
Application Note AC224
Designing a Core429-to-Host Processor System

Introduction
Bus interfaces such as ARINC 429 (Core429), MIL-STD-1553 (Core1553), and Ethernet-MAC (Core10/100) are
used in systems in which there is a host processor controller. The external CPU requirement for Core429 is
necessary to set up the core’s control registers and initialize the label memory. Since ARINC 429 operates at
either 12.5 KHz or 100 KHz, a simple 8-bit microprocessor such as the Actel Core8051 can fulfill the host
processor requirement.

This application note outlines a few methods that can be used to simply connect Core429 to a host
processor. The first example describes a system with Core429 interfaced to Core8051. The second example
is a system generalization using a Motorola 68000 processor to create a Core429 system.

The following sections will provide a brief overview of ARINC 429, Actel Core429, and Core8051 before
the first implementation example is presented. Similarly, the second design example begins with a
description of the Motorola 68000. In both cases, the approach taken is one that starts with a high-level
system block diagram and progresses inward to discuss the interface logic on Core429 and the respective
host CPU, as well as the logic used to connect these blocks together. Along with the hardware
considerations, a brief discussion of the CPU to Core429 communication protocol is provided. Lastly, a few
notes on application software for each respective CPU are included to depict a complete solution. Figure 1
shows a high-level block diagram of the general system being described. Depending on the specific
configuration and host CPU, both Core429 and the host CPU can reside within one FPGA. An example of
this is given with the Core429 to Core8051 system described in the "Core429 Interfaced to Core8051"
section on page 5.

ARINC 429 Overview
ARINC 429 is a two-wire, point-to-point data bus that is application-specific for commercial and transport
aircraft. The connection wires are twisted pairs. Words are 32 bits in length and most messages consist of a
single data word. ARINC 429 uses a unidirectional data bus standard (Tx and Rx are on separate ports)
known as the Mark33 Digital Information Transfer System (DITS). Messages are transmitted at either 12.5
or 100 kbps to other system elements that are monitoring the bus messages. For more detailed
information on the ARINC 429 specification, refer to the "ARINC 429 Overview" section in the ARINC 429
Bus Interface datasheet. Furthermore, the Actel DirectCore IP Portfolio includes an ARINC 429 Bus

Figure 1 • General Core429 to Host Processor System

.

.

.

RxHi
RxLo
TxHi
TxLo

RxHi
RxLo

TxHi
TxLo

Host CPU

Peripheral and I/O Devices

Core429 ARINC 429 BUS
June 2005 1
© 2005 Actel Corporation

http://www.actel.com/ipdocs/CoreARINC429_DS.pdf
http://www.actel.com/ipdocs/CoreARINC429_DS.pdf

Designing a Core429-to-Host Processor System
Interface (Core429) as well as a Demonstration and Development Kit (Core429-DEV-KIT). The kit contains a
Platform8051 Development Board onto which a Core429 Daughter Card (Core429-SA) is attached. The
platform board provides the necessary means to demonstrate and evaluate the functionality of Core429
and the Core8051 Processor, as well as an Actel ProASICPLUS® Flash-based FPGA.

Actel Core429
Core429 provides a complete Transmitter (Tx) and Receiver (Rx). The core consists of the three main blocks
shown in Figure 2: Transmit, Receive, and CPU Interface. It can be configured to provide both Tx and Rx
functions, or either Tx or Rx functions. Core429 requires external ARINC 429 line drivers and line receivers
to interface to the ARINC 429 bus. An example of this hardware can be found on the Core429 Daughter
Card. The core is highly configurable and can support up to 16 Tx and 16 Rx channels, replacing as many as
eight competitive Application Specific Standard Products (ASSPs) on one Actel device. Table 1 shows the
allowable Core429 configurations.

Figure 2 • Core429 Block Diagram

Table 1 • Core429 Hardware Parameters

Parameter Name Description Allowed Values Default

CLK_FREQ Clock Frequency 1, 10, 16, 20 MHz 1 MHz

CPU_DATA_WIDTH CPU Data Bus Width 8, 16, 32 bits 8

RXN Rx Channels 1 to 16 4

TXN Tx Channels 1 to 16 4

LEGACY_MODE 0 = Normal Mode; 1 = Legacy Mode 0, 1 0

LABEL_SIZE_i* Number of Labels for Rx Channel i 1 to 256 64

RX_FIFO_DEPTH_j* Depth of FIFO for Rx Channel j ARINC word 32, 64, 128, 256, 512 32

RX_FIFO_LEVEL_k* FIFO Level for Rx Channel k 1 to 64 16

TX_FIFO_DEPTH_l* Depth of FIFO for Tx Channel l ARINC word 32, 64, 128, 256, 512 32

TX_FIFO_LEVEL_m* FIFO Level for Tx Channel m 1 to 64 16

Note: *Where i, j, k, l, and m are from 1 to 16.

CPU
Interface

Rx I/F

Core429

Tx I/F

RxHi
RxLo

TxHi
TxLo

Line Receiver

Line Driver
2

Designing a Core429-to-Host Processor System
Core8051
Actel Core8051 is a high performance, single-chip, 8-bit microcontroller. Figure 3 is a visual representation
of the primary blocks of Core8051. The core contains internal Special Function Registers (SFRs) which are
used to hold various data and control bits. For example, Timer Control, Interrupt Enables, and Serial Port
control are some of the uses of the internal SFR memory map. Core8051 also contains an SFR Interface
which can be used to service up to 101 External SFRs. The External SFRs can be used to interface with an
off-core peripheral, such as Core429. This interface will be discussed in more detail in the following
sections. For more detailed information about Core8051 and any of its features, refer to the Core8051
datasheet.

Figure 3 • Core8051 Block Diagram

Fetch Instr Cycle

Fetch Instr Cycle

Timer_0_1

Interrupt
Service

Ports

Power
Management

Memory

8051 Main Engine

Core8051

Control

Control

Unit

Fetch Instr Cycle

Arithmetic
Logic Unit

Serial
Channel

Clock
Control

Sp
ec

ia
l F

u
n

ct
io

n
 R

eg
is

te
r

B
u

s

RAM_SFR
Control
3

http://www.actel.com/ipdocs/Core8051_DS.pdf

Designing a Core429-to-Host Processor System
External SFR Interface
Table 2 shows the signals associated with the Core8051 External SFR interface.

An off-core peripheral can use all addresses from the SFR address space range 0×80 to 0×FF except those
that are already implemented inside the core. Refer to "Table 7: Internal Special Function Register
Memory Map" in the Core8051 datasheet for a list of all implemented SFRs.

When a read instruction occurs with an SFR address that has been implemented both inside and outside
the core, the read will return the contents of the internal SFR. When a write instruction occurs with an SFR
that has been implemented both inside and outside the core, the value of the external SFR is overwritten.
Furthermore, read access to unimplemented addresses will return undefined data, while write access will
have no effect.

Note that the SFR address space contains 8-bit addresses, but that sfraddr is a 7-bit bus. The MSB of the
8-bit 8051 SFR address is not used by the External SFR Interface. When designing the CPU interface to
allow Core429 to communicate with the Core8051 SFR Interface, the external SFRs implemented within
Core429 must be addressed by this 7-bit address. For example, an SFR implemented in Core8051 at address
0×C0 is addressed by the external peripheral at 0×40.

Example bus cycles for external SFR access are shown in the Core8051 datasheet and in Figure 4 and
Figure 5. Figure 4 shows an external SFR read cycle and Figure 5 shows an external SFR write cycle.

Table 2 • External Special Function Register Interface

Name Type Polarity/Bus Size Description

sfrdatai Input 8 SFR data bus input

sfrdatao Output 8 SFR data bus output

sfraddr Output 7 SFR address

sfrwe Output High SFR write enable

sfroe Output High SFR output enable

Figure 4 • External SFR Read Cycle

Figure 5 • External SFR Write Cycle

0 ns 50 ns 100 ns 150 ns 200 ns 250 ns

clk

sfraddr

sfroe

sfrwe

sfrdatao

sfrdatai

Addr Addr

Data Data

max 1*Tclk max 1*Tclk max 1*Tclk max 1*Tclk

Read Sample Read Sample

300 ns

0 ns 50 ns 100 ns 150 ns 200 ns 250 ns

clk

sfraddr

sfroe

sfrwe

sfrdatao

sfrdatai

Addr Addr

Data Data
Write

Sample
Write

Sample

250 ns
4

http://www.actel.com/ipdocs/Core8051_DS.pdf
http://www.actel.com/ipdocs/Core8051_DS.pdf

Designing a Core429-to-Host Processor System
One important consideration is the memory map configuration used by Core8051. There are four separate
memory regions used in Core8051: DATA, CODE, XDATA, and SFR memory regions. DATA memory is 256
bytes and is used for dynamic storage of program data such as register, stack, and variable data. Although
this memory is 256 bytes, typically only the lower 128 bytes are directly addressable for program data.
When the upper 128 bytes of DATA memory are addressed, this points to the SFR memory region, which is
a combination of internal core memory and external memory for Special Function Registers. CODE space is
64 kb and is used for program storage and interrupt vectors. Lastly, XDATA memory is 64 kb and is used for
storage of large data sets, custom-designed peripherals, and extended stack space if necessary. CODE,
DATA, and XDATA memory spaces are not part of Core8051 and must therefore be implemented by the
user, either internal or external to the FPGA.

To overcome the restricted memory map, it is common to create an indirect addressing capability. This can
be done by using a memory-mapped register to hold the address and another to hold the data. This
method has been used in the Core429-Core8051 system described in the "Core429 Interfaced to
Core8051" section. In fact, the four byte-sized locations used are mapped to the 8051 SFR address space.

Core429 Interfaced to Core8051
Core429 can be interfaced with Core8051 by using the external SFR interface mentioned above. One
implementation of this ARINC 429 System can be seen in Figure 6 on page 6 and is demonstrated in the
Core429-DEV-KIT. This system requires the use of four SFRs. In order to interface these cores, consideration
must be taken when specifying the particular Core429 configuration. For example, Table 1 on page 2 shows
that Core429 supports CPU data bus widths of 8, 16, and 32 bits. In this system, an 8-bit width is used to match
the Core8051 bus width. Also, note that Core429 internal registers are addressed by a 9-bit CPU address which
is described in "Table 11: CPU Address Bit Positions" in the ARINC 429 Bus Interface datasheet. Since the SFR
Interface has an 8-bit data width, two SFRs are required to hold the Core429 CPU address. In addition, one SFR
is required for data written to Core429 by Core8051 and one SFR for data read from Core429 by Core8051.
Furthermore, since only one bit of the SFR is required for the MSB of the Core429 CPU address, it only occupies
bit 0 of the SFR. This leaves bits 1 to 7 available for control/handshaking functions. In this implementation, bit 1
of this SFR is used to indicate whether the requested operation is a read or a write. Bit 2 is used to indicate
when the Core429 is busy or done processing the request. The SFRs implemented are summarized in Table 3 on
page 6.

Another advantage of this approach is that a small amount of glue logic can be used to implement any
interface logic required if the 8051 and the ARINC 429 cores are in the same clock domain. This system has
been physically implemented in the Actel Platform8051 Development Board on which both cores operate
off a common 16 MHz clock. This is the typical operating frequency of Core8051 when implemented in an
Actel ProASICPLUS FPGA, and it is also one of the four selectable clock speeds supported by Core429.
5

http://www.actel.com/ipdocs/CoreARINC429_DS.pdf

Designing a Core429-to-Host Processor System
Figure 6 • Core429-Core8051 Example System

Table 3 • SFR Usage for Core429-Core8051 System

Core8051 SFR 8-Bit Address External SFR 7-Bit Address Function

0xC0 0x40 bits 7:0 of Core429 internal register address

0xC1 0x41 bit 0: MSB of Core429 register address

bit 1: 1 = Write; 0 = Read

bit 2: 1 = Busy; 0 = Done

bit 3-7: Not used

0xC2 0x42 byte of data written to Core429

0xC3 0x43 byte of data read from Core429

.

.
Up to 16
Tx and Rx
Channels

.

.

FPGA

Core429

Core8051

SFR I/F

Peripheral and I/O Devices

CPU
I/F

Rx I/F

Tx I/F

Rx I/F

Tx I/F

8051 CPU Glue
Logic

RxHi
RxLo
TxHi
TxLo

RxHi
RxLo
TxHi
TxLo
6

Designing a Core429-to-Host Processor System
CPU Interface
The CPU interface allows access to the Core429 internal registers, FIFO, and internal memory. This allows
the system CPU (Core8051) to read/write ARINC data to the FIFO, to access the Core429 control and status
registers, and to write to the Core429 internal label memory. Table 4 on page 7 provides a signal
description of the Core429 CPU Interface. This interface is synchronous to the Core429 master clock. Note
that CPU data out is asynchronous to the CPU clock for all register reads. For the Core429 CPU Interface
Timing, see Figure 7 to Figure 12 in the ARINC 429 Bus Interface datasheet.

Glue Logic
In the ARINC 429 system depicted in Figure 6 on page 6, the Core8051 SFR Interface is tied to the Core429
CPU Interface by glue logic. Figure 7 shows a block diagram of this logic.

Table 4 • CPU Interface Signals

Name Type Description

cpu_ren In CPU read enable, active low

cpu_wen In CPU write enable, active low

cpu_add [8:0] In CPU address

cpu_din [CPU_DATA_WIDTH-1:0] In CPU data input

cpu_dout [CPU_DATA_WIDTH-1:0] Out CPU data output

int_out Out Interrupt to CPU, active high

cpu_wait Out Indicates that the CPU should hold cpu_ren or cpu_wen
active while the core completes the read or write
operation.

Figure 7 • Core429-Core8051 Glue Logic

Note: i = CPU_DATA_WIDTH – 1

sfraddr [6:0]

sfrwe

sfrdatao [7:0]

sfrdatai [7:0]

cpu_add [8:0]

cpu_din [i-1:0]

cpu_dout [i-1:0]

cpu_wen

cpu_ren

cpu_wait

Glue Logic

clk_16
reset_n

CLK_1MHZ

SFR I/F CPU I/F
7

http://www.actel.com/ipdocs/CoreARINC429_DS.pdf

Designing a Core429-to-Host Processor System
As previously mentioned, the sfraddr is a 7-bit value which is used to address each of the four SFRs
implemented. This can be done in verilog by creating parameters to which the sfraddr input can be
compared. For example, the following can be used to decode the sfraddr input:

parameter [6:0] WRITE_ADDRESS0 = 7'h40; // sfraddr for Core429 CPU address [7:0]

parameter [6:0] WRITE_ADDRESS1 = 7'h41; // sfraddr for Core429 CPU address [8] &
// control bits

parameter [6:0] WRITE_DATA = 7'h42; // sfraddr for data written to Core429

parameter [6:0] READ_DATA = 7'43; // sfraddr for data read from Core429

In addition, any application code running on Core8051 that requires communication with Core429 must
follow some sort of software protocol. For the system shown in Figure 6 on page 6, the software protocol
used is as follows:

Writing to Core429 from Core8051
1. Write 8 bits of the 32-bit ARINC 429 data to WRITE_DATA.

2. Write lower 8 bits of 9-bit Core429 internal address to WRITE_ADDRESS0.

3. Write to WRITE_ADDRESS1 with bit 0 = MSB of 9-bit address, bit 1 = 1 (0 = read; 1 = write).

4. Wait until bit 2 of WRITE_ADDRESS1 = 0 (0 = done; 1 = busy).

5. Repeat steps 1-4 three more times until all 32 bits of ARINC 429 data is written.

Reading from Core429
1. Write lower 8 bits of 9-bit Core429 internal address to WRITE_ADDRESS0.

2. Write to WRITE_ADDRESS1 with bit 0 = MSB of 9-bit address, bit 1 = 0 (0 = read;1 = write).

3. Wait until bit 2 of WRITE_ADDRESS1 = 0 (0 = done; 1 = busy).

4. Read data from READ_DATA.

5. Repeat steps 1-4 three more times until all 32 bits of ARINC 429 data is read.

Note: Core429 control and status registers, as well as the label memory, are 8-bit registers and thus only
require one read/write per host processor access.

Hardware Implementation of Communication Protocol
The following control signals and parameters are also used in the glue logic:

parameter CPU_DATA_WIDTH = 8; // Sets the CPU data width

parameter [7:0] PULSE_WIDTH = 1; // Sets how long the write/read pulse is

parameter IGNORE_WAIT = 0; // Set to use cpu_wait input from Core429

wire cpu_waitm = cpu_wait && ! IGNORE_WAIT;

This protocol can be implemented in hardware as below:

always @(posedge clk_16 or negedge reset_n)

 begin

 if (reset_n == 1'b0)

 begin

 cpu_write <= 1'b0;

 cpu_wen <= 1'b1;

 cpu_ren <= 1'b1;

 cpu_din <= 8'b0;

 cpu_address <= 9'b0;
8

Designing a Core429-to-Host Processor System
 datalatch <= 8'b0;

 cpu_busy <= 1'b0;

 cpu_start <= 1'b0;

 cpu_count <= 0;

 end

 else

 begin

 // Firstly capture the SFR Writes to local registers

 if ((sfraddr == WRITE_DATA) && (sfrwe == 1'b1))

 begin

 cpu_din <= sfrdatao;

 end

 if ((sfraddr == WRITE_ADDRESS0) && (sfrwe == 1'b1))

 begin

 cpu_address[7:0] <= sfrdatao;

 end

 if ((sfraddr == WRITE_ADDRESS1) && (sfrwe == 1'b1) && (cpu_busy == 1'b0))

 begin

 cpu_address[8] <= sfrdatao[0];

 cpu_write <= sfrdatao[1]; // 1 indicates a write; 0 indicates a read

 cpu_start <= 1'b1; // start the cycle

 cpu_busy <= 1'b1;

 end

// Now do the Access Cycle

// Must wait for count to get to zero before starting, to make sure ARINC

// core sees inactive strobe

 if ((cpu_start == 1'b1) && (cpu_count == 0)) // assert cpu_ren or cpu_wen
 // and hold asserted

 begin

 cpu_wen <= ! cpu_write;

 cpu_ren <= cpu_write;

 cpu_count <= PULSE_WIDTH; // Miniumn cycle of 31 clocks

 cpu_start <= 1'b0;

 end

 if (cpu_count != 0)

 begin

 cpu_count <= cpu_count -1;

 end

 else

 begin
9

Designing a Core429-to-Host Processor System
 if ((cpu_wen == 1'b0) && (cpu_waitm == 1'b0))// wait for write completes

 begin // cpu_wait is active high

 cpu_wen <= 1'b1;

 cpu_busy <= 1'b0;

 cpu_count <= PULSE_WIDTH; // delay to ensure inter-write timing

 end

 if ((cpu_ren == 1'b0) && (cpu_waitm == 1'b0)) // wait for read to complete

 begin

 cpu_ren <= 1'b1;

 cpu_busy <= 1'b0;

 datalatch <= cpu_dout; // latch the data from the ARINC core

 cpu_count <= PULSE_WIDTH;

 end

 end

 end

 end

// Provide data read-back to the SFR system.

// For test reasons provide full read-back on the register set.

// Note decoding only uses the lowest 2 bits to select from the 4 registers;

// ensure that this matches the bit encodings set above.

always @(sfraddr,cpu_din,cpu_address,cpu_busy,cpu_write,datalatch,int_out)

 begin

 case (sfraddr[1:0])

2'b00 : sfrdatai = cpu_address[7:0];

2'b01 : sfrdatai = { 4'b0, int_out ,cpu_busy, cpu_write, cpu_address[8] };

2'b10 : sfrdatai = cpu_din;

default : sfrdatai = datalatch;

 endcase

 end

Creating 8051 Application Code to Communicate with Core429
Application code for Core8051 can be written in the C programming language and cross-compiled into
8051 object code by software such as Keil uVision2 and its C51 compiler and 8051 linkers. The software can
specifically target Actel Core8051.

In the C-program, the SFRs used in the current implementation are declared as follows:

sfr ADDR1 = 0xC0; // address for Core429 to decode, bits 7:0

sfr ADDR2 = 0xC1; // bit 0: msb of 429 addr,bit 1: R/W,bit 2: Done/Busy

sfr DATA_OUT = 0xC2; // data written to Core429

sfr RDATA = 0xC3; // data read from Core429
10

Designing a Core429-to-Host Processor System
To successfully create application code that will communicate with Core429, the application code must
follow the communication protocol implemented in the hardware. For this particular system
implementation and communication protocol, a few low level C Functions can be used to read and write
to Core429. Examples of this can be found below:

Note: r_w is a global value declared as: bit r_w;

void arinc_addr(short byte, short reg, short tx_rx, uint16 chan)

{

xdata short addr_pkt1;

xdata short addr_pkt2;

if (reg > 0) // assemble 9-bit Core429 internal address

{

reg = reg * 4;

}

if (chan > 0)

{

chan = chan * 32;

}

tx_rx = tx_rx * 16;

addr_pkt1 = (chan + tx_rx + reg + byte) & 0x00FF;

addr_pkt2 = (chan + tx_rx + reg + byte) & 0xFF00;

addr_pkt2 = addr_pkt2 >> 8;

if (r_w == 0) // a read operation

{

ADDR1 = addr_pkt1;

ADDR2 = addr_pkt2;

}

else // if (r_w == 1)// write operation

{

addr_pkt2 = addr_pkt2 | 0x02; // set bit 1 = 1 to indicate a write

ADDR1 = addr_pkt1;

ADDR2 = addr_pkt2;

}

}

void arinc_data(long data_ol) // puts 8-bits of ARINC 429 word into SFR

{

xdata short data_o = 0;
11

Designing a Core429-to-Host Processor System
data_o = (short) (data_ol & 0x000000FF);

DATA_OUT = data_o;

}

void arinc_wait() //polls bit 2 of ADDR2 SFR until it is 0, indicating a done state

{

xdata short rdy = 0;

rdy = ADDR2;

rdy = rdy & 0x04;

while (rdy == 0x04)

{

rdy = ADDR2;

rdy = rdy & 0x04;

}

}

To enforce the communication protocols discussed above, the low level functions arinc_addr, arinc_data,
and arinc_wait are used in the manner described below.

Writing from Core8051 Application Code to Core429
To write 8 bits of data, the following can be used.

r_w = 1;

arinc_data(data_out);

arinc_addr(byte, reg, tx_rx, channel);

arinc_wait();

To write 32 bits of data, the code above will be written within a loop as below:

r_w = 1;

for (byte = 0; byte < 4; byte++)

{

if (byte == 0)

{

arinc_data(data_out);

}

else

{

data_out = data_out >> 8;

arinc_data(data_out);

arinc_addr(byte, reg, tx_rx, channel);

arinc_wait();

}

}

12

Designing a Core429-to-Host Processor System
Reading from Core429
To read 8 bits of data, the following code can be used:

r_w = 0;

arinc_addr(byte, reg, tx_rx, channel);

arinc_wait();

val = RDATA;

To read 32 bits of data, the following implementation can be used:

r_w = 0;

lim = 4;

for (byte = 0; byte < lim; byte++)

{

arinc_addr(byte, reg, tx_rx, channel);

arinc_wait();

tmp = RDATA;

data_i = data_i | (tmp & 0xFF);

if (byte != (lim - 1))

data_i = data_i << 8;

}

Summary: Core429 Interfaced to Core8051
The Actel ARINC 429 bus interface IP core (Core429) can be used with an Actel 8-bit microprocessor IP core
(Core8051) as the system host processor. The implementation of the interface discussed in this document
varies based on the Core429 configuration. However, the basic considerations highlighted in this
implementation are essential when interfacing Core429 to an external host processor. In fact, this design is
physically implemented in the Core429 Development Kit. The system is used for demonstration and
evaluation purposes and comes with fully usable application code that can either be used as it is or used as
a template to create a user-specific evaluation of the Core429 functionality. When used as delivered, the
Core8051 application code included provides the user with an automatic demo of ARINC 429 data being
transmitted via a 429 bus (using the supplied DB9 cable). The demo also includes a command mode with a
terminal interface that operates via a PC’s serial port. This could possibly be used to interface with another
ARINC 429 device via the 429 bus and cable provided. For more information on Core429 and the Core429-
DEV-KIT, visit the Actel website at www.actel.com.
13

http://www.actel.com

Designing a Core429-to-Host Processor System
Motorola 68000 Family of Processors
The following section will provide a brief description of the Motorola 68000 Family of microprocessors.
This description will then be used to demonstrate one possible ARINC 429 system implementation using
Core429 interfaced to a 68000 as the host processor. The M68000 (M68K) microprocessors are available in
various configurations. Data bus widths supported include 8 bits (MC68008), 16 bits (MC68000), and
32 bits (MC68020). For the purposes of this application note, it will be assumed that the M68K used has a
16-bit data bus and a 23-bit address bus. Other features of the M68K include: 16 32-bit Data and Address
Registers, 16 MB Direct Addressing Range, 6 Instruction Types, operations on five main Data Types,
Memory-Mapped I/O, and 14 Addressing Modes. The five basic data types that can be operated on include
bits, binary-coded-decimal (BCD) digits (4 bits), bytes (8 bits), words (16 bits) and long-words (32 bits). Over
the various versions of M68K processors, the supported clock speeds include: 8, 10, 12.5, 16.67, 16, and
20 MHz. See Figure 8 for a block diagram of the M68K input and output signals. Note that this diagram
shows the M68K address bus ranging from A23-A1. Based on the version of M68K used, this will also be
represented at A23-A0 with the restriction that A0 is always driven high in 16-bit mode.

Figure 8 • M68K Input and Output Signals

VCC(2)
GND(2)

CLK

Processor
Status

MC6800
Peripheral
Control

System
Control

FC0
FC1
FC2

E
VMA
VPA

BERR
RESET
HALT

ADDRESS
BUS

A23-A1

DATA BUS D15-D0
AS

R/W
UDS
LDS
DTACK

BR
BG
BGACK

IPL0

Asynchronous
Bus Control

Bus
Arbitration
Control

Interrupt
Control

IPL1
IPL2
14

Designing a Core429-to-Host Processor System
For a visual representation of the M68K User Programmer’s Model, see Figure 9.

The resisters D0-D7 are used as data registers for byte, word, and long-word operations. The registers A0-
A7 are used as address registers that can be used for word and long-word operations. Each address
register holds a full 32-bit address. When an address register is used as a source operand, either the low-
order word or the entire long-word operand is used, depending on the operation size. When an address
register is used as the destination operand, the entire register is affected, regardless of the operation size.
If the operation size is word, operands are sign-extended to 32 bits before the operation is performed.
Note that A7 is the User Stack Pointer and is used to keep track of the address of the top of the user stack.
In the following section, the M68K 16-bit bus operation will be described in more detail. For a more
detailed description of the Motorola 68000 family of processors, refer to the M68000 Microprocessor
User’s Manual and the corresponding Programmer’s Reference Manual.

M68K 16-Bit Bus Operation
Data transfer between devices involves the M68K address bus A1 to A23, the data bus D0 to D15, and the
associated asynchronous bus control signals. The M68K address bus is a 23-bit, unidirectional, three-state
bus capable of addressing 16 MB of data. The data bus is a 16-bit, bidirectional, three-state bus that
provides the general purpose data path for M68K data transfer.

During a read cycle, the processor receives either one or two bytes of data from the peripheral device or
from memory. When the instruction specifies a word or a long-word operation, both the upper and lower
bytes are read, which requires assertion of both upper and lower data strobes (UDS and LDS respectively).
For a byte-sized operation, the M68K uses the internal A0 bit to determine which byte to read. If A0 is
zero, the upper data strobe is used, and if A0 is one, the lower data strobe is used. See Figure 10 on page
16 for a flowchart of the M68K word read cycle. See Figure 12 on page 17 for a read and write cycle
timing diagram.

Figure 9 • User Programmer’s Model

31 16 15 8 7 0
D0

D1

D2

D3
D4
D5

D6

D7

Eight
Data
Registers

A0

A1

A2
A3

A4

A5
A6

31 16 15 0

Seven
Address
Registers

A7
(USP)

User Stack
Pointer

Program
Counter

0
PC

CCR Status
Register

7 0

31
15

http://www.freescale.com/files/32bit/doc/ref_manual/MC68000UM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MC68000UM.pdf

Designing a Core429-to-Host Processor System
During a write cycle, the processor sends bytes of data to the peripheral device or to memory. When a
word operation is specified, both UDS and LDS are asserted and both bytes are written. For byte
operations, when the internal bit A0 is 0, UDS is asserted and when A0 is 1, LDS is asserted. See Figure 11
for a flowchart of the M68K word write cycle. See Figure 12 on page 17 for a read and write cycle timing
diagram.

For more information about M68K bus operation and timing, refer to the M68000 Microprocessor User’s
Manual.

Figure 10 • 68000 Word Read Cycle Flowchart

Figure 11 • 68000 Word Write Cycle Flowchart

BUS MASTER

ADDRESS THE DEVICE

1) Set R/W to READ
2) Place Function Code on FC2-FC0
3) Place Address on A23-A1
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS)
 and Lower Data Strobe (LDS)

SLAVE

ACQUIRE THE DATA

1) Latch Data
2) Negate UDS and LDS
3) Negate AS

START NEXT CYCLE

INPUT THE DATA

1) Decode Address
2) Place Data on D15-D0
3) Assert Data Transfer
 Acknowledge (DTACK)

TERMINATE THE CYCLE

1) Remove Data from D15-D0
2) Negate DTACK

BUS MASTER
ADDRESS THE DEVICE

1) Place Function Code on FC2-FC0
2) Place Address on A23-A1
3) Assert Address Strobe (AS)
4) Set R/W to Write
5) Place Data on D15-D0
6) Assert Upper Data Strobe (UDS)
 and Lower Data Strobe (LDS)

INPUT THE DATA

SLAVE

1) Decode Address
2) Store Data on D15-D0
3) Assert Data Transfer
 Acknowledge (DTACK)

TERMINATE OUTPUT TRANSFER

TERMINATE THE CYCLE

1) Negate UDS and LDS
2) Negate AS
3) Remove Data from D15-D0
4) Set R/W to Read

1) Negate DTACK

START NEXT CYCLE
16

http://www.freescale.com/files/32bit/doc/ref_manual/MC68000UM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MC68000UM.pdf

Designing a Core429-to-Host Processor System
Core429 Interfaced to a Motorola 68000
When interfacing Core429 to a M68K host processor, several considerations must taken into account. For
example, if using a 20 MHz M68K processor, it would be convenient to configure Core429 to also operate
at 20 MHz, which is one of its supported operating speeds (refer to Table 1 on page 2). Another Core429
configuration setting that should not be overlooked is the Data Bus Width. If using an M68K with a 16-bit
data bus, the Core429 CPU_DATA_WIDTH parameter, shown in Table 1 on page 2, should be set to 16 bits.
Although there are many configurations possible, interfacing Core429 and the M68K can be accomplished
by directly mapping the Core429 9-bit address to the relatively large M68K address bus. See Figure 13 for
an example Core429-M68K system.

Figure 12 • 68000 Read and Write Cycle Timing Diagram

Figure 13 • Core429 Interfaced to the M68K Bus (Address and Data Buses)

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7W W W W
CLK

FC2-FC0

A23-A1

AS

UDS

LDS

R/W

DTACK

D15-D8

D7-D0

READ WRITE 2 WAIT STATE READ

RxHi
RxLo
TxHi
TxLo

RxHi
RxLo
TxHi
TxLo

Up to 16
Tx and Rx
Channels

FPGA

Peripherals, I/O Devices, RAM, etc.

CPU I/F

Rx I/F

Rx I/F

M68K CPU Glue
Logic

M68K Address and Data Bus

Tx I/F

Tx I/F
.
.

.

.

Core429
17

Designing a Core429-to-Host Processor System
This interface requires that a 9-bit address space in the M68K memory map be reserved for communication
with Core429. For example, one could reserve addresses 0x00000000–0x000001FF for Core429
communication unless this address space is pre-reserved by the M68K. Note that if there are less than 8 Tx
and 8 Rx ARINC 429 channels implemented, the MSB of the 9-bit 429 address will always be zero. Refer to
Table 11 in the ARINC 429 Bus Interface datasheet for a more detailed explanation of this 9-bit address.

The approach described above also requires a small amount of glue logic to connect the Core429 CPU
Interface to the M68K address and data buses.

CPU Interface
The Core429 CPU Interface performs the same function as it does when interfacing to Core8051. However,
based on the variation of M68K used, the width of the cpu_dout and cpu_din signals will be different. See
Table 4 on page 7 for more information.

Glue Logic
In the Core429-M68K system depicted above, the glue logic block is used to interface the Core429 CPU
Interface to the M68K address and data bus. A block diagram of this logic can be seen in Figure 14.

Notes:

1. The following signals are active low: dtack, lds, uds, as, and w.

2. i = CPU_DATA_WIDTH – 1

3. CPU_DATA_WIDTH should match the width of the M68K data (assumed here to be 16 bits).

4. In 16-bit mode, the M68K address bus ranges from addr[23:1], otherwise it would be addr[23:0].
Figure 14 • Core429-M68K Glue Logic

RxHi
RxLo
TxHi
TxLo

RxHi
RxLo
TxHi
TxLo

as

r/w

uds

lds

dtack

data [15:0]

addr [23:1]

cpu_add [8:0]

cpu_din [i-1:0]

cpu_dout [i-1:0]

cpu_wen

cpu_ren

cpu_wait

Glue Logic

clk
reset_n

CLK_1MHZ

CPU I/F

Core429

.

.
16 Tx and Rx Max

.

.
Rx I/F

Tx I/F

Rx I/F

Tx I/F

FPGA

M68K CPU
18

http://www.actel.com/ipdocs/CoreARINC429_DS.pdf

Designing a Core429-to-Host Processor System
The glue logic implemented will be required to do the following as well as ensure the appropriate control
signals are implemented to account for Core429 timing:

Writing to Core429
1. Ensure that addr[23:1] is within the range of addresses reserved for Core429 communication, that

the AS input is a logic 0, and that R/W is 0 to indicate a write.

2. If UDS and LDS are logic 0 (along with R/W), then assert cpu_wen and assign addr[9:1] to
cpu_add[8:0] and data[15:0] to cpu_din.

3. Wait until cpu_wait is a logic 0.

4. Drive DTACK to a logic 0.

5. When UDS, LDS, and AS are de-asserted and R/W is no longer set to write, de-assert DTACK.

Reading from Core429
1. Ensure that R/W is set to read, that addr[23:1] is within the range of addresses reserved for Core429

communication, and that the AS input is a logic 0.

2. If UDS and LDS are logic 0 (with R/W set for read) then assert cpu_ren.

3. Assign addr[9:1] to cpu_add[8:0].

4. Wait until cpu_wait is a logic 0 and pass cpu_dout to data[15:0].

5. Drive DTACK to a logic 0.

6. When UDS, LDS, and AS are de-asserted, stop driving data[15:0] and de-assert DTACK.

Note: The above description is for a 16-bit read/write. For 8-bit operations (on Core429 control registers,
status registers, and label memory), only one of either UDS or LDS will be asserted at a time.

Refer to the "Hardware Implementation of Communication Protocol" section on page 8 for an example of
control signals and parameters such as IGNORE_WAIT and cpu_waitm that might be useful considerations
when implementing glue logic for a Core429-M68K system.

Another important consideration when designing a Core429-M68K system is the application and use of
this system. There are many applications that would be more efficiently implemented by using M68K
interrupts to indicate to the program in execution that an ARINC 429 event has occurred. In the Core8051
application discussed earlier, the ARINC 429 system was part of a terminal interface that continually
waited for a user to issue commands, via a keyboard, and the polling approach was an acceptable
solution. In fact, most applications benefit from the use of interrupts over the register polling approach
used with Core8051 above, as it frees up the host processor to run other applications. Therefore, to
completely specify the glue logic that would interface Core429 to a M68K processor, the interrupt lines
IPL0, IPL1, and IPL2 would have to be interfaced with Core429. Refer to the Motorola M68000
Microprocessor User’s Manual for an explanation of how to implement 68000 interrupts. Refer to the
ARINC 429 Bus Interface datasheet for information on Core429 interrupt generation.

Creating M68K Application Code to Communicate with Core429
There are several considerations that should be made when creating M68K application code for a
Core429-M68K system. The software protocol used is based upon the hardware connections made in the
glue logic discussed above. Whether or not the M68K assembly code is part of an Interrupt Subroutine
(ISR) is determined by the particular glue logic interface used.

Regardless of the hardware used, the Core429 internal registers and FIFOs can be more easily used if their
hex addresses are mapped to labels such as those described below.

* Channel 0 Rx Memory Map

DATA0_RX equ $00000000 ;Channel 0 Rx Data Register

CNTRL0_RX equ $00000004 ;Channel 0 Rx Control Register

STAT0_RX equ $00000008 ;Channel 0 Rx Status Register

LBL0_RX equ $0000000C ;Channel 0 Rx Label Memory
19

http://www.actel.com/ipdocs/CoreARINC429_DS.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MC68000UM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MC68000UM.pdf

Designing a Core429-to-Host Processor System
* Channel 0 Tx Memory Map

DATA0_TX equ $00000010 ;Channel 0 Tx Data Register

CNTRL0_TX equ $00000014 ;Channel 0 Tx Control Register

STAT0_TX equ $00000018 ;Channel 0 Tx Status Register

.

.

.

* Channel 15 Rx Memory Map

DATA0_RX equ $000001E0 ;Channel 15 Rx Data Register

CNTRL0_RX equ $000001E4 ;Channel 15 Rx Control Register

STAT0_RX equ $000001E8 ;Channel 15 Rx Status Register

LBL0_RX equ $000001EC ;Channel 15 Rx Label Memory

* Channel 15 Tx Memory Map

DATA0_TX equ $000001F0 ;Channel 15 Tx Data Register

CNTRL0_TX equ $000001F4 ;Channel 15 Tx Control Register

STAT0_TX equ $000001F8 ;Channel 15 Tx Status Register

It is useful to keep in mind that the ARINC 429 data width is 32 bits, which requires one long-word
operation to read/write. At the same time, operations involving the Core429 control and status registers,
and the label memory require byte-sized operations. However, depending on the version of M68K being
used, the data bus size can vary between 8, 16, and 32 bits. For M68K data bus widths less than 32 bits,
reads/writes performed on the Core429 Data Registers will have to be repeated until the full 32-bits of
data are written. This is controlled by the 9-bit CPU address which includes a map of the byte index for the
data being read or written. For a 16-bit data bus, the Core429 data width parameter should be set to 16
and word-sized operations should be used. This would result in Core429 expecting two successive writes or
reads for operations on ARINC 429 32-bit data. This is accomplished by writing to register 0 of the
corresponding Tx or Rx channel with the first 16 bits of ARINC 429 data sent to byte index 0 in the 9-bit
Core429 address. The last 16 bits of data are sent to the address used above, but incremented by 1 to
correspond to byte index 1. A similar argument applies for an 8-bit M68K in which 4 read/write byte-sized
operations are necessary.

Summary: Core429 Interfaced to the Motorola 68000
The previous discussion of the Motorola 68000 family of processors and its features, coupled with the
Core429-M68K system generalization, should serve as a good starting point for the design and
implementation of an ARINC 429 system using the Actel Core429 IP Core. The design considerations made
for the Actel Core429-Core8051 demonstration design provide a good example of some of the general
techniques that might be necessary to integrate Core429 into a complete system, and lead into the
discussion of interfacing Core429 to a M68K host processor. The Core429-M68K system is generalized such
that the examples and suggestions made can be relevant to a broad variety of system implementations.

Core429 Legacy Support
Core429 is software compatible with legacy devices and can be configured for legacy operation. This
mode of operation makes it easy to integrate the Actel Core429 into existing ARINC 429 systems. For more
information on Core429 Legacy Operation, refer to the ARINC 429 Bus Interface datasheet.
20

http://www.actel.com/ipdocs/CoreARINC429_DS.pdf

Designing a Core429-to-Host Processor System
Conclusion
The Actel ARINC 429 IP core (Core429) can be interfaced with other Actel IP, such as Core8051, to create an
ARINC 429 system within one FPGA. Furthermore, Core429 can also be interfaced to hard processors with
some of the basic design considerations presented in this application note. ARINC 429 systems using
Core429 require small amounts of glue logic external to both Core429 and the host processor. However,
this glue logic can be implemented alongside Core429 within one FPGA, which reduces the cost and space
of the board.

Related Documents

Datasheets
ARINC 429 Bus Interface

http://www.actel.com/ipdocs/CoreARINC429_DS.pdf

Core8051

http://www.actel.com/ipdocs/Core8051_DS.pdf

User’s Manuals
Motorola M68000 Microprocessor User’s Manual

http://www.freescale.com/files/32bit/doc/ref_manual/MC68000UM.pdf
21

http://www.actel.com/ipdocs/CoreARINC429_DS.pdf
http://www.actel.com/ipdocs/Core8051_DS.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MC68000UM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MC68000UM.pdf
http://www.actel.com/ipdocs/Core8051_DS.pdf
http://www.actel.com/ipdocs/CoreARINC429_DS.pdf

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
51900096-0/6.05

http://www.actel.com
http://www.jp.actel.com
http://www.actel.com.cn

	Designing a Core429-to-Host Processor System
	Introduction
	Figure 1 . General Core429 to Host Processor System

	ARINC 429 Overview
	Actel Core429
	Figure 2 . Core429 Block Diagram
	Table 1 . Core429 Hardware Parameters

	Core8051
	Figure 3 . Core8051 Block Diagram
	External SFR Interface
	Table 2 . External Special Function Register Interface
	Figure 4 . External SFR Read Cycle
	Figure 5 . External SFR Write Cycle

	Core429 Interfaced to Core8051
	Figure 6 . Core429-Core8051 Example System
	Table 3 . SFR Usage for Core429-Core8051 System
	CPU Interface
	Table 4 . CPU Interface Signals

	Glue Logic
	Figure 7 . Core429-Core8051 Glue Logic

	Hardware Implementation of Communication Protocol
	Creating 8051 Application Code to Communicate with Core429
	Summary: Core429 Interfaced to Core8051

	Motorola 68000 Family of Processors
	Figure 8 . M68K Input and Output Signals
	Figure 9 . User Programmer’s Model
	M68K 16-Bit Bus Operation
	Figure 10 . 68000 Word Read Cycle Flowchart
	Figure 11 . 68000 Word Write Cycle Flowchart
	Figure 12 . 68000 Read and Write Cycle Timing Diagram

	Core429 Interfaced to a Motorola 68000
	Figure 13 . Core429 Interfaced to the M68K Bus (Address and Data Buses)
	CPU Interface
	Glue Logic
	Figure 14 . Core429-M68K Glue Logic

	Creating M68K Application Code to Communicate with Core429
	Summary: Core429 Interfaced to the Motorola 68000

	Core429 Legacy Support
	Conclusion
	Related Documents
	Datasheets
	User’s Manuals

