Lower Power Operation with the Fusion Device

Table of Contents

Introduction .. 1
Multiple Operation Modes 2
 Fusion Fabric 3
 Real-Time Counter (RTC) 3
 NGMUX ... 3
Summary .. 3
List of Changes 4

Introduction

Flash-based Fusion devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. With Fusion devices, there is no power-on current surge and no high current transition, both of which occur on many field programmable gate arrays (FPGAs). Fusion devices also have low dynamic power consumption and support both low power Standby mode and very low power Sleep mode, offering further power savings.
Multiple Operation Modes

In Microsemi Fusion® devices, the user can implement the different operation modes (Active Normal mode, Active Low Frequency mode, Standby mode, and Sleep mode) by configuring and controlling the following major functional blocks: FPGA fabric, real-time counter (RTC), voltage regulator (VR), and no glitch MUX (NGMUX).

Table 1 shows the different operation modes controlled by the combinations of the major functional blocks inside the Fusion device.

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Fabric</th>
<th>RTC</th>
<th>NGMUX</th>
<th>Wake Up Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Normal</td>
<td>On</td>
<td>On</td>
<td>Hi-Freq</td>
<td>N/A</td>
</tr>
<tr>
<td>Active Low Power</td>
<td>On</td>
<td>On</td>
<td>Lo-Freq</td>
<td>User logic</td>
</tr>
<tr>
<td>Standby</td>
<td>Off</td>
<td>On</td>
<td>X</td>
<td>PUB pad, RTC match</td>
</tr>
<tr>
<td>Sleep</td>
<td>Off</td>
<td>Off</td>
<td>X</td>
<td>PUB pad</td>
</tr>
</tbody>
</table>

Note: In all these operation modes, the 3.3 V analog supply is always on.
Fusion Fabric
The Fusion fabric can turn-off the 1.5 V voltage regulator to initiate Standby mode with a logic function and/or soft microcontroller (MCU) core. When the voltage regulator powers down the FPGA core will be turned-off, requiring a signal external to the FPGA core to power-up the voltage regulator. While in Standby mode, the device consume less than 200 µA, or 3.3 × 200 µW.

Real-Time Counter (RTC)
The RTC is running off the 3.3 V analog supply while the Fusion fabric could be powered by the internal 1.5 V voltage regulator, routed external to the chip.

The RTC can be configured to power-up the FPGA fabric at a specific time or periodically. The user logic or a soft microcontroller within the FPGA fabric portion of the Fusion device can be programmed to read and/or modify the registers in the RTC.

If the RTC is running while the Fusion fabric is powered down (Standby mode), RTC generates a turn-on instruction to the 1.5 V voltage regulator when a preset match value (that is, 2 ms) has met in the RTC. Fusion fabric is powered up, once 1.5 V voltage regulator is live and Fusion device is in Active mode.

The 3.3 V supply must be valid and the crystal oscillator (nominally 32.768 kHz) must be enabled for self-time wake-up or restart operation.

Besides the turn-on instruction from RTC, the 1.5 V voltage regulator can also be turned on by an external pad, or PUB pad. After the PUB pad is grounded temporarily, then released, the 1.5 V voltage regulator is turned-on; therefore the fabric is up and running.

The FPGA fabric portion of the Fusion device must be powered-up and active at least once to write to the various registers within the RTC to initialize them for the users application. The user sets up the RTC by configuring the RTC from the Microsemi SmartGen tools, implementing custom logic, or programming a soft microcontroller.

The user can bring the Fusion device into Sleep mode if the user powers down the fabric and also turns-off the RTC by disabling the crystal oscillator. The Sleep mode consumes very low power of less than 10 µA. The user can also wake up the device by grounding the PUB pad temporarily. This powers up the 1.5 V voltage regulator and the Fusion fabric. The Fusion fabric logic can enable the crystal oscillator which turns-on the RTC, therefore the Fusion device is in Active mode.

NGMUX
When the Fusion device runs at Active mode, the user can choose to run the application in a Low Frequency mode for power consumption considerations. The user can instantiate an NGMUX to switch between high frequency clock and low frequency clock based on any preset internal conditions or external events. This way, the Fusion device can work in the Active Normal mode when high frequency performance is needed or work in the Active Low Power mode, when low power consumption is desired at a given time frame.

Summary
Microsemi Fusion devices are designed to operate with minimum power consumption. Supporting a wide range of power modes, Fusion can be configured to reduce power consumption in all operating conditions. These easy to use features enable the user to develop the system in a timely fashion and also to update the designs conveniently.
List of Changes

The following table shows important changes made in this document for each revision.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision 3</td>
<td>Non-technical updates.</td>
<td>N/A</td>
</tr>
<tr>
<td>(December 2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revision 2</td>
<td>The low power modes of operation were updated and clarified.</td>
<td>N/A</td>
</tr>
<tr>
<td>(June 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revision 1</td>
<td>Figure 1 was updated.</td>
<td>2</td>
</tr>
<tr>
<td>(December 2005)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: *The part number is located on the last page of the document.*
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world’s standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.