POWER SUPPLY CIRCUITS HEAD FOR SIMPLICITY BY INTEGRATION

Stan Dendinger
Manager, Advanced Product Development
Silicon General, Inc.

SUMMARY

The benefits obtained from switching power supplies have become universally recognized by power systems engineers in the past several years. However, there has been a simultaneous realization that, too frequently, gains in efficiency and reductions in weight have been accompanied by an escalating component count and a decrease in reliability and predictability of performance. To effectively solve these problems, integrated circuit manufacturers have recently designed new products specifically for switchers. These devices offer the proven advantages of monolithic technology: compactness, accuracy, reproducibility, higher performance through reduction of parasitics, and the economies of mass production.

This paper reviews the circuit simplifications made possible by these specialized devices, as typified by the first practical switching regulator control chip, the SG1524 Pulse Width Modulator, and later by other circuits such as the ZN1066, the TL494A, and the MC3420. A second potential area of power supply simplification is the interface between the control circuit and the high power switching transistors. Two specialized driver circuits, the SG1627 and the SG1629 are described which provide high-level turn-on and turn-off signals for efficient switching. Finally, some second and third generation pulse width modulator designs will be discussed. These later devices, designated the SG1525/27 series and the SG1526, offer even higher levels of control function integration compared to earlier designs. The SG1526 in particular integrates a number of protective control features which substantially increase the reliability of the power semiconductors in “real world” switching power supplies.

HISTORICAL PERSPECTIVE

A basic pulse width modulated switching power supply requires only four control elements: a precision reference voltage, a ramp oscillator, an error amplifier, and a differential voltage comparator. Each of these elements has been available in integrated circuit form for years, with the well-established benefits of reduced physical size, greater reliability, and increased performance. In light of this background, the development of a single monolithic circuit for switching power supply control appears to be a logical progression.

One of the first devices available to power supply designers was the SG1524 Pulse Width Modulator from Silicon General. This circuit, shown in Figure 1, contained all of the basic control elements required for a switching regulator. In addition to providing the four basic control elements, the device allowed for push-pull configurations by inclusion of a toggle flip-flop and dual alternately-gated output transistors. Finally, provision was made for some abnormal power supply operating conditions. An analog current limit circuit and a digital shutdown control were included to provide protection against short circuits and other load faults.

Figure 1. SG1524B Pulse Width Modulator Block Diagram
Despite this level of complexity, the device was easy to understand and was quite flexible. As a result, since its introduction in 1976, the SG1524 has been very widely accepted within the power supply industry, finding its way into a majority of new designs, including exotic applications in communications satellites and the space shuttle program.

POWER DRIVER INTEGRATION - SG1627

As experience was gained in applying the SG1524, it became apparent that there was a gap between output power capabilities of the control integrated circuit and the drive levels required by the power semiconductors. Two areas were identified within most supply configurations where specialized driver functions could be successfully implemented with monolithic technology.

An integrated Source/Sink Driver

The first design is a dual 500mA totem pole driver with externally programmable current sourcing. Both inverting and noninverting logic inputs are available, and may be driven by either an open-collector control circuit or (with a diode) by TTL logic. Connections to the high current output transistors are brought out separately, allowing maximum flexibility when interfacing with standard bipolar transistors, the new VMOS power FET's, and transformers.

Power Bipolar Drive is accomplished with the connection shown in Figure 3. R2 controls the magnitude of forward base drive, and is selected to develop a voltage drop of one VBE when the output Darlington pair is sourcing 350mA. At the same time R3 develops a 3.5 volt differential, which is stored by C1. During turn-off, sink transistor Q9 saturates, pulling the output terminal to ground. The emitter-base junction becomes reverse biased from a low impedance source, allowing stored base charge to be rapidly extracted.

Power FET Drive is possible with a minimum of external components. The source/sink capability of the SG1627, together with its fast edge speeds, makes it an ideal driver for power MOSFET devices. Although MOSFETs have negligible DC gate current, input capacitances of 800-1000pF exist in the higher current units. Since this capacitance must be charged and discharged by 10 or 12 volts in 10 to 20 nanoseconds, high peak currents are required. At switching frequencies of 200kHz, considerable dynamic power dissipation is required of the drive circuit to obtain the high speed switching benefits of these devices.

Transformer Drive is the third interface area where an integrated power driver can eliminate components. Most bi-phase transformer drive circuits using grounded emitter transistors require additional components to reset the magnetic flux to zero every half cycle. This is necessary to insure that no net DC excitation is applied to the transformer primary over many cycles of operation, thereby avoiding core saturation. These additional
components may include extra transformer windings, clamp
diodes, and anti-phase driven clamp resistors. A much less
complex circuit can be achieved with the SG1627, as shown in
Figure 5.

![Figure 5. The Low Impedence of the SG1627 in Both On
and Off States Allows Direct Transformer Drive With a
Minimum of External Components](image)

In this circuit the transformer primary voltage-driven by the
source/sink output structure of the SG1627. Core reset to zero
occurs automatically during deadtime, when both ends of the
primary winding are switched to ground. Resistors R_1 and R_2
serve as over-current protection for the driver in case of control
malfunction or onset of core saturation due to load faults on the
secondary. No center tap is required, resulting in elimination of
winding balance problems.

AN INTEGRATED FLOATING SWITCH DRIVER - SG1629

The second interface considered was that between the sec-
dondary winding of a drive transformer and the base-emitter junction
of an NPN power transistor. This configuration is frequently
found in off-line converters, where a half or full bridge design is
chosen because of the high input supply voltage. In this case the
design problem consisted of providing controlled forward base
drive to the power device during the positive polarity of the
secondary voltage, and a fast negative peak current for rapid
switch-off during the negative portion of the cycle. No power
other than that provided by the transformer secondary should be
required, so that the power device can be floated above ground
by several hundred volts.

The circuit shown in Figure 6 is a modification of a discrete design
developed by Pete Wood while at TRW semiconductors¹. During
a positive cycle, base current flows from the drive transformer
secondary winding through a source transistor which can be
programmed for current limiting. A center tap on the secondary
completes the circuit for returning base drive current. At the
same time, external storage capacitor C_s is charged to a negative
value through the high current rectifier diode in the switch driver.
When the secondary voltage is driven to zero, the rectifier diode
becomes reverse biased. The resulting positive drive turns on
the Darlington sink transistors, which reverse-biases the base-
emitter junction of the power device through the storage capaci-
tor. A large negative current spike results, minimizing the turn-
off time and power loss in the switching transistors.

![Figure 6. SG1629 Floating Switch Driver Block Diagram](image)

As the detailed schematic of the SG1629 in Figure 7 indicated,
in addition to the high current Darlington source and sink transistors the circuit also contains several gating options for the
sink or turn-off section of the driver. Source transistors Q_3-Q_4
and sink transistors Q_6-Q_7 are designed to 2 Amp collector
currents. Base drive to the source is provided by R_6, while Q_5
provides current limiting. On the sink side of the circuit, base
drive to Q_6-Q_7 is normally provided by a resistor connected to
Pin 3. Q_1 senses the polarity of the input voltage and gates the
source transistor off between each drive current pulse.

![Figure 7. SG1629 Floating Switch Driver Schematic Diagram](image)
This action allows the external storage capacitor to be charged even at very low duty cycles, since the discharge current during the "off" portion of the drive cycle becomes negligible. The sink gate input is used when the risetime of base turn-on current is important, and transformer inductance is a significant limiting factor. Methods for using this feature are found in the SG1629 application note[2].

Power Drive Summary

Two integrated power drive circuits designed specifically for use in switch-mode power supplies have been reviewed. These devices provide the necessary power gain between a complex low-power control circuit and high voltage, high current switching semiconductors, while offering greater performance in a reduced volume compared to discrete component design. Monolithic technology will provide even higher levels of voltage and current handling capability in the future as soon as semiconductor packaging technology solves the problem of providing large pin-outs in a high power dissipation package.

A SECOND GENERATION PULSE WIDTH MODULATOR CONTROL CIRCUIT - SG1525A/SG1527A

As switch-mode power supplies gained in popularity, a demand was made by power supply design engineers for an integrated circuit that offered all of the functions of a control device and the interface capabilities of a power driver. The SG1525A series of pulse width modulators represents a combination control IC and power drive. The control section is based upon the time-proven architecture of the SG1524, while the output stage of this device combines many of the elements of the previously discussed 1627 power driver. At the same time, improvements were made within the architecture of the control chip to include even more functions than were originally available on the 1524.

The internal reference regulator on the chip is trimmed to an accuracy of ±1% compared to the original ±4%. Secondly, the chip now contains on-chip shutdown and soft start circuitry. The only external components required are an external timing capacitor. A third area of improvement is in the common mode range of the error amplifier. By designing the error amplifier so the common mode range now includes the 5.1V of the reference, a reference divider network is no longer necessary, thus eliminating two external resistors. The oscillator circuitry has been redesigned to make deadtime control easier and multiple device synchronization easier. Finally, the output stage has been redesigned so that, instead of a single transistor which is periodically turned on for pulse width modulation, an output source/sink driver or totem-pole type design is used. Since this particular driver has the characteristic of low impedance in both the on and off states, it becomes much easier now to interface the control circuits with external power transistors including standard bipolar junction devices, the new power FETs, and also drive transformers.

The new family of regulating pulse width modulators is designated the SG1525A/1527A series of devices, and the device block diagram is illustrated in Figure 8.

![Figure 8. Block Diagram of a "Second Generation" Pulse Width Modulator Family: The SG1525A/1527A Series](image-url)}
Soft Start Circuit

The equivalent of the SG1525A/1527A soft start circuitry is shown in Figure 9. An external capacitor $C_{\text{SOFTSTART}}$ provides the timing element for the soft start cycle. This capacitor is charged via a 50 microamp current source internal to the chip. The P.W.M. comparator has two inverting inputs, and the more negative of the two voltages determines the duty cycle. During undervoltage conditions on the V_{IN} line, current is forced through the two diodes in Q1’s base circuit. A voltage of approximately 1 V$_{\text{BE}}$ appears across Q1’s emitter resistor, resulting in a collector current of approximately 100 µA. Since the charging current available is only 50 µA, the soft start capacitor is held in a discharged state. Because the voltage at pin 8 is 0, the PWM comparator ignores the signal from the error amplifier, and zero duty cycle is obtained. When the controller supply rises to 8 volts the discharge current is turned off, and the voltage on pin 8 rise linearly, resulting in gradually increasing duty cycle. Eventually the capacitor charges up very close to the reference voltage and the duty cycle is controlled by the error amplifier. If the voltage on the shutdown pin is raised above ±1.5 volts the capacitor is slowly discharged at the same rate it is normally charged.

Oscillator Description

The circuit for generating of the timing ramp waveform is shown in Figure 10. The timing capacitor C_{T} receives a constant charge current from the compound current mirror formed by Q1 and Q2. The R_{T} terminal voltage is two V$_{\text{BE}}$ less than the reference voltage, so that a resistor tied from Pin 6 to ground sets up the charging current for C_{T}. Transistors Q5 through Q10 form a voltage comparator which constantly compares the voltage at C_{T} to either a +3.3V or +1V reference, depending on the state of the comparator. The timing capacitor C_{T} is discharged via the Darlington formed by Q3 and Q4.

Output Driver

A simplified schematic of the output gating and the power output stage of the 1525A is shown in Figure 11. Transistors Q1, Q2, and Q3, together with a 500 microamp current source, from a logical NOR gate where the pulse width modulation signal from the pulse width modulation comparator, the deadtime pulse from the oscillator, and one side of the toggle flip-flop are combined. Q4 is an amplifier with active load which inverts the output signal from the NOR gate. Q5, in turn, acts as the phase-splitter transistor for the push-pull output. When Q5 is on, its emitter current drives the base of Q8, holding the output low. At the same time, the collector of Q5 is also low, thereby back-biasing Q6 and Q7, the output pull-up devices. When Q5 turns off, its collector voltage rises, turning on the output Darlington. At the same time, Q8 turns off and the output terminal is pulled up towards the V_{CC} supply.
Diode D1 acts to protect the base emitter junction of the upper Darlington against reverse breakdown. D2 acts to provide extra base drive current to Q8 during turn off. If a capacitive load is present on the output terminal, D2 will turn on and the extra collector current of Q5 will then be routed to Q8 so that Q8 in turn will be turned on harder, thus discharging the output capacitance and enabling the output to fall rapidly to zero.

The source and sink transistors Q7 and Q8 in this driver are designed to provide more than 100mA of current handling capability. In most cases, the full current capability will not be used in a steady state condition to drive an external load but rather the peak current capability can be used to provide rapid charging of external capacitance loads, thereby providing very fast rise and fall times at the output driver.

Figures 12 and 13 illustrate the speed capabilities of the output drivers when driving power MOSFETs, in this case a pair of Siliconix VN64GA devices. The upper traces show the driver output voltage swing for a collector supply of +12 volts. The lower waveforms are the 0-5amp drain currents of the FETs. Switching times of 100 nanoseconds were achieved by driving the gates directly from the totem pole outputs, and by limiting peak currents to 200mA with a 62ohm resistor at the +VC terminal. Faster times can be obtained with the higher current SG1627 Power Driver.

The ultimate frequency capabilities of the output drivers as a function of ambient temperature for a given VMOS load is shown in Figure 14. For this graph, a +Vc supply of 12 volts was assumed. An effective power FET input capacitance of 1000pF on each driver was also assumed. A thermocouple attached to the ceramic dual-in-line package allowed junction temperature to be calculated based on a worst case θjc of 60°C/W and a θja of 100°C/W maximum.
For ambient temperatures below 90°C, the maximum frequency allowable is determined by the maximum possible oscillator frequency of 400kHz. Above 90°C operating frequency and dynamic power dissipation must be reduced to keep the junction temperature from exceeding +150°C. Different supply voltages, capacitive loads, and heat sinking will result in other temperature limits.

It will be noticed in comparing the block diagram of the SG1525A/1527A family to that of the SG1524 that there is no provision made directly for current limiting on the 1525A/1527A. The reason for this is that this chip is designed to interface with a new output supervisory circuit, the SG1543. This device has an extra comparator with adjustable offset which can be used for providing the current limit function in conjunction with the SG1525A/1527A. Additionally, this particular chip has the capability for providing under and overvoltage protection for the remainder of the power supply.

A THIRD GENERATION SWITCHING POWER SUPPLY CONTROL CIRCUIT - SG1526

- Supply operation to 40 volts
- Reference trimmed to ±1%
- Sawtooth oscillator with deadband control
- PWM comparator with hysteresis
- Undervoltage lockout
- Programmable soft start
- Wide error amp common mode range
- Wide current limit common mode range
- Two modes of digital current limiting
- Double pulse suppression logic
- Single pulse metering logic
- Symmetry correction capability
- TTL/CMOS compatible logic
- Dual 100mA source/sink output drivers

Table 1. Desirable Features of a High-Performance Pulse Width Modulator

An ideal circuit for switching power supplies should include not only the elements necessary for normal pulse modulation operation, but also the full range of abnormal operations. Ideally, the circuit should contain as many protective features as possible for the power semiconductors. If a table of parameters were constructed for such a device, it would look much like that shown in Table 1. Analysis of the features in the table would show that most of the new features are control related and are therefore ideally suited for inclusion in an integrated circuit, where a great deal of complexity can be easily compressed into a very small area. Just such a device has been designed by Silicon General, and the block diagram of that device is shown in Figure 15.

As can be seen, the four basic elements of the pulse modulator are present: a reference regulator, error amplifier, sawtooth oscillator, and a pulse width modulation comparator. Of particular interest are some new features in the block diagram: an undervoltage lockout, soft start circuitry, digital current limit comparator and digital signal processing logic between the pulse width modulation comparator and the output power drivers.

The operation of the circuit is as follows: An on-chip regulator trimmed to 1% is both reference voltage for the error amplifier, and also the stabilized power source for all the internal circuitry, with the exception of the error amplifier, the current limit comparator, and the output drivers.

The sawtooth oscillator is programmed for a specific frequency and deadband by values of R_T, C_T and R_D. The resulting ramp waveform is applied to one side of the pulse width modulation comparator, which has been designed with a very small amount of hysteresis to prevent oscillations at the comparison point. The other terminal of the PWM comparator is connected to the output of an error amplifier which has been designed with a common mode range that includes both ground and the 5V reference.

Also associated with the amplifier is on-chip soft start circuitry. This soft start circuitry is controlled not only by an external RESET terminal, but also by the undervoltage lockout circuitry. If the reference voltage should be less than the 5V required for normal linear operation of the control circuitry, the RESET terminal in the soft start is held low by the undervoltage lockout, thus preventing the soft start capacitor from charging. At the same time, the power output drivers of the device are inhibited. Thus making it impossible for spurious output pulses to occur during undervoltage conditions.

The digital output of the pulse width modulation comparator is ANDed with the output of the current limit comparator. This provides very fast response to overcurrent conditions. The current limit comparator has a fixed input offset of 100mV plus a slight hysteresis of 20mV to eliminate indecision at the threshold point. The PWM signal from the AND gate is followed by three levels of pulse processing logic. It first passes through a
metering flip-flop whose function is to allow only one output pulse per oscillator cycle, thus eliminating oscillations and permitting pulse-by-pulse current limiting. The second element is a memory flip-flop. This flip-flop is part of the double pulse suppression logic and prevents two pulses in succession from one output driver, independent of conditions on the SHUTDOWN terminal, RESET terminal or error amplifier inputs. Also included is a toggle flip-flop which alternately gates first one driver and then the other in the presence of a PWM signal.

The final elements in the block diagram are the source/sink output drivers, with a separate collector supply voltage terminal brought out for additional flexibility.

A simplified version of the undervoltage lockout circuitry is shown in Figure 16. The circuitry consists of a 1.2V bandgap reference and a voltage comparator which are fully operational for reference voltages greater than 2.1V. When the reference voltage is greater than 2.1V, the output transistor is turned on, inhibiting both power output drivers. It also holds the RESET line controlling the soft start circuitry in the low state, thus preventing the soft start capacitor from charging, and guaranteeing zero duty cycle.

A simplified schematic of the oscillator of the 1526 is shown in Figure 17. A new approach is taken for controlling deadtime in the circuit. The principle of operation is similar to the 1524 and 1525 oscillator. A timing capacitor is charged via a constant current programmed by an external resistance R_T. When the capacitor has charged linearly up to a nominal 3.2V, a voltage comparator changes state, thereby turning on a discharge network which reduces the capacitor voltage very rapidly to the +1V level. The distinctive difference between the oscillator in the 1525 and that in the 1526 is that the discharge network is a current source instead of a semi-saturating Darlington. In the 1526, the discharge circuit is formed by a compound current mirror, Q3, Q4, and Q5. The output current of this current mirror is ratioed to the current charging in C_T by a ratio of 30:1. This results in a charge time to discharge time ratio of approximately 29:1 independent of the value of C_T. This ratio can be modified to give longer deadtimes by insertion of a small amount of resistance from Pin 11 to ground. With this technique, deadtimes up to 50% or more are easily obtainable. The oscillator configuration has the advantage that the minimum deadtime for the oscillator is now fixed at approximately 3% independently of the frequency of the circuit.

A simplified schematic of the oscillator of the 1526 is shown in Figure 17. A new approach is taken for controlling deadtime in the circuit. The principle of operation is similar to the 1524 and 1525 oscillator. A timing capacitor is charged via a constant current programmed by an external resistance R_T. When the capacitor has charged linearly up to a nominal 3.2V, a voltage comparator changes state, thereby turning on a discharge network which reduces the capacitor voltage very rapidly to the +1V level. The distinctive difference between the oscillator in the 1525 and that in the 1526 is that the discharge network is a current source instead of a semi-saturating Darlington. In the 1526, the discharge circuit is formed by a compound current mirror, Q3, Q4, and Q5. The output current of this current mirror is ratioed to the current charging in C_T by a ratio of 30:1. This results in a charge time to discharge time ratio of approximately 29:1 independent of the value of C_T. This ratio can be modified to give longer deadtimes by insertion of a small amount of resistance from Pin 11 to ground. With this technique, deadtimes up to 50% or more are easily obtainable. The oscillator configuration has the advantage that the minimum deadtime for the oscillator is now fixed at approximately 3% independently of the frequency of the circuit.

Resistive divider R_1 and R_2 is scaled so that when the reference voltage reaches 4.5V the comparator changes state, thus releasing the soft start capacitor and also enabling the power drivers. Approximately 200mV hysteresis is built into the comparator so that the transition from lockout to fully on is not accompanied by indecision and jitter.

Monitoring the reference voltage rather than the input terminal voltage has an additional benefit. With this particular configuration, this chip can operate on +5V by connecting the V_{REF} terminal to the $V_{REFERENCE}$ terminal and then regulating the input voltage between 4.5 and 5.5 volts. This is a desirable feature where other supply voltages must be generated from a regulated +5V source.
reason, no new pulse can propagate through the data latch until a new sync pulse is received at the beginning of the next oscillator cycle. This feature allows each individual pulse to be terminated either by the action of the current limit comparator or by external circuitry which pulls the SHUTDOWN pin low. This feature allows the SHUTDOWN pin to be a convenient input port for a strobe pulse from symmetry correction circuitry.

Figure 18. SG1526 Pulse Processing Logic

The function of the memory flip-flop is to generate the clock pulse for the toggle flip-flop, which alternately gates the two output power drivers. It operates as follows: Let us assume that the flip-flop begins operation in the reset state. When a sync pulse is received from the oscillator, the Q terminal is then driven low, generating a clock pulse for the toggle flip-flop, which then changes state. If a PWM signal is generated during the oscillator cycle, then the flip-flop is reset, thus enabling it to generate another clock at the beginning of the next oscillator cycle. If no pulse width modulation signal is generated because the duty cycle has gone to zero or SHUTDOWN has been pulled low, then the memory flip-flop will not be reset, and when the next sync pulse occurs, no clock will be generated. In this way, the output flip-flop is toggled only upon generation of pulse width modulation signals, thus rendering it impossible for two successive pulses to be obtained from one output driver.

The operation of the metering logic in the 1526 is shown in more detail in the timing diagram in Figure 19. The first time frame, T₁, illustrates a normal period of operation. The error amplifier calls for nearly full duty cycle; the SHUTDOWN pin stays high, and this output signal then passes unaltered through the metering logic flip-flop. During the second time frame, the SHUTDOWN pin is pulled low for several times during the active pulse period. This results in a series of pulses being applied to the data input of the metering flip-flop, but as can be shown in Waveform G, once the first pulse is terminated no other pulse can begin until the next oscillator cycle. During time frame T₃, the SHUTDOWN pin is low, thus preventing PWM signals from reaching the metering flip-flop. In the fourth time frame, the disturbance at the output of the error amplifier causes multiple ramp crossings, which generates multiple PWM signals during one oscillator cycle. These signals reach the data input of the metering flip-flop, but as before, once the first pulse is terminated, the remainder of the pulses cannot propagate through the device to the output drivers.

The combination of source/sink drivers with a separate collector supply voltage terminal allows the output drivers to be easily interfaced with all the circuit configurations found in mot switching power supplies. Figure 20 illustrates the connections for a common emitter push-pull configuration. In this circuit, the
collector supply to the output source/sink drivers is tied to the supply voltage through R_1, which limits the voltage swing of each driver output, preventing emitter-base breakdown. During the turn-off cycle, an additional spike of reverse base current is generated by the speed-up capacitor C_1 or C_2.

Buck-type converters are easily interfaced to the totem-pole output devices. For this mode of operation it is necessary only to ground the output terminals A and B, and drive the base of the switching device with the collector supply terminal. In this configuration, the upper Darlington resistors are alternately turned on and pull Pin 14 to ground, thus providing up to 100mA of current drive capability on alternate oscillator cycles.

The totem-pole outputs can also drive a transformer directly, as illustrated in Figure 22. Since each output driver exhibits a low impedance, no center tap winding is required on the transformer primary. In this example, the transformer drive capability is used to interface the control device with the power transistors in a half bridge configuration.

If an additional current drive capability beyond that available in the 1526 is necessary, it is very easy to interface the output totem-pole drivers with the 1627 dual 500mA driver circuit. This is shown in Figure 23.

The ability of one control port of the 1526 to drive another control port enables a good deal of flexibility from the chip. The flyback converter in Figure 24 illustrates this point. Current limiting in a flyback converter is difficult because the overcurrent signal from
the current sense resistor is always out of phase with the conduction of the principle power transistor. In this circuit, the output of the current limit comparator in the 1526 is used to re-trigger the soft start circuitry. By choosing the value of the soft start capacitor so that the recovery time of the soft start circuitry is of the order of one or two cycles, it is possible to provide current limiting with a minimal number of external components. This same technique can be used in a push-pull converter where it is desirable for the pulse width modulation signal to be turned off for multiple oscillator cycles rather than for a single cycle. This allows overstressed output semiconductors a cool-off period before returning to normal operation.

CONCLUSION

Several integrated circuits designed specifically for switch-mode power supply control have been described. A brief review has been made of past approaches to the integration of switching power supply control and driver circuitry. A description of a newly available family of control/driver integrated circuits, the SG1525/1527 series, has been given. Finally, a sketch of a future high performance controller circuit, the SG1526, has been drawn.

The future of integrated circuits for switching power supplies clearly involves greater complexity in the control circuitry to account for all possible modes of supply operation. The benefits for the power supply designer will be greater performance and reliability from switchers with reduced component count and greater overall manufacturing economies.

REFERENCES
