
Inferring Microsemi SmartFusion2 MACC Blocks
Synopsys® Application Note, October 2013

The Synopsys® Synplify Pro® synthesis tool automatically infers and implements Microsemi®

SmartFusion2 MACC blocks. The SmartFusion2 architecture includes dedicated MACC block
components, which are 18x18-bit signed multiply-accumulate blocks. The blocks can perform
DSP-related operations like multiplication followed by addition, multiplication followed by
subtraction, and multiplication with accumulate. This application note provides a general
description of the Microsemi SmartFusion2 MACC block component and shows you how to
infer and implement it with the Synplify Pro software.

The following topics describe the details:

• The SmartFusion2 MACC Block, on page 2

• Inferring SmartFusion2 MACC Blocks, on page 3

• Controlling Inference with the syn_multstyle Attribute, on page 4

• Coding Style Examples, on page 5

• Inferring MACC Blocks for Wide Multipliers, on page 21

• Wide Multiplier Coding Examples, on page 24

• Inferring MACCs for Multi-Input MultAdds/MultSubs , on page 37

• Inferring MACC Blocks for Multiplier-AddSub, on page 46

• Inferring MACC Blocks for Multiplier-Accumulators, on page 50

• Coding Examples for Timing and QoR Improvement, on page 55

• Inferring MACC block in DOTP mode, on page 61

• Limitations, on page 72

2

The SmartFusion2 MACC Block
The SmartFusion2 device supports 18x18-bit signed multiply-accumulate MACC blocks. The
multiplier takes two 18-bit signed signals and multiplies them for a 36-bit result. The result is
then extended to 44 bits. In addition to multiplication followed by addition or subtraction, the
blocks can also accumulate the current multiplication product with a previous result, a
constant, a dynamic value, or a result from another MACC block. The following figure shows the
18x18-bit Microsemi SmartFusion2 MACC block.

All signals of the SmartFusion2 MACC block, except CDIN and CDOUT, have optional registers.
All registers must use the same clock. Each of the registers has enables and resets that can
differ from each other. For a complete list of all the block options and their configurations, refer
to the Microsemi documentation.
 © 2013 Synopsys, Inc. All Rights Reserved.

3

Inferring SmartFusion2 MACC Blocks
Starting with the F-2011.09M-SP1 version of the Synplify Pro tool, you can now infer MACC
block components. You can write your RTL so that the synthesis tool recognizes the structures
and maps them to SmartFusion2 MACC components. The Synplify Pro tool extracts the
following logic structures from the hardware description and maps them to MACC blocks: mults
(Multiplier), multAdds (multiplier followed by an adder), multSubs (multiplier followed by a
subtractor), and multAccs (multiplier-accumulator structures)

The Synplify Pro tool supports the inference of both signed and unsigned multipliers. There are
some design criteria that influence inference:

• The Microsemi SmartFusion2 MACC blocks support multipliers up to a maximum of
18x18 bits for signed multipliers and 17x17 bits for unsigned multipliers. The synthesis
tool splits multipliers that exceed these limits between multiple SmartFusion2 MACC
blocks, as described in Inferring MACC Blocks for Wide Multipliers, on page 21.

• The Synplify Pro synthesis tool supports the inference of SmartFusion2 MACC block
components across different hierarchies. The multipliers, input registers, output registers,
and subtractors/adders are packed into the same SmartFusion2 MACC block, even if they
are in different hierarchies.

• The synthesis tool packs registers at the inputs and outputs of mults, multAdds, multSubs,
and multAccs into SmartFusion2 MACC blocks.

By default, the tool maps all multiplier inputs with a width of 3 or greater to SmartFusion2
MACC blocks. If the input width is smaller, it is mapped to logic. You can change this
default behavior with the syn_multstyle attribute (see Controlling Inference with the
syn_multstyle Attribute, on page 4).

• The tool packs registers at inputs and outputs of mults, multAdds, multSubs, and multAccs into
SmartFusion2 MACC blocks, as long as all the registers use the same clock.

– If the registers have different clocks, the clock that drives the output register gets
priority, and all registers driven by that clock are packed into the block.

– If the outputs are unregistered and the inputs are registered with different clocks, the
input registers with input that has a larger width get priority and are packed in the
SmartFusion2 MACC block.

• The synthesis tool supports register packing across different hierarchies for multipliers up
to a maximum of 18x18 bits for signed multipliers and 17x17 bits for unsigned multi-
pliers. The synthesis tool pipelines registers for multipliers that exceed these limits into
multiple SmartFusion2 MACC blocks, as described in Inferring MACC Blocks for Wide
Multipliers, on page 21.
 © 2013 Synopsys, Inc. All Rights Reserved.

4

• The synthesis tool packs different kinds of flip-flops at the inputs/outputs of the mults,
multAdds, multSubs, and multAccs into SmartFusion2 MACC blocks:

– D type flip-flop

– D type flip-flop with asynchronous reset

– D type flip-flop with enable

– D type flip-flop with asynchronous reset and enable

– D type flip-flop with synchronous reset

– D type flip-flop with synchronous reset and enable

• The synthesis tool uses the MACC cascade feature with multi-input mult-adds and mult-
subs, up to a maximum of 18x18 bits for signed multipliers and 17x17 bits for unsigned
multipliers. The synthesis tool packs logic into MACC blocks efficiently using hard-wired
cascade paths to improve the quality of results (QoR) for the design, as described in Infer-
ring MACCs for Multi-Input MultAdds/MultSubs , on page 37.

• The synthesis tool uses the internal paths for adder feedback loops inside the MACC
instead of connecting it externally for multAccs up to a maximum of 18x18 bits for signed
multipliers and 17x17 bits for unsigned multipliers, as described in Inferring MACC
Blocks for Multiplier-Accumulators, on page 50.

• The synthesis tool infers MACC block in DOTP mode as described in Inferring MACC
block in DOTP mode, on page 61.

Controlling Inference with the syn_multstyle Attribute
Use the syn_multstyle attribute to control the inference of SmartFusion2 MACC blocks. The
attribute is briefly described here; for detailed information and more examples, refer to the
FPGA Synthesis Reference Manual.

Controlling Default Inference

By default, multipliers with input widths of 3 or greater are packed in the SmartFusion2 MACC
block, while smaller input widths are mapped to logic. If the multipliers are inferred as
SmartFusion2 MACC blocks by default, you can use the syn_multstyle attribute to map the
structures to logic:

If the multipliers are mapped to logic by default, you can use the syn_multstyle attribute to
override this and map the structures to SmartFusion2 MACC blocks, using the dsp value for the
attribute:

VHDL attribute syn_multstyle : string ;
attribute syn_multstyle of mult_sig : signal is “logic“;

Verilog wire [1:0] mult_sig /* synthesis syn_multstyle = “logic” */;
 © 2013 Synopsys, Inc. All Rights Reserved.

5

Specifying the Scope of the Attribute

You can apply the attribute globally or to individual modules, as the following sdc syntax
examples illustrate:

define_global_attribute syn_multstyle {dsp|logic}

define_attribute {object} syn_multstyle {dsp|logic}

Coding Style Examples
There are many ways to code your DSP structures, but the synthesis tool does not map all of
them to SmartFusion2 MACC blocks. The following examples illustrate coding styles from
which the synthesis tool can infer and implement SmartFusion2 MACC blocks. It is important
that you use a supported coding structure so that the synthesis tool infers the SmartFusion2
MACC blocks.

Check the results of inference in the log file and the final netlist. The resource usage report in
the synthesis log file (srr) shows details like the number of blocks. It also reports if they are
configured as mult, multAdd, or multSub blocks. You should also check the final netlist to make
sure that the structures you want were implemented.

See the following examples of recommended coding styles:

• Example 1: 6x6-Bit Unsigned Multiplier

• Example 2: 11x9-Bit Signed Multiplier

• Example 3: 18x18-Bit Signed Multiplier with Registered l/Os

• Example 4: 17x17-Bit Unsigned Multiplier with Different Resets

• Example 5: Unsigned Mult with Registered I/Os and Different Clocks

• Example 6: Multiplier-Adder

• Example 7: Multiplier-Subtractor

For other examples, see Wide Multiplier Coding Examples, on page 24.

VHDL attribute syn_multstyle : string ;
attribute syn_multstyle of mult_sig : signal is “dsp“;

Verilog wire [1:0] mult_sig /* synthesis syn_multstyle = “dsp” */;
 © 2013 Synopsys, Inc. All Rights Reserved.

6

Example 1: 6x6-Bit Unsigned Multiplier

The following design is a simple 6x6-bit unsigned multiplier, which the tool maps to one
SmartFusion2 MACC block, as shown in the subsequent figure.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity unsign_mult is

port
in1 : in std_logic_vector (5 downto 0);
in2 : in std_logic_vector (5 downto 0);
out1 : out std_logic_vector (11 downto 0)

);
end unsign_mult;

architecture behav of unsign_mult is begin
out1 <= in1 * in2;
end behav;
 © 2013 Synopsys, Inc. All Rights Reserved.

7

Resource Usage Report for Unsigned 6x6-Bit Multiplier
This section of the log file (srr) shows resource usage details. It shows that the multiplier code
was implemented in one SmartFusion2 MACC multiplier block.

Mapping to part: m2s050tfbga896std

Sequential Cells:
SLE 0 uses

DSP Blocks:1
 MACC1 Mult

Total LUTs:0

Example 2: 11x9-Bit Signed Multiplier

This example is an 11x9-bit signed multiplier. It gets mapped into one SmartFusion2 MACC
block, as shown in the figure below.

library IEEE;
use iEEE.std_logic_1164.all;
use iEEE.numeric_std.all;

entity sign_mult is

port
in1 : in signed (10 downto 0);
in2 : in signed (8 downto 0);
out1 : out signed (19 downto 0)

);
end sign_mult;

architecture behav of sign_mult is
begin
out1 <=in1 * in2 ;
end behav;
 © 2013 Synopsys, Inc. All Rights Reserved.

8

Resource Usage Report for 11x9-Bit Signed Multiplier
Mapping to part: m2s050tfbga896std

Sequential Cells:
SLE0 uses

DSP Blocks:1
 MACC Mult

Total LUTs:0
 © 2013 Synopsys, Inc. All Rights Reserved.

9

Example 3: 18x18-Bit Signed Multiplier with Registered l/Os

This is code for an 18x18 signed multiplier. The inputs and outputs are registered, with a
synchronous active low reset signal. The synthesis tool fits all this logic into one SmartFusion2
MACC block, as shown below.

module sign18x18_mult (in1, in2, clk, rst, out1);

input signed [17:0] in1, in2;
input clk;
input rst;
output signed [40:0] out1;
reg signed [40:0] out1;
reg signed [17:0] in1_reg, in2_reg;

always @ (posedge clk)
begin

if (~rst)
begin

in1_reg <= 18’b0;
in2_reg <= 18’b0;
out1 <= 41’b0;

end
else
begin

in1_reg <= in1;
in2_reg <= in2;
out1 <= in1_reg * in2_reg;

end
end

endmodule
 © 2013 Synopsys, Inc. All Rights Reserved.

10

Resource Usage Report for Signed I8xI8-Bit Multiplier with Registered I/Os
CFG11 use

Sequential Cells:
SLE0 uses

DSP Blocks 1
 MACC 1 Mult

Global Clock Buffers: 1

Total LUTs: 1
 © 2013 Synopsys, Inc. All Rights Reserved.

11

Example 4: 17x17-Bit Unsigned Multiplier with Different Resets

This is a VHDL example of a 17x17-bit unsigned multiplier, which has input and output
registers with different asynchronous resets. The tool packs all the logic into one SmartFusion2
MACC block as shown below.

library iEEE;
use iEEE.std_logic_1164.all;
use iEEE.std_logic_unsigned.all;

entity unsign17x17_mult is port
in1 : in std_logic_vector (16 downto 0); in2 : in std_logic_vector
(16 downto 0); clk : in std_logic;
rst1 : in std_logic;
rst2 : in std_logic;
out1 : out std_logic_vector (33 downto 0)
);
end unsign17x17_mult;

architecture behav of unsign17x17_mult is
signal in1_reg, in2_reg : std_logic_vector (16 downto 0);
begin

process (clk, rst1)
begin

if (rst1 = '0') then
in1_reg <= (others => '0');
in2_reg <= (others => '0');
elsif (rising_edge(clk)) then

in1_reg <= in1;
in2_reg <= in2;

end if;
end process;

process (clk, rst2)
begin

if (rst2 = '0') then
out1 <= (others => '0');
elsif (rising_edge(clk)) then

out1 <= in1_reg * in2_reg;
end if;

end process;
end behav;
 © 2013 Synopsys, Inc. All Rights Reserved.

12

Resource Usage Report for Unsigned 17x17-Bit Multiplier
SLE0 uses

DSP Blocks:1
 MACC:1 Mult

Global Clock Buffers: 1

Total LUTs:0
 © 2013 Synopsys, Inc. All Rights Reserved.

13

Example 5: Unsigned Mult with Registered I/Os and Different Clocks

This example shows an unsigned multiplier whose inputs and outputs are registered with
different clocks, clk1 and clk2, respectively. In this design, the synthesis tool only packs the
output registers and the multiplier into the SmartFusion2 MACC block. The input registers are
implemented as logic outside the SmartFusion2 MACC block.

module unsign_mult (inl, in2, clkl, clk2, outl);
input [6:0] inl, in2;
input clkl,clk2;
output [l3:0] outl;
reg [13:0] outl;
reg [6:0] inl_reg, in2_reg;

always @ (posedge clkl)
begin

inl_reg <= inl;
in2_reg <= in2;

end

always @ (posedge clk2)
begin

outl <= inl_reg * in2_reg;
end

endmodule
 © 2013 Synopsys, Inc. All Rights Reserved.

14

Resource Usage Report for Unsigned Multiplier with Different Clocks
The log file shows that all 14-input registers are implemented as logic, outside the
SmartFusion2 MACC block.

Mapping to part: m2s050tfbga896std
Cell usage:

Sequential Cells:
SLE14 uses

DSP Blocks:1
 © 2013 Synopsys, Inc. All Rights Reserved.

15

 MACC:1 Mult

Global Clock Buffers:2

Total LUTs:0

Example 6: Multiplier-Adder

This VHDL example shows a multiplier whose output is added with another input. The inputs
and outputs are registered, and have enables and synchronous resets. The following figure
shows how the design gets mapped into a SmartFusion2 MACC block.

library iEEE;
use iEEE.std_logic_1164.all;
use iEEE.std_logic_unsigned.all;

entity mult_add is port (
in1 : in std_logic_vector (16 downto 0);
in2 : in std_logic_vector (16 downto 0);
in3 : in std_logic_vector (33 downto 0);
clk : in std_logic;
rst : in std_logic;
en: in std_logic;
out1 : out std_logic_vector (34 downto 0)
);
end mult_add;
architecture behav of mult_add is
signal in1_reg, in2_reg : std_logic_vector (16 downto 0);
signal mult_out : std_logic_vector (33 downto 0);
begin

process (clk)
begin

if (rising_edge(clk)) then
if (rst = '0') then

in1_reg <= (others => '0');
in2_reg <= (others => '0');
out1 <= (others => '0');
elsif (en = '1')then

in1_reg <= in1;
in2_reg <= in2;
out1 <= ('0' & mult_out) + ('0' & in3);

end if;
end if;

end process;
mult_out <= in1_reg * in2_reg;
end behav;
 © 2013 Synopsys, Inc. All Rights Reserved.

16

Resource Usage Summary for Multiplier-Adder
CFG21 use

Sequential Cells:
SLE0 uses

DSP Blocks:1
 MACC:1 MultAdd

Global Clock Buffers: 1

Total LUTs:
 © 2013 Synopsys, Inc. All Rights Reserved.

17

Example 7: Multiplier-Subtractor

There are two ways to implement multiplier and subtractor logic. The synthesis tool packs the
logic differently, depending on how it is implemented.

• Subtract the result of multiplier from an input value (P = Cin - mult). The synthesis tool
packs all logic into the SmartFusion2 MACC block.

• Subtract a value from the result of the multiplier (P = mult - Cin). The synthesis tool packs
only the multiplier in the SmartFusion2 MACC block. The subtractor is implemented in
logic outside the block.

See the following examples:

• Unsigned MultSub Verilog Example (P = Cin - Mult), on page 17

• Signed MultSub VHDL Example (P = Cin - Mult), on page 19

• Signed MultSub Verilog Example (P = Mult - Cin), on page 19

• Unsigned MultSub VHDL Example (P = Mult - Cin), on page 20

Unsigned MultSub Verilog Example (P = Cin - Mult)

The next figure shows how all logic for the example below is mapped into the SmartFusion2
MACC block.

module mult_sub (in1, in2, in3, clk, rst, out1);
input [16:0] in1, in2;
input [36:0] in3;
input clk;
input rst;
output [39:0] out1;
reg [39:0] out1;
reg [16:0] in1_reg, in2_reg;

always @ (posedge clk)
begin

if (~rst)
begin

in1_reg <= 17'b0;
in2_reg <= 17'b0;
out1 <= 40'b0;

end
else

begin
in1_reg <= in1;
in2_reg <= in2;
out1 <= in3 - (in1_reg * in2_reg);

end
end

endmodule
 © 2013 Synopsys, Inc. All Rights Reserved.

18

Resource Usage Report for MultSub (P = Cin - Mult)
The log file resource usage report shows that everything is packed into one SmartFusion2
MACC block, and one multSub is inferred.

Mapping to part: m2s050tfbga896std

Sequential Cells:
SLE 0 uses

DSP Blocks:1
 © 2013 Synopsys, Inc. All Rights Reserved.

19

 MACC: MultSub

Global Clock Buffers: 1

Total LUTs: 0

Signed MultSub VHDL Example (P = Cin - Mult)
library iEEE;
use iEEE.std_logic_1164.all;
use iEEE.numeric_std.all;

entity mult_sub is port (

in1 : in signed (8 downto 0);
in2 : in signed (8 downto 0);
in3 : in signed (16 downto 0); out1 : out signed (17 downto 0)
);

end mult_sub;

architecture behav of mult_sub is begin
out1 <= in3 - (in1 * in2);
end behav;

Resource Usage Report for MultSub (P = Cin - Mult)
The log file resource usage report shows that everything is packed into one SmartFusion2
MACC block, and one multSub is inferred.

Mapping to part: m2s050tfbga896std

Sequential Cells:
SLE0 uses

DSP Blocks:1
 MACC:1 MultSub

Total LUTs:0

Signed MultSub Verilog Example (P = Mult - Cin)
module mult_sub (in1, in2, in3, clk, rst, out1);
input signed [16:0] in1, in2;
input signed [36:0] in3;
input clk;
input rst;
output signed [39:0] out1;
reg signed [39:0] out1;
reg signed [16:0] in1_reg, in2_reg;

always @ (posedge clk)
begin

if (~rst)
begin
 © 2013 Synopsys, Inc. All Rights Reserved.

20

in1_reg <= 17'b0;
in2_reg <= 17'b0;
out1 <= 40'b0;

end
else

begin
in1_reg <= in1;
in2_reg <= in2;
out1 <= (in1_reg * in2_reg) - in3;

end
end

endmodule

Resource Usage Report for MultSub (P = Mult - Cin)
In this case, the log file shows that only the multiplier and input registers are mapped into the
SmartFusion2 MACC block. The subtractor and output registers are mapped to logic.

Mapping to part: m2s050tfbga896std
Cell usage:

Carry primitives used for arithmetic functions:
ARI140 uses

Sequential Cells:
SLE40 uses

DSP Blocks:1
 MACC: MultAdd

Global Clock Buffers:1

Total LUTs:0

Unsigned MultSub VHDL Example (P = Mult - Cin)
library iEEE;
use iEEE.std_logic_1164.all;
use iEEE.std_logic_unsigned.all;

entity mult_sub is port (

in1 : in std_logic_vector (8 downto 0);
in2 : in std_logic_vector (8 downto 0);
in3 : in std_logic_vector (16 downto 0);
out1 : out std_logic_vector (17 downto 0)
);

end mult_sub;

architecture behav of mult_sub is
begin

out1 <= (in1 * in2) - in3;
end behav;
 © 2013 Synopsys, Inc. All Rights Reserved.

21

Resource Usage Report for MultSub (P = Mult - Cin)
In this case, the log file shows that only the multiplier is mapped into the SmartFusion2 MACC
block. The subtractor is mapped to logic.

Mapping to part: m2s050tfbga896std
Carry primitives used for arithmetic functions:
ARI118 uses

Sequential Cells:
SLE0 uses

DSP Blocks:1
 MACC:1 MultAdd

Total LUTs:0

Inferring MACC Blocks for Wide Multipliers
A wide multiplier is a multiplier where the width of any of its inputs is larger than 18 bits
(signed) or 17 bits (unsigned). The Synplify Pro synthesis tool fractures wide multipliers and
packs them into multiple SmartFusion2 MACC blocks, using the cascade and shift functions of
the MACC block. A wide multiplier can be configured as either of the following:

• Just one input as wide

• Both inputs as wide

Wide multipliers are implemented by cascading multiple SmartFusion2 MACC blocks, using the
CDOUT and CDIN pins to propagate the cascade output of result P from one SmartFusion2
MACC block to the cascade input for operand Cx to the next SmartFusion2 MACC block. The
tool also performs the appropriate shifting.

There are some limits to cascade chains, shown in the following table. If the cascade chain
exceeds this limit then tool breaks the chain and creates a new cascade chain.

SmartFusion2 MACC Block Maximum Cascaded Size

M2S050T 24 MACC blocks

M2S025T 17 MACC blocks

M2S010T and M2S005T 11 MACC blocks

M2S100T and M2S150T 40 MACC blocks

M2S090T 28 MACC Blocks
 © 2013 Synopsys, Inc. All Rights Reserved.

22

See the following topics for more details about wide multipliers:

• Fracturing Algorithm, on page 22

• Mapping Fractured Multipliers, on page 22

• Cascade Chain, on page 23

• Log File Message, on page 23

• Pipelined Registers with Wide Multipliers, on page 24

Fracturing Algorithm

To be a candidate for fracturing on both inputs, an m-bit x n-bit multiplier must first meet
these size requirements:

• For unsigned multipliers, either m or n or both must be greater than 17 bits.

• For signed multipliers, either m or n or both must be greater than 18 bits.

For an m-bit x n-bit multiplier that is a candidate for fracturing on both inputs, there are four
multiplications. The final output is computed with these multipliers after performing the appro-
priate shifting.

Mult1 = 17—bit x 17—bit
Mult2 = (m—17)—bit x 17 bit
Mult3 = 17—bit x (n—17)—bit
Mult4 = (m—17)—bit x (n — 17)—bit

If the input widths of a fractured multiplier is more than 17 bits (unsigned) or 18 bits (signed),
that multiplier is fractured again as needed, until the fractured multiplier can be packed into a
single SmartFusion2 MACC block.

Mapping Fractured Multipliers

When an unsigned multiplier with an input width more than 17 bits or a signed multiplier with
an input width more than 18 bits is fractured into multiple multipliers, these multipliers are
always packed in multiple SmartFusion2 MACC blocks. During packing, the tool uses cascade
and shift functions without considering the input bit width of fractured multipliers. You can
override this default behavior with the syn_multstyle attribute, as described in Controlling
Inference with the syn_multstyle Attribute, on page 4.

The number of SmartFusion2 MACC blocks used for packing depends on whether one or both
multiplier inputs are configured as wide.

• One input wide

If only one input is a candidate for fracturing, just that input is fractured. For example, the
tool fractures a 20x4-bit unsigned multiplier as follows:

Mult1= 17—bit x 4—bit multiplier
Mult2= 3—bit x 4—bit multiplier
 © 2013 Synopsys, Inc. All Rights Reserved.

23

Both these multipliers are packed into SmartFusion2 MACC blocks using cascade and
shift functions. See Example 8: Unsigned 20x17-Bit Multiplier (One Wide Input), on
page 25 and Example 9: 21x18-Bit Signed Multiplier (One Wide Input), on page 27 for
examples.

• Both inputs wide

If both inputs are candidates for fracturing, they are fractured according to the fracturing
algorithm. A 51x26 wide multiplier is fractured as follows:

Mult1= 17—bit x 17—bit
Mult2= 34—bit x 17—bit
Mult3= 17—bit x 9—bit
Mult4= 34—bit x 9—bit

Mult2 & Mult4 are further fractured:

Based on this fracturing, you get 6 multipliers that are packed into 6 SmartFusion2 MACC
blocks using cascade and shift functions. See Example 10: Unsigned 26x26-Bit Multi-
plier (Two Wide Inputs), on page 27 and Example 11: 35x35-Bit Signed Multiplier (Two
Wide Inputs) , on page 28 for examples.

Cascade Chain

SmartFusion2 M2S050T devices support a maximum of 24 MACC blocks being connected in a
cascade chain. After fracturing, if the number of mults, multAdds, or multSubs is more than 24, the
tool breaks the chain and starts a new cascade chain.

When a multiplier with inputs of 102x102 is synthesized, it is implemented using 36 MACC
blocks. A cascade chain is created and the tool breaks the chain after connecting 24 MACC
blocks in the cascade, and creates another chain for what is remaining.

If a wide multiplier is followed by an adder or subtractor, only the wide multiplier is packed into
the SmartFusion2 MACC blocks using the cascade and shift functions. The adder or subtractor
is mapped to logic.

Log File Message

For each wide multiplier that is implemented using the cascade and shift function, the tool
prints a note in the log file. The following is an example:

@N: : test.v(43) I Multiplier un1_A[51:0] is implemented with multiple MACC
Blocks using cascade/shift feature.

Mu1t2 Mu1t4

Mult2_1 = 17—bit x 17—bit Mult4_1 = 17—bit x 9—bit

Mult2_2 = 17—bit x 17—bit Mult4_2 = 17—bit x 9—bit
 © 2013 Synopsys, Inc. All Rights Reserved.

24

Pipelined Registers with Wide Multipliers

The synthesis tool pipelines registers at the inputs and outputs of wide multipliers in different
hierarchies into multiple SmartFusion2 MACC blocks. The registers must meet the following
requirements to be pipelined into wide multiplier structures using cascade and shift functions:

• All the registers to be pipelined must use the same clock.

• Registers to be pipelined in wide multipliers can only be D type flip-flops or D type flip-
flop with asynchronous resets.

• All input and output registers to be pipelined should be of the same type.

• All registers must have the same control signals.

• The tool first considers output registers for pipelining. If those are not sufficient, the tool
considers input registers.

• The maximum number of pipeline stages (including input and output registers) that can
be accommodated in wide multiplier structure is <number of MACC blocks> + 1.

The following describe some details of wide multiplier implementations:

• If the input and output registers have different clocks (both inputs have a common clock
and the output has a different clock), the output register gets priority and the tool
pipelines the output registers into multiple SmartFusion2 MACC blocks.

• If the output is unregistered and the inputs are registered with different clocks, the input
registers are not pipelined in the SmartFusion2 MACC block.

• For a wide multiplier with registers at inputs and outputs, and an adder/subtractor driven
by a wide multiplier, the tool only considers the input registers for pipelining into multiple
SmartFusion2 MACC blocks, as long as all the registers use the same clock. The
adder/subtractor and output register are mapped to logic.

• For a wide multiplier with registers at inputs and outputs, and an adder/subtractor driven
by a wide multiplier in a different hierarchy, the tool only considers the input registers for
pipelining into multiple SmartFusion2 MACC blocks, as long as all the registers use the
same clock. The adder/subtractor and output register are mapped to logic.

For an example, see Example 13: 35x35-Bit Signed Mult with 2 Pipelined Register Stages, on
page 31.

Wide Multiplier Coding Examples
The following examples show how to code wide multipliers so that they are inferred and mapped
to SmartFusion2 MACC blocks, according to the guidelines explained in Inferring MACC
Blocks for Wide Multipliers, on page 21.

• Example 8: Unsigned 20x17-Bit Multiplier (One Wide Input)

• Example 9: 21x18-Bit Signed Multiplier (One Wide Input)
 © 2013 Synopsys, Inc. All Rights Reserved.

25

• Example 10: Unsigned 26x26-Bit Multiplier (Two Wide Inputs)

• Example 11: 35x35-Bit Signed Multiplier (Two Wide Inputs)

• Example 12: 69x53-Bit Signed Multiplier

• Example 13: 35x35-Bit Signed Mult with 2 Pipelined Register Stages

• Example 14: FIR 4 Tap Filter

Example 8: Unsigned 20x17-Bit Multiplier (One Wide Input)

This multiplier is split and mapped to two SmartFusion2 MACC blocks.

library iEEE;
use iEEE.std_logic_1164.all;
use iEEE.std_logic_unsigned.all;

entity unsign20x17_mult is port (

in1 : in std_logic_vector (19 downto 0);
in2 : in std_logic_vector (16 downto 0);
out1 : out std_logic_vector (36 downto 0)
);

end unsign20x17_mult;

architecture behav of unsign20x17_mult is
begin

out1 <= in1 * in2;
end behav;
 © 2013 Synopsys, Inc. All Rights Reserved.

26

Resource Usage Report for Unsigned 20x17-Bit Multiplier
The report shows that the synthesis tool inferred 1 multAdd and 1 mult, as described in Mapping
Fractured Multipliers, on page 22.

Mapping to part: m2s050tfbga896std

Sequential Cells:
SLE0 uses

DSP Blocks:2
 MACC:1 Mult
 MACC:1 MultAdd

Total LUTs:0
 © 2013 Synopsys, Inc. All Rights Reserved.

27

Example 9: 21x18-Bit Signed Multiplier (One Wide Input)
module sign21x18_mult (in1, in2, out1);

input signed [20:0] in1;
input signed [17:0] in2;
output signed [38:0] out1;
wire signed [38:0] out1;
assign out1 = in1 * in2;

endmodule

Resource Usage Report for Signed 21x18-Bit Multiplier
In accordance with the fracturing algorithm, the synthesis tool reports the inference of 1 mult
and 1 multAdd:

Mapping to part: m2s050tfbga896std

Sequential Cells:

SLE0 uses

DSP Blocks:2
 MACC:1 Mult
 MACC:1 MultAdd

Total LUTs:0

Example 10: Unsigned 26x26-Bit Multiplier (Two Wide Inputs)
library iEEE;
use iEEE.std_logic_1164.all;
use iEEE.std_logic_unsigned.all;

entity unsign26x26_mult is port (

in1 : in std_logic_vector (25 downto 0);
in2 : in std_logic_vector (25 downto 0);
out1 : out std_logic_vector (51 downto 0)
);
 © 2013 Synopsys, Inc. All Rights Reserved.

28

end unsign26x26_mult;

architecture behav of unsign26x26_mult is
begin
out1 <= in1 * in2;

end behav;

Resource Usage Report for Unsigned 26x26-Bit Multiplier
After synthesis, the log report shows that the synthesis tool split this multiplier and mapped it
to four SmartFusion2 MACC blocks. It infers 1 mult and 3 multAdd blocks.

Mapping to part: m2s050tfbga896std

Sequential Cells:
SLE0 uses

DSP Blocks:4
 MACC:1 Mult
 MACC:3 MultAd

Example 11: 35x35-Bit Signed Multiplier (Two Wide Inputs)
module sign35x35_mult (in1, in2, out1);
input signed [34:0] in1;
input signed [34:0] in2;
output signed [69:0] out1;
wire signed [69:0] out1;
assign out1 = in1 * in2;
endmodule
 © 2013 Synopsys, Inc. All Rights Reserved.

29

Resource Usage Report for Signed 35x35-Bit Multiplier
The synthesis tool infers 1 mult and 3 multAdd blocks.

Mapping to part: m2s050tfbga896std

Sequential Cells:
SLE0 uses

DSP Blocks:4
 MACC:1 Mult
 MACC:3 MultAdds

Total LUTs:0

Example 12: 69x53-Bit Signed Multiplier
module sign69x53_mult (in1, in2, out1);
input signed [68:0] in1;
input signed [52:0] in2;
output signed [121:0] out1;
wire signed [121:0] out1;
assign out1 = in1 * in2;
endmodule
 © 2013 Synopsys, Inc. All Rights Reserved.

30

Resource Usage Report for Signed 69x53-Bit Multiplier
The synthesis tool fractures the 69x53 multiplier into one mult and 15 multAdds.

Mapping to part: m2s050tfbga896std

Sequential Cells:
SLE0 uses

DSP Blocks:16
 MACC:1 Mult
 MACC:15 MultAdds

Total LUTs:0
 © 2013 Synopsys, Inc. All Rights Reserved.

31

Example 13: 35x35-Bit Signed Mult with 2 Pipelined Register Stages
module sign35x35_mult (in1, in2, clk, rst, out1);
input signed [34:0] in1, in2;
input clk;
input rst;
output signed [69:0] out1;
reg signed [69:0] out1;
reg signed [34:0] in1_reg, in2_reg;

always @ (posedge clk or negedge rst)
begin

if (~rst)
begin

in1_reg <= 35’b0;
in2_reg <= 35’b0;
out1 <= 41’b0;

end
else
begin

in1_reg <= in1;
in2_reg <= in2;
out1 <= in1_reg * in2_reg;

end
end

endmodule

The register pipelining algorithm first pipelines registers at the output of the SmartFusion2
MACC block, and controls pipeline latency by balancing the number of register stages. To
balance the stages, the tool adds registers at either the input or output of the SmartFusion2
MACC block as required.

This 35x35 signed multiplier requires four MACC blocks, so the tool can pipeline a maximum of
5 register stages. The outputs of instances Widemult_0_0 and Widemult_2_0 are registered. The
tool packs the registers at the inputs of the SmartFusion2 MACC blocks and infers sequential
primitives at the output of the SmartFusion2 MACC blocks for register balancing.

The following figure shows part of the results; not all the registers are shown in the Technology
view.
 © 2013 Synopsys, Inc. All Rights Reserved.

32

Resource Usage Report for Signed 35x35-Bit Multiplier
The synthesis tool infers 1 mult and 3 multAdd blocks.

Mapping to part: m2s050tfbga896std
Cell usage:

Sequential Cells:
SLE34 uses

DSP Blocks:4
 MACC:1 Mult
 © 2013 Synopsys, Inc. All Rights Reserved.

33

 MACC:3 MultAdds

Global Clock Buffers:1

Total LUTs:0

Example 14: FIR 4 Tap Filter
module flat_directform_top (CLK,

DATAI, COEFI, COEFI_VALID,
FIRO,
COEF_SEL);

parameter TAPS = 4; // number of filter taps
parameter DATA_WIDTH = 12;
parameter COEF_WIDTH = 14;
parameter SYSTOLIC = 1; // 0 = Direct Form 1 = Pipe-lined Systolic Form
localparam COEF_ADDR_WIDTH = ceil_log2(TAPS);

input CLK; /* synthesis syn_maxfan = 10000 */
input COEFI_VALID;
input [DATA_WIDTH-1:0] DATAI;
input [COEF_WIDTH-1:0] COEFI;
input [COEF_ADDR_WIDTH-1:0] COEF_SEL;
output[40:0] FIRO;

// Coefficient Write Block

reg[TAPS-1:0] coeff_write_select;
reg signed [COEF_WIDTH-1:0] coeffreg [TAPS-1:0];
integer i;

always @ (COEFI_VALID, COEF_SEL)
begin

for (i=0;i < TAPS; i=i+1)
begin

if (i == COEF_SEL)
coeff_write_select[i] = COEFI_VALID;

else
coeff_write_select[i] = 1'b0;

end //for
end // always

always @ (posedge CLK)
begin

for (i=0;i < TAPS; i=i+1)
begin

if (coeff_write_select[i]) coeffreg[i] <= COEFI;
// Coefficient Register Should Pack Into Mathblock

end //for
end // always

// Sample Data
 © 2013 Synopsys, Inc. All Rights Reserved.

34

reg signed[DATA_WIDTH-1:0] sample_data[TAPS-1:0];

always @ (posedge CLK)
begin

sample_data[0] <= DATAI;
for (i = 1; i < TAPS; i = i + 1) sample_data[i] <= sample_data[i-1];

end // always

// Calculate Dot Product
reg signed[40:0] FIR_DP;

always //@ (posedge CLK)
begin

FIR_DP = 0;
for (i = 0; i < TAPS; i = i + 1)
begin

FIR_DP = FIR_DP + (sample_data[i] * coeffreg[i]);
// FIR_DP = FIR_DP + (sample_data[i] * coeffreg[i])
/* synthesis syn_multstyle = "logic" */;

end //for
end // always

generate

if (SYSTOLIC == 1)
begin

reg signed[40:0] pipe_regs[TAPS-1:0];
always @ (posedge CLK)
begin

pipe_regs[0] <= FIR_DP;
for (i = 1; i < TAPS; i = i + 1) pipe_regs[i] <= pipe_regs[i-1];

end // always

assign FIRO = pipe_regs[TAPS-1];

end
else
begin

reg signed[40:0] pipe_reg;
always @ (posedge CLK)
begin

pipe_reg <= FIR_DP;
end // always
assign FIRO = pipe_reg;

end

endgenerate

/*///
// Function to Calculate Address Width for Coefficients
//*/
function [31:0] ceil_log2;

input integer x;
 © 2013 Synopsys, Inc. All Rights Reserved.

35

integer tmp, res;
begin

tmp = 1;
res = 0;
while (tmp < x) begin

tmp = tmp * 2;
res = res + 1;

end
ceil_log2 = res;

end
endfunction

endmodule

FIR 4 Tap filter has four stages of pipelined registers at the output. As described in Example 13:
35x35-Bit Signed Mult with 2 Pipelined Register Stages, on page 31, the register pipelining
algorithm first pipelines registers at the output of the SmartFusion2 MACC block, and controls
pipeline latency by balancing the number of register stages. To balance the stages, the tool adds
registers at either the input or output of the SmartFusion2 MACC block, as required.
Depending on the number of pipeline stages, there are a number of levels for the input
registers. The tool then packs one level of registers at the input and output into the MACC block
and implements the remaining registers using SLE blocks.

The following formula calculates the number of registers implemented using SLE with coding
style for FIR 4 Tap filter:

n(n-1) / 2 x (a + b1)) + (b2 x (n-1))

n = 4 (Tap size)

a = COEFI[13:0] = 14

b1 = b2 = DATA[11:0] = 12.

There is a register chain at the sample data input and only one register at the COEFI input.
During synthesis, all output registers are pushed to the input side of the multipliers during
pipelining. A warning message in the log file informs you that the tool is removing sequential
instance *coeffreg* because it is equivalent to instance sample_data*. The synthesis tool optimizes the
register at the COEFI input and uses the output from the equivalent sample_data register.
Therefore, all registers being pushed for pipelining at input b1 are optimized and the value of b1
becomes 0.

If you substitute values for n, a, b1, and b2 into the equation, you get this formula:

4(4-1) / 2 x (14 + 0)) + (12 x (4 -1) = (12/2 x 14 + (12 x 3) = 84 + 36=120

Use this formula for any FIR tap filter written with this coding style, to calculate the number of
registers implemented using SLE.
 © 2013 Synopsys, Inc. All Rights Reserved.

36

Resource Usage FIR 4 Tap Filter
Mapping to part: m2s050tfbga896std
Cell usage:
CFG34 uses

Sequential Cells:
SLE120 uses
 © 2013 Synopsys, Inc. All Rights Reserved.

37

DSP Blocks:4
 MACC:4 MultAdds

Total LUTs:4

Inferring MACCs for Multi-Input MultAdds/MultSubs
The MACC block cascade feature supports multi-input multAdd and multSub implementations for
devices with MACC blocks. The tool packs logic into MACC blocks efficiently using hard-wired
cascade paths, and improves the quality of results (QoR) for the design.

To use the cascade feature, the design must meet these requirements:

• The input size for multipliers must not be greater than 18x18 bits (signed) and 17x17 bits
(unsigned).

• Signed multipliers must have the proper sign-extension.

• All multiplier output bits must feed the adder.

• Multiplier inputs and outputs may be registered or unregistered.

Example 15: VHDL Test for 8 MultAdd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity test is
generic (widtha : integer := 18;

widthb : integer := 18;
widthc : integer := 16;
widthd : integer := 17;
widthe : integer := 9;
widthf : integer := 9;
widthg : integer := 17;
widthh : integer := 17;
widthi : integer := 7;
widthj : integer := 15;
widthk : integer := 3;
widthl : integer := 3;
widthm : integer := 18;
widthn : integer := 18;
widtho : integer := 8;
widthp : integer := 12;
width_out : integer := 41
);

port (ina : in std_logic_vector(widtha-1 downto 0);
 © 2013 Synopsys, Inc. All Rights Reserved.

38

inb : in std_logic_vector(widthb-1 downto 0);
inc : in std_logic_vector(widthc-1 downto 0);
ind : in std_logic_vector(widthd-1 downto 0);
ine : in std_logic_vector(widthe-1 downto 0);
inf : in std_logic_vector(widthf-1 downto 0);
ing : in std_logic_vector(widthg-1 downto 0);
inh : in std_logic_vector(widthh-1 downto 0);
ini : in std_logic_vector(widthi-1 downto 0);
inj : in std_logic_vector(widthj-1 downto 0);

ink : in std_logic_vector(widthk-1 downto 0);
inl : in std_logic_vector(widthl-1 downto 0);
inm : in std_logic_vector(widthm-1 downto 0);
inn : in std_logic_vector(widthn-1 downto 0);
ino : in std_logic_vector(widtho-1 downto 0);
inp : in std_logic_vector(widthp-1 downto 0);
dout : out std_logic_vector(width_out-1 downto 0)
);

end entity test;

architecture arc of test is

function sign_ext (v_in : std_logic_vector; new_size : natural)
return std_logic_vector is
variable size_in : natural;
variable result : std_logic_vector (new_size - 1 downto 0);

begin
result := (others => v_in(v_in'left));
result (v_in'length - 1 downto 0) := v_in;
return result;

end sign_ext;

signal ina_sig : std_logic_vector(widtha-1 downto 0);
signal inb_sig : std_logic_vector(widthb-1 downto 0);
signal inc_sig : std_logic_vector(widthc-1 downto 0);
signal ind_sig : std_logic_vector(widthd-1 downto 0);
signal ine_sig : std_logic_vector(widthe-1 downto 0);
signal inf_sig : std_logic_vector(widthf-1 downto 0);
signal ing_sig : std_logic_vector(widthg-1 downto 0);
signal inh_sig : std_logic_vector(widthh-1 downto 0);
signal ini_sig : std_logic_vector(widthi-1 downto 0);
signal inj_sig : std_logic_vector(widthj-1 downto 0);
signal ink_sig : std_logic_vector(widthk-1 downto 0);
signal inl_sig : std_logic_vector(widthl-1 downto 0);
signal inm_sig : std_logic_vector(widthm-1 downto 0);
signal inn_sig : std_logic_vector(widthn-1 downto 0);
signal ino_sig : std_logic_vector(widtho-1 downto 0);
signal inp_sig : std_logic_vector(widthp-1 downto 0);

signal prod1 : std_logic_vector(widtha+widthb-1 downto 0);
signal prod2 : std_logic_vector(widthc+widthd-1 downto 0);
signal prod3 : std_logic_vector(widthe+widthf-1 downto 0);
signal prod4 : std_logic_vector(widthg+widthh-1 downto 0);
signal prod5 : std_logic_vector(widthi+widthj-1 downto 0);
signal prod6 : std_logic_vector(widthk+widthl-1 downto 0);
signal prod7 : std_logic_vector(widthm+widthn-1 downto 0);
signal prod8 : std_logic_vector(widtho+widthp-1 downto 0);
 © 2013 Synopsys, Inc. All Rights Reserved.

39

signal padprod1 : signed(width_out-widtha-widthb-1 downto 0);
signal padprod2 : signed(width_out-widthc-widthd-1 downto 0);
signal padprod3 : signed(width_out-widthe-widthf-1 downto 0);
signal padprod4 : signed(width_out-widthg-widthh-1 downto 0);
signal padprod5 : signed(width_out-widthi-widthj-1 downto 0);
signal padprod6 : signed(width_out-widthk-widthl-1 downto 0);
signal padprod7 : signed(width_out-widthm-widthn-1 downto 0);
signal padprod8 : signed(width_out-widtho-widthp-1 downto 0);

begin

ina_sig <= sign_ext (ina,widtha);
inb_sig <= sign_ext (inb,widthb);
inb_sig <= sign_ext (inb,widthc);
inb_sig <= sign_ext (inb,widthd);
inb_sig <= sign_ext (inb,widthe);
inb_sig <= sign_ext (inb,widthf);
inb_sig <= sign_ext (inb,widthg);
inb_sig <= sign_ext (inb,widthh);
inb_sig <= sign_ext (inb,widthi);
inb_sig <= sign_ext (inb,widthj);
inb_sig <= sign_ext (inb,widthk);
inb_sig <= sign_ext (inb,widthl);
inb_sig <= sign_ext (inb,widthm);
inb_sig <= sign_ext (inb,widthn);
inb_sig <= sign_ext (inb,widtho);
inb_sig <= sign_ext (inb,widthp);
prod1 <= ina_sig * inb_sig;
prod2 <= inc_sig * ind_sig;
prod3 <= ine_sig * inf_sig;
prod4 <= ing_sig * inh_sig;
prod5 <= ini_sig * inj_sig;
prod5 <= ink_sig * inl_sig;
prod6 <= inm_sig * inn_sig;
prod7 <= ino_sig * inp_sig;

padprod1 <= (others => prod1 (widtha+widthb-1));
padprod2 <= (others => prod2 (widthc+widthd-1));
padprod3 <= (others => prod3 (widthe+widthf-1));
padprod4 <= (others => prod4 (widthg+widthh-1));
padprod5 <= (others => prod5 (widthi+widthj-1));
padprod6 <= (others => prod6 (widthk+widthl-1));
padprod7 <= (others => prod7 (widthm+widthn-1));
padprod8 <= (others => prod8 (widtho+widthp-1));

dout <= ((padprod1 & signed(prod1)) + (padprod2 & signed(prod2)) +

(padprod3 & signed(prod3)) + (padprod4 & signed(prod4)) +
(padprod5 & signed(prod5)) + (padprod6 & signed(prod6)) +
(padprod7 & signed(prod7)) + (padprod8 & signed(prod8)));

end arc;
 © 2013 Synopsys, Inc. All Rights Reserved.

40

Resource Usage Report for 8 MultAdd
The synthesis tool infers 8 multAdd blocks.

Mapping to part: m2s050tfbga896std

Sequential Cells:
SLE0 uses

DSP Blocks:8
 MACC:8 MultAdds

Total LUTs:0

Example 16: Verilog Test for 3 MultSub
`timescale 1 ns/100 ps

`ifdef synthesis
module test (ina, inb, inc, ind, ine, inf, dout);
`else
 © 2013 Synopsys, Inc. All Rights Reserved.

41

module test_rtl (ina, inb, inc, ind, ine, inf, dout);
`endif

parameter widtha = 18;
parameter widthb = 18;
parameter widthc = 16;
parameter widthd = 17;
parameter widthe = 9;
parameter widthf = 9;
parameter width_out = 37;

input signed [widtha-1:0] ina;
input signed [widthb-1:0] inb;
input signed [widthc-1:0] inc;
input signed [widthd-1:0] ind;
input signed [widthe-1:0] ine;
input signed [widthf-1:0] inf;
output reg signed [width_out-1:0] dout;

function signed [widtha+widthb-1:0] product_ab;

input [widtha-1:0] DA;
input [widthb-1:0] DB;
reg [widtha-1:0] D_A;
reg [widthb-1:0] D_B;
integer DataAi;
integer DataBi;
reg signed [widtha+widthb-1:0] add_sub;

begin

D_A = {widtha{1'b1}};
D_B = {widthb{1'b1}};
if(DA[widtha-1])

DataAi = -(D_A-DA+1);
else

DataAi = DA;

if(DB[widthb-1])
DataBi = -(D_B-DB+1);

else
DataBi = DB;
add_sub = (DataAi * DataBi);
product_ab = add_sub;

end
endfunction

function signed [widthc+widthd-1:0] product_cd;

input [widthc-1:0] DC;
input [widthd-1:0] DD;
reg [widthc-1:0] D_C;
reg [widthd-1:0] D_D;
integer DataCi;
integer DataDi;
reg signed [widthc+widthd-1:0] add_sub;

begin
 © 2013 Synopsys, Inc. All Rights Reserved.

42

D_C = {widthc{1'b1}};
D_D = {widthd{1'b1}};
if(DC[widthc-1])

DataCi = -(D_C-DC+1);
else

DataCi = DC;

if(DD[widthd-1])
DataDi = -(D_D-DD+1);

else
DataDi = DD;

add_sub = (DataCi * DataDi);
product_cd = add_sub;

end
endfunction

function signed [widthe+widthf-1:0] product_ef;

input [widthe-1:0] DE;
input [widthf-1:0] DF;
reg [widthe-1:0] D_E;
reg [widthf-1:0] D_F;
integer DataEi;
integer DataFi;
reg signed [widthe+widthf-1:0] add_sub;

begin

D_E = {widthe{1'b1}};
D_F = {widthf{1'b1}};
if(DE[widthe-1])

DataEi = -(D_E-DE+1);
else

DataEi = DE;

if(DF[widthf-1])
DataFi = -(D_F-DF+1);

else
DataFi = DF;

add_sub = (DataEi * DataFi);
product_ef = add_sub;

end
endfunction

always @(*)

dout = product_ab(ina, inb) - product_cd(inc, ind) - product_ef(ine, inf);

endmodule
 © 2013 Synopsys, Inc. All Rights Reserved.

43

Resource Usage Report for 3 MultSub
 The synthesis tool infers 1 multAdd and 2 multSub blocks.

Mapping to part: m2s050tfbga896std
Sequential Cells:
SLE0 uses

DSP Blocks: 3
 MACC:1 MultAdd
 MACC:2 MultSubs
 © 2013 Synopsys, Inc. All Rights Reserved.

44

Example 17: Complex Expression Example
module test(clk,a, b, c, d, e, p);

parameter M = 16;
parameter N = 16;

input clk;
input signed[M-1:0] a, b;
input signed[N-1:0] c, d;
input signed[N*2-1:0] e;
output signed[M+N-1:0] p;

reg [M+N-1:0] p;
always@(posedge clk)
begin
p = e + (c * d) + (a * b);
end
endmodule

Resource Usage Report for Test
The synthesis tool infers two multAdd blocks.

Mapping to part: m2s050tvf400std
Cell usage:
CLKINT 1 use

Sequential Cells:
SLE 0 uses

DSP Blocks: 2
MACC: 2 MultAdds
 © 2013 Synopsys, Inc. All Rights Reserved.

45

 © 2013 Synopsys, Inc. All Rights Reserved.

46

Inferring MACC Blocks for Multiplier-AddSub
The MACC block supports dynamic additions and subtractions. It uses the sub input of the
MACC block to select the ADD or SUB operations. The design must conform to these prerequi-
sites:

• Input size for multipliers must not be greater than 18x18 bits (signed) and 17x17 bits
(unsigned). The tool does not infer multAdds and multSubs with wide multipliers.

• Signed multipliers must have the proper sign extension.

• The multiplier output used for addition or subtraction must be specified:

Prod = A * B
Sum = Sub ? (C - Prod) : (C + Prod)

• Multiplier inputs and outputs can be registered or unregistered.

Example 18: One MultAddSub (Verilog)
module test (ina, inb, inc, dout, sel);

parameter widtha = 17;
parameter widthb = 17;
parameter widthc = 17;
parameter width_out = 34;

input [widtha-1:0] ina;
input [widthb-1:0] inb;
input [widthc-1:0] inc;
input sel;

output [width_out-1:0] dout;

assign dout = sel ? inc - (ina * inb) : inc + (ina * inb) ;
endmodule

Resource Usage Report for Test
The synthesis tool infers 1 MultAddSub block.

Mapping to part: m2s025tvf400std

Sequential Cells:
SLE 0 uses
DSP Blocks: 1
MACC: 1 MultAddSub
 © 2013 Synopsys, Inc. All Rights Reserved.

47

 © 2013 Synopsys, Inc. All Rights Reserved.

48

Example 19: One MultAddSub (VHDL)
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity test is
generic (a_width : integer := 17;
b_width : integer := 17);
port(clk : in std_logic;

reset_n : in std_logic;
sampC_in : in std_logic_vector(a_width-1 downto 0);
sampD_in : in std_logic_vector(a_width-1 downto 0); --imag
coeffA_in : in std_logic_vector(b_width-1 downto 0);
coeffB_in : in std_logic_vector(b_width-1 downto 0); --imag
toggle : in std_logic; -- 1=SUB; 0=ADD
re_mult : out std_logic_vector(a_width downto 0)

);
end test;

architecture DEF_ARCH of test is

signal re_prod1 : std_logic_vector(a_width+b_width-1 downto 0);
signal mult_out : std_logic_vector(a_width+b_width-1 downto 0);

begin
process(clk,reset_n)
begin
if (reset_n = '0') then

mult_out <= (others => '0'); -- 1=SUB; 0=ADD
elsif rising_edge(clk) then

re_prod1 <= sampC_in * coeffA_in;
if (toggle = '0') then

mult_out <= re_prod1 + (sampD_in * coeffB_in);
else

mult_out <= re_prod1 - (sampD_in * coeffB_in);
end if;

end if;
end process;
re_mult(a_width downto 0) <= mult_out(a_width+b_width-1 downto b_width-1);
end def_arch;

Resource Usage Report for Test
The synthesis tool infers 1 MultAddSub block and 1 Mult block.

Mapping to part: m2s050tvf400std
Cell usage:
CLKINT 1 use

Sequential Cells:
SLE 0 uses

DSP Blocks: 2
MACC: 1 MultAddSub
MACC: 1 Mult
 © 2013 Synopsys, Inc. All Rights Reserved.

49

 © 2013 Synopsys, Inc. All Rights Reserved.

50

Inferring MACC Blocks for Multiplier-Accumulators
The multiplier-accumulator structures use internal paths for adder feedback loops inside the
MACC block instead of connecting them externally. To implement these structures, the design
must meet these requirements:

• The input size for multipliers must not be greater than 18x18 bits (signed) and 17x17 bits
(unsigned).

• Signed multipliers must have the proper sign extension.

• All multiplier output bits must feed the adder.

• The output of the adder must be registered.

• The registered output of the adder must feed back to the adder for accumulation.

• Only multiplier-Accumulator structures with one multiplier can be packed inside the
MACC block, because the MACC block contains only one multiplier, .

The multiplier-accumulator structure also supports synchronous loadable registers. To infer
these structures the design must meet the requirements listed above, as well as the require-
ments listed here:

• For the loading multiplier-accumulator structure, new load data must be passed to input
C.

• The loadEn signal must be registered.

Example 20: Verilog Test for 18X18 MultAcc with Load
`timescale 1 ns/100 ps

`ifdef synthesis
module test (clk, rst, ld, ina, inb, inc, dout);
`else
module test_rtl (clk, rst, ld, ina, inb, inc, dout);
`endif

parameter widtha = 18;
parameter widthb = 18;
parameter widthc = 41;
parameter width_out = 41;

input clk, rst, ld;
input signed [widtha-1:0] ina;
input signed [widthb-1:0] inb;
input signed [widthc-1:0] inc;
output reg signed [width_out-1:0] dout;

wire signed [width_out-1:0] mult1;
reg signed [widtha-1:0] ina_reg;

always@(posedge clk or negedge rst)

if(~rst)
ina_reg <= {widtha{1'b0}} ;
 © 2013 Synopsys, Inc. All Rights Reserved.

51

else
ina_reg <= ina ;

assign mult1 = ina_reg * inb;

reg ld_reg;

always@(posedge clk or negedge rst)

if(~rst)
ld_reg <= {width_out{1'b0}} ;

else
ld_reg <= ld ;

always@(posedge clk or negedge rst)

if(~rst)
dout <= {width_out{1'b0}} ;

else
if(ld_reg)

dout <= inc ;
else

dout <= mult1 + dout ;

endmodule

Resource Usage Report for 18x18 MultAcc with Load
 The synthesis tool infers 1 multAcc block.

Mapping to part: m2s050tfbga896std
Cell usage:
CFG11 use
CFG241 uses

Sequential Cells:
SLE1 use

DSP Blocks:1
 MACC: 1 MultAcc

Total LUTs: 42
 © 2013 Synopsys, Inc. All Rights Reserved.

52

 © 2013 Synopsys, Inc. All Rights Reserved.

53

Example 21: VHDL Test for 12X3 MultAcc Without Load
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity test is
generic (widtha : integer := 12;

widthb : integer := 3;
width_out : integer := 18
);

port (clk : in std_logic;
rst : in std_logic;
ina : in std_logic_vector(widtha-1 downto 0);
inb : in std_logic_vector(widthb-1 downto 0);
dout : out std_logic_vector(width_out-1 downto 0)
);

end entity test;

architecture arc of test is

signal prod1 : std_logic_vector(widtha+widthb-1 downto 0);
signal padprod1 : signed(width_out-widtha-widthb-1 downto 0);
signal dout_t : std_logic_vector(width_out-1 downto 0);

begin

prod1 <= (signed(ina) * signed(inb));
padprod1 <= (others => prod1(widtha+widthb-1));

process(clk,rst)
begin

if(rst='0')then
dout_t <= (others => '0');

elsif(clk'event andclk='1')then
dout_t <= conv_std_logic_vector((padprod1 & signed(prod1)),width_out)

+ dout_t;
end if;

end process;

dout <= dout_t;

end arc;
 © 2013 Synopsys, Inc. All Rights Reserved.

54

 © 2013 Synopsys, Inc. All Rights Reserved.

55

Resource Usage Report for 12x3 MultAcc Without Load
 The synthesis tool infers 1 MultAcc block.

Mapping to part: m2s050tfbga896std

Sequential Cells:
SLE0 uses

DSP Blocks:1
 MACC:1 MultAcc

Total LUTs:0

Coding Examples for Timing and QoR Improvement
The following examples show coding styles that result in better timing and QoR.

• Example 22: MultAdd, on page 55

• Example 23: MultAdd with Pipelined Registers, on page 58

Example 22: MultAdd

This example is a normal multAdd structure which gives ~456MHz after place and route.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity test is
port(clk : in std_logic;
reset_n : in std_logic;
Xn_in : in signed(15 downto 0);
Yn_out : out signed(15 downto 0)
);

end test;

architecture DEF_ARCH of test is

 constant b0_coeff : signed(15 downto 0) := x"7FFF";
constant b1_coeff : signed(15 downto 0) := x"7FFF";
constant b2_coeff : signed(15 downto 0) := x"7FFF";
constant a1_coeff : signed(15 downto 0) := x"7FFF";
constant a2_coeff : signed(15 downto 0) := x"7FFF";
constant scale_factor : signed(15 downto 0) := x"FF3F";
 © 2013 Synopsys, Inc. All Rights Reserved.

56

 signal Xn_reg1 : signed(15 downto 0);
signal Xn_reg2 : signed(15 downto 0);

-- signal Xn_reg3 : signed(15 downto 0);
-- signal Yn_reg1 : signed(15 downto 0);
-- signal Yn_reg2 : signed(15 downto 0);

signal b0_mult : signed(31 downto 0);
signal b1_mult : signed(31 downto 0);
signal b2_mult : signed(31 downto 0);
signal a1_mult : signed(31 downto 0);
signal a2_mult : signed(31 downto 0);
signal pad_b0_mult : signed(11 downto 0);
signal pad_b1_mult : signed(11 downto 0);
signal pad_b2_mult : signed(11 downto 0);
signal pad_a1_mult : signed(11 downto 0);
signal pad_a2_mult : signed(11 downto 0);

-- signal scale_reg : signed(31 downto 0);
signal scale_reg1 : signed(15 downto 0);
signal scale_reg2 : signed(15 downto 0);
signal sum_out : signed(43 downto 0);
signal sum_out1 : signed(43 downto 0);
signal sum_out2 : signed(43 downto 0);
signal sum_out3 : signed(43 downto 0);
-- signal sum_out4 : signed(43 downto 0);

begin

 process(clk, reset_n)
begin

if (reset_n = '0') then
Xn_reg1 <= (others => '0');
Xn_reg2 <= (others => '0');
scale_reg1 <= (others => '0');
scale_reg2 <= (others => '0');
sum_out <= (others => '0');
sum_out1 <= (others => '0');
sum_out2 <= (others => '0');
sum_out3 <= (others => '0');

-- sum_out4 <= (others => '0');

 elsif rising_edge(clk) then
Xn_reg1 <= Xn_in;
Xn_reg2 <= Xn_reg1;
scale_reg1 <= sum_out(31 downto 16);
scale_reg2 <= scale_reg1;

sum_out1 <= (pad_b0_mult & (b0_mult)) + (pad_b1_mult & (b1_mult));
sum_out2 <= (pad_b2_mult & (b2_mult)) + sum_out1;
sum_out3 <= (pad_a1_mult & (a1_mult)) + sum_out2;
sum_out <= (pad_a2_mult & (a2_mult)) + sum_out3;

 end if;
end process;

b0_mult <= Xn_in * b0_coeff;
b1_mult <= Xn_reg1 * b1_coeff;
b2_mult <= Xn_reg2 * b2_coeff;
a1_mult <= scale_reg1 * a1_coeff;
a2_mult <= scale_reg2 * a2_coeff;
 © 2013 Synopsys, Inc. All Rights Reserved.

57

pad_b0_mult <= (others => b0_mult(31));
pad_b1_mult <= (others => b1_mult(31));
pad_b2_mult <= (others => b2_mult(31));
pad_a1_mult <= (others => a1_mult(31));
pad_a2_mult <= (others => a2_mult(31));

Yn_out <= sum_out(31 downto 16);

end def_arch;

--

-- end of code

Resource Usage Report
The synthesis tool infers five multAdd blocks with 32 SLE's.

Mapping to part: m2s050tvf400std
Cell usage:
CLKINT 2 uses

Sequential Cells:
SLE 32 uses

DSP Blocks: 5
MACC: 5 MultAdds
 © 2013 Synopsys, Inc. All Rights Reserved.

58

Example 23: MultAdd with Pipelined Registers

This example has the same functionality as Example 22, but the coding style is changed to
pipelined registers. With pipeline registers, the synthesis tool does pipeline register retiming
and then inserts registers at the input side to improve timing. The timing performance is
improved to ~400MHz. The tool also infers five MACC blocks in the cascade chain.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity TinyIIR_SF2_v6 is
port(clk : in std_logic;

reset_n : in std_logic;
Xn_in : in signed(15 downto 0);
Yn_out : out signed(15 downto 0)
);

end TinyIIR_SF2_v6;

architecture DEF_ARCH of TinyIIR_SF2_v6 is

constant b0_coeff : signed(15 downto 0) := x"7FFF";
constant b1_coeff : signed(15 downto 0) := x"7FFF";
constant b2_coeff : signed(15 downto 0) := x"7FFF";
constant a1_coeff : signed(15 downto 0) := x"7FFF";
constant a2_coeff : signed(15 downto 0) := x"7FFF";
constant scale_factor : signed(15 downto 0) := x"FF3F";

signal Xn_reg1 : signed(15 downto 0);
signal Xn_reg2 : signed(15 downto 0);

-- signal Xn_reg3 : signed(15 downto 0);
-- signal Yn_reg1 : signed(15 downto 0);
-- signal Yn_reg2 : signed(15 downto 0);

signal b0_mult : signed(31 downto 0);
signal b1_mult : signed(31 downto 0);
signal b2_mult : signed(31 downto 0);
signal a1_mult : signed(31 downto 0);
signal a2_mult : signed(31 downto 0);
signal pad_b0_mult : signed(11 downto 0);
signal pad_b1_mult : signed(11 downto 0);
signal pad_b2_mult : signed(11 downto 0);
signal pad_a1_mult : signed(11 downto 0);
signal pad_a2_mult : signed(11 downto 0);

-- signal scale_reg : signed(31 downto 0);
signal scale_reg1 : signed(15 downto 0);
signal scale_reg2 : signed(15 downto 0);
signal sum_out : signed(43 downto 0);
signal sum_out0 : signed(43 downto 0);
signal sum_out1 : signed(43 downto 0);
signal sum_out2 : signed(43 downto 0);
signal sum_out3 : signed(43 downto 0);

begin
 © 2013 Synopsys, Inc. All Rights Reserved.

59

process(clk, reset_n)
begin

if (reset_n = '0') then
Xn_reg1 <= (others => '0');
Xn_reg2 <= (others => '0');

-- Xn_reg3 <= (others => '0');
scale_reg1 <= (others => '0');
scale_reg2 <= (others => '0');
sum_out <= (others => '0');
sum_out0 <= (others => '0');
sum_out1 <= (others => '0');
sum_out2 <= (others => '0');
sum_out3 <= (others => '0');

 elsif rising_edge(clk) then
Xn_reg1 <= Xn_in;
Xn_reg2 <= Xn_reg1;

-- Xn_reg3 <= Xn_reg2;
scale_reg1 <= sum_out(31 downto 16);
scale_reg2 <= scale_reg1;

 -- IIR filter Summation adder
sum_out0 <= (pad_b0_mult & b0_mult) +

(pad_b1_mult & b1_mult) +
(pad_b2_mult & b2_mult) +
(pad_a1_mult & a1_mult) +
(pad_a2_mult & a2_mult);

 -- Forces pipelining of summation adder
sum_out1 <= sum_out0;
sum_out2 <= sum_out1;
sum_out3 <= sum_out2;
sum_out <= sum_out3;

 end if;
end process;

--IIR filter coefficient multiplies
b0_mult <= Xn_in * b0_coeff;
b1_mult <= Xn_reg1 * b1_coeff;
b2_mult <= Xn_reg2 * b2_coeff;
a1_mult <= scale_reg1 * a1_coeff;
a2_mult <= scale_reg2 * a2_coeff;

-- sign extension
pad_b0_mult <= (others => b0_mult(31));
pad_b1_mult <= (others => b1_mult(31));
pad_b2_mult <= (others => b2_mult(31));
pad_a1_mult <= (others => a1_mult(31));
pad_a2_mult <= (others => a2_mult(31));

 Yn_out <= sum_out(31 downto 16);

end def_arch;

--

 © 2013 Synopsys, Inc. All Rights Reserved.

60

-- end of code

Resource Usage Report
Mapping to part: m2s050tfbga896std
Cell usage:
CLKINT 2 uses

Sequential Cells:
SLE 136 uses

DSP Blocks: 5
MACC: 5 MultAdds

Global Clock Buffers: 2

Total LUTs: 0
 © 2013 Synopsys, Inc. All Rights Reserved.

61

Inferring MACC block in DOTP mode
The MACC block when configured in DOTP mode has two independent signed 9x9-bit or
unsigned 8x8-bit multipliers followed by addition of these two products. The sum of the dual
independent products is stored in the upper 35 bits of the 44-bit register.

Example 24: Unsigned MultAdd Computation

The RTL is for DOTP computation of sqr(a) + bc + d + cin. All the inputs and outputs are
registered with asynchronous active-low resets and active-high enable signals. The synthesis
tool infers a single MACC in DOTP mode with MultAdd configuration and packs the adder input
registers in SLEs.

module dotp_add_ioreg_unsign_srstn_en (clk, srstn, en, ina, inb, inc, ind, cin,
dout);
input clk, srstn, en;
input cin;
input [6:0] ina;
input [3:0] inb;
input [2:0] inc;
input [27 : 0] ind;
output reg [30:0] dout;

reg [6:0] ina_reg;
reg [3:0] inb_reg;
reg [2:0] inc_reg;
reg [27 : 0] ind_reg;
reg cin_reg;
wire [30:0] dout_reg;

always@(posedge clk) begin
if (!srstn) begin

ina_reg <= {7{1'b0}};
inb_reg <= {4{1'b0}};
inc_reg <= {3{1'b0}};
ind_reg <= {28{1'b0}};
cin_reg <= 1'b0;
dout <= {31{1'b0}};

end else if (en) begin
ina_reg <= ina;
inb_reg <= inb;
inc_reg <= inc;
ind_reg <= ind;
cin_reg <= cin;
dout <= dout_reg;

end else begin
ina_reg <= ina_reg;
inb_reg <= inb_reg;
inc_reg <= inc_reg;
ind_reg <= ind_reg;
cin_reg <= cin;
 © 2013 Synopsys, Inc. All Rights Reserved.

62

dout <= dout;
end

end
assign dout_reg = (ina_reg * ina_reg) + (inb_reg * inc_reg) + ind_reg + cin;
endmodule
 © 2013 Synopsys, Inc. All Rights Reserved.

63

Resource Usage Report
Mapping to part: m2s050tvf400std
Cell usage:

CLKINT 1 use
CFG2 1 use

Sequential Cells:
SLE 28 uses

DSP Blocks: 1
MACC: 1 MultAdd

Global Clock Buffers: 1

Total LUTs: 1
 © 2013 Synopsys, Inc. All Rights Reserved.

64

Example 25: Direct-Form 8-tap Finite Impulse Filter

The RTL is for DOTP computation of (ab + bc) +/- d. All the inputs and outputs are registered
with asynchronous active-low resets and active-high enable signals.

module fir_direct_8tap(inp,h0,h1,h2,h3,h4,h5,h6,h7,clk,rst,en,outp);

parameter inpwidth = 8;
parameter coefwidth = 8;
parameter multoutwidth = (inpwidth + coefwidth);
parameter outwidth = (inpwidth + coefwidth + 1);
parameter taplen = 8;

input [inpwidth-1 : 0] inp;
input [coefwidth-1 : 0] h0, h1, h2, h3, h4, h5, h6, h7;
input clk, rst, en;
output [outwidth-1 : 0] outp;
reg [inpwidth-1 : 0] mem [0 : taplen-2];
wire [multoutwidth-1 : 0] multout[0 : taplen-1];
wire [outwidth-1 : 0] addout[0 : taplen-2];
wire [coefwidth-1 : 0] coef[0 : taplen-1];
integer i;
assign coef[0] = h0;
assign coef[1] = h1;
assign coef[2] = h2;
assign coef[3] = h3;
assign coef[4] = h4;
assign coef[5] = h5;
assign coef[6] = h6;
assign coef[7] = h7;
always @(posedge clk) begin

if (rst) begin
for (i=0; i<=(taplen-2); i=i+1) begin
mem[i]<=0;
end

end
else if (en) begin

mem[0]<=inp;
for(i=1;i<=(taplen-2);i=i+1) begin

mem[i] <= mem[i-1];
end

end
end
assign multout[0]=coef[0]*inp;
generate

genvar i2;
for (i2=1;i2<=taplen-1;i2=i2+1)

begin: mult
assign multout[i2] = coef[i2]* mem[i2-1];
end

endgenerate
assign addout[0]=multout[taplen-1]+multout[taplen-2];

generate
genvar i3;

for (i3=0;i3<=(taplen-3);i3=i3+1)
 © 2013 Synopsys, Inc. All Rights Reserved.

65

begin: adding
assign addout[i3+1] = addout[i3]+ multout[(taplen-3)-i3];
end
endgenerate
assign outp=addout[taplen-2];// final addout

endmodule

Resource Usage Report
Mapping to part: m2s005fbga484std
Cell usage:
CLKINT 1 use
CFG1 1 use
CFG2 1 use
 © 2013 Synopsys, Inc. All Rights Reserved.

66

Sequential Cells:
SLE 48 uses

DSP Blocks: 4
MACC: 4 MultAdds

Global Clock Buffers: 1

Total LUTs: 2

Example 26: DOTP with multiple clocks

The RTL is for DOTP computation of (ab + cd). The A and B inputs are registered with
asynchronous active-low resets and active-high enable signals, the C and D inputs are regis-
tered with synchronous active-low resets and synchronous active-high resets but with active-
high enable signals. The output is registered with asynchronous active-low reset and active-
high enable signals. The clocks are the same for A and C inputs. B and D inputs and the output
have their corresponding clocks.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity dotp_ioreg_multiple_syn is
generic (widtha : integer := 5;

widthb : integer := 7;
widthc : integer := 4;
widthd : integer := 8;
width_out : integer := 12);

port (clk1 : in std_logic;
clk2 : in std_logic;
clk3 : in std_logic;
arstna : in std_logic;
arstb : in std_logic;
srstnc : in std_logic;
srstd : in std_logic;
arstnout : in std_logic;
enable_a : in std_logic;
enable_b : in std_logic;
enable_c : in std_logic;
enable_d : in std_logic;
enable_out : in std_logic;
ina : in std_logic_vector(widtha-1 downto 0);
inb : in std_logic_vector(widthb-1 downto 0);
inc : in std_logic_vector(widthc-1 downto 0);
ind : in std_logic_vector(widthd-1 downto 0);
dout : out std_logic_vector(width_out-1 downto 0));

end dotp_ioreg_multiple_syn;

architecture arch of dotp_ioreg_multiple_syn is
 © 2013 Synopsys, Inc. All Rights Reserved.

67

signal ina_reg : std_logic_vector(widtha-1 downto 0);
signal inb_reg : std_logic_vector(widthb-1 downto 0);
signal inc_reg : std_logic_vector(widthc-1 downto 0);
signal ind_reg : std_logic_vector(widthd-1 downto 0);
signal dout_reg : std_logic_vector(width_out-1 downto 0);

begin
process(clk1, arstna) begin
if arstna = '0' then

ina_reg <= (others => '0');
elsif (clk1'event and clk1 = '1') then

if enable_a = '1' then
ina_reg <= ina;

end if;
end if;

end process;

process(clk3, arstb) begin
if arstb = '1' then

inb_reg <= (others => '0');
elsif (clk3'event and clk3 = '1') then

if enable_b = '1' then
inb_reg <= inb;

end if;
end if;

end process;

 process(clk1) begin
if (clk1'event and clk1 = '1') then

if srstnc = '0' then
inc_reg <= (others => '0');

elsif enable_c = '1' then
inc_reg <= inc;

end if;
end if;
end process;

process(clk3) begin
if (clk3'event and clk3 = '1') then

if srstd = '1' then
ind_reg <= (others => '0');

elsif enable_d = '1' then
ind_reg <= ind;

end if;
end if;

end process;

 dout_reg <= (ina_reg * inb_reg) + (inc_reg * ind_reg);
 © 2013 Synopsys, Inc. All Rights Reserved.

68

process(clk2, arstnout) begin
if arstnout = '0' then

dout <= (others => '0');
elsif (clk2'event and clk2 = '1') then

if enable_out = '1' then
dout <= dout_reg;

end if;
end if;

end process;

end arch;
 © 2013 Synopsys, Inc. All Rights Reserved.

69

Resource Usage Report
Mapping to part: m2s050tvf400std

Cell usage:
CLKINT 3 uses
CFG1 2 uses
CFG2 2 uses

Sequential Cells:
SLE 24 uses

DSP Blocks: 1
MACC: 1 MultAdd

Global Clock Buffers: 3

Total LUTs: 4
 © 2013 Synopsys, Inc. All Rights Reserved.

70

Example 27: DOTP with MultACC

The RTL below is for MultACC. After synthesis, MACC is inferred in DOTP mode.

module dotp_acc_unsign_rtl (clk, ina, inb, inc, ind, dout);

parameter widtha = 3;
parameter widthb = 4;
parameter widthc = 5;
parameter widthd = 6;
parameter width_out = 32;

input clk;
input [widtha-1 : 0] ina;
input [widthb-1 : 0] inb;
input [widthc-1 : 0] inc;
input [widthd-1 : 0] ind;
output reg [width_out-1 : 0] dout;

reg [widtha-1 : 0] ina_reg;
reg [widthb-1 : 0] inb_reg;
reg [widthc-1 : 0] inc_reg;
reg [widthd-1 : 0] ind_reg;

wire [width_out-1 : 0] prod;

always @ (posedge clk) begin
ina_reg <= ina;
inb_reg <= inb;
inc_reg <= inc;
ind_reg <= ind;
dout <= prod + dout;

end

assign prod = (ina_reg * ind_reg) + (inb_reg * inc_reg);

endmodule
 © 2013 Synopsys, Inc. All Rights Reserved.

71

Resource Usage Report
Mapping to part: m2s050tvf400std
Cell usage:
CLKINT 1 use

Sequential Cells:
SLE 0 uses
 © 2013 Synopsys, Inc. All Rights Reserved.

72

DSP Blocks: 1
MACC: 1 MultAcc

I/O ports: 51
I/O primitives: 51
INBUF 19 uses
OUTBUF 32 uses

Global Clock Buffers: 1

Total LUTs: 0

Limitations
For successful SmartFusion2 MACC inference with the Synplify Pro software, it is important
that you use a supported coding structure, because there are some limitations to what the
synthesis tool infers. See Coding Style Examples, on page 5 and Wide Multiplier Coding
Examples, on page 24 for examples of supported structures. Currently, the tool does not
support the following:

• Dynamic add/sub support in Dot Product mode

• Overflow and carry-out extraction

• Arithmetic right shift for operand C

When asserted, the tool performs a 17-bit arithmetic right shift on operand C that goes
into the accumulator.
© 2013 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Certify, DesignWare, HAPS, HapsTrak, HDL Analyst, Identify, SCOPE, SolvNet, Synplicity,
the Synplicity logo, Synplify, Synplify Pro, and VCS are registered trademarks of Synopsys, Inc., IICE, MultiPoint, Physical Analyst, and System Designer are trademarks of Synopsys, Inc. All
other names mentioned herein are trademarks or registered trademarks of their respective companies.

Synopsys, Inc.
700 East Middlefield Road
Mountain View, CA 94043 USA
solvnet.synopsys.com

	Inferring Microsemi SmartFusion2 MACC Blocks
	The SmartFusion2 MACC Block
	Inferring SmartFusion2 MACC Blocks
	Controlling Inference with the syn_multstyle Attribute
	Coding Style Examples
	Example 1: 6x6-Bit Unsigned Multiplier
	Example 2: 11x9-Bit Signed Multiplier
	Example 3: 18x18-Bit Signed Multiplier with Registered l/Os
	Example 4: 17x17-Bit Unsigned Multiplier with Different Resets
	Example 5: Unsigned Mult with Registered I/Os and Different Clocks
	Example 6: Multiplier-Adder
	Example 7: Multiplier-Subtractor

	Inferring MACC Blocks for Wide Multipliers
	Fracturing Algorithm
	Mapping Fractured Multipliers
	Cascade Chain
	Log File Message
	Pipelined Registers with Wide Multipliers

	Wide Multiplier Coding Examples
	Example 8: Unsigned 20x17-Bit Multiplier (One Wide Input)
	Example 9: 21x18-Bit Signed Multiplier (One Wide Input)
	Example 10: Unsigned 26x26-Bit Multiplier (Two Wide Inputs)
	Example 11: 35x35-Bit Signed Multiplier (Two Wide Inputs)
	Example 12: 69x53-Bit Signed Multiplier
	Example 13: 35x35-Bit Signed Mult with 2 Pipelined Register Stages
	Example 14: FIR 4 Tap Filter

	Inferring MACCs for Multi-Input MultAdds/MultSubs
	Example 15: VHDL Test for 8 MultAdd
	Example 16: Verilog Test for 3 MultSub
	Example 17: Complex Expression Example

	Inferring MACC Blocks for Multiplier-AddSub
	Example 18: One MultAddSub (Verilog)
	Example 19: One MultAddSub (VHDL)

	Inferring MACC Blocks for Multiplier-Accumulators
	Example 20: Verilog Test for 18X18 MultAcc with Load
	Example 21: VHDL Test for 12X3 MultAcc Without Load

	Coding Examples for Timing and QoR Improvement
	Example 22: MultAdd
	Example 23: MultAdd with Pipelined Registers

	Inferring MACC block in DOTP mode
	Example 24: Unsigned MultAdd Computation
	Example 25: Direct-Form 8-tap Finite Impulse Filter
	Example 26: DOTP with multiple clocks
	Example 27: DOTP with MultACC

	Limitations

