-and-route for doing a poor job. The second reason is to give guidance to the placer
apportioning internal resources, especially high-drive circuits to handle high-fanout areas.

• A large number of busses

System control functions involve several blocks communicating wide data and control
busses. The routing of these heavily bussed designs becomes challenging when several
busses broadcast to several blocks.

• A large number of clock domains

More and more designs are involving several clocking schemes with asynchronous or
related sources to accommodate system-level requirements or to implement parallelism
(such as several networking fingers with separate clocks and resets). Moreover, with the
integration of clock synthesis circuitries inside the FPGAs, users exploit this feature to
manage the clocking of several other devices on the board. The challenge with this type of
design is the interdependency and the fuzzy focus of the synthesis and place-and-route
engines on the clock domains.

• A large number of embedded memory blocks

The increasing need for RAM and FIFO size makes the cascading of a large number of
embedded RAM blocks a must. In some cases, this leads to a placement challenge, which
yields to a complex routing problem. Other situations are challenging because of the non-
balance between logic, I/Os, and RAM blocks involved. An easy example is when all the
RAM blocks on the top and bottom of the die are used while the core or I/O utilization is very
low.

• Poor synthesis, poor placement and/or poor routing

While some syndromes of this inefficiency are obvious, poor quality of results of these tools
is the hardest to figure out and needs a lot of user effort and time to detect.

• User options and constraints settings

Timing constraints—namely clock domain frequencies, clock dependencies, and input and
output delays—are an integral part of the design. Moreover, clock exceptions such as multi-
cycle and false paths are of a great help to guide logic and physical synthesis. Several
unnecessary iterations were performed because of missing clock exceptions.

Other constraints, such as floorplanning/placement constraints, can help place-and-route if
set appropriately, considering not only congestion but also data flows and timing
requirements.

Notice that some FPGA-specific constraints, such as I/O assignment or clock assignment to
global networks or an aggregation of these networks, are routing-based floorplanning and
5

Designing for Performance on Flash-Based FPGAs
imply placement constraints of the destination cells. They need care and attentive decision
as they can cause serious issues, leading to not only timing headaches, but also expensive
board re-spins.

Finally, it is needless to demonstrate the fact that the earlier these sources of timing troubles are
identified and dealt with, the sooner the timing closure can be achieved. More importantly, the effort and
investment are less for a larger opportunity when the root cause of timing trouble is avoided or identified
soon. Figure 4 illustrates this theorem.

As a corollary of this theorem, the best return on investment is in the order of importance associated with
the following:

• Quality of the RTL code

• Getting the best of logic synthesis by means of judicious constraints and options setting

• A formal link between synthesis and place-and-route

• Getting the best of place-and-route engines via appropriate constraining and use of the FPGA
architecture features

However, most designs do not meet all the timing specifications and several iterations are needed. The
iterative approach that leads to timing convergence in minimal time and effort is based on the following:

• Analysis as a key to the identification of the aforementioned root causes of challenge

• A sort of these causes based on scope of implications and order of importance towards resolution
of the timing issues

• Dealing with these sources with an appropriate order of importance, preferably at the highest
level of the flow—i.e., the RTL code if possible

The "Main Sources for Design Analysis" section on page 7 summarizes the major sources for pertinent
data to identify the bottlenecks.

Figure 4 • Efforts and Opportunities vs. Time

Time

E
F
F
O
R
T
S

B
E
N
E
F
I
T
S

6

Main Sources for Design Analysis
Main Sources for Design Analysis
It goes without demonstration that not knowing the problem does not help to solve the problem. The best
way to tackle performance issues is to find clues that may lead to the root causes. The identification
process is not easy and is time- and effort-consuming in most cases, but a systematic approach eases
the task. Much data is already available and can be efficiently used to shorten the time and reduce the
analysis efforts. The following section will cover most of the available reports and identify the type and
nature of data available in each of the reports. Moreover, the missing data is also mentioned so that
users check other ways to build the whole picture.

Synthesis Report or Log File
The synthesis quality of results heavily affects the final post-layout timing of the design. The current
standard synthesis report files include most of the following data:

• Nets with the associated fanout and buffering

• Register and combinatorial cells replication

• Number of logic levels

• Architecture of the arithmetic and storage or memory elements

• Resource utilization

• Number of clock domains, including explicit and derived domains

Unfortunately, the synthesis reports do not identify the congested blocks, the interconnectivity between
blocks, nor the reasons why the synthesis process could not do some of the optimizations.

Microsemi Designer Compile Report
The backend parser performs minor netlist optimizations such as the elimination of some buffers,
inverters, cells involved in dangling nets, etc. In some cases, the tool performs combining of I/Os with
registers. It also parses the user constraints and translates them into place-and-route constraints. The
main data provided in the importer report is summarized as follows:

• Netlist optimization results (number and type of deleted cells)

• Nets promoted to global networks

• Distribution of fanout

• Device resource utilization

• Internal and external nets fanout

• A limited number, generally 20, of high-fanout net candidates for promotion to a global or to a
segment of the global network

• Internal clocks

Similar to the synthesis report, the backend compile does not report data related to blocks that are
timing-critical or those that are congested. It does not reveal any data on the interconnectivity of blocks or
inter-block busses.

ChipPlanner
The ChipPlanner tool helps the user to check several aspects related to the quality of the place-and-route
tools. The tool allows users to check the span of the global networks in the die or whether the routed
design is congested.

Using the cell selection function of the Viewer, users can check the relative placement of hierarchical
blocks.

The ChipPlanner can also help identify if the placement is inefficient. Low-fanout nets that are routed in a
very sneaky way are an identification of such a poor placement. However, if the similar sneaky routing is
associated with high-fanout nets, this may be due to poor routing.

Unfortunately, the user needs to know a lot more about the design before being able to use the tool to
identify block interconnects using ChipPlanner.
7

Designing for Performance on Flash-Based FPGAs
Timing Reports
The timing reports are by far the most important source for information to know more about the critical
regions of the design, the inherent congestion of blocks, as well as about the quality of results of
synthesis, placement, or routing process.

The expanded paths can reveal if the paths are timing-critical because of a large number of logic levels,
or because of high delay penalties associated with high-fanout nets. If these high delay penalties are
associated with low-fanout nets, this may reveal a poor placement or poor routing. If the expanded paths
are made of a long set of two-input gates, the user needs to check if this is due to a poor synthesis or a
poor RTL coding style.

Unfortunately, the timing reports do not reveal shared critical nets between paths with worst negative
slack, or negative slack distribution. Moreover, the timing reports do not report the hierarchical blocks
that meet the timing with a narrow or large margin. To see the importance of these parameters, consider
the timing profiles of two designs, given in Figure 5. A first look at the profiles will lead to the conclusion
that the design on the left is a lot more complex than the one on the right. However, a deeper look at the
common critical nets leading to the negative slack may reveal that the number is very limited for the
design profiled on the left. Moreover, a closer look at the profile of the design on the right shows a very
high sensitivity to changes in place-and-route; thus, making a decision to tackle the negative slack may
induce a new larger set of paths with a negative slack. The moral of this illustration is that analysis must
be deep and complete before making decisions.

Figure 5 • Slack/Timing Profiles for Two Different Designs or Implementations

Paths

Ti
m

in
g

Target
Timing

Paths

Ti
m

in
g

Target
Timing
8

Ingredients for Timing Optimizations
Ingredients for Timing Optimizations
Before tackling each of the root causes of timing issues, designers are advised to revisit the RTL code
and check the various coding optimizations that they can afford. The motivation behind this preliminary
step is that a minimal effort at the RTL code level allows a large impact on the final results. The same
effect can not be reached at the place-and-route level even if the effort deployed is two or three times
larger. Similarly, an appropriate set of synthesis options may lead to a faster convergence if compared to
tedious and manual manipulation of a netlist generated with a poor set of synthesis switches.

RTL Coding Tips
Several coding styles have been published. Each of these is related to a technology, architecture, and
set of tools. Table 1 gives a list of common-sense rules and should lead to a more efficient
implementation. Some of these are automatically optimized by synthesis tools. Other RTL code
techniques apply the DDR idea to speed-up the overall performance. This principle doubles the original
clock frequency using one of the available CCCs, and performs a part of the processing on one cycle of
the doubled clock (i.e., the positive edge of the original clock) and the remaining part of the processing
during the second cycle of the doubled clock (or the negative edge of the original clock).

Dealing with High-Fanout Nets

Explicit Logic Replication at the RTL Level
In most cases, synthesis performs logic and sequential replication of the drivers blindly and without
consideration of the destination cells and where they belong. There are various possibilities for reducing
the fanout by explicit replication of the driver. Figure 6 illustrates an example where the explicit replication
allows flexibility of the replicated drivers to be placed closer to the internal destination cells and the
external ones.

Table 1 • RTL Coding Rules

Original Code New Code

A when A >= 0 else –A Not A + 1 when A(31) else A

A + 1 when EN = ‘1’ else A A + EN

X < 0 X(X’HIGH)

X – Y = 0 X=Y

X * 9

X * 15

X SHL 3 + X

X SHL 4 – X

Figure 6 • Explicit Replication
9

Designing for Performance on Flash-Based FPGAs
In case a block is the source of multiple high fanout nets and its size in terms of logic cells is limited (less
than 200 VersaTiles), it is worth investigating the replication of the block itself, as illustrated in Figure 7.

In all these cases, designers are cautioned against making these explicit replications blindly. They have
to consider this change with care and avoid replicating a driver of a generated clock domain or a
synchronized reset. Failing to do so will lead to new clock domains and the headache of making sure
they are mapped to low-skew routing resources, or having to analyze removal time for a large set of
synchronized resets.

Synthesis Control
Synthesis tools typically offer ways to set fanout limits globally. When available, use local, block-level
fanout control only for blocks exhibiting high net fanout.

Backend Control of High-Fanout Nets
The easiest and most efficient way to deal with the delay penalty associated with high-fanout nets is to
map these nets to segments of the global networks called spines. Users must also consider the
implication of such mapping, as it involves a placement constraint on the driver and the destination cells.
They need to fit in the region covered by the segment, called the scope of the spine.

If the global networks are not available or if the placement constraint will introduce high congestion,
users can create a so-called net region to limit the skew and the penalty associated with the net.

Finally, if these two techniques do not apply, users can reset the fanout of a net and the tool will work on
the shielding of the critical ports and reducing the delay penalties.

Figure 7 • Replication of a Block Source of High-Fanout Nets

Sub_Mod 6
Sub_Mod 5

Sub_Mod 1

Sub_Mod 2

Sub_Mod 3

Sub_Mod 4

High
Fanout
Module

Sub_Mod 7

Sub_Mod 6

Sub_Mod 5

Sub_Mod 1

Sub_Mod 2

Sub_Mod 3

Sub_Mod 4

High
Fanout
Module

Sub_Mod 7

High
Fanout
Module
10

Ingredients for Timing Optimizations
Figure 8 illustrates the use of clock network segments to map several high fanout nets.

Dealing with a High Number of Logic Levels

Revisiting RTL Code
In some cases, the large number of logic levels is inherent to the design. Users can cope with this by
adding explicit pipeline stages, adding registers when appropriate. Users may also need to re-architect
the timing of their design and anticipate data readiness one cycle ahead of the cycle where they will be
processed, allowing two cycles for these paths if possible. Also, when RAM blocks are involved in paths
with a high number of logic levels, users can investigate the use of the pipelined configuration of the read
port or anticipate the read a cycle ahead, thus allowing two cycles for these paths.

Synthesis Control
The synthesis flow allows for retiming. This register moving around the logic comes with an increase of
area, as the number of registers may increase. Users need to watch this increase and monitor the
utilization of the device resources. When the number of logic levels involves arithmetic blocks, users
need to know that synthesis tools offer a variety of architectures for these blocks. Users need to check
the default choice made by the synthesis tool and see whether it is an efficient architecture for the device.

Figure 8 • High-Fanout Nets Mapped to Global Network Segments
11

Designing for Performance on Flash-Based FPGAs
Backend Control
As part of the analysis, users need to verify the placement of the cells as well as the fanout of the nets
involved in these paths. In case the fanout of these nets is limited, the tool offers a flexible set of
placement constraints allowing the user to confine the placement of these paths/blocks. In case one or
more nets are associated with a delay penalty, users can use the shielding technique described above.

Dealing with High Congestion
This section illustrates using an inherently congested block. On a first look at the RTL code depicted in
Figure 9, the reader can easily understand the function, but most of us do not realize the underlying
complexity of the routing. The same complexity occurs whenever the number of logic cells needed is
very limited but the number of routes is extremely high. This is the syndrome of what is called "routing
congestion."

Figure 9 • Example of Routing Congestion

reg [63:0] A, B, C, D, E, F, G, H, M;
reg [2:0] SELECT;

always @ (A or B or C or D or E or F
or G or H or SELECT)
begin
 case (SELECT)
 3’b000 : Z = A;
 3’b001 : Z = B;
 3’b010 : Z = C;
 3’b011 : Z = D;
 3’b100 : Z = E;
 3’b101 : Z = F;
 3’b110 : Z = G;
 3’b111 : Z = H;
End

A[63:0]

B[63:0]

C[63:0]

D[63:0]

E[63:0]

F[63:0]

G[63:0]

H[63:0]

8:1
12

Ingredients for Timing Optimizations
Revisiting RTL Code
For this particular congested block, several ideas can be investigated at the RTL code level. One of the
recommended techniques is to decentralize the “routing congestion,” as suggested in Figure 10.

Table 2 shows the area/frequency results obtained when synthesizing the code as is, instantiating a large
MUX and implementing the recommended decentralization technique.

Synthesis Control
Using the same illustration example, users must pay attention to the select lines, as the least significant
bits are definitely very high-fanout nets. Moreover, the coding of the select lines, either compact or
one-hot, leads to different area and speed results. Table 3 shows these results.

As a corollary, users need to think contextually. If the select lines of the large MUX are a state register of
a FSM, the encoding of the states of this machine must be one-hot even if this encoding may not look
optimal locally.

Another synthesis control is related to resource sharing. The goal of the resource sharing is to reduce
design area by sharing large blocks by means of adding MUXes on the inputs of these blocks. Users

Figure 10 • MUX Decentralization Technique

Module 1

Module 2

Module 3

Module 4

I1

I2

I3

I4

I7

I8

I5

I6

8:1

Module 1

Z

I1, I2

I3, I4

I5, I6

I7, I8

4:1

Module 2

Module 3

Module 4

Z

Table 2 • Centralized vs. Decentralized Implementations

Pure RTL Synthesis Using 4:1 MUX Cores

32:1, 16-bit wide MUX 148 MHz
(130 tiles)

171 MHz
(120 tiles)

64:1, 16-bit wide MUX 134 MHz
(246 tiles)

160 MHz
(217 tiles)

Table 3 • Compact vs. One-Hot Select Line Encoding

Compact Select One-Hot Select

64:1 – 8-bit-wide MUX 134 MHz
(132 tiles)

163 MHz
(148 tiles)

64:1 – 16-bit-wide MUX 130 MHz
(246 tiles)

158 MHz
(231 tiles)
13

Designing for Performance on Flash-Based FPGAs
need to check the implication and manage the balance between slightly higher utilization, added
congestion, and number of logic levels.

Backend Control
One major recommendation is to avoid aggressive placement or timing constraints on these Routing
Congestion spots. In other words, users are advised to relax the placement constraints to allow higher
porosity. This has to be combined with a relaxation of the timing constraints on the congested block, as
well as other non-timing-critical blocks, so that their internal nets do not come into conflict for the use of a
critical routing resource.

Another higher-level measure users can adopt is a more data-oriented floorplan for the blocks involved in
the congestion.

Dealing with a Large Number of Busses

Revisiting RTL Code
While the margins for maneuvering are tight, designers may revisit the design architecture for bus
sharing or attempt to bury some of the busses in larger blocks. Another important aspect that may make
the routing of these busses even trickier is the fanout of each of the slices of these busses. If the fanout
is not homogeneous, users are dealing with a more complex issue.

Synthesis Control
Unfortunately, at the synthesis level, very little can be done to cope with these situations

Backend Control
The most efficient physical implementation of these busses is the shortest routing possible. This involves
placement of the drivers and the destination of each slice of the busses. If the fanout of these slices is not
homogeneous, the highest-fanout bus lines can be mapped using low-skew segments of the global
networks.

In any case, users need to adopt a data-driven placement of the communicating blocks and relax the
placement constraints for higher porosity and ease of routability of blocks and busses.

Dealing with a Large Number of Clock Domains

Revisit the RTL Code
While most of the clocking schemes are defined at an early stage of the system architecture cycle,
designers use various techniques to handle clocking of various blocks of the design, to cope with either
timing bottlenecks or area/resource constraints. Other designers are power-conscious and may
implement various clocking schemes using clock MUXing or gated clocks. For all these techniques,
designers must accurately assess the gain before heading up to creating/generating new clock domains.
More importantly, designers need to think ahead of time and make sure that the resulting design and its
associated clocking scheme keeps it "analysis-friendly," as the static timing analysis phase can become
tedious and time consuming.

Synthesis Control
The focus of the designer should be on the setting of all the timing constraints. These include the tightest
clock frequencies, the inter-clocks off-sets, the input and output delays. False paths and multi-cycle
paths are very critical and need not to be neglected.

Backend Control
The general guidelines are to separate the clock domains and adopt clock-domain-based floorplanning.
This will also allow an economy of the global networks and a more effective use of the low-skew
segments of the global networks. When doing so, users need to integrate data dependency between
domains and take into account paths optimizations.

A case worthy of note is when some of the clock domains drive a large number of RAM/FIFO blocks
(deep or shallow RAMs that are mapped cascading several embedded RAM blocks). In such a case,
users can consider placing the RAM blocks on the top and bottom of the die, provided their performance
degradation does not affect critical paths.
14

Ingredients for Timing Optimizations
Dealing with a Large Number of I/Os

Revisit the RTL Code
Even if the margins for maneuvering are tight at this level, designers may adopt time multiplexing and
lower the number of I/Os if this is possible.

Synthesis Control
Users need to turn off the inference of registered I/Os, as this leads to an inherent placement constraint
of the registers associated with these I/Os.

Backend Control
Users need to investigate carefully the ratio of logic and /IO utilization. If the logic utilization is low, the
recommendation is to run place-and-route with I/O register combining turned off. If the internal register-
to-register performance is satisfactory, then users need to investigate the slack margins and allow
register combining for the most critical external setup of clock-to-out timing. If doing so does not resolve
the problem, the I/O placement can be modified to accommodate both the internal and external timings.

Dealing with Poor Synthesis, Poor Placement, and Poor Routing
Poor synthesis results can be caused by either inherent limitation in the synthesis engine or by poor
setting of options and wrong specification of timing constraints. It can also be related to lack of
knowledge of how the mapping algorithms work and what to expect once a particular constraint is added.
This mismatch between true capacity of the tool and the user expectation leads to frustration and several
unnecessary iterations. In the category of "know your tool," Table 4 provides a sample of results for a
very limited number of benchmarks that were processed with an industry synthesis tool and Designer
backend toolset.

Table 4 • Sample of Results on a Small Set of Benchmarks

Synthesis Options Area-Driven
Timing-Driven
Replication On

Timing-Driven
Replication Off

Design
Name Place-and-Route Option Default

All Buffers
Removed Default

All Buffers
Removed Default

All Buffers
Removed

Design
RDES

MUX- and XOR-based
Area in VersaTiles
SystemClk (MHz

12822
87

12822
87

18181
83.9

16362
87.5

16969
84.2

14359
82.7

Syncop Bus interfaces / large reg
files
Area in VersaTiles
HighClock (MHz)

6150
71

6124
70

7284
63.5

6886
66

7192
63.5

6855
68.2

HRK
Area in VersaTiles
TopClk (MHz)

2540
70.3

2538
71.67

3041
72.7

2909
77.8

3035
75

2905
72.5

CORDIC Datapath
Area in VersaTiles
MainClk (MHz)

3249
57.3

3238
53.4

11398
80.5

9792
78.3

11180
76.7

9691
78.6

Imen Scrambling and
Descrambling
Area in VersaTiles
Speed (MHz) VersaC
HardClk
RxClk
TxClk

4274
88
87
60
60

4250
90
95
57
64

6815
102
103
66
67

6023
108
106
67
66

6586
108
106
67
65

5884
111
104
70
68
15

Designing for Performance on Flash-Based FPGAs
A first look at this small sample of results highlights the efficiency of the area-oriented flow, both in terms
of compact area and respectable speed. Pushing this tool hard with non-realistic timing constraints leads,
in most cases, to a huge overhead of area, particularly when logic replication is ON. For less area penalty
and slightly higher frequencies, users can push for timing-driven synthesis with the replication switched
OFF.

Conclusions—Forward Looking
As its title suggests, this application note is a tour of various aspects related to timing convergence when
targeting Microsemi Flash-based FPGAs using synthesis tools and Designer, the Microsemi backend
toolset. The contribution of this document is to help designers focus on the analysis of the timing
bottlenecks, identify the root causes, and cope with them. Several suggestions have been provided,
which enable designers to tackle each of these timing challenges at the RTL code level, the synthesis
setting, and the backend constraints.

Newton System Interfaces and
Control
Tiles
Speed (MHz) SysClk
PicClk

22013
44.7
51.2

22008
46.5
53.64

72274
42
37

67231
42.4
35.2

70780
39.8
40

66708
46
38

Boldy Dual MAC/Memory
Intensive
Area (VersaTiles)
CPUclk (MHz)
AFDX_clk (MHz)

16215
121
39

16213
111
35

20729
116
41

19379
117
36

20326
109
44

19326
132
37

Table 4 • Sample of Results on a Small Set of Benchmarks (continued)

Synthesis Options Area-Driven
Timing-Driven
Replication On

Timing-Driven
Replication Off

Design
Name Place-and-Route Option Default

All Buffers
Removed Default

All Buffers
Removed Default

All Buffers
Removed
16

List of Changes
List of Changes
The following table shows important changes made in this document for each revision.

Date Changes Page

Revision 1
(June 2015)

Non-technical Updates. NA

Revision 0
(March 2008)

Initial Release. NA

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.
17

51900173-1/06.15

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system
solutions for communications, defense & security, aerospace and industrial markets. Products
include high-performance and radiation-hardened analog mixed-signal integrated circuits,
FPGAs, SoCs and ASICs; power management products; timing and synchronization devices
and precise time solutions, setting the world's standard for time; voice processing devices; RF
solutions; discrete components; security technologies and scalable anti-tamper products;
Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has
approximately 3,600 employees globally. Learn more at www.microsemi.com.

© 2015 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	Designing for Performance on Flash-Based FPGAs
	Table of Contents
	Abstract
	Introduction
	Brief Introduction to Flash FPGA Architecture
	Basic Cell
	Routing
	Clock Conditioning Circuitry (CCC)
	Embedded RAM and FIFOs
	FlashROM
	I/Os

	Root Causes of Timing Issues
	Main Sources for Design Analysis
	Synthesis Report or Log File
	Microsemi Designer Compile Report
	ChipPlanner
	Timing Reports

	Ingredients for Timing Optimizations
	RTL Coding Tips
	Dealing with High-Fanout Nets
	Explicit Logic Replication at the RTL Level
	Synthesis Control
	Backend Control of High-Fanout Nets

	Dealing with a High Number of Logic Levels
	Revisiting RTL Code
	Synthesis Control
	Backend Control

	Dealing with High Congestion
	Revisiting RTL Code
	Synthesis Control
	Backend Control

	Dealing with a Large Number of Busses
	Revisiting RTL Code
	Synthesis Control
	Backend Control

	Dealing with a Large Number of Clock Domains
	Revisit the RTL Code
	Synthesis Control
	Backend Control

	Dealing with a Large Number of I/Os
	Revisit the RTL Code
	Synthesis Control
	Backend Control

	Dealing with Poor Synthesis, Poor Placement, and Poor Routing

	Conclusions—Forward Looking
	List of Changes

