
Application Note AC230
Device Serialization for ProASICPLUS® Devices

Introduction
This application note describes the creation of a design which incorporates a device-unique value that can
be used as a serialization ID or encryption key, and inserted into the design programming file during
production programming. For each device, single or multiple keys of any bit length can be implemented,
and these keys are accessible to the logic inside the device. These keys can be used for encryption
algorithms like AES and TDES, and for design revision and serial number identification. The ability to
securely create unique device serialization can safeguard against counterfeit devices and uses. ProASICPLUS

device serialization, combined with advanced security features such as FlashLock™ or Permanent
FlashLock, enables very security-conscious designs.

This example includes a 32-bit device serialization application using the ProASICPLUS evaluation board.
Download the Libero® Integrated Design Environment (IDE) project design files from
http://www.actel.com/documents/DeviceSerialization.zip.

Required Software and Hardware for this Demo Project
• ActivePerl (http://www.activestate.com)

• ProASICPLUS Starter Kit (Actel Part Number APA-EVAL-KIT)

ProASICPLUS Family
Unlike SRAM-based FPGAs that require external configuration devices, Actel Flash-based ProASICPLUS

devices are nonvolatile, single-chip FPGAs that are live at power-up, and have the highest security
standard in the market. Design information is stored in nonvolatile memory cells, which are effectively
small capacitors. Any physical deconstruction of the device will disrupt the programmed data. With this
advantage, consumer electronics, automotive applications, and industrial products that require internal
serial number identification, encryption, and/or decryption can safely store this information within the
device. This will enhance product communication, enable subscription based services, ease upgrades, and
facilitate maintenance over the life span of the product.

ProASICPLUS Evaluation Board Overview
The ProASICPLUS evaluation board has on-board voltage regulation, enabling I/O voltages (VDDP) to be set
to either 2.5 V or 3.3 V. The system clock can be generated using the on-board oscillator and ProASICPLUS

PLLs. Eight LEDs and four switches provide simple inputs and outputs to the system. Prototyping headers
connect to all the ProASICPLUS device I/Os, enabling components to be easily added to the evaluation
board. Finally, the board is equipped with programming headers to support ISP programming using
FlashPro, FlashPro Lite, or Silicon Sculptor II. Actel supplies these evaluation boards with an APA075-PQ208
or APA300-PQ208 soldered on, or as a socketed board without a ProASICPLUS chip. Either an APA075 or an
APA300 device can be used for the example design.

Implementation Description

Overview
In order to store the unique ID or key information in a ProASICPLUS device, a key/serialization HDL logic
core must be instantiated in the design. In the serialization core, the logic will typically be buffer macros,
"BFR", or multiplexers, "MUX2H". These macros are used to store the actual data of the key information.
August 2005 1
© 2005 Actel Corporation

http://www.activestate.com
http://www.actel.com/documents/DeviceSerialization.zip

Device Serialization for ProASICPLUS Devices
The normal design flow is followed to generate a programming file (STAPL file). This STAPL file will have
the default key value stored in the design. In order to change the default value stored in the STAPL file, a
GCF file which contains the physical location of each stored bit on the device is exported. With the original
STAPL file and exported GCF files, a Perl script is used to create a new template STAPL file that contains a
variable field for each key value (Figure 1).

Step 1 – Design Creation
Create your design using your regular design flow and connect the output of the KeyCore ("eeprom.vhd –
Keycore" section on page 4) to the design. In this reference design, the output of the KeyCore is
connected to registers for an LED display. Specific naming conventions must be followed in the design
entry so that the Perl script can identify the KeyCore and process it accordingly. The "UniqueKey.vhd",
"eeprom.vhd – Keycore", and "GCF Constraint File" sections show the corresponding design files; Figure 2
on page 5 shows the RTL view of this sample design.

For the KeyCore, the instance name must begin with the keyword "DECRYPT", and the name of the BFR
instance within the KeyCore must begin with "b", followed by numbers.

Normally, the compile stage in Designer removes all redundant buffers and inputs connected to ground.
To instruct the place-and-route tool to not remove KeyCore from the design, create a ProASIC Constraint
File (GCF) entry with the dont_touch constraint. The wildcard character (*) can be used to preserve all sub-
blocks under the named block. If this constraint is used, any instances (including buffers and inverters
connected to global nets, promoted global nets, and spine nets) stay intact. For this reference design, I/O
placement constraints are also included to assign the pinout to the designated location of the ProASICPLUS

Evaluation Board.

Syntax: dont_touch hier_instance_name [, hier_instance_name …];

Example: dont_touch DECRYPT_ONE/*;

Figure 1 • Overview of the Device Serialization Design Flow

KeyGen
PERL Script

<Design_name>.STP or

KeyGen Core Logic
<Design_name_KEY>.V or .VHD

Libero IDE

DesignerSynplify

<Design_name_KEY >.GCF

Microprocessor
Programming

STAPL Player or DirectC

FlashPro
FlashPro Lite

Silicon Sculptor II
and

Programming
Software

Final STAPL File
With Key Values

Template
STAPL File

Key Information

000000AA,
000000BB,
000000CC

.

.

Key Information

000000AA,
000000BB,
000000CC

.

.

Template
STAPL File

Verilog or VHDL Design
<Design_Name.V or .VHD>

keyedit4_all_new.pl

000000CC

000000AA

000000AA
2

Device Serialization for ProASICPLUS Devices
For this demo design, Aclr is assigned to pin 55 using the GCF constraint, which is connected to the
mechanical switch, SW1, on the evaluation board. When SW1 is closed (logic '1'), the output of the
registers is cleared and thus all the LEDs are turned off. When SW1 is opened (logic '0'), the lower 8 bits of
the KeyCore are displayed on the LEDs of the evaluation board, with b0 at DS8, b1 at DS7, and so on, with
b8 at DS0. Though this reference design uses a 32-bit KeyCore, the defined KeyCore can be any length,
depending upon application requirements.

Syntax: set_io "pin_number" "netName/portName";

Example: set_io "55" "Aclr";

UniqueKey.vhd
UniqueKey.vhd

LIBRARY IEEE;

USE ieee.std_logic_1164.all;

ENTITY UniqueKey IS

 PORT (

 Clk :IN STD_LOGIC;

 Aclr :IN STD_LOGIC;

 Output :OUT std_logic_vector(31 DOWNTO 0));

END UniqueKey;

ARCHITECTURE Behavior OF UniqueKey IS

 COMPONENT eeprom

 PORT (data : OUT std_logic_vector(31 DOWNTO 0));

 END COMPONENT;

SIGNAL reg_data : std_logic_vector(31 DOWNTO 0);

SIGNAL output_data : std_logic_vector(31 DOWNTO 0);

BEGIN

 DECRYPT_ONE: eeprom PORT MAP(data => reg_data);

 PROCESS(Clk, Aclr)

 BEGIN

 IF Aclr = '1' THEN

 Output_data <= (OTHERS => '0');

 ELSIF Clk'EVENT AND Clk = '1' THEN

 output_data <= reg_data;

 END IF;

 END PROCESS;

Output <= output_data;

END Behavior;
3

Device Serialization for ProASICPLUS Devices
eeprom.vhd – Keycore
-- eeprom.vhd

LIBRARY IEEE;

USE ieee.std_logic_1164.all;

ENTITY eeprom IS

 PORT (

 data : OUT STD_LOGIC_VECTOR(31 DOWNTO 0));

END eeprom;

ARCHITECTURE behavior OF eeprom IS

 COMPONENT BFR

 PORT(A : in std_logic;

 Y : out std_logic);

 END COMPONENT;

BEGIN

 b0 : BFR PORT MAP (A => '0',Y => data(0));

 b1 : BFR PORT MAP (A => '0',Y => data(1));

 b2 : BFR PORT MAP (A => '0',Y => data(2));

 b3 : BFR PORT MAP (A => '0',Y => data(3));

 …

 …

 …

 b30 : BFR PORT MAP (A => '0',Y => data(30));

 b31 : BFR PORT MAP (A => '0',Y => data(31));

END behavior;

GCF Constraint File
dont_touch DECRYPT_ONE/*;

//

// I/O constraints

//Output to LED DS8 to DS1

set_io "96" "Output(0)";

set_io "95" "Output(1)";

set_io "94" "Output(2)";

set_io "93" "Output(3)";

set_io "92" "Output(4)";

set_io "91" "Output(5)";

set_io "90" "Output(6)";
4

Device Serialization for ProASICPLUS Devices
set_io "87" "Output(7)";

//Other I/O constraints. Refer to the design file

…

…

// SW1 for the ACLR

set_io "55" "Aclr";

set_io "24" "Clk";

Step 2 – Synthesis and Simulation
There are no changes to either synthesis or simulation. The default value of the KeyCore may be changed
to perform the simulation.

Step 3 – Designer Place-and-Route
Import the ProASIC constraint file (GCF file) that was created in step 1 into Designer. As mentioned in the
previous section, this constraint file must be included as a source input file to preserve the KeyCore logic
as well as I/O pin assignment.

Complete the Compile, Layout, and Timing Analysis steps to generate the programming file in STAPL
format, as BIT format is not supported for device serialization applications. Next, export the constraint file
that includes the KeyCore buffer location.

In this example, the location of the buffers from the KeyCore is assigned by the place-and-route tools. You
can manually place the buffers if needed, either by using ChipPlanner or by adding a set_location GCF
constraint.

To export the constraint file that contains the KeyCore buffer location, go to File > Export > Constraint
Files (Figure 3 on page 6). Open up the exported constraint file using any text editor and replace all
occurrences of set_initial_location with set_location.

Figure 2 • RTL View of UniqueKey.vhd

eeprom

Output[31:0]

Output[31:0]

Clk

(31:0) (31:0)
D[31:0] Q[31:0]

R

Aclr

DECRPT_ONE

data[31:0] (31:0) (31:0)
5

Device Serialization for ProASICPLUS Devices
Step 4 – Run the script to generate the template STAPL file
The original STAPL and GCF constraint files exported from Designer are the input files for the KeyGen Perl
script (keyedit4_all_new.pl). The KeyGen Perl script uses the input files to generate the template STAPL
file, which contains a key variable field to store user defined key values.

In order to run the Perl script, a Perl script interpreter is required. This can be downloaded from various
open source websites. The Perl script interpreter used in this demo design is ActivePerl (standard
distribution) and it can be downloaded from http://www.activestate.com/Products/ActivePerl/.

Syntax: keyedit4_all_new.pl <gcf> <original STAPL> <new STAPL>

Example: keyedit4_all_new.pl UniqueKey.gcf UniqueKey.stp Final.stp

Opening the newly generated template STAPL file using a text editor will show additional instructions and
variable fields that are added for the purpose of this application. The key variable field in this STAPL file is
named DECRYPT_ONE, with a default value set to zero.

BOOLEAN DECRYPT_ONE[32]= $00000000;

For this example, change the default value as follows:

BOOLEAN DECRYPT_ONE[32]= $000000AA;

At the end of the STAPL file, the CRC value must be changed to 0 in order to disable the CRC check. Note
that the default value for the key is always set to zero and the 32-bit key value is represented in hex. By
modifying the key variable in the STAPL file, a unique identifier can be set for each device. Scripts and/or
software applications can be used to dynamically modify the key value, enabling custom key generation.
In microprocessor applications, the STAPL file should be loaded into memory so that the key value can be
changed dynamically according to the application needs.

Figure 3 • Export GCF File
6

http://www.activestate.com/Products/ActivePerl/

Device Serialization for ProASICPLUS Devices
Step 5 – Program the design onto the device
The STAPL file containing the specified key value is programmed into the ProASICPLUS device using
standard methodologies. This example uses FlashPro Programming software. Refer to the FlashPro User's
Guide for more information.

After successfully programming the device, the lower eight bits of the key value will be displayed on the
LEDs (DS1 to DS8). Ensure the JP4 is installed for the clock source of the design. Any text editor can be
used to modify the key value variable in the STAPL file in this example. Reprogramming the device will
illustrate these changes.

Conclusion
The Actel ProASICPLUS family has been built on a secure flash fabric, and it offers many advanced security
features including device serialization, FlashLock, and Permanent Lock. When used in combination, these
offer a very robust, secure, programmable solution. This application note has detailed how to implement
device serialization programming techniques enabling each device to have unique key values stored
within it. This can be done without modifying the existing layout of the design. The key values can be of
any length and are accessible to the internal logic. Any application that requires unique key information
can take advantage of this feature.

Appendix

Related Documents

Datasheets
ProASICPLUS Flash Family FPGAs

http://www.actel.com/documents/ProASICPlus_DS.pdf

User’s Guides
ProASICPLUS Starter Kit User's Guide and Tutorial

http://www.actel.com/documents/PAstartkit_UG.pdf

Designer User's Guide

http://www.actel.com/documents/designer_UG.pdf

FlashPro User's Guide

http://www.actel.com/documents/flashpro_UG.pdf

File Name Description

UniqueKey.vhd This VHDL file contains a simple example that displays the lower 8 bits of a 32-bit key on the LEDs
of the ProASICPLUS evaluation board.

eeprom.vhd This VHDL file contains the logic that is used to store the key information. This KeyCore is
implemented using a buffer macro, BFR, with its input tied to GND, which gives the initial value of
the KeyCore to zero.

UniqueKey_IO.gcf Pin assignment and don't_touch ProASIC constraint file

UniqueKey.gcf ProASIC constraint file exported from Designer that details the key core buffer location

UniqueKey.stp Original STAPL file

Keyedit4_all_new.pl Perl script used to create a template STAPL file that can be used for key entry

Syntax (Case Sensitive):

keyedit4_all_new.pl <gcf> <original STAPL> <new STAPL>

UniqueKey_final.stp Final template STAPL file which contains the algorithm and variable field for key entry
7

http://www.actel.com/documents/ProASICPlus_DS.pdf
http://www.actel.com/documents/ProASICPlus_DS.pdf
http://www.actel.com/documents/PAstartkit_UG.pdf
http://www.actel.com/documents/PAstartkit_UG.pdf
http://www.actel.com/documents/designer_UG.pdf
http://www.actel.com/documents/flashpro_UG.pdf
http://www.actel.com/documents/flashpro_UG.pdf
http://www.actel.com/documents/designer_UG.pdf
http://www.actel.com/documents/flashpro_UG.pdf
http://www.actel.com/documents/flashpro_UG.pdf
http://www.actel.com/documents/ProASICPlus_DS.pdf
http://www.actel.com/documents/PAstartkit_UG.pdf

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
51900108-0/8.05

http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com

	Device Serialization for ProASICPLUS® Devices
	Introduction
	Required Software and Hardware for this Demo Project
	ProASICPLUS Family
	ProASICPLUS Evaluation Board Overview

	Implementation Description
	Overview
	Figure 1 . Overview of the Device Serialization Design Flow

	Step 1 - Design Creation
	Figure 2 . RTL View of UniqueKey.vhd

	Step 2 - Synthesis and Simulation
	Step 3 - Designer Place-and-Route
	Figure 3 . Export GCF File

	Step 4 - Run the script to generate the template STAPL file

	Step 5 - Program the design onto the device
	Conclusion
	Appendix
	Related Documents
	Datasheets
	User’s Guides

