
AC412
Application Note

IGLOO2 FPGA Flash*Freeze Entry and Exit



51900412. 9.0 4/21

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113 
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned 
subsidiary of Microchip Technology Inc. All 
rights reserved. Microsemi and the 
Microsemi logo are registered trademarks of 
Microsemi Corporation. All other trademarks 
and service marks are the property of their 
respective owners. 

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of 
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the 
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have 
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any 
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all 
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not 
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to 
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi 
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely 
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP 
rights, whether with regard to such information itself or anything described by such information. Information provided in this 
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this 
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of 
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. 
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and 
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's 
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication 
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and 
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com


Microsemi Proprietary AC412 Revision 9.0 iii

Contents

1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Revision 9.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Revision 8.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Revision 7.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Revision 6.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.5 Revision 5.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.6 Revision 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.7 Revision 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.8 Revision 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.9 Revision 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 IGLOO2 FPGA Flash*Freeze Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 Design Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Prerequisites  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Enter and Exit Flash*Freeze  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Design Details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4.1 Design Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 Entering Flash*Freeze Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.3 Exiting Flash*Freeze Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.4 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Appendix 1: Programming the Device Using FlashPro Express . . . . . . . . . . . . . . . 16

4 Appendix 2: References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Appendix 3: Importing IP Core to User Vault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



Microsemi Proprietary AC412 Revision 9.0 iv

Figures

Figure 1 Exiting Flash*Freeze Using Dip Slide Switches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2 Launching SmartDebug Design Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3 SmartDebug Window - Debug FPGA Array  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4 SRAM Read-Back Content before Flash*Freeze Entry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 5 MSS Clock CCC - Advanced Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6 Top-Level Block Diagram of the Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 7 DIP Switches and the SW4 Connectivity in Top-Level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 8 Top-Level Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 9 System Builder Configurations for HPMS System Services and eNVM . . . . . . . . . . . . . . . . . . . . . 11
Figure 10 HPMS System Clocks Configurations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11 Flash*Freeze Hardware Settings Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 12 CORERESETP Configurator window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 13 SmartDesign Component of CORERESETP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 14 Specifying I/O State and Functionality Options Using I/O Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 15 FlashPro Express Job Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 16 New Job Project from FlashPro Express Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 17 Programming the Device  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 18 FlashPro Express—RUN PASSED  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 19 Catalog Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 20 Selecting the Add Core to Vault Option  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 21 Add Core to Vault Dialog Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



Microsemi Proprietary AC412 Revision 9.0 v

Tables

Table 1 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2 Board Jumper Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 3 LED to Pin Assignment (IGLOO2 Evaluation Kit Board)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4 DIP Switch to Package Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



Revision History

Microsemi Proprietary AC412 Revision 9.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are 
listed by revision, starting with the most current publication.

1.1 Revision 9.0
Updated the document for Libero SoC v12.6.

1.2 Revision 8.0
The following is a summary of the changes made in this revision.

• Updated the document for Libero SoC v12.5.
• Removed the references to Libero version numbers.

1.3 Revision 7.0
Updated the document for Libero v11.8 software release.

1.4 Revision 6.0
The following is a summary of the changes in revision 6.0 of this document.

• The Libero SoC and FlashPro versions were updated in the Design Requirements, page 2.
• The design files and the document was updated for Libero SoC v11.7 SP3.
• Added a new section, Prerequisites, page 2.
• The block diagram was updated to include the FLASH_FREEZE macro.
• The significance of CoreResetP IP core v8.0.103 was elaborated. For more information, refer to 

Hardware Implementation, page 10.

1.5 Revision 5.0
Updated the document for Libero v11.7 software release (SAR 75558).

1.6 Revision 4.0
Updated the document for Libero v11.6 software release (SAR 68372).

1.7 Revision 3.0
Updated the document for Libero v11.5 software release (SAR 62939).

1.8 Revision 2.0
Updated the document for Libero v11.4 software release (SAR 59065).

1.9 Revision 1.0
Revision 1.0 was the first publication of this document.



IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 2

2 IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi IGLOO®2 Field Programmable Gate Array (FPGA) devices provide an ultra-low static power 
solution through Flash*Freeze technology. Entry into the Flash*Freeze mode retains all the SRAM and 
registers information. Exit from the Flash*Freeze mode achieves rapid recovery to the active mode.

This application note specifies how to enter and exit the Flash*Freeze mode on the IGLOO2 Evaluation 
Board using the “.job” programming file. The SRAM content retention capability during Flash*Freeze is 
also shown in this application note.

For more information about the Flash*Freeze entry and exit implementation, Flash*Freeze Libero design 
project, and all the necessary blocks and IP cores instantiated in Libero® System-on-Chip (SoC), refer to 
the Design Details, page 5.

2.1 Design Requirements
The following table lists the resources required to run the design.

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only. 
Open the Libero design to see the latest updates.

2.2 Prerequisites
Before you start:

1. Download and install Libero SoC (as indicated in the website for this design) on the host PC from the 
following location: https://www.microsemi.com/product-directory/design-resources/1750-libero-soc

2. For demo design files download link:
http://soc.microsemi.com/download/rsc/?f=m2gl_ac412_df 
The design file has Libero SoC Verilog project, the .mem file for the eNVM data storage client, CPZ 
file of CoreResetP v8.0.103, and programming files (*.job) for IGLOO2 Evaluation Kit. Refer to the 
readme.txt file included in the design file for the directory structure and description.

Table 1 • Design Requirements

Requirement Version
Operating System 64 bit Windows 7 and 10

Hardware
IGLOO2 Evaluation Kit Rev C, Rev D, or later

Software
Libero SoC Note: Refer to the readme.txt file provided in the design files for the 

software versions used with this reference design.FlashPro Express

CoreSysServices

Host PC Drivers USB to UART drivers

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc
http://soc.microsemi.com/download/rsc/?f=m2gl_ac412_df
http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip


IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 3

2.3 Enter and Exit Flash*Freeze
All the necessary blocks of the device are programmed using the “.job” file. Flash*Freeze entry and exit 
service requests can be initiated using the SW2 and SW4 push buttons available on the board. Then, 
SmartDebug is launched through Libero SoC to read the SRAM content to see that the content were 
retained during Flash*Freeze.

To program the IGLOO2 Evaluation Kit board with the job file provided as part of the design files using 
FlashPro Express software, refer to "Appendix 1: Programming the Device Using FlashPro Express" on 
page 16.

Follow these steps to enter and exit Flash*Freeze:

1. Connect the power supply cable to the J6 connector on the board.
2. Connect the FlashPro4 programmer to the PROG HEADER J5 connector on the board.
3. Connect the jumpers to the IGLOO2 FPGA Evaluation Kit board as shown in the following table.

4. Press the SW2 push button on the board to enter Flash*Freeze.
The device enters Flash*Freeze, and the H7, G7, F3, and F4 LEDs stop blinking.

5. Press the SW4 push button on the board to exit Flash*Freeze.
The device comes to active mode, and the H7, G7, F3, and F4 LEDs start blinking.

Note: You can also exit Flash*Freeze using the dip slide switches on the board as shown in the following 
figure.

Figure 1 • Exiting Flash*Freeze Using Dip Slide Switches

6. While the device is in the active mode, double-click SmartDebug Design from the Design Flow 
window, as shown in the following figure.

Table 2 • Board Jumper Settings

Jumper Setting
J3 1-2 installed

J8 1-2 installed



IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 4

Figure 2 • Launching SmartDebug Design Tools

The SmartDebug window appears.
7. Click Debug FPGA Array..., as shown in the following figure.

Figure 3 • SmartDebug Window - Debug FPGA Array

The debug file is automatically generated into the Libero SoC project (<Libero SoC project 
path>/designer/<top level design name>/<design_name>_debug.txt). The debug file is automatically 
loaded into the SmartDebug window.

8. Select the Memory Blocks tab in the Debug FPGA Array window, double-click the Memory Block 
listed memories, and click Read Block. The SmartDebug tool reads the SRAM content from the 
device and shows it in the Memory Block data section, as shown in the following figure.



IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 5

Figure 4 • SRAM Read-Back Content before Flash*Freeze Entry

9. Enter Flash*Freeze using the SW2 push button and then exit Flash*Freeze using the SW4 push 
button.

10. Select the Memory Blocks tab in the Debug FPGA Array window, double-click the Memory Block 
listed memories, and click Read Block. The SmartDebug tool reads the SRAM same content from 
the device and shows it in the Memory Block data section, as shown in the previous figure.
This shows that the SRAM content was retained during Flash*Freeze.

2.4 Design Details
One of the functions of the system controller in the IGLOO2 device is to handle the system service 
requests through the communication block (COMM_BLK). The system services are grouped into 
different services. The IGLOO2 device enters Flash*Freeze mode by using the Flash*Freeze services 
request that the system controller provides. Some of the Flash*Freeze hardware settings options can be 
set during the design time, such as the clock source to be used as the standby clock source for the High 
Performance Memory Subsystem (HPMS) during Flash*Freeze or defining the state of the fabric SRAM 
during the Flash*Freeze mode.

The HPMS standby clock source and the state of the SRAMs are configured in the Flash*Freeze 
hardware settings in the Libero SoC software. The fabric SRAM state during Flash*Freeze can either be 
sleep or suspend mode. In the suspend mode, the Large SRAM (LSRAM) and micro SRAM (µSRAM) 
contents are retained, when the device exits the Flash*Freeze mode. In the sleep mode, the SRAMs 
contents are not retained. Exiting Flash*Freeze is achieved by the user configurable mechanism through 
external I/O events (either transitions or pattern matching on I/Os). The state and the role that I/Os play 
during Flash*Freeze must be specified during the design time using Libero SoC. There are three different 
settings available. These settings are categorized as the I/O state in the Flash*Freeze mode, I/O 
availability in the Flash*Freeze mode, and I/O role in exiting the Flash*Freeze mode.

Depending on the type of the I/O, some or all of these options may not be available. For more 
information, refer to the UG0444: SmartFusion2 SoC FPGA and IGLOO2 FPGA Low Power Design User 
Guide.

Flash*Freeze entry is implemented using the system services, through the CoreSysServices soft IP, 
which provides access to the system services. The CoreSysServices soft IP communicates with the 
COMM_BLK through one of the Fabric Interface Controllers (FICs). Each System Service has a service 
request phase and a response phase. For more information, refer to the CoreSysServices IP Handbook, 
which can be accessed through the Libero SoC software.

http://soc.microsemi.com/ipdocs/CoreSysServices_HB.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010


IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 6

2.4.1 Design Description
The design example consists of the HPMS configured using system builder, a counter, SRAM wrapper 
logic, IP cores (CoreSysServices, CoreAHBLite, CoreAHBToAPB3, and CoreAPB3), FLASH_FREEZE 
macro, fabric AHB master, on-chip 1 MHz RC oscillator, fabric CCC (FCCC), Flash*Freeze request, 
command generator logic (FF_BLKS), and a synchronizer counter (CLK_Sync_CNTR_Dly) to 
synchronize the clocks between the fabric and the HPMS system clock after exiting Flash*Freeze. The 
fabric AHB master along with the SRAM wrapper (AHBMASTER_FIC_RAM) is used to initialize the 
fabric SRAM by moving data from the embedded non-volatile memory (eNVM) to the fabric SRAM 
through FIC_0 AHB master and slave interfaces using the AHB master in the fabric. A data storage client 
is defined in the eNVM with the data to be written to the SRAM. This is used to demonstrate the state of 
the fabric SRAM content after exiting the Flash*Freeze mode.

In the active mode, the HPMS_CCC is configured to provide a 100 MHz clock that is sourced from the 
FPGA fabric through the CLK_BASE port. The FCCC is configured to provide the 50 MHz CLK_BASE 
reference. The on-chip 1 MHz oscillator is the reference clock source for the FCCC.

The CoreSysServices IP is configured to use only the Flash*Freeze service option. It sends the 
Flash*Freeze command to the system controller whenever it receives the Flash*Freeze request enable 
and command from the FF_BLKS logic. The FF_BLKS logic generates the Flash*Freeze request and 
command, based on the Flash*Freeze entry input signal (ff_trig). The FF_BLKS logic also monitors the 
busy signal from the CoreSysServices IP and the FF_TO_START, FF_DONE signals from the 
FLASH_FREEZE macro.

The FF_TO_START signal is asserted by the system controller to indicate that the Flash*Freeze service 
is about to start. Only 10 s are available to do housekeeping before the core is powered off. We 
recommend using this signal as part of the clock gating process to ensure that any glitches do not cause 
a sequential element in the design to transition to an unwanted state when entering Flash*Freeze. The 
FF_DONE signal is asserted by the system controller to indicate that the Flash*Freeze service is about 
to end. It gets asserted before fabric registers are restored from their corresponding suspend latches and 
gets de-asserted after fabric restoration is complete. For more information about the FLASH_FREEZE 
macro, refer to the UG0450: SmartFusion2 SoC FPGA and IGLOO2 FPGA System Controller User 
Guide.

When the system enters Flash*Freeze mode, the main clock is switched to a standby clock that is 
defined by the user, where the user sets the Flash*Freeze hardware settings in the Libero design flow, as 
shown in Figure 11, page 12.

When the system controller comes out of the Flash*Freeze mode, MSS_CCC still runs off the standby 
clock. The system controller then waits for the MCCC_MPLL_LOCK assertion and then switches the 
clock to user system clock. After the lock assertion and before the MSS_CCC clock is switched to user 
clock, the system controller is ready to communicate with the fabric. To exit the Flash*Freeze process, 
switch from the standby clock to the system clock (user clock) and wait for the MPLL lock and wait for the 
HPMS and fabric interface to be aligned.

Within the MSS or HPMS CCC, the fabric alignment clock controller (FACC) interfaces with the MPLL, 
generating the aligned clocks required by the MSS or HPMS sub-blocks, and controls the alignment of 
the FPGA fabric interface clocks. MCCC_GLMUX_SEL is the register that contains the select line for the 
four non-glitch multiplexers within FACC, which are related to the aligned clocks. All the four multiplexers 
are switched by one signal as follows:

• 1: M3_CLK, APB_0_CLK, APB_1_CLK, DDR_SMC_FIC_CLK all driven from CLK_STANDBY
• 0: M3_CLK, APB_0_CLK, APB_1_CLK, DDR_SMC_FIC_CLK all driven from stage B dividers
For more information about the description of the FACC, refer to the UG0449: SmartFusion2 and 
IGLOO2 Clocking Resources User Guide.

The sync-up counter logic (CLK_Sync_CNTR_Dly) achieves the following:

• Waits for MCCC_MPLL_LOCK to assert 
• Waits for MCCC_GLMUX_SEL to switch to the user clock
• Accounts for the time required for the HPMS clock to switch from the standby clock to the operating 

clock after PLL achieves the lock and the system controller is ready to communicate with the fabric.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012


IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 7

When MCCC_MPLL_LOCK achieves lock, MCCC_GLMUX_SEL selects the user clock instead of the 
standby clock, and the required time passes. GL0_EN is asserted to enable the GL0 clock that clocks the 
fabric logic.

If you are using the system builder, convert the system builder block into the SmartDesign block to 
expose the MCCC_MPLL_LOCK and MCCC_GLMUX_SEL signals to the fabric. In the HPMS block, 
enable the options in the Advanced Options tab, as shown in the following figure.

Figure 5 • MSS Clock CCC - Advanced Options

The output of a counter is connected to a set of light-emitting diodes (LEDs) to monitor the state of the 
fabric while entering and exiting the Flash*Freeze mode. The following table shows the LED to pin 
assignment.

Table 3 • LED to Pin Assignment (IGLOO2 Evaluation Kit Board)

Counter Output Package Pin
LED_1 F4

LED_2 F3

LED_3 G7

LED_4 H7



IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 8

The following figure shows the top-level block diagram with the main blocks used in the design.

Figure 6 • Top-Level Block Diagram of the Design

2.4.2 Entering Flash*Freeze Mode
Entering Flash*Freeze is done through the system services using CoreSysServices IP core. The 
Flash*Freeze request and command service is generated by initiating the Flash*Freeze entry request 
through the port ff_trig to the FF_BLKS. Upon the trigger of the ff_trig port, the FF_BLKS sends a service 
to enable request along with a service command byte describing the function to be performed. The 
Flash*Freeze service requests the system controller to execute the Flash*Freeze entry sequence. When 
the Flash*Freeze service begins execution, the system controller informs the HPMS by sending a 
command byte E0H that Flash*Freeze shutdown is imminent. The service is stalled until this command 
byte is accepted by the COMM_BLK FIFO. If a new service request is received while servicing another 
request, the new service request is immediately aborted. For more information, refer to the Flash*Freeze 
Service section in the UG0450: SmartFusion2 SoC FPGA and IGLOO2 FPGA System Controller User 
Guide.

System Controller

COMM_BLK

Oscillator 
Control  

Oscillators

1 MHz RC Osc

25/50 MHz 
Osc

HPMS

Fabric

Fabric Master & 
RAM initialization 

Subsystem

GL1
B
us

y
FF_TO_START

F*F Entry (ff_trig)

FI
C
_0

_C
LKM

PL
L_

LO
C
K

G
LM

U
X
_S

EL

GL0_EN
GL0

CORE
SYSSERVICES 

IP

F*F Request & Command 
Generator (FF_BLKS)

FLASH_FREEZE CounterFabric  CCC

Sync up 
Counter

eNVM

AHB Bus Matrix

FIC_0_CLK

COMM_BLK

APB_1

HPMS_CLK

HPMS_CCC FIC_0
M SM

IGLOO2

LEDs

FF_DONE

AHBAHB

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038


IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 9

As the Flash*Freeze system service command is initiated, the system controller disables the fabric, each 
eNVM block, or the MSS PLL circuit based on the options specified. All these options are available as 
system services through CoreSysServices IP core by defining the SERV_OPTION_MODE [2:0] input. 
This defines the mode options for Flash*Freeze. For more information, refer to the CoreSysServices IP 
Handbook.

2.4.3 Exiting Flash*Freeze Mode
Exiting the Flash*Freeze mode can be initiated by external I/O events. User I/Os (MSIO, MSIOD, or 
DDRIO) that are single-ended inputs can participate in the Flash*Freeze exit in the following two ways:

• I/O activity: Force Flash*Freeze exit upon an activity (Wake_On_Change)
• I/O signature: Force Flash*Freeze exit upon a signature (Wake_On_1/Wake_On_0) match in which 

the I/O participates with other I/Os to trigger Flash*Freeze exit. This is a logical AND behavior where 
all I/Os must meet the Low Power Exit settings.

The external I/O events are specified during the design time using the I/O editor in the Libero SoC 
software. The only input I/Os participate in the Flash*Freeze exit event. 

Note: The Wake_On_Change is logical OR behavior with I/Os that are set as Wake_ON_1/ Wake_ON_0. This 
means that to wake from Flash*Freeze, it must be {(All Wake-on-0 ANDed) ANDed with (All Wake-on-1 
ANDed)} ORed with (All Wake-on-Change ORed).

2.4.3.1 I/O Activity
In the I/O activity mode, an input I/O can be selected to be part of a transition. The value at the pin of the 
activity I/O is latched before going to the low-power mode. When a change happens on the configured 
I/O, the device wakes up from the Flash*Freeze mode. The change can either be 1 to 0 or 0 to 1. This 
option is equivalent to the Wake_On_Change option in the I/O editor. This can be set on more than one 
I/O. The Wake_On_Change is a logical OR behavior with other I/Os that are set as Wake_On_Change.

2.4.3.2 I/O Signature
Any input I/O can be selected to be a part of a signature match value that is used to wake-up from the 
Flash*Freeze mode. All the selected I/Os have to match a static predetermined value at the same time. If 
the configured signature values match the values at I/Os, then the device exits the Flash*Freeze mode. 
I/Os can be a mixture of different signature settings. An I/O can be configured to participate in the 
Flash*Freeze exit upon a 0 to 1 or it can be configured to participate in the Flash*Freeze exit upon a 1 to 
0 transition. These options are equivalent to Wake_On_1 (transition from 0 to 1) and Wake_On_0 
(transition from 1 to 0) settings in the I/O editor in the Libero SoC software.

All other I/Os that are not participating in the Flash*Freeze exit mechanism are tristated or held to the 
previous state (LAST_VALUE) before entering the Flash*Freeze mode. The selection is set using the I/O 
state in Flash*Freeze mode column options in the I/O editor using the Libero SoC, as shown in 
Figure 14, page 15.

SW5 (four different dual in-line package (DIP) switches) on the IGLOO2 Evaluation Kit board is used to 
demonstrate the pattern matching wake-up mechanism. Four different inputs are created in the top-level 
design where each input is assigned to a DIP switch.

SW4 on the Evaluation Kit board is used to demonstrate the transition (Wake_On_Change) wake-up 
event mechanism, as shown in the following figure.

Figure 7 • DIP Switches and the SW4 Connectivity in Top-Level Design

http://soc.microsemi.com/ipdocs/CoreSysServices_HB.pdf
http://soc.microsemi.com/ipdocs/CoreSysServices_HB.pdf


IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 10

2.4.4 Hardware Implementation
The hardware implementation involves configuring the HPMS and the necessary Flash*Freeze settings. 
The HPMS configuration is done using the system builder. The design example consists of the HPMS, a 
counter, SRAM wrapper logic, IP cores (CoreSysServices, CoreAHBLite, CoreAHBToAPB3, and 
CoreAPB3), FLASH_FREEZE macro, fabric AHB master, on-chip 25/50 MHz RC oscillator, FCCC, and 
FF_BLKS as shown in Figure 8, page 10. The FLASH_FREEZE macro in the FF_BLKS provides the 
FF_TO_START signal to indicate the start of flash freeze to user logic and the FF_DONE signal 
connected to the HPMS system builder. The IP cores along with the SRAM wrapper are used to initialize 
the fabric SRAM (AHBMASTER_FIC_RAM) by moving data from the eNVM to the fabric SRAM through 
FIC_0 AHB master and slave interfaces. A data storage client is defined in the eNVM with the data to be 
written to the SRAM. This is used to demonstrate the state of the fabric SRAM content after exiting 
Flash*Freeze.

Figure 8 • Top-Level Hardware Design

The HPMS is configured using the Device Features page in the system builder to use HPMS system 
services, and HPMS on-chip Flash Memory (eNVM), as shown in Figure 9, page 11. The HPMS is also 
configured to provide the clock and reset signals to all the blocks including the CoreSysServices IP and 
FF_BLKS.



IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 11

Figure 9 • System Builder Configurations for HPMS System Services and eNVM

The eNVM data storage client is defined using the configure flash memory option under the Memories 
page in the system builder configurator. The “.mem” file defines the data storage client at <project 
location>\m2gl_ac412_df\Source_files folder.

The HPMS_CCC clock source is sourced from the FPGA Fabric Input through the CLK_BASE port, 
where an FCCC is used. The FCCC is configured to provide a 50 MHz CLK_BASE clock using GL0 
output. The reference clock for the FCCC is the on-chip 50 MHz RC oscillator. The following figure shows 
the system clock configurations for the HPMS_CLK and FIC_0_CLK clock settings. The system builder 
automatically instantiates FCCC and RCOSC and configures them accordingly.



IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 12

Figure 10 • HPMS System Clocks Configurations

Note: Connect the inverted FF_DONE signal to all the fabric CCC reset inputs (PLL_ARST_N) for resetting the 
CCC during Flash*Freeze. 

The standby clock source for the HPMS and the state of the SRAMs (µSRAM and LSRAM) during the 
Flash*Freeze mode are configured using the Flash*Freeze Hardware Settings dialog-box in the Libero 
SoC software, as shown in Figure 11, page 12. The following are the HPMS clock source options that are 
available to be used during the Flash*Freeze mode:

• On-chip 1 MHz RC oscillator 
• On-chip 50 MHz RC oscillator 
Suspend and sleep modes are the µSRAM/LSRAM state options that are available to be used during the 
Flash*Freeze mode.

Figure 11 • Flash*Freeze Hardware Settings Dialog



IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 13

We recommend using CoreResetP IP core v8.0.103 included in the design files to ensure that FF_DONE 
signal is used to gate any signal that is used as asynchronous resets or presets in fabric and signals that 
are intended for use as inputs to ASIC blocks on the device (MDDR, FDDR, and SERDES). This is to 
avoid any spurious resets as we exit Flash*Freeze.

You can implement Flash*Freeze in your existing design by importing the CoreResetP IP core. For more 
information about importing this IP core, refer to Appendix 3: Importing IP Core to User Vault, page 20.

The following figure shows how to enable Flash*Freeze support using the CORERESETP configurator 
window.

Figure 12 • CORERESETP Configurator window



IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 14

The following figure shows the SmartDesign component of CORERESETP with Flash*Freeze support 
enabled.

Figure 13 • SmartDesign Component of CORERESETP



IGLOO2 FPGA Flash*Freeze Entry and Exit

Microsemi Proprietary AC412 Revision 9.0 15

The I/O Flash*Freeze exit mechanism is specified using the Low Power Exit setting in the I/O editor, as 
shown in Figure 14, page 15. Please note the following points:

• The I/O available in Flash*Freeze option applies only to I/Os allocated to the HPMS peripherals.
• When I/Os are set to be available during the Flash*Freeze mode, the I/O state in the Flash*Freeze 

option does not apply.
• Only inputs or bidirectional I/Os participate in signature/activity Flash*Freeze exit. This means that 

the low-power exit options are available to be set on inputs and/or bidirectional I/Os only.
Figure 14 • Specifying I/O State and Functionality Options Using I/O Editor

The Flash*Freeze exit behavior of input I/Os (DIP1-4) and SW5 are configured using the I/O editor, as 
shown in the previous figure.

The DIP switch-to-package pin assignment for the IGLOO2 Evaluation Kit is shown in the following 
figure.

2.5 Conclusion
This application note specified how to enter and exit Flash*Freeze on the IGLOO2 device using the 
“.job” programming file. The SRAM content retention capability during Flash*Freeze was also shown in 
this application note.

Table 4 • DIP Switch to Package Pin Assignment

Input DIP Switch Package Pin
DIP1 L19

DIP2 L18

DIP3 K21

DIP4 K20

SW4 J18

SW2 (ff_trig) K16



Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC412 Revision 9.0 16

3 Appendix 1: Programming the Device Using 
FlashPro Express

This section describes how to program the IGLOO2 device with the .job programming file using FlashPro 
Express.

To program the device, perform the following steps:

1. Ensure that the jumper settings on the board are the same as those listed in Table 2, page 3.
Note: The power supply switch must be switched off while making the jumper connections.

2. Connect the power supply cable to the J6 connector on the board.
3. Power ON the power supply switch SW7.
4. On the host PC, launch the FlashPro Express software.
5. Click New or select New Job Project from FlashPro Express Job from Project menu to create a 

new job project, as shown in the following figure.
Figure 15 • FlashPro Express Job Project

6. Enter the following in the New Job Project from FlashPro Express Job dialog box:
• Programming job file: Click Browse, and navigate to the location where the .job file is located and 

select the file. The default location is: 
<download_folder>\m2gl_ac412_df\Programming_Job

• FlashPro Express job project name: Click Browse and navigate to the location where you want to 
save the project.



Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC412 Revision 9.0 17

Figure 16 • New Job Project from FlashPro Express Job

7. Click OK. The required programming file is selected and ready to be programmed in the device.
8. The FlashPro Express window appears as shown in the following figure. Confirm that a programmer 

number appears in the Programmer field. If it does not, confirm the board connections and click 
Refresh/Rescan Programmers.

Figure 17 •   Programming the Device

9. Click RUN. When the device is programmed successfully, a RUN PASSED status is displayed as 
shown in the following figure.



Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC412 Revision 9.0 18

Figure 18 •   FlashPro Express—RUN PASSED

10. Close FlashPro Express or in the Project tab, click Exit.



Appendix 2: References

Microsemi Proprietary AC412 Revision 9.0 19

4 Appendix 2: References

The following references complement and help in understanding the relevant Microsemi IGLOO2 FPGA 
device features and flows that are demonstrated in this document.

• For more information about the Flash*Freeze services provided by the System Controller, refer to 
the UG0450: SmartFusion2 SoC FPGA and IGLOO2 FPGA System Controller User Guide.

• For more information about the Flash*Freeze technology supported by SmartFusion2 and IGLOO2 
devices, refer to the UG0444: SmartFusion2 SoC FPGA and IGLOO2 FPGA Low Power Design 
User Guide.

• Fore more information about the system services, refer to the CoreSysServices IP Handbook.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132010
http://soc.microsemi.com/ipdocs/CoreSysServices_HB.pdf


Appendix 3: Importing IP Core to User Vault

Microsemi Proprietary AC412 Revision 9.0 20

5 Appendix 3: Importing IP Core to User Vault

The following steps describe how to import the CoreResetP IP core v8.0.103 to User Vault in Libero SoC.

1. Goto the following location to get the Core Files (.cpz) 
<download_folder>\m2gl_ac412_df\Source_files

2. Select the Catalog tab in Libero SOC as shown in the following figure.
Figure 19 • Catalog Tab



Appendix 3: Importing IP Core to User Vault

Microsemi Proprietary AC412 Revision 9.0 21

3. Click Settings drop-down and select the Add Core to Vault option as shown in the Figure 20, 
page 21.

Figure 20 • Selecting the Add Core to Vault Option

The Add Core to Vault dialog box opens. Change file type to Core Files (.ccz, .cpz) from the drop 
down list and navigate the IP core location as shown in the following figure.

Figure 21 • Add Core to Vault Dialog Box

You have successfully imported the CoreResetP IP core to the User Vault.


	1 Revision History
	1.1 Revision 9.0
	1.2 Revision 8.0
	1.3 Revision 7.0
	1.4 Revision 6.0
	1.5 Revision 5.0
	1.6 Revision 4.0
	1.7 Revision 3.0
	1.8 Revision 2.0
	1.9 Revision 1.0

	2 IGLOO2 FPGA Flash*Freeze Entry and Exit
	2.1 Design Requirements
	2.2 Prerequisites
	2.3 Enter and Exit Flash*Freeze
	2.4 Design Details
	2.4.1 Design Description
	2.4.2 Entering Flash*Freeze Mode
	2.4.3 Exiting Flash*Freeze Mode
	2.4.3.1 I/O Activity
	2.4.3.2 I/O Signature

	2.4.4 Hardware Implementation

	2.5 Conclusion

	3 Appendix 1: Programming the Device Using FlashPro Express
	4 Appendix 2: References
	5 Appendix 3: Importing IP Core to User Vault

