
Synopsys Confidential Information

Verification Continuum™

Synopsys
Synplify Pro for Microchip
Command Reference Manual

February 2021

LO

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
2 Synopsys Confidential Information February 2021

Copyright Notice and Proprietary Information
© 2021 Synopsys, Inc. All rights reserved. This software and documentation
contain confidential and proprietary information that is the property of
Synopsys, Inc. The software and documentation are furnished under a
license agreement and may be used or copied only in accordance with the
terms of the license agreement. No part of the software and documentation
may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Synopsys, Inc., or as expressly provided by the license agree-
ment.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are
available in the product installation.

Destination Control Statement
All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 3

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys,
as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.
All other product or company names may be trademarks of their respective
owners.

Third-Party Links
Any links to third-party websites included in this document are for your
convenience only. Synopsys does not endorse and is not responsible for such
websites and their practices, including privacy practices, availability, and
content.

Synopsys, Inc.
690 East Middlefield Road
Mountain View, CA 94043
www.synopsys.com

February 2021

http://www.synopsys.com/Company/Pages/Trademarks.aspx

LO

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
4 Synopsys Confidential Information February 2021

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 5

Contents

Chapter 1: Overview of the Synthesis Commands
About Tcl Commands . 14

About the GUI Commands . 16

Chapter 2: Tcl Synthesis Commands
add_file . 23
add_folder . 27
analyst . 28
cdpl_queue . 31
check_fdc_query . 32
command_history . 36
constraint_file . 37
create_fdc_template . 38
design . 40
dump_metrics . 50
encryptIP . 53
encryptP1735 . 56
IEEE 1735 Encryption Use Models . 59
get_env . 66
get_option . 66
hdl_define . 67
hdl_param . 68
help . 70
history . 71
impl . 72
job . 74
log_filter . 75
log_report . 77
message_override . 78
open_design . 80
open_file . 81
partdata . 82

LO

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
6 Synopsys Confidential Information February 2021

program_terminate . 83
program_version . 84
proj ect . 85
project_data . 93
project_file . 94
project_folder . 96
query_available_metrics . 97
query_metric . 100
query_metric_details . 102
recording . 104
report_clocks . 105
report_messages . 106
report_message_summary . 108
run_tcl . 109
select . 110
sdc2fdc . 111
set_opt ion . 113
status_report . 136
sub_impl . 140
synplify_pro . 141
Tcl Command Categories . 144

Chapter 3: Tcl Find, Expand, and Collection Commands
find . 147

Tcl Find Syntax . 148
Tcl Find Syntax Examples . 151

find -filter . 154

expand . 161

Collection Commands . 164
c_diff . 165
c_info . 166
c_intersect . 166
c_list . 167
c_print . 168
c_symdiff . 169
c_union . 170
define_collection . 171
define_scope_collection . 171
get_prop . 171
set . 172

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 7

Query Commands . 174
all_clocks . 177
all_fanin . 177
all_fanout . 179
all_inputs . 181
all_outputs . 182
all_registers . 182
get_cells . 184
get_clocks . 186
get_flat_cells . 188
get_flat_nets . 190
get_flat_pins . 192
get_nets . 194
get_pins . 195
get_ports . 199
object_list . 200
report_timing . 201

Synopsys Standard Collection Commands . 204
add_to_collection . 204
append_to_collection . 206
copy_collection . 207
foreach_in_collection . 208
get_object_name . 210
index_collection . 210
remove_from_collection . 212
sizeof_collection . 213

Chapter 4: Constraint Commands
SCOPE Constraints Editor . 216

SCOPE Tabs . 217
Clocks . 218
Generated Clocks . 223
Collections . 225
Inputs/Outputs . 228
Registers . 231
Delay Paths . 232
Attributes . 235
I/O Standards . 236
Compile Points . 237
TCL View . 240

Industry I/O Standards . 242

LO

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
8 Synopsys Confidential Information February 2021

Industry I/O Standards . 242

Delay Path Timing Exceptions . 245
Multicycle Paths . 245
False Paths . 248

Specifying From, To, and Through Points . 250
Timing Exceptions Object Types . 250
From/To Points . 250
Through Points . 252
Product of Sums Interface . 253
Clocks as From/To Points . 256

Conflict Resolution for Timing Exceptions . 258

Timing Constraints . 262
create_clock . 263
create_generated_clock . 265
reset_path . 269
set_clock_groups . 271
set_clock_latency . 277
set_clock_uncertainty . 279
set_false_path . 281
set_input_delay . 284
set_max_delay . 287
set_multicycle_path . 290
set_output_delay . 294
set_reg_input_delay . 297
set_reg_output_delay . 298
Naming Rule Syntax Commands . 298

Design Constraints . 301
define_compile_point . 302
define_current_design . 303
define_io_standard . 304

Chapter 5: User Interface Commands
File Menu . 306

New Command . 307
Create Image Command . 308
Build Project Command . 310
Open Project Command . 311

Edit Menu . 311
Find Command (Text) . 314

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 9

Find Command (In Project) . 315
Find Command (HDL Analyst) . 317
Find in Files Command . 321
Replace Command . 323
Goto Command . 324

View Menu . 325
Toolbar Command . 328
View Sheets Command . 329
View Log File Command . 330

Project Menu . 333
Add Source File Command . 334
Remove Implementation . 336
Change File Command . 337
Set VHDL Library Command . 337
Add Implementation Command . 338
Archive Project Command . 339
Un-Archive Project Command . 340
Copy Project Command . 343

Implementation Options Command . 346
Device Panel . 347
Options Panel . 349
Constraints Panel . 351
Implementation Results Panel . 353
Timing Report Panel . 355
High Reliability Panel . 357
VHDL Panel . 358
Verilog Panel . 363
Compiler Directives and Design Parameters . 370
Place and Route Panel . 380

Run Menu . 382
Run Tcl Script Command . 385
Run Implementations Setup Command . 386
Job Status Command . 388
Identify Instrumentor Command . 388
Launch Identify Debugger Command . 390
Launch SYNCore Command . 390
Configure and Launch VCS Simulator Command . 390

Analysis Menu . 401
Timing Report Generation Parameters . 402

LO

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
10 Synopsys Confidential Information February 2021

HDL Analyst Menu . 413
HDL Analyst Menu->RTL and Technology View Submenus 413
HDL Analyst Menu: Hierarchical and Current Level Submenus 414
HDL Analyst Menu: Filtering and Flattening Commands 416
HDL Analyst Menu: Timing Commands . 420
HDL Analyst Menu: Analysis Commands . 420
HDL Analyst Menu: Selection Commands . 424
HDL Analyst Menu: FSM Commands . 424

Options Menu . 425
Configure Parallel or Compile Point Process Command 426
Project View Options Command . 430
Editor Options Command . 437
Place and Route Environment Options Command . 440
Configure 3rd Party Tools Options Command . 441
Project Status Page Location . 442
HDL Analyst Options Command . 444
Standard HDL Analyst Options Command . 445
Configure External Programs Command . 454

Web Menu . 455

Help Menu . 456
Preferred License Selection Command . 457
Tip of the Day Command . 458

Chapter 6: GUI Popup Menu Commands
Popup Menus . 460

Watch Window Popup Menu . 460
Tcl Window Popup Menu . 461
Text Editor Popup Menu . 461
Log File Popup Menu . 461
FSM Viewer Popup Menu . 463

Project View Popup Menus . 466
Project Management View Popup Folder Commands 470
Vendor Tool Invocation Popup Menu Command . 472
File Options Popup Menu Command . 473
Copy File Popup Menu Command . 475
Change Implementation Popup Menu Commands . 476
Show Compile Points Popup Menu Command . 476
Project Options Popup Menu Command . 477
Add P&R Implementation Popup Menu Command . 478
Options for Place & Route Jobs Popup Menu Command 480

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 11

RTL and Technology Views Popup Menus . 483

LO

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
12 Synopsys Confidential Information February 2021

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 13

C H A P T E R 1

Overview of the Synthesis Commands

This document is part of a set that includes reference and procedural
information for the Synopsys® FPGA tools. This document describes the
commands available for the synthesis tools, which usually includes a
graphical user interface (GUI) as well as command line access. Commands
may vary with the capabilities of the synthesis tool.

The following sections provide an overview of the commands in the tool:

• About Tcl Commands, on page 14

• About the GUI Commands, on page 16

LO

 Overview of the Synthesis Commands About Tcl Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
14 Synopsys Confidential Information February 2021

About Tcl Commands
Tcl (Tool Command Language) is a popular scripting language for controlling
software applications. Synopsys has extended the Tcl command set with
additional commands that you can use to run the Synopsys FPGA programs.
These commands are not intended for use in controlling interactive debug-
ging, but you can use them to run synthesis multiple times with alternate
options to try different technologies, timing goals, or constraints on a design.

Tcl scripts are text files that have a .tcl file extension and contain a set of Tcl
commands designed to complete a task or set of tasks. You can also run Tcl
scripts through the Tcl window (see Tcl Script Window, on page 41).

The Synopsys FPGA Tcl commands are described here. For information on
the standard Tcl commands, syntax, language, and conventions, refer to the
Tcl online help (Help->TCL).

Tcl Conventions
Here is a list of conventions to respect when entering Tcl commands and/or
creating Tcl scripts.

• Tcl is case sensitive.

• Comments begin with a hash mark or pound sign (#).

• Enclose all path names and filenames in double quotes (").

• Use a forward slash (/) as the separator between directory and path
names (even on the Microsoft® Windows® operating system). For
example:

designs/big_design/test.v

Tcl Commands
You can enter the Tcl (Tool Command Language) commands directly in the
Tcl window, or include them in Tcl scripts that you can run in batch mode.
For more information about Tcl commands, see Tcl Synthesis Commands, on
page 21.

About Tcl Commands Overview of the Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 15

Tcl Scripts and Batch Mode
For procedures for creating Tcl scripts and using batch mode, see Working
with Tcl Scripts and Commands, on page 512 in the User Guide:

• Running Batch Mode on a Project File, on page 506

• Running Batch Mode with a Tcl Script, on page 507

• Generating a Job Script, on page 513

• Creating a Tcl Synthesis Script, on page 515

• Using Tcl Variables to Try Different Clock Frequencies, on page 516

• Running Bottom-up Synthesis with a Script, on page 519

LO

 Overview of the Synthesis Commands About the GUI Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
16 Synopsys Confidential Information February 2021

About the GUI Commands
The GUI commands are accessed from the software graphical interface. Most
commands open dialog boxes where you can specify parameters for the
command.

The GUI provides a few ways to access commands:

• Menus, on page 16

• Context-sensitive Popup Menus, on page 17

• Toolbars, on page 17

• Keyboard Shortcuts, on page 17

• Buttons and Options, on page 17

• Tcl Commands, on page 14

Most commands have GUI and command line versions, so you can use either
method to specify commands.

Menus
The set of commands on the pull-down menus in the menu bar varies
depending on the view, design status, task to perform, and selected object(s).
For example, the File menu commands in the Project view differ slightly from
those in the RTL view. Menu commands that are not available for the current
context are dimmed out. The menu bar in the Project view is shown below:

The individual menus, their commands, and the associated dialog boxes are
described in the following sections:

• File Menu, on page 306

• Edit Menu, on page 311

• View Menu, on page 325

• Project Menu, on page 333

• Run Menu, on page 382

About the GUI Commands Overview of the Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 17

• Analysis Menu, on page 401

• HDL Analyst Menu, on page 413

• Options Menu, on page 425

• Web Menu, on page 455

• Help Menu, on page 456

Context-sensitive Popup Menus
Popup menus, available by right-clicking, offer access to commonly used
commands that are specific to the current context. See Popup Menus, on
page 460, Project View Popup Menus, on page 466, and RTL and Technology
Views Popup Menus, on page 483 for information on individual popup
menus.

Toolbars
Toolbars contain icons associated with commonly used commands. For more
information about toolbars, see Toolbars, on page 57.

Keyboard Shortcuts
Keyboard shortcuts are available for commonly used commands. The
shortcut appears next to the command in the menu. See Keyboard Shortcuts,
on page 64 for details.

Buttons and Options
The Project view has buttons for quick access to commonly used commands
and options. See Buttons and Options, on page 72 for details.

LO

 Overview of the Synthesis Commands About the GUI Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
18 Synopsys Confidential Information February 2021

About the GUI Commands Overview of the Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 19

LO

 Overview of the Synthesis Commands About the GUI Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
20 Synopsys Confidential Information February 2021

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 21

C H A P T E R 2

Tcl Synthesis Commands

This chapter describes supported Tcl commands. The synthesis commands
are listed in alphabetical order.

add_file add_folder

analyst cdpl_queue

check_fdc_query command_history

constraint_file create_fdc_template

design dump_metrics

encryptIP encryptP1735

get_env get_env

get_option help

hdl_define hdl_param

history impl

job log_filter

log_report message_override

open_design open_file

partdata program_terminate

program_version project

project_data project_file

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
22 Synopsys Confidential Information February 2021

See also:

• For specific categories of synthesis commands (for example, log file
commands), see Tcl Command Categories, on page 144.

• For a description of the find, expand, and collection commands, see Tcl
Find, Expand, and Collection Commands, on page 145.

• For the TCL timing and design constraints syntax and their descriptions
in SCOPE, see Constraint Commands, on page 215.

project_folder query_available_metrics

query_metric query_metric_details

recording report_clocks

report_messages report_message_summary

run_tcl sdc2fdc

select set_option

status_report synplify_pro

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 23

add_file
The add_file command adds one or more files to a project.

Syntax
add_file [-filetype] fileName [fileName [...]]
add_file -verilog [-lib fileName [fileName [...]]] [-folder folderName]
add_file -vhdl [-lib libName[libName]] fileName [fileName [...]] [-folder folderName]
add_file -include fileName [fileName [...]]
add_file [-filetype] -job_owner par | simulation [fileName [...]]
add_file -structver [fileName [...]]
add_file -tooltag tooltagName -toolargs [toolArguments] fileName
add_file -vlog_std standard fileName [fileName [...]]

-filetype Specifies the type of file being added to the project (files are
placed in folders according to their file types; including
this argument overrides automatic filename-extension
placement). See Filename Extensions, on page 25 for a
list of the recognized file types.

fileName Specifies the name of the file being added to the project.
Files are added to the individual project folders according
to their filename extensions (View Project Files in Folders must
be set in the Project View Options dialog box). You can add
multiple files by separating individual filenames with a
space, and you can specify different file types (extensions)
within the same command.

-verilog or -vhdl Adds HDL files with non-standard extensions to the Verilog
or VHDL directory, so that they can be compiled with the
project. For example, the following command adds the file
alu.v.new to the project’s verilog directory:
% add_file -verilog /designs/megachip/alu.v.new
If you do not specify -verilog, the file is added to the Other
directory (new is not a recognized Verilog extension), and
the file would not be compiled with the files in the Verilog
directory.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
24 Synopsys Confidential Information February 2021

[-lib libName] Specifies the library associated with Verilog or VHDL files.
The default library is work. The -lib option sets the VHDL
library to libName.
Note: You can also specify multiple libraries for Verilog or
VHDL files.
Verilog Example:
add_file -verilog -lib top -vlog_std sysv "top.v"
VHDL Example:
add_file -vhdl -lib {mylib,work} "ff.vhd"
Both the logical and physical libraries must be specified in
the Project file (if you only specify the logical library
associated with the Verilog or VHDL files, the compiler
treats the module as a black box).

[-folder folderName] Creates logical folders with custom files in various
hierarchy groupings within your Project view. For example:
add_file -verilog -folder memory "ram_1.v"
add_file -verilog -folder memory
"C:/examples/verilog/common_rtl/memory/ram_1.v"

-include Indicates that the specified file is to be added to the project
as an include file (include files are added to the Include
directory regardless of their extension). Include files are
not passed to the compiler, but are assumed to be
referenced from within the HDL source code. Adding an
include file to a project, although not required, allows it to
be accessed in the user interface where it can be viewed,
edited, or cross-probed.

-job_owner Allows you to determine how files are used; you can
specify these options from the File Options dialog box. For
example, you can automatically decide to pass files to the
back-end place-and-route tool (Use for Place and Route) or
use them for test benches containing HDL constructs for
simulation (Use for Simulation only).

-structver fileName Adds structural Verilog files as input for your design
project. The software performs fast compilation of the
structural Verilog files, providing runtime improvements
for the design. For example:
add_file -structver fileName.vm
For more information, see Using the Structural Verilog
Flow, on page 53.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 25

Filename Extensions
Files with the following extensions are automatically added to their corre-
sponding project directories; files with any other extension are added to the
Other directory. The -filetype argument overrides automatic filename extension
placement.

-tooltag tooltagName Creates a tool tag name for the application tool you want
to invoke from within the Synopsys FPGA synthesis tool.

-toolargs tool Specifies any argument options to use with the application
tool you want to invoke from within the Synopsys FPGA
synthesis tools. For example:
add_file -tooltag {EDK} -toolargs {$SynCode}
"ram.v"

-vlog_std standard Overrides the global Verilog standard for an individual file.
The accepted values for standard are v95 (Verilog 95),
v2001 (Verilog 2001), and sysv (SystemVerilog). The file
(fileName) is added to the Verilog folder in the project; the
specified standard is listed after the filename in the project
view and is enclosed in angle brackets (for example,
commchip.v <sysv>). Note that when you add a
SystemVerilog file (a file with an sv extension) to a project,
the add_file entry in the project file includes the -vlog_std
standard string.
The default standard for new projects is SystemVerilog.
For Verilog 2005 extensions, use sysv (SystemVerilog).

Extension -Filetype Project Folder

.adc -analysis_constraint Analysis Design Constraint

.edf, .edn -edif EDIF

.fdc -fpga_constraint/-constraint Logic Constraints (FDC)

.sdc -constraint Logic Constraints (SDC)

.sv1 -verilog Verilog

.tcl -tcl Tcl Script

.v -verilog Verilog

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
26 Synopsys Confidential Information February 2021

Example: Add Files
Add a series of VHDL files to the VHDL directory and add an include file to the
project:

% add_file /designs/sequencer/top.vhd
% add_file /designs/sequencer/alu.vhdl
% add_file -vhdl /designs/sequencer/reg.vhd.fast
% add_file -include /designs/std/decode.vhd

The corresponding directory structure in the Project view is shown in the
following figure:

Example: File Options Designation
Designate some IP core wrappers as well as their associated instantiated
component files that must be passed on to the place-and-route tool, since
they are not written to the final netlist:

add_file -verilog -job_owner par "my_ip_core.v"
add_file -verilog -job_owner par "my_ip_core_enc.v"

.vhd, .vhdl -vhdl VHDL

.vm -structver Structural Verilog File

any -include Include

1. Use the sv format for SystemVerilog keyword support. Both Verilog and SystemVerilog formats
are added to the Verilog folder.

Extension -Filetype Project Folder

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 27

add_folder
The add_folder command adds a custom folder to a project.

Syntax
add_folder folderName

Creates logical folders with files in various custom hierarchy groupings
within your Project view. These custom folders can be specified with any
name or hierarchy level.

add_folder verilog
add_folder verilog/common_rtl
add_folder verilog/common_rtl/prep

For more information about custom folders, see Managing Project File
Hierarchy, on page 70 in the User Guide.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
28 Synopsys Confidential Information February 2021

analyst
Changes and manipulates the schematic views of the netlist. Note that the
following HDL Analyst commands can be used without the analyst prefix as
well.

analyst clone_view
Opens a copy of the current view.

analyst clone_view designID

designID
The design ID to clone. If not specified, clones the current view.

analyst critical_path
Filters the view to show the instances that are part of the critical path, if
available.

analyst critical_path

analyst dissolve
Removes targeted hierarchies from the design. Contents of the hierarchy are
put into the level that originally contained the hierarchy.

analyst dissolve collection

collection
Collection of instances to dissolve.

analyst filter
Filters the view by selected instances and ports.

analyst filter

analyst clone_view analyst critical_path analyst dissolve

analyst filter analyst flatten analyst get_selected

analyst group analyst pop analyst push

analyst select analyst unfilter analyst view

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 29

analyst flatten
Flattens the current view.

analyst flatten

analyst get_selected
Returns the names of currently selected objects.

analyst get_selected [-inst] [-net] [-port] [-pin]

-inst
Returns the names of selected instances. If no -type option is set, the
names of all selected objects are returned.

-net
Returns the names of selected nets. If no -type option is set, the names
of all selected objects are returned.

-port
Returns the names of selected ports. If no -type option is set, the names
of all selected objects are returned.

-pin
Returns the names of selected pins. If no -type option is set, the names
of all selected objects are returned.

analyst group
Creates a graphical group of instances.

analyst group [collection] [-name groupName]

collection
Instances to group. All instances must be on the same level of the
hierarchy.

-name groupName
The name of the graphical group to be created.

analyst pop
Pops up the hierarchy.

analyst pop

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
30 Synopsys Confidential Information February 2021

analyst push
Pushes down the hierarchy.

analyst push hierarchyName

hierarchyName
The name of the group or instance to push the hierarchy down into.

analyst select
Selects specified objects.

analyst select [collection] [-append] [-clear] [-instances] [-primitives]

collection
The ID of the collection to select.

-append
Appends objects to the selection list.

-clear
Clears the selection list.

-instances
Selects all instances in the current view.

-primitives
Selects all primitives (leaf) instances in the current view.

analyst unfilter
Unfilters the view.

analyst unfilter

analyst view
Opens a schematic view.

analyst view designID

designID
The design ID to view.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 31

cdpl_queue
Use the cdpl_queue command to set a CDPL queue, get the configuration
setting of the CDPL queue, or clear the CDPL queue settings. These settings
are valid only for the current session, and not saved in the .ini file or any other
script. Create a Tcl file to save the settings and use it for subsequent
sessions. This command is available only as a Tcl syntax.

Syntax

cdpl_queue -set [queueType][queueConfig] | -get [queueType] | -clear

The following table describes the cdpl_queue command options:

Examples

To use this command, set up the following string in your project file:

cdpl_queue -set default $PWD/hosts_default

For more information, see the CDPL (Common Distributed Processing
Library) documentation.

Option Description

-set [queueType]
[queueConfig]

Sets a CDPL queue configuration.
• queueType is lowmem, highmem, default or vendor. The queue

type vendor is for all place and route jobs.
• queueConfig is the queue host file. See CDPL help

documentation on how to set up a queue host file.

-get [queueType] Returns the configuration setting of the queueType specified. If
queueType is not given, the command returns all the queue
types set in the current session.

-clear Clears all the queue settings.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
32 Synopsys Confidential Information February 2021

check_fdc_query
Runs the constraint checker for constraints using the get_* and/or all_* query
commands specified in the timing constraint file for the project.

Syntax

check_fdc_query [-full_check]

Arguments and Options
-full_check

Runs the full constraint checker before checking the query commands.
The default is to run the check_fdc_query command without this option.

When the -full_check option is not specified, the command only runs the
constraint syntax checker, which reduces runtime significantly, since most
objects being searched are found in pre-mapping and do not require full
mapping to be run. However, this option does not find bit-blasted registers
and objects using the advanced -filter @property =~ commands, where the
property is created or applied during mapping because it requires optimiza-
tions such as register replication.

For example, if a 4-bit RAM output is targeted with the get_cell command, the
differences in the results are shown below:

Command Run Stage Results

Default (without -full_check) Pre-mapping ram_out [3:0]

With -full_check Mapping ram_out [3]
ram_out [2]
ram_out [1]
ram_out [0]

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 33

Description
The check_fdc_query command reads the .fdc constraint file of the current
project file. It runs the constraint checker for the following object query
commands that are used with FDC constraints:

The report provides feedback on how these query commands are applied and
ensures that the commands are used properly with constraints in the
constraint file.

Collections created with define_scope_collection, find, and expand are not covered
by this Tcl command. You can check these SCOPE collections in the HDL
Analyst and the SCOPE interface. The report does not cover the define_io_stan-
dard constraint either.

Example
Invoke check_fdc_query from the Tcl command line for the project. You can also
invoke it from a shell window.

The command writes out the results of the object query commands to the
projectName_cck_fdc.rpt file that opens in the GUI. You may need to run the
constraint checker (Run->Constraint Check) to find additional issues with
constraints.

all_* Commands get_* Commands

all_clocks get_cells

all_fanin get_clocks

all_fanout get_nets

all_inputs get_pins

all_outputs get_ports

all_registers

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
34 Synopsys Confidential Information February 2021

The following example shows the results of running the constraint checker in
the projectName_cck_fdc.rpt file.

FDC query commands results

###############################
1019 : set_multicycle_path 2 -from [get_cells -hier {*[4]}]
line 175 in :
C:/check_fdc_query/all_clocks/test1_basic/top_translated.fdc
Results of query command: get_cells -hier {*[4]}

(none)
###############################
1027 : set_multicycle_path 3 -to [all_clocks]
line 196 in :
C:/check_fdc_query/all_clocks/test1_basic/top_translated.fdc
Results of query command: all_clocks

clka
clkb
dcm|CLK0_BUF_clock_CLKIN1
dcm|clk0_i_clock_CLKIN1
dcm|CLK0_BUF_1_clock_CLKIN1

The syntax checker reports the object query commands and any issues it
found and writes them to the projectName_scck.rpt file.

Synopsys Constraint Checker (syntax only), version map610dev,
Build 1085R
Copyright (C) 1994-2016, Synopsys, Inc.
Written on Tue Apr 30 15:39:07 2013
DESIGN INFO
###
Top View: "top"
Constraint File(s):
"C:\check_fdc_query\all_clocks\test1_basic\top_translated.fdc"

"C:\builds\syn201309_063R\lib\fdc_query.fdc"

Run constraint checker to find more issues with constraints.
##
#######

No issues found in constraint syntax.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 35

Clock Summary

Start
Requested Requested Clock Clock
Clock Frequency Period Type Group
--
clka 100.0 MHz10.000 declare default_clkgroup
clkb 50.0 MHz 20.000 declared default_clkgroup
dcm|CLK0_BUF _clock_CLKIN1

200.0 MHz5.000 derived (from clka) default_clkgroup
dcm|CLK0_BUF_1 _clock_CLKIN1

50.0 MHz 20.000 derived (from clka) default_clkgroup
==

See Also
• Constraint Checking, on page 138

• Constraint Checking Report, on page 173

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
36 Synopsys Confidential Information February 2021

command_history
Displays a list of the Tcl commands executed during the current session.

Syntax
command_history [-save filename]

Arguments and Options
-save

Writes the list of Tcl commands to the specified filename.

Description
The command_history command displays a list of the Tcl commands executed
during the current session. Including the -save option, saves the commands
to the specified file to create Tcl scripts.

Examples
command_history -save C:/DesignsII/tut/proto/myTclScript.tcl

See Also
• recording, on page 104

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 37

constraint_file
The constraint_file command manipulates the constraint files used by the active
implementation.

Syntax
constraint_file

-enable constraintFileName
-disable constraintFileName
-list
-all
-clear

The following table describes the command arguments.

Examples
List all constraint files added to a project, then disable one of these files for
the next synthesis run.

% constraint_file -list
attributes.fdc clocks1.fdc clocks2.fdc eight_bit_uc.fdc
% constraint_file -disable eight_bit_uc.fdc

Disable all constraint files previously enabled for the project, then enable only
one of them for the next synthesis run.

% constraint_file -clear
% constraint_file -enable clocks2.fdc

Option Description

-enable Selects the specified constraint file to use for the active
implementation.

-disable Excludes the specified constraint file from being used for the active
implementation

-list Lists the constraint files used by the active implementation

-all Selects (includes) all the project constraint files for the active
implementation.

-clear Clears (excludes) all the constraint files for the active implementation

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
38 Synopsys Confidential Information February 2021

create_fdc_template
Lets you create an initial constraint file (.fdc) for your specific design.

Syntax
create_fdc_template [-period float] [-in_delay float] [-out_delay float]

The following table describes the create_fdc_template command options.

Examples

Each port clock includes a set_clock_groups header with details shown below,
which can help you determine whether clocks have been optimized away or if
there are any derived clocks.

###
Individual "set_clock_groups" commands for all "clka" derived clocks
appear at the end of this file. Enabling a given command will make the
given clock asynchronous to all other clocks. If a given clock (below)
does not appear in the final Performance Summary (in the *.srr
file after synthesis), the clock may have been optimized away due to
Gated/Generated Clock Conversion.
See the "CLOCK OPTIMIZATION REPORT" in the *.srr file.
Below is a list of any clocks derived from "clka":
clka DERIVED CLOCKS:
dcm|CLK0_BUF_1_derived_clock_CLKIN Clock Object: {t:dcm_inst.CLK_BUF1.O}
dcm|CLK0_BUF_derived_clock_CLKIN1 Clock Object: {t:dcm_inst.CLK_BUF0.O}
###

set_clock_groups -disable -asynchronous -name {clka_group}
-group {clka} -comment {Source clock clka group}

set_clock_groups -disable -asynchronous
-name {dcm|CLK0_BUF_1_derived_clock_CLKIN1_group}
-group [get_clocks
-of_objects [get_pins {t:dcm_inst.CLK_BUF1.O}]]
-comment {Derived clock dcm|CLK0_BUF_1_derived_clock_CLKIN1

from source clock clka}

Option Description

-period float Specifies the default values for port clocks.

-in_delay float Specifies the default values for the input delay ports.

-out_delay float Specifies the default values for the output delay ports.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 39

set_clock_groups -disable -asynchronous
-name {dcm|CLK0_BUF_derived_clock_CLKIN1_group}
-group [get_clocks
-of_objects [get_pins {t:dcm_inst.CLK_BUF0.O}]]
-comment {Derived clock dcm|CLK0_BUF_derived_clock_CLKIN1

from source clock clka}
set_clock_groups -disable -asynchronous -name {clkb_group}

-group {clkb} -comment {Source clock clkb group}

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
40 Synopsys Confidential Information February 2021

design
Returns netlist data representing information about the design. Commands
are available in both batch and GUI mode. Note that the following HDL
Analyst find commands can be used without the design prefix as well.

design c_diff
Returns a new find collection containing the differences between two existing
find collections.

Syntax
design c_diff collection1 collection2

collection1
The first collection to compare.

collecton2
The second collection to compare.

design c_filter
Filters a find collection based on set properties.

Syntax
design c_filter collection pattern [-inst] [-net] [-port] [-pin] [-view]

collection
The collection ID to filter.

pattern
Statement used to filter.

design c_diff design c_filter design c_info

design c_intersect design c_list design c_print

design c_symdiff design c_union design close

design expand design find design get_prop

design get design list design open

design set design top_level

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 41

-inst
Returns matching instances. If no -type option (-inst, -net, -port, or -pin) is
set, all types will be returned.

-net
Returns matching nets. If no -type option (-inst, -net, -port, or -pin) is set,
all types will be returned.

-port
Returns matching ports. If no -type option (-inst, -net, -port, or -pin) is set,
all types will be returned.

-pin
Returns matching pins. If no -type option (-inst, -net, -port, or -pin) is set,
all types will be returned.

-view
Returns matching views. If no -type option (-inst, -net, -port, or -pin) is set,
all types will be returned.

design c_info
Returns information about the contents of a find collection.

Syntax

design c_info [collection] [-array value]

collection
Find collection information to display.

-array value
Specify an array to store collection information in.

design c_intersect
Defines common objects that are included in each of the collections being
compared.

Syntax
design c_intersect collectionList

collectionList
List of collections separated by spaces.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
42 Synopsys Confidential Information February 2021

design c_list
Converts a collection to a Tcl list of objects.

Syntax

design c_list collection

collection
Collection to convert.

design c_print
Displays collections or properties in column format.

Syntax
design c_print collection [-prop propertyName] [-file filename] [-append]

collection
The collection to print as a table.

-prop
Writes a column in the table for properties of type propname.

-file
Writes the collection to filename.

-append
Appends to the file specified in -file rather than overwriting it.

design c_symdiff
Returns a new find collection containing the difference between two existing
find collections.

Syntax

design c_symdiff collection1 collection2

collection1 The first collection.

collection2 The second collection.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 43

design c_union
Combines multiple collections into a single collection.

Syntax

design c_union collectionList

collectionList
Space-separated list of collections.

design close
Closes the specified design ID. If no design ID is provided, this command
closes the current active design.

Syntax
design close designID

designID

The design ID to close.

design expand
The design expand command identifies objects based on their connectivity, by
expanding forward from a given starting point. Returns a collection.

Syntax
design expand [-objectType] [-from object] [-thru object] [-to object] [-level integer]

[-hier] [-leaf] [-seq] [-print]

-objectType
Optionally specifies the type of object to be returned by the expansion. If
you do not specify objectType, all objects are returned. The object type is
one of the following:

-inst – returns all instances between the expansion points. This is the
default.

-pin – returns all instance pins between the expansion points.

-net – returns all nets between the expansion points.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
44 Synopsys Confidential Information February 2021

-port – returns all top-level ports between the expansion points.

-from object
Specifies a list or collection of ports, instances, pins, or nets for expan-
sion forward from all listed pins. Instances and input pins are automati-
cally expanded to all output pins of the instances. Nets are expanded to
all output pins connected to the net. If you do not specify this argument,
backward propagation stops at a sequential element.

-thru object
Specifies a list or collection of instances, pins, or nets for expansion
forward or backward from all listed output pins and input pins respec-
tively. Instances are automatically expanded to all input/output pins of
the instances. Nets are expanded to all input/output pins connected to
the net. You can have multiple -thru lists for product of sum (POS) opera-
tions.

-to object
Specifies a list or collection of ports, instances, pins, or nets for expan-
sion backward from all the pins listed. Instances and output pins are
automatically expanded to all input pins of the instances. Nets are
expanded to all input pins connected to the net. If you do not specify
this argument, forward propagation stops at a sequential element.

-level integer
Limits the expansion to N logic levels of propagation. You cannot specify
more than one -from, -thru, or -to point when using this option.

-hier
Modifies the range of any expansion to any level below the current view.
The default for the current view is the top level and is defined with the
define_current_design command as in the compile-point flow.

-leaf
Returns only non-hierarchical instances.

-seq
Modifies the range of any expansion to include only sequential elements.
By default, the expand command returns all object types. If you want
just sequential instances, make sure to define the object_type with the
-inst argument, so that you limit the command to just instances.

-print
Evaluates the expand function and prints the first 20 results. If you use
this command from HDL Analyst, results are printed to the Tcl window;
for constraint-file commands, the results are printed to the log file at the

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 45

start of the Mapper section. For a full list of objects found, you must use
c_print or c_list. Reported object names have prefixes that identify the
object type. There are curly braces around each name to allow for spaces
in the names. For example:

{i:reg1}
{i:reg2}
{i:\weird_name[foo$]}
{i:reg3}
<<found 233 objects. Displaying first 20 objects. Use

c_print or c_list for all. >>

design find
Identifies design objects based on specified criteria.

Syntax
design find

[-objectType] pattern
[-seq]
[-inst instance]
[-net net]
[-port port]
[-pin pin]
[-view view]
[-depth viewNumber]
[-flat]
[-print]
[-filter expression]
-in value
-below value
-nocase

-objectType pattern
Specifies the type of object to be found. Object types are view, inst, port,
pin, or net. The pattern argument is required and specifies the search
pattern to be matched. The pattern can include the * and ? wildcard
characters.

-seq
Finds sequential (clocked) instances (the -inst object type is not required).
This argument is equivalent to -filter @is_sequential.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
46 Synopsys Confidential Information February 2021

-hier
Extends the search downward through each level of the local hierarchy,
instead of limiting the search to the current view. The default hierarchy
separator for the search is the period (.).

-inst instance
Finds instances. If no -type option is set, find defaults to finding
instances, nets, and ports.

-net net
Finds nets. If no -type option is set, find defaults to finding instances,
nets, and ports.

-port port
Finds ports. If no -type option is set, find defaults to finding instances,
nets, and ports.

-pin pin
Finds pins. If no -type option is set, find defaults to finding instances,
nets, and ports.

-view view
Finds views. If no -type option is set, find defaults to finding instances,
nets, and ports.

-depth depth
Sets the start depth for the search. depth may be a single hierarchy depth
or a range. Using -depth with a range will cause -hier and -flat arguments
to be ignored. Setting -depth to 0 will start the search at the top level.

-flat
Extends the search to all levels, but with -flat, the * wildcard character
matches hierarchy separators as well as characters. This means that the
following example finds instance a1_fft at the current level as well as the
hierarchical instance a1.fft:

find -seq -flat a1*fft

-print
Prints the first 20 search results. For a full list of objects found, use
c_print or c_list. If you use find from the shell, the results are printed to the
Tcl window; if you find in the constraint file, the results are printed to the
log file at the beginning of the Mapper section. Reported object names
have prefixes that identify the object type and curly braces around each
name to allow for spaces in the names as shown below:

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 47

{i:reg1}
{i:\weird_name[foo$]}
{i:reg2}
<<found 233 objects. Displaying first 20 objects. Use c_print
or c_list for all. >>

-filter expression
Further refines the results of find by filtering the results using the speci-
fied object property. For syntax details, refer to find -filter, on page 154.

-in value
Searches a collection to find a subset of the collection.

-below value
Sets the start point of the search to the specified instance path. Only
search for objects below that point.

-nocase
Ignores the case when matching object names.

design get_prop
Returns a list of property values for an object or collection.

Syntax
design get_prop [objectName|collection] [-prop value] [-all] [-array value]

objectName|collection
The object or collection to use.

-prop
The property value to return.

-all
Prints all available properties.

-array
Specifies array where properties are stored. Only use with -all and the
find collection must be limited to one object.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
48 Synopsys Confidential Information February 2021

design get
Returns the design ID for the current active design.

Syntax
design get

design list
Returns a list of available design IDs.

Syntax
design list

design open
View schematic of the design in its current state.

Syntax
design open [netlist]

netlist
The netlist to view.

design set
Sets specified design ID as the active design.

Syntax
design set designID

designID

The design ID to set as active.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 49

design top_level
Returns a Tcl list of top-level information in the following order:
lib topModule topView.

Syntax
design top_level

For example:

design top_level
work eight_bit_uc verilog

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
50 Synopsys Confidential Information February 2021

dump_metrics
Shows metrics and values available for the current implementation of a
design. By default, only primary metrics are shown.

Syntax
dump_metrics [-show_queries] [-all]

-all
Shows detailed metrics as well as primary metrics for the design.

-show_queries
Shows available metrics in the form of a Tcl command that can be used
to retrieve each metric.

The default output format is

table.[object|global]: metric = value [units] from job [// description]

Examples
% dump_metrics -all
*clock_conversion.global: icg_removed = 0 from premap

//Number of ICG latches removed
*clock_conversion.global: icg_retained = 0 from premap

//Number of ICG latches not removed
*clock_conversion.global: clean_clock_trees = 1 from fpga_mapper

//Number of non-gated/non-generated clock trees
*clock_conversion.global: clean_clock_pins = 270 from fpga_mapper

//Number of clock pins driven by non-gated/non-generated clock trees
*clock_conversion.global: gated_clock_trees = 0 from fpga_mapper

//Number of gated/generated clock trees
*clock_conversion.global: gated_clock_pins = 0 from fpga_mapper

//Number of clock pins driven by gated/generated clock trees
*clock_conversion.global: instances_converted = 0 from fpga_mapper

//Number of sequential instances converted
*clock_conversion.global: instances_notconverted = 0 from fpga_mapper

//Number of sequential instances left unconverted
*hdl_compile.global: modified_files = 28 from compiler

//Total number of HDL input files compiled
*hdl_compile.global: modified_modules = 11 from compiler

//Total number of modules compiled
*hdl_compile.global: total_modules = 11 from compiler

//Total number of modules
*hdl_compile.global: total_files = 28 from compiler

//Total number of HDL input files
*misc.global: Part = xc7vx485tffg1157-1 from fpga_mapper
*runtime.global: realtime = 3.154000 seconds from compiler
*runtime.global: cputime = 1.809612 seconds from compiler

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 51

*runtime.global: realtime = 1.452000 seconds from premap
*runtime.global: cputime = 1.622410 seconds from premap
*runtime.global: realtime = 9.881000 seconds from fpga_mapper
*runtime.global: cputime = 9.828063 seconds from fpga_mapper
*timing.global: "Worst Slack" = -0.445800 ns from fpga_mapper
utilization.global: LUT1 = 31 from fpga_mapper
utilization.global: LUT2 = 64 from fpga_mapper
utilization.global: LUT3 = 45 from fpga_mapper
utilization.global: LUT4 = 84 from fpga_mapper
utilization.global: LUT5 = 57 from fpga_mapper
utilization.global: LUT6 = 160 from fpga_mapper
utilization.global: IBUF = 1 from fpga_mapper
utilization.global: IBUFG = 1 from fpga_mapper
utilization.global: IOBUF = 24 from fpga_mapper
*utilization.global: "I/O primitives" = 26 from fpga_mapper
utilization.global: BUFG = 1 from fpga_mapper
*utilization.global: "I/O Register bits" = 0 from fpga_mapper
*utilization.global: "Total Luts" = 411 from fpga_mapper

Note: The * denotes a primary metric.

% dump_metrics -show_queries
query_metric clock_conversion.icg_removed -jobname premap
query_metric clock_conversion.icg_retained -jobname premap
query_metric clock_conversion.clean_clock_trees -jobname fpga_mapper
query_metric clock_conversion.clean_clock_pins -jobname fpga_mapper
query_metric clock_conversion.gated_clock_trees -jobname fpga_mapper
query_metric clock_conversion.gated_clock_pins -jobname fpga_mapper
query_metric clock_conversion.instances_converted -jobname fpga_mapper
query_metric clock_conversion.instances_notconverted -jobname fpga_mapper
query_metric hdl_compile.modified_files -jobname compiler
query_metric hdl_compile.modified_modules -jobname compiler
query_metric hdl_compile.total_modules -jobname compiler
query_metric hdl_compile.total_files -jobname compiler
query_metric misc.Part -jobname fpga_mapper
query_metric runtime.realtime -jobname compiler
query_metric runtime.cputime -jobname compiler
query_metric runtime.realtime -jobname premap
query_metric runtime.cputime -jobname premap
query_metric runtime.realtime -jobname fpga_mapper
query_metric runtime.cputime -jobname fpga_mapper
query_metric {timing.Worst Slack} -jobname fpga_mapper
query_metric {utilization.I/O primitives} -jobname fpga_mapper
query_metric {utilization.I/O Register bits} -jobname fpga_mapper
query_metric {utilization.Total Luts} -jobname fpga_mapper

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
52 Synopsys Confidential Information February 2021

Naming Conventions for Metrics
The naming convention used for metrics consists of the following:

• Table – Represents a group of related metrics, such as, timing, runtime,
or clock conversion.

• Metric Name – Descriptive string used to query metrics. This name
usually consists of lower case letters with underscores between words.

• Units – Values associated with the metric, such as ns or percent are only
shown if details are specified.

• Object – Some metrics are associated with an object, while others are
global. Objects can be a clock net name, view name, or an instance path.

• Description – Brief description of the metric.

For example, clock conversion metrics can be specified as follows:

See Also
To query metrics for a design, see the following commands:

• query_available_metrics, on page 97

• query_metric, on page 100

• query_metric_details, on page 102

Table Metric Name Description

clock_conversion clean_clock_trees Number of non-gated/non-generated clock
trees

clock_conversion clean_clock_pins Number of clock pins driven by
non-gated/non-generated clock trees

clock_conversion gated_clock_trees Number of gated/generated clock trees

clock_conversion instances_converted Number of sequential instances converted

clock_conversion instances_notconvert
ed

Number of sequential instances left
unconverted

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 53

encryptIP
The encryptIP script lets you encrypt data with the OpenIP scheme.
Download the script from the Synopsys website and run it directly from Perl.
The Perl command line syntax for running the script is as follows:

Perl encryptIP Script Syntax
encryptIP

-in | input inputFile
-out | output outputFileName
-c | cipher "{des-cbc | 3des-cbc |aes128-cbc }"
-k | key symmetricEncryptionKeyInTextFormat
-kx | keyx symmetricEncryptionKeyInHexadecimalFormat
-bd | build_date ddmmmyyyy
-om | outputmethod "{plaintext | blackbox | persistent_key}"
-incv | includevendor vendorKeyBlock
-dkn | datakeyname sessionKeyName
-dko | datakeyowner sessionKeyOwner
-a | author dataAuthor
-v | verbose

You must specify all required parameters.

-in | input Names the input HDL file to be encrypted.

-out | output Names the output file generated after encryption.

-c | cipher Specifies the symmetric encryption cipher. The key length must
match the algorithm being used, with each character using 8 bits.
• des-cbc specifies the Data Encryption Standard (DES); uses a

64-bit key.
• 3des-cbc specifies the Triple Data Encryption Standard (Triple

DES); uses a 192-bit key.
• aes128-cbc specifies the Advanced Encryption Standard (AES

Rijndael); uses a 128-bit key.
See Encryption and Decryption, on page 477 in the FPGA
Synthesis User Guide for an overview.

-k | key Specifies the symmetric data decryption key used to encode your
HDL data block. The key is in text format, and can be any string
(e.g. ABCDEFG).The exact length of the key depends on the data
method you use.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
54 Synopsys Confidential Information February 2021

-kx | keyx* Optional parameter. Specifies the symmetric encryption key in
hexadecimal format.

-bd | build_date Specifies a date (ddmmmyyyy). The IP only works in Synopsys
software released after the specified date. This option lets you
force users to use newer Synopsys FPGA releases that contain
more security features. Contact Synopsys if you need help in
deciding what build date to use.

-om |
outputmethod

Determines how the IP is treated in the output after synthesis:
• plaintext specifies that the IP is unencrypted in the synthesis

netlist.
• blackbox specifies that the IP is treated as a black box, and only

interface information is in the output.
• persistent_key is the default setting. It re-encrypts the output

after synthesis in accordance with the OpenIP standard.
See Specifying the Script Output Method for OpenIP Encryption,
on page 494 for more information.

-incv |
includevendor

Optional parameter that specifies a key block for an EDA vendor,
so that IP can be read by the vendor tools. C

-dkn |
datakeyname

Specifies a string that denotes your session key, that was used to
encrypt your IP.

-dko |
datakeyowner

Optional parameter that names the owner of the session key. The
value can be any string.

-a | author Optional parameter that names the author of the session key. The
value can be any string.

-v | verbose Specifies that the script run in verbose mode.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 55

Example of encryptIP (OpenIP) Script Output
The following is an example of the script output:

For brief descriptions of the pragmas used in the output of the encryptIP
script, see Pragmas Used by Encryption Scripts, on page 58.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
56 Synopsys Confidential Information February 2021

encryptP1735
Run the encryptP1735 script directly from Perl.

The script supports different models for encrypting HDL files and accessing
the encrypted information (see IEEE 1735 Encryption Use Models, on
page 59). The use model is determined by how blocks are marked for encryp-
tion in the HDL, combined with the information in the public keys file, which
is described in Public Keys File, on page 57.

Perl encryptP1735 Script Syntax
encryptP1735

-l | list listofFiles
[-pk | public_keys keyFileName]
[-sk | showkey]
[-verbose]
[-verilog]
[-vhdl]
[-log logFileName]
[-h | -help]

The following table describes the command-line arguments.

-l | list Specifies a list of the files to be encrypted; listofFiles is a list of
the non-encrypted HDL input files with each filename entry on
a separate line.

-pk | public_keys Specifies the public keys repository file. This file contains
public keys for various tools. If the encryption envelope
contains a key block with a particular keyowner and keyname,
the script searches the public keys file to find a corresponding
public key to use during key-block generation. See Public Keys
File, on page 57 for information about this file.

-sk | showkey When used, the encryption script displays the session key in
use. This is useful when random keys are used and you want
to know which key is being used.

-verbose Prints more detailed messages to the screen or log file.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 57

Public Keys File
The encryptP1735.pl encryption script requires public key information, which is
specified in a designated file (-public_keys or -pk) option). This file includes
public keys for each of the tools that are allowed access to the envelope with
the encrypted data. The default keys file is called keys.txt and is located with
the encryption script in the lib directory of the tool installation.

// Use verilog pragma syntax in this file
`pragma protect version=1
`pragma protect author="default"
`pragma protect author_info="default"
`pragma protect key_keyowner="Synopsys", key_keyname="SYNP15_1",
key_method="rsa"
`pragma protect key_public_key
<public_key_block>
// Add additional public keys below this line
// Add additional public keys above this line
`pragma protect data_keyowner="default-ip-author"
`pragma protect data_keyname="default-ip-key"
`pragma protect data_method="aes128-cbc"
// End of file

For the partial file with all pragmas use model, the following pragma attribute
values must match the corresponding values in the key-block section of the
encryption envelope:

`pragma protect key_keyowner="Synopsys", key_keyname="SYNP15_1",
key_method="rsa"

For information on the pragmas supported, see Pragmas Used by Encryption
Scripts, on page 58.

-verilog Specifies Verilog HDL file format when filename does not
include a .v or .sv extension.

-vhdl Specifies VHDL HDL file format when filename does not include
a .vhd or .vhdl extension.

-log Prints messages to the specified log file.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
58 Synopsys Confidential Information February 2021

Pragmas Used by Encryption Scripts
Both the encryptIP1735 and encryptIP (OpenIP) schemes use the pragmas
described in the following tables. Note the following:

• The %%% protect directive must be placed at the exact beginning of a line.

• Exactly one white-space character must separate the %%% sequence
from the command that follows.

The following table lists the pragmas used. In Verilog, the pragma must be
preceded by the word pragma; this is not required in VHDL.

General Pragmas

%%% protect protected_file 1.0 Line 1 of file with encrypted data

%%% protect begin_protected Marks the beginning of data to be encrypted

%%% protect end_protected Marks the end of data to be encrypted

%%% protect comment comment Single-line plain-text comment

%%% protect begin_comment Marks the beginning of plain-text comment block

%%% protect end_comment Marks the end of plain-text comment block

Data Block Pragmas (IP Author Data Encryption Information)

%%% protect author=string Lists name of IP author

%%% protect version=1 Specifies encryption version; required only for IEEE
1735 Partial File with Standard Pragmas encryption
use model

%%% protect
data_method=des-cbc | 3des-cbc
|aes128-cbc

Specifies the DES encryption method used:
• des-cbc: Data Encryption Standard (DES)
• 3des-cbc: Triple DES
• aes128-cbc: Advanced Encryption Standard (AES)

%%% protect data_block Immediately precedes the encrypted data block

Key Block Pragmas (IP Consumer Public Key Information)

%%% protect
key_keyowner=string

Lists the owner of the key

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 59

IEEE 1735 Encryption Use Models
Encryption models determine the scope of what gets encrypted and who can
access the files. The encryptP1735 script lets you use these use models to
encrypt HDL files:

Full-File Use Model
Use this model to encrypt the entire file. The entire HDL file is included in the
decryption envelope. This model uses the keys.txt file to define which
consumers have access to the encrypted data.

This Verilog example encrypts the whole file (tb_encrypt.v), including the
module named secret that it contains.

module secret (a, b, clk);
input a, clk;
output b;
reg b=0;

%%% protect
key_keyname=string

Name recognized by the Synopsys software to select
the key block

%%% protect key_method=string Encryption algorithm (RSA currently supported)

w %%% protect key_block Immediately precedes encrypted key block

Encryption Model Details

Full file Full-File Use Model, on page 59

Partial file with minimal pragmas Partial File with Minimal Pragmas Use
Model, on page 60

Partial file with standard pragmas
(Recommended)

Partial File with Standard Pragmas Use
Model, on page 61

Partial file with IEEE pragmas Partial File with IEEE Pragmas Use Model,
on page 63

HDL • Contains no encryption pragmas (entire file is encrypted)

keys.txt • Contains public key information for multiple downstream tools
• Owners of all public keys listed have access to the entire file

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
60 Synopsys Confidential Information February 2021

always @(posedge clk) begin
b = a;

end
endmodule

Run the script to encrypt the file:

perl encryptP1735.pl -list mylist -log encryptP1735.log
This command runs the script on a file (mylist), which lists the single Verilog
file tb_encrypt.v. The command uses the default keys.txt file from the lib direc-
tory, and creates the decryption envelope file tb_encrypt.vp. Messages from the
run are written to the encryptP1735.log file.

Partial File with Minimal Pragmas Use Model
With this encryption model, pragma protect begin and pragma protect end pragmas
are used to indicate the start and end points of encryption regions. This
model is best suited for cases where every encryption region must be
encrypted for every key in the key file. When using this model, you must
encrypt the entire module. The encryptP1735.pl script checks all the begin and
end pragmas and generates the decryption envelope for each tool specified in
the keys file.

To illustrate this use model, consider a single, Verilog file (tb_encrypt.v) to be
encrypted with only begin and end pragmas. This file contains a single
module named secret.

`pragma protect begin
module secret (a, b, clk);
input a, clk;
output b;
reg b=0;
always @(posedge clk) begin

b = a;
end
endmodule
`pragma protect end

HDL • Contains individual blocks marked for encryption (partial file)
• Contains no public key information

keys.txt • Contains public key information for multiple downstream tools
• Owners of all public keys listed have access to all encrypted HDL blocks

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 61

When you run the script with the following command, it uses the begin and
end pragmas specified in the HDL file to encrypt the file:

perl encryptP1735.pl -list mylist -pk keys.txt
Here, the list file (mylist) names the Verilog file tb_encrypt.v. The command
encrypts the data between the begin and end pragmas and creates the
decryption envelope file tb_encrypt.vp for all tools listed in the key file. No log
file (-log option) is specified, so messages are not written to a log file.

Partial File with Standard Pragmas Use Model
This is the recommended encryption use model. It is the most flexible
because you can choose to encrypt individual blocks instead of the entire file
and specify which tools can access each encrypted block on a per-block
basis. When using this model, you must encrypt the entire module. This
model requires a side file (keys.txt) that contains public key information for IP
consumers.

If there are conflicting pragmas defined in the HDL and the keys.txt file, the
HDL pragma takes precedence over the corresponding pragma in the keys.txt
file. For example, if data_method in the HDL is defined as des-cbc but the same
pragma in the keys.txt file defines it as aes128-cbc, the HDL definition is used
and copied to the decryption envelope:

data_method="des-cbc"

HDL • Marks individual blocks for encryption (partial file)
• Includes public key encryption pragmas for each tool that is allowed

access to an encrypted block, except the key itself (key_public_key)
• Key information must match the information in the keys.txt file
• Can allow different keys access to different blocks

keys.txt • Contains public key information for multiple downstream tools
• Must include all public key encryption pragmas, as well as the public

key itself
• Only those owners of public keys listed in the HDL before the encrypted

block have access to that block; all public keys listed in keys.txt need not
be used in the HDL

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
62 Synopsys Confidential Information February 2021

Verilog Example
This example encrypts a single Verilog file (tb_encrypt.v). The file contains a
module named secret and includes all the encryption-related pragmas in the
HDL, with the exception of key_public_key.

`pragma protect version=1
`pragma protect encoding=(enctype="base64")
`pragma protect author="author-a", author_info="author-a-details"
`pragma protect encrypt_agent="encryptP1735.pl",
encrypt_agent_info="Synplify encryption scripts"
`pragma protect key_keyowner="Synopsys",key_keyname="SYNP15_1",
key_method="rsa", key_block
`pragma protect
data_keyowner="ip-vendor-a",data_keyname="fpga-ip",
data_method="des-cbc"
`pragma protect begin
module secret (a, b, clk);
input a, clk;
output b;
reg b=0;
always @(posedge clk) begin

b = a;
end
endmodule

`pragma protect end
The script is then run with the following command, where the list file (mylist)
names a single file, tb_encrypt.v. The command uses the default keys.txt file
from the installLocation/lib directory as the public keys file to create the decryp-
tion envelope file tb_encrypt.vp. No log file is specified, so messages from the
run are not sent to a log file.

perl encryptP1735.pl -list mylist -pk keys.txt

VHDL Example
This example partially encrypts a VHDL file (tb_encrypt.vhd) where all encryp-
tion pragmas are specified in the file, except for key_public_key. The file
contains a single entity/architecture pair named secret. For VHDL pragmas,
just use the keyword protect.

library IEEE;
use IEEE.std_logic_1164.all;

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 63

entity secret is
port (clk : in std_logic;

a : in std_logic;
b : out std_logic);

end entity;
`protect version=1
`protect author="author-a", author_info="author-a-details"
`protect encrypt_agent="encryptP1735.pl",
encrypt_agent_info="Synplify encryption scripts"
`protect encoding=(enctype="base64")
`protect key_keyowner="Synopsys", key_keyname="SYNP15_1",
key_method="rsa", key_block
`protect data_keyowner="ip-vendor-a", data_keyname="fpga-ip",
data_method="des-cbc"
`protect begin
architecture rtl of secret is
signal b_reg: std_logic;
begin

process (clk) is
begin

if rising_edge(clk) then
b_reg <= a;

end if;
end process;
b <= b_reg;

end architecture;
`protect end

Encrypt the file with the following command, where the list file (mylist) names
a single VHDL file, tb_encrypt.vhd. The command uses the default keys.txt file
from the directory installLocation/lib as the public keys file to create the decryp-
tion envelope file tb_encrypt.vhdp. Messages are not captured in a log file.

perl encryptP1735.pl -list mylist -pk keys.txt

Partial File with IEEE Pragmas Use Model
Like the partial file with standard pragmas model, this use model is flexible,
but it does not require a side file with the key block information. This makes
it the most portable model, because all the information, including the key
block information for each IP consumer, is included in the source code. When
using this model, you must encrypt the entire module.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
64 Synopsys Confidential Information February 2021

module top (qa, qb, a, b, clk);
input a, b, clk;
output qa, qb;
enc_and iand (qa, a, b, clk);
enc_or ior (qb, a, b, clk);
endmodule
`pragma protect version=1
`pragma protect author="author-a", author_info="author-a-details"
`pragma protect key_keyowner="Synplicity", key_keyname="SYNP15_1",
key_method="rsa"
`pragma protect key_public_key
<public_key_block>

`pragma protect key_keyowner = "XYZ"
`pragma protect key_method = "rsa"
`pragma protect key_keyname = "XYZ8_001"
`pragma protect key_public_key
<public_key_block>
`pragma protect data_method="aes128-cbc"
`pragma protect begin
module enc_and (q, a, b, clk);
input a, b, clk;
output q;
reg q=0;
always @(posedge clk) begin

q = a & b;
end
endmodule

`pragma protect end

HDL • Marks individual blocks for encryption (partial file)
• Includes public key encryption pragmas for each tool that is allowed

access to an encrypted block, including the key itself (key_public_key)
• Can allow different keys access to different blocks

keys.txt • Not required

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 65

`pragma protect version=1
`pragma protect author="author-a", author_info="author-a-details"
`pragma protect key_keyowner="Synplicity", key_keyname="SYNP15_1",
key_method="rsa"
`pragma protect key_public_key
<public_key_block>

`pragma protect key_keyowner = "XYZ"
`pragma protect key_method = "rsa"
`pragma protect key_keyname = "XYZ8_001"
`pragma protect key_public_key
<public_key_block>
`pragma protect data_method="aes128-cbc"
`pragma protect begin
module enc_or (q, a, b, clk);
input a, b, clk;
output q;
reg q=0;
always @(posedge clk) begin

q = a | b;
end
endmodule

`pragma protect end

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
66 Synopsys Confidential Information February 2021

get_env
The get_env command reports the value of a predefined system variable.

Syntax
get_env systemVariable

Use this command to view system variable values. The following example
shows you how to use the get_env command to see the value of the previously
created MY_PROJECT environment variable. The MY_PROJECT variable
contains the path to an HDL file directory, so get_env reports this path.

get_env MY_PROJECT
d:\project\hdl_files

In the project file or a Tcl script, you can define a Tcl variable that contains
the environment variable. In this example, my_project_dir contains the
MY_PROJECT variable, which points to an HDL file directory.

set my_project_dir [get_env MY_PROJECT]
Then, use the $systemVariable syntax to access the variable value. This is
useful for specifying paths in your scripts, as in the following example which
adds the file myfile1.v to the project.

add_file $my_project_dir/myfile1.v

get_option
The get_option command reports the settings of predefined project and device
options. The options are the same as those for set_option. See set_option, on
page 113 for details.

Syntax
get_option -optionName

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 67

hdl_define
For Verilog designs, this command specifies values for Verilog text macros.
You can specify text macro values that you would normally enter using the
Verilog `define statement in a Verilog file included at the top of the synthesis
project. The parameter value is valid for the current implementation only.

This command is equivalent to the set_option -hdl_define command.

Syntax
hdl_define

-set "directive=value [directive=value ...]"
-clear
-list

Examples
hdl_define -set "SIZE=32"

This statement specifies the value 32 for the SIZE directive; the following
statement is written to the project file:

set_option -hdl_define -set "SIZE=32"
To define multiple directive values using hdl_define, enclose the directives in
quotes and use a space delimiter. For example:

hdl_define -set "SIZE=32 WIDTH=8"
The software writes the following statement to the prj file:

set_option -hdl_define -set "size=32 width=8"

See Also
Compiler Directives and Design Parameters, on page 370 for information on
specifying compiler directives in the GUI.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
68 Synopsys Confidential Information February 2021

hdl_param
The hdl_param command shows or sets HDL parameter overrides. For the GUI
equivalent of this command, select Project->Implementation Options->Verilog/VHDL.

Syntax
hdl_param

-add {paramName}
-list | -set paramName {paramValue}
-clear
-overrides

The following table describes the command arguments.

Examples
In batch mode, to set generic values using the set_option command in a
project file, specify the hdl_param generic with quotes and enclose it within { }.
For example:

set_option -hdl_param -set ram_file {"init.mem"}
set_option -hdl_param -set simulation {"false"}

Suppose the following parameter is set for the top-level module.

set_option -hdl_param -set {"width=8"}

Option Description

-add Adds a parameter override to the project.

-list Shows parameters for the top-level module only and lists
values for parameters if there is a parameter override.

-set Sets a parameter override and its value for the active
implementation. Only the parameter value is enclosed within
curly braces.

-clear Clears all parameter overrides of the active implementation.

-overrides Lists all the parameter override values used in this project.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 69

Add a parameter override and its value, then list the parameter override.

hdl_param -add {"size=32"}
hdl_param -list "size=32"

You can specify hdl_param generics with different types, such as, an integer,
std_logic_vector, or string value for VHDL. Here are some examples that show
how to define these generics:

• With an integer value

set_option -hdl_param -set DATA_WIDTH 4
• With a std_logic_vector value

set_option -hdl_param -set MY_SLV {"0011"}
• Using a string value

set_option -hdl_param -set initialization_file {"table2"}

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
70 Synopsys Confidential Information February 2021

help
The help command displays the usage syntax and description for the specified
command in the Tcl window.

Syntax
help commandName | wildcardTerm

Examples
help set_option
usage:set_option -<optionName> <optionValue> -- set option

on active implementation
get_option -<optionName> -- return option value on

active implementation
help c_*
c_diff
c_filter
c_info
c_intersect
c_list
c_member
c_print
c_symdiff
c_union

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 71

history
Returns a numbered list of executed Tcl commands.

Syntax

history [event number|clear|info [number]|keep [number]|nextid|redo [number]]

event number
Returns command number from the history list.

clear
Clears the history list.

info [number]
Returns the last number of commands. If no number is included, returns
all.

keep [number]
Sets the number of commands to save in history. Also returns the
current setting.

nextid
Returns the index number that the next command will be assigned to in
the history list.

redo [number]
Executes the number command. If no number is given, executes the latest
command.

Examples
history event 12
history redo 4

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
72 Synopsys Confidential Information February 2021

impl
The impl command adds, removes, or modifies an implementation.

Syntax
impl

-add [implName] [model]
-name implName
-remove implName
-active [implName]
-list
-type implType
-result_file
-dir

The following table describes the command arguments.

Option Description

-add Adds a new device implementation. If:
• implName is not specified, creates a unique implementation

name by incrementing the name of the active
implementation.

• you want to add a new implementation copied from
implementation model.

-name Changes the name of the active implementation.

-remove Removes the specified implementation.

-active Reports the active implementation. If you specify an
implementation name, changes the specified name to the
active implementation.

-list Lists all the implementations used in this project.

-type Specifies the type of implementation to add. For example, the:
• -type fpga option creates an FPGA implementation.
• -type identify option creates an Identify implementation.

-result_file Displays the implementation results file.

-dir Displays the implementation directory.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 73

Examples
The following command sequence lists all implementations, reports the active
implementation, and then activates a different implementation.

% impl -list
design_worst design_typical design_best
% impl -active
design_best
%impl -active design_typical
% impl -active
design_typical
% impl -add rev_1_identify mixed -type identify

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
74 Synopsys Confidential Information February 2021

job
The job command, for place and route job support, creates, removes, identi-
fies, runs, cancels, and sets/gets options for named P&R jobs.

Syntax
job jobName [-add jobType |-remove |-type |-run [mode] |-cancel |

-option optionName [optionValue]]

job -list

The following table describes the command options.

Examples
% job pr_2 -add par
% job pr_2 -run
% job pr_2 -option enable_run 1

Option Description

-run Runs the P&R job, according to the specified options:

-add jobType Creates a new P&R job for the active implementation.

-cancel Cancels a P&R job in progress.

-remove Removes a P&R job from an active implementation

-list Returns a list of the P&R jobs in the active implementation.

-remove Removes a P&R job from the active implementation

-option
optionName
[optionValue]

Get/set options for jobName.

-type Returns the P&R job type.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 75

log_filter
This command lets you filter errors, notes, and warning messages. The GUI
equivalent of this command is the Warning Filter dialog box, which you access
by selecting the Warnings tab in the Tcl window and then clicking Filter. For
information about using this command, see Filtering Messages in the
Message Viewer, on page 207 in the User Guide.

Syntax
log_filter -field fieldName==value
log_filter -show_matches
log_filter -hide_matches
log_filter -enable
log_filter -disable
log_filter -clear

The following table shows valid fieldName and value values for the -field
option:

Fieldname Value

type Error | Warning | Note

id The message ID number. For example, MF138

message The text of the message. You can use wildcards.

source_loc The name of the HDL file that generated the message.

log_loc The corresponding srr file (log).

time The time the message was generated.

report The log file section. For example, Compiler or Mapper.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
76 Synopsys Confidential Information February 2021

Example
log_filter -hide_matches
log_filter -field type==Warning -field message==*Una*

-field source_loc==sendpacket.v -field log_loc==usbHostSlave.srr
-field report=="Compiler Report"

log_filter -field type==Note
log_filter -field id==BN132
log_filter -field id==CL169
log_filter -field message=="Input *"
log_filter -field report=="Compiler Report"

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 77

log_report
This command lets you write out the results of the log_filter command to a file.
For information about using this command, see Filtering Messages in the
Message Viewer, on page 207 in the User Guide.

Syntax
You specify this command after the log_filter commands.

log_report -print fileName

Example
log_report -print output.txt

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
78 Synopsys Confidential Information February 2021

message_override
Allows you to suppress or override the log file message ID specifications with
another type or limit.

Use -limit and -count, to limit the number of occurrences for all messages or
specific messages in each log file. Messages that exceed the limit still show up
in the Report Summary page and can be retrieved later from the message
database. Suppressing messages is the same as -limit ID -count 0; errors cannot
be suppressed or limited.

Syntax
message_override [-suppress value] [-read_file value] [-error value]

[-warning value] [-note value] [-remove value] [-global] [-clear]
[-limit value] [-count value]

The following table describes the command arguments and options.

Option Description

-suppress value Lists message IDs to suppress in the log file.

-read_file value Reads the specified message override file.

-error value Lists the message ID type as an error.

-warning value Lists the message ID type as a warning.

-note value Lists the message ID type as a note.

-remove value Removes the override and resets the message type to
its original value.

-global Allows message operations to be applied globally.
Otherwise, the override operation is only applied on
messages for the current project.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 79

Examples
It is recommended that you set the default limit to something other than
unlimited, if possible. To do this, you can specify the following:

message_override -default_limit 100
More examples are shown below:

1. Upgrade messages with ID MF446 to be treated as an error.

message_override -error MF446
2. Suppress messages with ID BN101 (cannot be done for errors):

message_override -suppress BN101
3. Limit the number of occurrences of messages with IDs MF580 and

MF581 to 1000 each in each log file:

message_override -limit {MF580 MF581} -count 1000
4. Unlimit the number of occurrences of messages with ID CL118 in logs

and reports:

message_override -limit CL118 -count unlimited
5. Clear existing message overrides:

message_override -clear

-clear Removes all overrides and resets messages to their
original types.

-limit value Lists message IDs for a specific log file to the specified
limit. Use with the -count argument. Also, use
• message_override -limit default -count 1000 7 - Changes

the default limits for all messages
• message_override -limit default -count unlimited - Changes

the default limits for all messages to unlimited

-count value Counts the message IDs specified with the -limit
argument.

Option Description

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
80 Synopsys Confidential Information February 2021

open_design
The open_design command specifies a netlist file (.srs or .srm) that can be used
to search the database with the Tcl find command in batch mode. With
open_design, you can use find without having to open an RTL or Technology
view. Use open_design to read in the .srs or .srm file before issuing the find
command. See the example below.

Syntax
open_design filename

Where:

• filename is the RTL (.srs) or Technology (.srm) file that can be used to
search the database. The specified netlist is loaded on-demand to
minimize memory resources.

Example
project -load ../examples/vhdl/prep2_2.prj
open_design prep2_2.srs
set a [find -inst *]
c_print $a -file a.txt
open_design prep2_2.srm
set b [find -net *]
c_print $b -file b.txt

In the example above, prep2_2 is loaded and the information from the RTL
view file is read in. Then, the find command searches for all instances in the
design and prints them to file a. Next, the technology view file is read in, then
find searches for all nets in the design and prints them to file b.

See Also
• find, on page 147.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 81

open_file
The open_file command opens views within the tool. The command accepts
two arguments: -rtl_view and -technology_view.

Syntax
open_file -rtl_view |-technology_view

The -rtl_view option displays the RTL view for the current implementation, and
the -technology_view option displays the technology view for the current imple-
mentation. Views remain displayed until overwritten and multiple views can
be displayed.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
82 Synopsys Confidential Information February 2021

partdata
The partdata command loads part files and returns information regarding a
part such as available families, family parts, vendors, attributes, grades,
packages.

Syntax
partdata

-load filename
-family
-part family
-vendor family
-attribute attribute family
-grade [family:]part
-package [family:]part
-oem [family:]part

Example
The following example prints out the available vendors, their supported
families, and the parts for each family.

Option Description

-load filename Loads part file.

-family Lists available technology families.

-part family Lists all parts in specified family.

-vendor family Returns vendor name for the specified family.

-attribute attribute
family

Returns the value of the job attribute for the specified
family.

-grade [family:]part Lists the speed grades available for the specified part.

-package [family:]part Lists the packages available for the specified part.

-oem [family:]part Returns true if the part entered is an OEM part.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 83

% foreach vendor [partdata -vendorlist]
% puts VENDOR:$vendor;
% foreach family [partdata -family $vendor]
% puts \tFAMILY:$family;
% puts \t\tPARTS:;
% foreach part [partdata -part $family]
% puts \t\t$part;

program_terminate
Immediately terminates the tool session without prompting or saving any
data.

Syntax
program_terminate

Arguments and Options
None

Description
The program_terminate command terminates a tool session without prompting
or saving data. Use this command with caution as any unsaved data is lost
and cannot be recovered.

Examples
program_terminate

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
84 Synopsys Confidential Information February 2021

program_version
Returns the product and software release version.

Syntax
program_version

Arguments and Options
None

Description
The program_version command returns the software product version number.

Examples
% program_version
Synplify Pro L-2017.09

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 85

project
The project command runs job flows to create, load, save, and close projects,
to change and examine project status, and to archive projects.

Syntax
project -run [-all] [-bg] implementationList [-impl implementationName]
[-clean] implementationList [-impl implementationName]
[-parallel] implementationList [-impl implementationName]
[-from proccessName] [-to processName]

project {-new [projectPath] |-load projectPath | -close [projectPath]
|-save [projectPath] |-insert projectPath} |

project {-active [projectName] |-dir |-file |-name |-list |-filelist |
-fileorder filepath1 filepath2 [... filepathN] |-addfile filepath |
-movefile filepath1 [filepath2] |-removefile filepath}

project {-result_file resultFilePath |-log_file [logfileName]

project -propagate_params

project -copy [-project filename] [-implement implementationName]
[-dest_dir pathname] [-copy_type {full | local | customize}]
[-add_srs [fileList] -no_input]

project -unarchive [-archive_file pathname/filename] [-dest_dir pathname]

run option
The run option lets you synthesize selected implementations of a Project file.
You can choose to use the arguments for the run option independently or in
any combination. The arguments available are described in the table below.

You can also use the Batch Run Setup dialog box to set the arguments to use
with the run option. For details, see Run Implementations Setup Command,
on page 386.

Option Description

-run [-all] [-bg] [-clean]
[-from] [-parallel] [-to]
[processName]

Synthesizes the project, according to the specified
options:

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
86 Synopsys Confidential Information February 2021

You can use run with any of the following arguments:
• -all - Runs all implementations of the active project.
• -bg - Runs specified implementations in

non-blocking background mode. This is the default.
• -clean - Runs specified implementations, while

ignoring up-to-date checking. This option cleans all
previous results and forces a complete rerun.

• -parallel - Runs specified implementations
concurrently. Additional licenses are required for
each job.

• -from - Runs from and including the specified
process name.

• -to - Runs up to and including the specified process
name.

• processName - Specifies the process name.

Option Description

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 87

The following table describes the rest of the Project file command options.

The mode can be one of the following keywords:
• compile - Compiles the active project, but does not

map it.
• constraint_check - Validates the syntax and

applicability of constraints defined in one or more
constraint files.

• fsm_explorer - Selects optimum FSM-encoding style
for finite-state machines.

• netlist_optimizer - Runs netlist optimization.
• syntax_check - Verifies that the HDL is syntactically

correct; errors are reported in the log file.
• synthesis - Default mode if no mode is specified.

Compiles (if necessary) and synthesizes the
currently active project. If followed by the -clean
option (project -run synthesis -clean), resynthesizes the
entire project, including the top level and all compile
points, whether or not their constraints,
implementation options or source code changed
since the last synthesis. If not followed by -clean,
only compile points that have been modified are
resynthesized.

• synthesis_check - Verifies that the design is
functionally correct; errors are reported in the log
file.

• timing - Runs the Timing Analyst. This is equivalent
to clicking the Generate Timing button in the Timing
Report Generation dialog box with user-specified
values.

• write_netlist - Writes the mapped output netlist to
structural Verilog (vm) or VHDL (vhm) format. You
can also use this command in an incremental
timing analysis flow. For details, see Run Menu, on
page 382 and Generating Custom Timing Reports
with STA, on page 366.

Option Description

-load projectPath Opens and loads the project file specified by
projectPath.

Option Description

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
88 Synopsys Confidential Information February 2021

-close [projectPath] Closes the currently active project. If projectPath is
specified, closes the specified project.

-save [projectPath] Saves the currently active project. If projectPath is
specified, saves the specified project.

-insert projectPath Adds the specified project to the workspace project.

-active [projectName] Shows the active project. If projectName is specified,
makes the specified project the active project.

-dir Shows the project directory for the active project.

-file Returns the path to the active project.

-name Returns the filename (prj) of the active project.

-list Returns a list of the loaded projects.

-filelist Returns the pathnames of the files in the active
project.

-fileorder filepath1
filepath2 [... filepathN]

Reorders files by adding the specified files to the end
of the project file list.

-addfile filepath Adds the specified file to the project.

-movefile filepath1
[filepath2]

Moves filepath1 to follow filepath2 in project file list. If
filepath2 is not specified, moves filepath1 to top of list.

-removefile filepath Removes the specified file from the project.

-result_file resultFilePath Changes the name of the synthesis result file to the
path specified.

-log_file [logfileName] Reports the name of the project log file. If logfileName
is specified, changes the base name of the log file.

Option Description

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 89

-archive
-project filename
[-root_dir pathname]
-archive_file

filename.sar
-archive_type

{full | local | customize}
-add_srs [fileList]

-no_input

• project filename - copies a project other than the
active project. If you do not use this option, by
default the active project is copied.

• root_dir pathname - specifies the top-level directory
containing the project files.

• archive_file filename - is the name of the archived
project file.

• archive_type - specifies the type of archive:
• full - performs a complete archive; all input and

result files are contained in the archive file.
• customize - performs a partial archive; only the

project files that you select are included in the
archive.

• local - includes only project input files in the
archive; does not include result files.

• add_srs - adds the listed srs files to the archived
project. Use the -no_input option with this command.
If fileList is omitted, adds all srs files for the
project/implementations. The srs files are the RTL
schematic views that are output when the design is
compiled (Run->Compile Only).

For more information about, and examples of the
project -archive command, see Archive Utility, on
page 91.

Option Description

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
90 Synopsys Confidential Information February 2021

project Command Examples
Load the project top.prj and compile the design without mapping it. Compiling
makes it possible to create a constraint file with the SCOPE spreadsheet and
display an RTL schematic representation of the design.

% project -load top.prj
% project -run compile

-copy
-project filename
-implement

implementationName
-dest_dir pathname
-copy_type

{full | local | customize}
-add_srs [fileList]

-no_input

• project filename - copies a project other than the
active project. If you do not use this option, by
default the active project is copied.

• implement implementation_name - archives all files in
the specified implementation.

• dest_dir directory_pathname - specifies the directory
in which to copy the project files.

• copy_type - specifies the type of file/project copy:
• full - performs a complete copy; all input and

result files are contained in the archive file.
• customize - performs a partial copy; only the

project files that you select are included in the
archive.

• local - includes only project input files in the copy;
does not include result files.

• add_srs - adds the listed srs files to the archived
project. Use the -no_input option with this command.
If fileList is omitted, adds all srs files for the
project/implementations. The srs files are the RTL
schematic views that are output when the design is
compiled (Run->Compile Only).

For more information about, and examples of the
project -copy command, see Archive Utility, on
page 91.

-unarchive
-archive_file

pathname/filename
-dest_dir pathname

• archive_file pathname/filename - is the name of the
archived project file.

• dest_dir pathname - specifies the directory in which
to write the project files.

For more information about, and examples of the
project -unarchive command, see Archive Utility, on
page 91.

Option Description

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 91

Load a project and synthesize the design.

% project -load top.prj
% project -run synthesis

In the example above, you can also use the command project -run, since the
default is synthesis.

Archive Utility
The archive utility provides a way to archive, extract, or copy your design
projects. An archive file is in Synopsys proprietary format and is saved to a
file name using the .sar extension. You can also use this utility to submit your
design along with a request for technical support.

The archive utility is available through the Project menu in the GUI or through
the project Tcl command. See the following for details:

Project Archive Examples
The following example archives all files in the project and stores the files in
the specified .sar file:

project -archive -project c:/proj1.prj
-archive_file c:/archive/proj1.sar

The next example archives the project file (.prj) and all local input files into the
specified .sar file.

project -archive -project c:/proj1.prj -archive_type local
-archive_file c:/archive/proj1.sar

The following example archives the project file (.prj) only for selected .srs files
into the specified sar file. Any input source files that are in the project are not
included.

project -archive -project c:/proj1.prj -archive_type customize
-add_srs -no_input -archive_file c:/archive/proj1.sar

For information about ... See ...

Archiving, un-archiving, or
copying projects

Archiving Files and Projects, on page 105 in the
User Guide

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
92 Synopsys Confidential Information February 2021

Project Unarchive Example
The following example extracts the project files from c:/archive/proj1.sar to direc-
tory c:/proj1. All directories and sub-directories are created if they do not
already exist.

project -unarchive -archive_file c:/archive/proj1.sar
-dest_dir c:/proj1

Project Copy Examples
The following example copies only selected .srs files for the project to the desti-
nation project file directory.

project -copy -project d:/test/proj_2.prj -copy_type customize
–add_srs -no_input -dest_dir d:/test_1

The next example copies all input source files and .srs files selected for the
project to the destination project file directory.

project -copy -project d:/test/proj_2.prj -copy_type customize
-dest_dir d:/test_1

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 93

project_data
The project_data command shows or sets properties of a project.

Syntax
project_data {-active [projectName] | -dir | -file}

The following table describes the command options.

Option Description

-active Set/show active project. With no argument, shows the active
project. If projectName is specified, changes the active project to
projectName.

-dir Show directory of active project.

-file Show the project file for the active project. The full path is included
with the file name.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
94 Synopsys Confidential Information February 2021

project_file
The project_file command manipulates and examines project files.

Syntax
project_file {-lib fileName [libName] | -name fileName [newPath] |

-time fileName [format] | -date fileName | -type fileName |
-savetype fileName [relative | absolute] -move fileName1 [fileName2] |
-remove fileName | -top topModule |
-tooltag applicationTagName | -toolargs [arguments] fileName }

The following table describes the command options.

Option Description

-lib Shows the project file library associated with fileName. If libName is
specified, changes the project file library for the specified file to
libName.

-name Shows the project file path for the specified file. If newPath is
specified, changes t1he location of the specified project file to the
directory path specified by newPath.

-time Shows the file time stamp. If a format is specified, changes the
composition of the time stamp according to the combination of the
following time formatting codes:
%H (hour 00-23)
%M (minute 00-59)
%S (second 00-59)
%d (day 01-31)
%b (abbreviated month)
%Y (year with century)

-date Shows the file date.

-type Shows the file type.

-savetype Sets or shows whether a file is saved relative to the project or its
absolute path.

-move Positions fileName1 after fileName2 in HDL file list. If fileName2 is not
specified, moves fileName1 to the top of the list.

-remove Removes the specified file from the project file list.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 95

Examples
List the files added to a project. Remove a file.

% project -filelist path_name1/cpu.v path_name1/cpu_cntrl.v
path_name2/cpu_cntrl.vhd

% project_file -remove path_name2/cpu_cntrl.vhd

-top Sets or shows the top-level module of the specified file for the active
implementation.

-tooltag Sets or shows the third-party tool tag for the specified file.

-toolargs Sets or shows the third-party tool tag arguments for the specified
file.

Option Description

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
96 Synopsys Confidential Information February 2021

project_folder
The project_folder command manipulates and examines attributes for project
folders.

Syntax
project_folder [folderName] [-folderlist] [-filelist] [-printout] [-add] [-remove] [-r]

[-tooltag] [-toolargs]

The following table describes the command options.

Examples
Add a folder and list the files added to a project folder.

% project_folder -add newfolder
% project_folder -filelist newfolder

Option Description

folderName Specifies the name of the folder for which attributes are
examined.

-folderlist Lists folders contained in the specified project folder.

-filelist Lists files contained in the specified project folder.

-printout Prints the specified project folder hierarchy including its files.

-add Adds a new project folder.

-remove Removes the specified project folder.

-r Removes the specified project folder and all its containing
sub-folders. Files are removed from the project folder, but are
not deleted.

-tooltag Sets or shows the third-party tool tag name.

-toolargs Sets or shows the additional arguments for the third-party tool
tag.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 97

query_available_metrics
Shows metrics that can be queried for the design. If specified, only metrics
matching the required values are shown. Otherwise, shows all metrics for all
tables. You should use the query_available_metrics command primarily for
scripting, since it returns a Tcl list. For a more readable format, use the
dump_metrics command.

Syntax
query_available_metrics [[table.]name]

[table.]name
Name of the metric to query, optionally preceded by 'table.’.

For details about specifying metrics, see the Naming Conventions for Metrics,
on page 52.

Examples
This command returns values in a list of the form as follows:

{{name1 object1 jobname1} {name2 object2 jobname2}...}

1. Show a Tcl list of metrics that can be queried for the current
implementation:

% query_available_metrics
Format is {{name1 object1 jobname1} {name2 object2 jobname2}...}:
{clock_conversion.icg_removed {} premap} {clock_conversion.icg_retained {}
premap} {clock_conversion.clean_clock_trees {} fpga_mapper}
{clock_conversion.clean_clock_pins {} fpga_mapper}
{clock_conversion.gated_clock_trees {} fpga_mapper}
{clock_conversion.gated_clock_pins {} fpga_mapper}
{clock_conversion.instances_converted {} fpga_mapper}
{clock_conversion.instances_notconverted {} fpga_mapper}
{hdl_compile.modified_files {} compiler} {hdl_compile.modified_modules {}
compiler} {hdl_compile.total_modules {} compiler} {hdl_compile.total_files
{} compiler} {misc.Part {} fpga_mapper} {runtime.realtime {} compiler}
{runtime.cputime {} compiler} {runtime.realtime {} premap}
{runtime.cputime {} premap} {runtime.realtime {} fpga_mapper}
{runtime.cputime {} fpga_mapper} {{timing.Worst Slack} {} fpga_mapper}
{utilization.LUT1 {} fpga_mapper} {utilization.LUT2 {} fpga_mapper}
{utilization.LUT3 {} fpga_mapper} {utilization.LUT4 {} fpga_mapper}

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
98 Synopsys Confidential Information February 2021

{utilization.LUT5 {} fpga_mapper} {utilization.LUT6 {} fpga_mapper}
{utilization.IBUF {} fpga_mapper} {utilization.IBUFG {} fpga_mapper}
{utilization.IOBUF {} fpga_mapper} {{utilization.I/O primitives} {}
fpga_mapper} {utilization.BUFG {} fpga_mapper} {{utilization.I/O Register
bits} {} fpga_mapper} {{utilization.Total Luts} {} fpga_mapper}

2. Use a simple loop to show the values of all available metrics:

% foreach amt [query_available_metrics] {set metric
[lindex $amt 0]; set object [lindex $amt 1];
set job [lindex $amt 2]; puts "$metric $object:
[query_metric $metric -object $object -jobname $job]"}

Format is {{name1 object1 jobname1} {name2 object2 jobname2} ...}:
clock_conversion.icg_removed : 0
clock_conversion.icg_retained : 0
clock_conversion.clean_clock_trees : 1
clock_conversion.clean_clock_pins : 270
clock_conversion.gated_clock_trees : 0
clock_conversion.gated_clock_pins : 0
clock_conversion.instances_converted : 0
clock_conversion.instances_notconverted : 0
hdl_compile.modified_files : 28
hdl_compile.modified_modules : 11
hdl_compile.total_modules : 11
hdl_compile.total_files : 28
misc.Part : xc7vx485tffg1157-1
runtime.realtime : 9.881000
runtime.cputime : 9.828063
timing.Worst Slack : -0.445800
utilization.LUT1 : 31
utilization.LUT2 : 64
utilization.LUT3 : 45
utilization.LUT4 : 84
utilization.LUT5 : 57
utilization.LUT6 : 160
utilization.IBUF : 1
utilization.IBUFG : 1
utilization.IOBUF : 24
utilization.I/O primitives : 26
utilization.BUFG : 1
utilization.I/O Register bits : 0
utilization.Total Luts : 411

3. Show a Tcl list of metrics for the specified metric name:

% query_available_metrics cputime
Format is {{name1 object1 jobname1} {name2 object2 jobname2} ...}:
{runtime.cputime {} compiler} {runtime.cputime {} premap} {runtime.cputime
{} fpga_mapper}

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 99

4. Optionally, show a Tcl list of metrics for the specified table value:

% query_available_metrics runtime.cputime
Format is {{name1 object1 jobname1} {name2 object2 jobname2} ...}:
{runtime.cputime {} compiler} {runtime.cputime {} premap} {runtime.cputime
{} fpga_mapper}

5. Enclose within curly braces { } whenever metrics contain spaces.

% query_available_metrics {timing.worst slack}
Format is {{name1 object1 jobname1} {name2 object2 jobname2} ...}:
{{timing.Worst Slack} {} fpga_mapper}

See Also
See the related query commands below:

• dump_metrics, on page 50

• query_metric, on page 100

• query_metric_details, on page 102

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
100 Synopsys Confidential Information February 2021

query_metric
Queries specific QoR metrics for the current implementation of a design.

Syntax
query_metric table.name [-object value] [-jobname value]

table.name
Name of the metric to query, preceded by 'table.’.

-object value
Queries metrics associated with a specific object or global metrics if not
specified.

-jobName value
Queries metrics associated with a specific job name or any job name if
not specified.

For details about specifying metrics, see the Naming Conventions for Metrics,
on page 52.

Examples
Here are examples of how to query metrics for a design:

% query_metric clock_conversion.icg_removed
0
% query_metric clock_conversion.instances_converted -jobname
fpga_mapper
1
% query_metric runtime.realtime -jobname compiler
3.15400
% query_metric {timing.worst slack} -jobname fpga_mapper
-0.445800
% query_metric {utilization.total luts}
411

Suppose you have a design with compile points.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 101

dump_metrics -show_queries
...
query_metric {timing.Worst Slack} -object r2p_cordic -jobname fpga_mapper
...

Then you can query worst slack for one of the compile points.

% query_metric {timing.Worst Slack} -object r2p_cordic
-jobname fpga_mapper

-1.339500 ns {Estimated slack during compile point synthesis}

See Also
See the related query commands below:

• dump_metrics, on page 50

• query_available_metrics, on page 97

• query_metric_details, on page 102

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
102 Synopsys Confidential Information February 2021

query_metric_details
Queries information about a QoR metric from the current implementation.
Exactly one metric must match.

Syntax
query_metric table.name [-object value] [-jobname value]

table.name
Name of the metric to query, preceded by 'table.'.

-object value
Queries metrics associated with a specific object or a global metric if not
specified.

-jobName value
Queries metrics associated with a specific job name or any job name if
not specified.

For details about specifying metrics, see the Naming Conventions for Metrics,
on page 52.

Examples
The Tcl command returns a list of three values: <value> <units> <comment>.

% query_metric_details clock_conversion.clean_clock_pins
270 {} {Number of clock pins driven by non-gated/non-generated clock
trees}
% query_metric_details clock_conversion.icg_removed
0 {} {Number of ICG latches removed}
% query_metric_details runtime.realtime -jobname compiler
3.154000 seconds {}
% query_metric_details runtime.cputime -jobname fpga_mapper
9.828063 seconds {}
% query_metric_details {timing.worst slack} -jobname fpga_mapper
-0.445800 ns {}
% query_metric_details utilization.lut1

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 103

31 {} {}
Suppose you have a design with compile points.

dump_metrics -show_queries
...
query_metric {timing.Worst Slack} -object r2p_cordic -jobname fpga_mapper
...

Then you can query worst slack for one of the compile points.

% query_metric_details {timing.Worst Slack} -object r2p_cordic
-jobname fpga_mapper

-1.339500 ns {Estimated slack during compile point synthesis}

See Also
See the related query commands below:

• dump_metrics, on page 50

• query_available_metrics, on page 97

• query_metric, on page 100

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
104 Synopsys Confidential Information February 2021

recording
Allows you to record and store the Tcl commands generated when you work
on your projects in the GUI. You can use this command for creating job
scripts. The complete syntax for the recording command is:

recording
-on|-off
-file [historyLogFile]
-save [historyLogFile]
-state
-edit [filename]

In the command line:

• -on|off– turns Tcl command recording on or off. Recording mode is off by
default.

• -file - if you specify a history log file name, this option uses the specified
file in which to store the recorded Tcl commands for the current session.
If you do not specify a history log name, reports the name of the current
history log file.

• -save - if you do not specify a file name, updates the current history log.
If you specify a history log file name, saves Tcl command history to the
specified file.

• -state - returns the Boolean value of recording mode.

• -edit - displays the Tcl command log file in a text editor.

Examples
Turn on recording mode and save the Tcl commands in the cpu_tcl_log file
created.

% recording -on
% recording -file cpu_tcl_log

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 105

report_clocks
Reports the clocks in the design database.

Syntax
report_clocks -netlist [srsNetlistFile] [-csv_format] [-out fileName]

Arguments and Options
srsNetlistFile

The name of the srs netlist file. If this optional argument is not specified,
the netlist file is taken from the active project implementation.

-csv_format
Displays the report in spread-sheet format.

-out
Specifies the name of the output report file (default name is design-
Name_clk.rpt).

Description
The report_clocks command generates a report of the clocks found in the
design database. The report includes a listing of the clock domain, parent
clock, and clock type for each clock. If the -csv_format option is included, the
report is output in spread-sheet format.

Examples
report_clocks c:/designs/mem_ctrl/mem_ctrl.srs -csv_format

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
106 Synopsys Confidential Information February 2021

report_messages
Queries messages from jobs based on ID or severity. This can be used to
show duplicate messages that were suppressed in the log files.

Syntax
report_messages logFile [-id value] [-severity value] [-out value] [-outa value]

logFile
Specifies one or more log files to query for message details.

-id value
Restricts report to messages matching this id. Use the * or % wildcard to
match any string.

-severity value
Limits messages to a specific severity. Can specify one or more messages
as an error, warning, note, or advice. Multiple severities can be specified.
If none is specified, all types are shown.

-out value
Name of the output file to be written rather than writing to the Tcl
window.

-outa value
Name of the output file to be appended rather than writing to the Tcl
window.

Output Format
Running the report_messages command produces a list of messages. Messages
are displayed in the following format with each message beginning on a new
line:

ID {messageText}

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 107

Examples
1. Query BN132 messages from the test.srr log file.

report_messages test.srr -id BN132
2. Query error and warning messages from the test.srr log file.

report_messages test.srr -severity error warning
3. Query critical warnings (CW) or downgradable errors (DE). You can

search for these messages using wildcards. For example:

report_messages test.srr -id DE*
4. Query error and warning messages from the test.srr log file. and writes

output to a file called messages in the current working directory.

report_messages test.srr -severity not warning -out messages

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
108 Synopsys Confidential Information February 2021

report_message_summary
Retrieves a summary of the messages in the log file. This summary contains a
list of the message IDs and the number of occurrences for each type, along
with their message descriptions.

Syntax
report_message_summary logFile

logFile
Specifies a log file to query for the message summary.

Examples
report_message_summary test.srr

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 109

run_tcl
The run_tcl command lets you synthesize your project using a Tcl script file
from the Tcl Script window of the synthesis tool.

Syntax
run_tcl [-fg] tclFile

You can also use the following command:

source tclFile

These commands are equivalent.

The following table describes the run_tcl command options.

Option Description

-fg Synthesizes the project in foreground mode.

TclFile Specifies the name of the Tcl file used to synthesize the project. To
create a Tcl Script file, see Creating a Tcl Synthesis Script, on
page 515.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
110 Synopsys Confidential Information February 2021

select
Selects specified objects.

Syntax
select collection

-append
-clear
-instances

The following table describes the select command options.

Option Option

-append Appends objects to the existing
selection list.

-clear Clears the selection list.

-instances Selects all instances in the current
view.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 111

sdc2fdc
Translates legacy FPGA timing constraints to Synopsys FPGA timing
constraints.

Syntax
sdc2fdc

Run it from the Tcl window in the synthesis tool.

See also
• Converting SDC to FDC, on page 164 in the User Guide

• sdc2fdc Conversion, on page 133 in the Reference Manual

Examples of sdc2fdc Translation
The following are examples of feedback after running the command. For
information about the translated FDC file and handling the error messages,
see sdc2fdc Conversion, on page 133 in the Reference Manual.

% sdc2fdc
INFO: Translation successful.
See:"D:/bugs/timing_88/clk_prior/scratch/FDC_constraints/rev_2

/top_translated.fdc"
Replace your current *.sdc files with this one.

INFO: Automatically updating your project to reflect the new
constraint file(s)
Do "Ctrl+S" to save the new settings.
% sdc2fdc
ERROR: Bad -from list for define_false_path: {my_inst}
Missing qualifier(s) (i: p: n: ...)
ERROR: Translation problems were found.
See:"D:/bugs/timing_88/clk_prior/scratch/FDC_constraints/rev_2

/top_translate.log" for details.
_translate.log

ERROR: Bad -from list for define_false_path {my_inst}
 Missing qualifier(s) (i: p: n: ...)

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
112 Synopsys Confidential Information February 2021

"define_false_path -from {my_inst} -to i:abc.def.g_reg
-through {n:bar}"

Synplicity SDC source file: D:/bugs/timing_88/clk_prior/scratch
/top.sdc.

Line number: 79

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 113

set_option
The set_option command sets options for the technology (device) as well as for
the design project.

Syntax
set_option -optionName optionValue

For syntax and descriptions of the options and related values, see one of the
following tables:

• Device Options for set_option/get_option

• Project Options for set_option/get_option

Device Options for set_option/get_option
The following table lists generic device arguments for the technology, part,
and speed grade. These are the options on the Implementation Options-> Device
tab.

Information on all other Implementation Options tabs are listed in the next
section, Project Options for set_option/get_option, on page 114.

Option Name Description

-technology parameter Sets the target technology for the implementation.
parameter is the string for the vendor architecture.
Check the Device panel in the GUI or see Device Panel,
on page 347, for a list of supported families.

-part part_name Specifies a part for the implementation. Check the
Device panel of the Implementation Options dialog box (see
Device Panel, on page 347) for available choices.

-speed_grade -value Sets the speed grade for the implementation. Check the
Device panel of the Implementation Options dialog box (see
Device Panel, on page 347) for available choices.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
114 Synopsys Confidential Information February 2021

In general, device options are technology-specific, or have technology-specific
defaults or limitations. For vendor-specific details, see synhooks File Syntax,
on page 527.

Project Options for set_option/get_option
Below is a list of options for the set_option and get_option commands. click the
option below for the corresponding description and GUI equivalents. Options
set through the Device tab are listed in Device Options for set_option/get_op-
tion, on page 113.

-package value Sets the package for the implementation. This option is
not available for certain vendor families, because it is
set in the place-and-route software. Check the Device
panel of the Implementation Options dialog box (see Device
Panel, on page 347) for available choices.

-grade -value Same as -speed_grade. Included for backwards
compatibility.

analysis_constraint areadelay

area_delay_percent auto_constrain_io

automatic_compile_point autosm

beta_vfeatures block

compiler_compatible compiler_constraint

constraint continue_on_error

default_enum_encoding disable_io_insertion

dup enable64bit

fanout_limit force_gsr

frequency auto frequency

globalthreshold hdl_param

hdl_define help

identify_debug_mode ignore_undefined_libs

include_path job (PR)

Option Name Description

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 115

libext library_path

log_file looplimit

maxfan max_parallel_jobs

min_cdc_sync_flops multi_file_compilation_unit

no_sequential_opt num_critical_paths

num_startend_points opcond

project_relative_includes preserve_registers

report_path report_preserve_cdc

reporting_reportType resolve_multiple_driver

resource_sharing result_file

retiming run_prop_extract

rw_check_on_ram safe_case

supporttypedflt symbolic_fsm_compiler

synthesis_onoff_pragma top_module

update_models_cp use_fsm_explorer

vlog_std write_apr_constraint

write_verilog write_vhdl

Option Description GUI Equivalent

-analysis_constraint
path/filename.adc

Specifies the analysis design
constraint file (.adc) you can use to
modify constraints for the
stand-alone Timing Analyst only.

Constraint File
section on the
Timing Report
Generation
Parameters
dialog box

-areadelay percentValue

-area_delay_percent
percentValue

Sets the percentage of paths you
want optimized. This option is
available only in certain device
technologies.

Percent of design to
optimize for timing,
Device Panel

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
116 Synopsys Confidential Information February 2021

-automatic_compile_point
1|0

Enables/disables the automatic
compile point flow, which can
analyze a design and identify
modules that can automatically be
defined as compile points and
mapped in parallel using
Multiprocessing.

Automatic compile
point check box,
Options Panel

-autosm 1|0

-symbolic_fsm_compiler
1|0

Enables/disables the FSM
compiler.

FSM Compiler
check box,
Options Panel

-beta_vfeatures 1|0 Enables/disables the use of Verilog
compiler beta features.

Beta Features for
Verilog, Verilog
Panel

-block 1|0

-disable_io_insertion 1|0

Enables/disables I/O insertion in
some technologies.

Disable I/O Insertion
check box,
Device Panel

-compiler_compatible
1|0

Disables pushing of tristates across
process/block boundaries.

Complement of
the Push Tristates
Across Process/
Block Boundaries
check box, VHDL
Panel and Verilog
Panel

-compiler_constraint
constraintFile

When multiple constraint files are
defined, specify which constraint
files are to be used from the
Constraints tab of the Implementation
Options panel.

Constraints Files,
Constraints
Panel

-constraint -option Manipulates constraint files in the
project:
-enable/disable filename - adds or
removes constraint file from active
implementation
-list - lists all enabled constraint
files in active implementation
-all - enables all constraint files in
active implementation
-clear - disables all constraint files in
active implementation

Constraint Files,
Constraints
Panel

Option Description GUI Equivalent

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 117

-continue_on_error 1|0 The continue_on_error option serves
two related, but separate functions.
Mapper - When enabled during
compile-point synthesis, allows the
mapping operation to continue on
error and synthesize the remaining
compile points.
The default for this option (0) is to
stop on any compilation or
synthesis error.

Continue on Error,
Project View
checkbox or
Options Panel, or
Configure
Parallel or
Compile Point
Process
Command

-default_enum_encoding
default|onehot|gray|
sequential

(VHDL only) Sets the default for
enumerated types.

Default Enum
Encoding, VHDL
panel (see VHDL
Panel and Verilog
Panel)

-disable_io_insertion 1|0

-block 1|0

Enables/disables I/O insertion in
some technologies.
For more information about the
impact of using this command, see
syn_insert_pad, on page 107.

Disable I/O
Insertion, Device
Panel

-dup For Verilog designs, allows the use
of duplicate module names. When
true, the last definition of the
module is used by the software and
any previous definitions are
ignored.
You should not use duplicate
module names in your Verilog
design, therefore, this option is
disabled by default. However, if you
need to, you can allow for duplicate
modules by setting this option to 1.
Recommended to use
-allow_duplicate_modules option
instead of -dup option.

Allow Duplicate
Modules, Verilog
Panel

-enable64bit 1|0 Enables/disables the 64-bit
mapping switch. When enabled,
this switch allows you to run client
programs in 64-bit mode, if
available on your system.

Enable 64-bit
Synthesis, Options
Panel

Option Description GUI Equivalent

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
118 Synopsys Confidential Information February 2021

-fanout_limit value

-maxfan value

Sets the fanout limit guideline for
the current project.

Fanout Guide,
Device Panel

-frequency value Sets the global frequency. Frequency,
Constraints
Panel

-frequency auto Enables/disables auto constraints. Auto Constrain,
Constraints
Panel

-hdl_define For Verilog designs; used for
extracting design parameters and
entering compiler directives.

Compiler
Directives and
Design
Parameters,
Verilog Panel

-hdl_param Shows or sets HDL parameter
overrides. See hdl_param, on
page 68 for command syntax.

Use this
command in the
Tcl window of the
UI.

-help This option is useful for getting
syntax help on the various
implementation options used for
compiling and mapping a design.
For examples, see help for
set_option, on page 128.

Use this
command in the
Tcl window of the
UI.

-identify_debug_mode 1|0 When set option is 1, creates an
Identify implementation in the
Project view. Then, you can launch
the Identify Instrumentor or
Debugger from within the FPGA
synthesis tools.

Select the
Identify
implementation,
then launch:
• Launch Identify

Instrumentor
or
• Launch Identify

Debugger

Option Description GUI Equivalent

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 119

-ignore_undefined_libs
1|0

(VHDL only) When enabled
(default), the compiler will ignore
any declared library files not
included with the source file. In
previous releases, the missing
library file would cause the
synthesis tool to error out.
To set this option to error out when
a library file is missing (as in
previous releases), use 0 for the
command value.

Not available in
the UI

-include_path path

./extra_input/

(Verilog only) Defines the search
path used by the ‘include
commands in Verilog design files.
Argument path is a string that is a
semicolon-delimited list of
directories where the included
design files can be found. The
software searches for include files
in the following order:
• First, the source file directory.
• Then, looks in the included path

directory order and stops at the
first occurrence of the included
file it finds.

• Finally, the project directory.
The include paths are relative. Use
the project_relative_includes option to
update older project files.
The archive utility allows you to add
the extra_input directory path for all
include files and copies them to
your project. Use the Add extra input
path to project option on the
Un-Archive Utility dialog box.

Include Path Order,
Verilog panel (see
Verilog Panel)

-job PR_job_name

-option enable_run 1|0

If enabled, runs the specified
place-and-route job with the
appropriate vendor-specific
place-and-route tool after
synthesis.

Specify the
place-and-route
job you want to
run for the
specified
implementation.
See Place and
Route Panel.

Option Description GUI Equivalent

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
120 Synopsys Confidential Information February 2021

-libext
.libextName1 .libextName2 ...

Adds library extensions to Verilog
library files included in your design
for the project and searches the
directory paths you specified that
contain these Verilog library files.
To use library extensions, see Using
Library Extensions for Verilog
Library Files, on page 45 in the
User Guide.

Library Extensions
(space separated)
for each unique
file extension,
Verilog Panel.

-library_path
directory_pathname

For Verilog designs, specifies the
paths to the directories which
contain the library files to be
included in your design for the
project. Defines the search path
used by the tool to include all the
Verilog design files for your project.
The argument directory_pathname is
a string that specifies the
directories where these included
library files can be found. The
software searches for all included
Verilog files and the tool determines
the top-level module. The names of
files read from the library path
must match module names.
Mismatches result in error
messages.

Library Directories
on Verilog Panel.

-log_file logFileName Allows you to change the name for
the default log file. For example:
set_option -log_file test
generates the
synlog\test_fpga_mapper.srr
file in the Implementation Directory
after synthesis is run.

Enter command
from the Tcl
window

looplimit loopLimitValue Allows you to override the default
compiler loop limit value of 2000 in
the HDL. You can also apply loop
limits using the Verilog loop_limit or
the VHDL syn_looplimit directive.
For details about these directives,
see loop_limit, on page 47 and
syn_looplimit, on page 121 in the
Attribute Reference.

Loop Limit, Verilog
Panel and VHDL
Panel.

Option Description GUI Equivalent

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 121

-maxfan value

-fanout_guide value

Sets the fanout limit for the current
project. The limit value is a
guideline for the tool rather than a
hard limit.

Fanout Guide,
Device Panel

max_parallel_jobs n Lets you run multiprocessing with
compile points. This allows the
synthesis software to run multiple,
independent compile point jobs
simultaneously, providing
additional runtime improvements
for the compile point synthesis flow.
For information on setting the
maximum number of parallel
synthesis jobs, see Setting Number
of Parallel Jobs, on page 513 in the
User Guide.

Maximum number of
parallel mapper
jobs, on the
Configure Compile
Point Process
dialog box.

-min_cdc_sync_flops {2} Controls the minimum number of
synchronizer flops to be detected
and reported. By default, the
option is 2. Setting the value lesser
than 2 generates a warning.
See CDC Reporting, on page 377 in
the Reference Manual.

-multi_file_compilation_unit
1|0

When you enable the Multiple File
Compilation Unit switch, the Verilog
compiler uses the compilation unit
for modules defined in multiple
files.

Verilog Panel

-no_sequential_opt 1|0 Enables or disables the sequential
optimizations for the design. (Note
that unused registers will still be
removed from the design.) The
default value is false (sequential
optimizations are performed). When
true, delay and area size might
increase. Value can be 1 or true, 0 or
false.
With this option enabled, the FSM
Compiler and FSM Explorer options
are effectively disabled.

Device Panel

Option Description GUI Equivalent

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
122 Synopsys Confidential Information February 2021

-num_critical_paths value Specifies the number of critical
paths to report in the timing report.

Number of Critical
Paths, Timing
Report Panel

-num_startend_points value Specifies the number of start and
end points to include when
reporting paths with the worst
slack in the timing report.

Number of Start/End
Points, Timing
Report Panel.
Number of Start/End
Points, Timing
Report Generation
dialog box.

-opcond value Microchip
Sets the operating condition for
device performance in the areas of
optimization, timing analysis, and
timing reports. Values are Default,
MIL-WC, IND-WC, COM-WC, and
Automotive-WC. See Operating
Condition Device Option, on
page 414 for more information.

Device Panel

-preserve_registers 1|0 Microchip
When enabled, the software uses
less restrictive register
optimizations during synthesis if
area is not as great a concern for
your device. The default for this
option is disabled (0).

Conservative
Register
Optimization
switch on the
Device Panel

-project_relative_includes 1|0 Enables/disables the Verilog
include statement to be relative to
the project, rather than a verilog
file. For projects built with software
after 8.0, the include statement is no
longer relative to the files but is
relative to the project: project_relative
(1). See Updating Verilog Include
Paths in Older Project Files, on
page 68 in the User Guide for
information about updating older
project files.

Include Path Order,
Verilog Panel

Option Description GUI Equivalent

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 123

-report_path integer Microchip
Sets the maximum number of
critical paths in a
forward-annotated SDF constraint
file

Max Number of
Critical Paths in
SDF, Device
Panel

-report_preserve_cdc 1/0 Enables or disables CDC reporting.
The option is ON, by default. See
CDC Reporting, on page 377 in the
Reference Manual.

Report and
Preserve CDC
paths,
High Reliability
Panel

-reporting_reportType Sets parameters for the stand-alone
Timing Analyst report.
See Timing Report Parameters for
set_option, on page 126 for details.

Analysis->Timing
Analyst command:
Timing Report
Generation
Parameters

-resolve_multiple_driver 1|0 When a net is driven by a VCC or
GND and active drivers, enable this
option to connect the net to the
VCC or GND driver.
The default for this option is
disabled (0).
See Resolve Mixed Drivers Option,
on page 129 for details.

Resolve Multiple
Drivers, Device
Panel

-resource_sharing 1|0 Enables or disables resource
sharing globally. This is a
compiler-specific optimization, and
does not affect resource sharing in
the mapper.
To enable or disable individual
modules, use the syn_sharing
directive.

Resource Sharing,
Device Panel

-result_file filename Specifies the name of the results
file.

Result File Name
and Result Format,
Implementation
Results Panel

-retiming 1|0 When enabled (1), registers may be
moved into combinational logic to
improve performance. The default
value is 0 (disabled).

Retiming, Device
Panel

Option Description GUI Equivalent

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
124 Synopsys Confidential Information February 2021

-run_prop_extract 1|0 Enables/disables the annotation of
certain generated properties
relating to clocks and expansion
onto the RTL view. This enables the
Tcl expand and find commands to
work correctly with clock
properties.

Options Panel

-rw_check_on_ram 1|0 Enabling this option automatically
inserts bypass logic when required
to prevent simulation mismatch in
read-during-write scenarios. For
asynchronous clocks, the tool will
not generate bypass logic which can
cause unintended CDC paths
between the clocks.
For more information about using
this option in conjunction with the
syn_ramstyle attribute, see
syn_ramstyle, on page 199.

Automatic
Read/Write Check
Insertion for RAM,
Device Panel

-safe_case 1|0 When enabled, the high reliability
safe case option turns off sequential
optimizations for counters, FSM,
and sequential logic to increase the
circuit’s reliability.

Preserve and
Decode
Unreachable States
(FSM, Counters,
Sequential Logic),
High Reliability
Panel

-supporttypedflt 1|0 When enabled (1), the compiler
passes init values through a syn_init
property to the mapper. For more
information, see VHDL Implicit
Data-type Defaults, on page 336.

Implicit Initial Value
Support, VHDL
Panel

Option Description GUI Equivalent

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 125

-symbolic_fsm_compiler 1|0

-autosm 1|0

Enables/disables the FSM
compiler. Controls the use of FSM
synthesis for state machines. The
default is false (FSM Compiler
disabled). Value can be 1 or true, 0
or false.
When this option is true, the FSM
Compiler automatically recognizes
and optimizes state machines in the
design. The FSM Compiler extracts
the state machines as symbolic
graphs, and then optimizes them by
re-encoding the state
representations and generating a
better logic optimization starting
point for the state machines.
However, if you turn off sequential
optimizations for the design, FSM
Compiler and/or the
syn_state_machine directive and
syn_encoding attribute are effectively
disabled.
See -no_sequential_opt 1|0 for more
information on turning off
sequential optimizations.

FSM Compiler
check box,
Device Panel

-synthesis_onoff_pragma 1|0 Determines whether code between
synthesis on/off directives is ignored.
When enabled, the software ignores
any VHDL code between
synthesis_on and synthesis_off
directives. It treats these
third-party directives like
translate_on/ off directives (see
translate_off/translate_on, on
page 285 for details).

Synthesis on/off
Implemented as
Translate on/Off,
VHDL Panel

Option Description GUI Equivalent

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
126 Synopsys Confidential Information February 2021

Timing Report Parameters for set_option
The following lists the parameters for the stand-alone timing report (.ta file).

-top_module name Specifies the top-level module.
If the top-level entity does not use
the default work library to compile
the VHDL/Verilog files, you must
specify the library file where the
top-level entity can be found. To do
this, the top-level entity name must
be preceded by the VHDL/Verilog
library followed by the dot (.).

Top-level
Entity/Module,
VHDL Panel or
Verilog Panel

-update_models_cp 1|0 Determines whether (1) or not (0)
changes inside a compile point can
cause the compile point (or
top-level) containing it to change
accordingly.

Update Compile
Point Timing Data,
Device Panel

-use_fsm_explorer 1|0 Enables/disables the FSM
Explorer.

FSM Explorer,
Device Panel

-vlog_std v2001|v95 | sysv The default Verilog standard for
new projects is SystemVerilog.
Turning off both options in the
Verilog panel defaults to v95.

Verilog 2001,
SystemVerilog,
Verilog Panel

-write_apr_constraint 1|0 Writes vendor-specific constraint
files.

Write Vendor
Constraint File,
Implementation
Results Panel

-write_verilog 1|0

-write_vhdl 1|0

Writes Verilog or VHDL mapped
netlists.

Write Mapped
Verilog/VHDL
Netlist,
Implementation
Results Panel

async_clock
ctd
filename
filter
gen_output_srm

margin
netlist
number_paths
output_srm

Option Description GUI Equivalent

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 127

Reporting Option Description

-reporting_async_clock Generates a report for paths that cross
between clock groups using the stand-alone
Timing Analyst.

-reporting_ctd slack | end_point |
off

Controls how the design_ctd.txt
(correlation timing dump) file is generated
when the Timing Analyst is run. You can
specify one of the following values:
• slack - The timing information in the ctd

file is sorted by slack. This is the default.
• end_point - The timing information in the
ctd file is sorted by end points.

• off - Turns off generating the ctd file.
The ctd file contains a timing summary of
the design that is used by the Timing Report
View to display and analyze the synthesis
timing for the design and correlate this
synthesis timing with the P&R timing in the
GUI.

 -reporting_filename filename.ta Specifies the standard timing report file (ta)
generated from the stand-alone Timing
Analyst.

-reporting_filter filter options Generates the standard timing report based
on the filter options you specify for paths,
such as:
• From points
• Through points
• To points
For more information, see:
• Timing Report Generation Parameters,

on page 402.
• Combining Path Filters for the Timing

Analyzer, on page 406
• Timing Analyzer Through Points, on

page 405.
• Specifying From, To, and Through Points,

on page 250.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
128 Synopsys Confidential Information February 2021

For GUI equivalent switches for these parameters, see Timing Report Genera-
tion Parameters, on page 402.

help for set_option
This option is useful for getting syntax help on the various implementation
options used for compiling and mapping a design, especially since this list of
options keeps growing.

Syntax
% set_option -help

Usage:

set_option optionName optionValue [-help [value]]

Where:

• optionName—specifies the option name.

• optionValue—specifies the option value.

-reporting_gen_output_srm 1|0 Specifies the new name of the output SRM
File when you change the default name. If
this option is set to 1, this new name is used
for the output srm file after you run the
stand-alone Timing Analyst.

-reporting_margin slackValue You can specify a slack margin to obtain a
range of paths within the worst slack time
for the design after you run the stand-alone
Timing Analyst.

-reporting_netlist filename.srm Specifies the associated gate-level netlist file
(srm) generated from the stand-alone Timing
Analyst.

-reporting_number_path
numberOfPaths

You can specify the number of critical paths
to report after you run the stand-alone
Timing Analyst.

-reporting_output_srm 1|0 Allows you to change the name of the output
srm file. If you enable the output SRM File
option, you can change this default name.

Reporting Option Description

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 129

• -help [value]—to get help on options. Use:

– -help * for the list of options

– -help optionName for a description of the option

Examples
To list all option commands in the Tcl window:

set_option -help *
To list all option commands beginning with the letters fi in the Tcl window:

% set_option -help fi*
fixgatedclocks
fixgeneratedclocks
fixsmult

To get help on a specific option in the Tcl window:

% set_option -help fixgatedclocks
0: Don't fix; 1: fix, no report; 2: fix, report exception
registers; 3: fix, report all registers

Use the following Tcl commands to print a description of the options:

% set_option -help c*
% set hl [set_option -help c*]
% puts $hl
% foreach option $hl { puts "$option:\t [set_option -help
$option]"; }

This example will print a list of set_option options that begin with the letter c.

Resolve Mixed Drivers Option
Use the Resolve Mixed Drivers option when mapping errors are generated for
input nets with mixed drivers. You might encounter the following messages in
the log file:

@A:BN313 | Found mixed driver on pin pin:data_out inst:dpram_lut3
of work.dpram(verilog), use option "Resolve Mixed Drivers" in
"Device" tab of "Implementation Options" to automatically resolve
this
@E:BN314 | Net "GND" in work.test(verilog) has mixed drivers

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
130 Synopsys Confidential Information February 2021

@A:BN313 | Found mixed driver on pin pin:Q[0] inst:dff1.q of
PrimLib.sdffr(prim), use option "Resolve Mixed Drivers" in
"Device" tab of "Implementation Options" to automatically resolve
this
@E:BN314) | Net "VCC" in work.test(rtl) has mixed drivers

Whenever a constant net (GND or VCC) and an active net are driving the
same output net, enable the Resolve Mixed Drivers option so that synthesis can
proceed. To set this switch:

• Check Resolve Mixed Drivers on the Device tab of the Implementation Options
panel.

• Use the Tcl command, set_option -resolve_multiple_driver 1.
By default this option is disabled and set to:

set_option -resolve_multiple_driver 0.
When you rerun synthesis, you should now see messages like the following in
the log file:

@W:BN312 | Resolving mixed driver on net GND, connecting output
pin:data_out inst:dpram_lut3 of work.dpram(verilog) to GND
@N:BN116) | Removing sequential instance dpram_lut3.dout of
view:PrimLib.dffe(prim) because there are no references to its
outputs
@N:BN116 | Removing sequential instance dpram_lut3.mem of
view:PrimLib.ram1(prim) because there are no references to its
outputs

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 131

@W:BN312 | Resolving mixed driver on net VCC, connecting output
pin:Q[0] inst:dff1.q of PrimLib.sdffr(prim) to VCC
@N:BN116 | Removing sequential instance dff1.q of
view:PrimLib.sdffr(prim) because there are no references to its
outputs

Example - Active Net and Constant GND Driving Output Net (Verilog)
module test(clk,data_in,data_out,radd,wradd,wr,rd);
input clk,wr,rd;
input data_in;
input [5:0]radd,wradd;
output data_out;
// component instantiation for shift register module
shrl srl_lut0 (

.clk(clk),

.sren(wr),

.srin(data_in),

.srout(data_out)
);

// Instantiation for ram
dpram dpram_lut3 (

.clk(clk),

.data_in(data_in),

.data_out(data_out),

.radd(radd),

.wradd(wradd),

.wr(wr),

.rd(rd)
);

endmodule

module shrl (clk,sren,srin,srout);
input clk;
input sren;
input srin;
output srout;

parameter width = 32;
reg [width-1:0] sr;

always@(posedge clk)
begin

if (sren == 1)
begin

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
132 Synopsys Confidential Information February 2021

sr <= {sr[width-2:0], srin};
end

end
// Constant net driving

// the output net
assign srout = 1'b0;
endmodule

module dpram(clk,data_in,data_out,radd,wradd,wr,rd);
input clk,wr,rd;
input data_in;
input [5:0]radd,wradd;
output data_out;

reg dout;
reg [0:0]mem[63 :0];

always @ (posedge clk)
begin

if(wr)
mem[wradd] <= data_in;

end

always @ (posedge clk)
begin

if(rd)
dout <= mem[radd];

end

assign data_out = dout;

endmodule
See the following RTL and Technology views; the Technology view shows the
constant net tied to the output.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 133

Example - Active Net and Constant VCC Driving Output Net (VHDL)
library ieee;
use ieee.std_logic_1164.all;
entity test is
port (clk,rst : in std_logic;

sr_en : in std_logic;
data : in std_logic;
data_op : out std_logic);

end entity test;
architecture rtl of test is
component shrl
generic (sr_length : natural);
port (clk : in std_logic;

sr_en : in std_logic;
sr_ip : in std_logic;
sr_op : out std_logic);

end component shrl;

component d_ff
port (data, clk, rst : in std_logic;

q : out std_logic);
end component d_ff;

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
134 Synopsys Confidential Information February 2021

begin
-- instantiation of shift register
shift_register : shrl
generic map (sr_length => 64)
port map (clk => clk,

 sr_en => sr_en,
 sr_ip => data,
 sr_op => data_op);

-- instantiation of flipflop
dff1 : d_ff
port map (data => data,

 clk => clk,
 rst => rst,
 q => data_op);

end rtl;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity shrl is
generic (sr_length : natural);
port (clk : in std_logic;

sr_en : in std_logic;
sr_ip : in std_logic;
sr_op : out std_logic);

end entity shrl;
architecture rtl of shrl is
signal sr_reg : std_logic_vector(sr_length-1 downto 0);
begin

shreg_lut: process (clk)
begin

if rising_edge(clk) then
if sr_en = '1' then

sr_reg <= sr_reg(sr_length-2 downto 0) & sr_ip;
end if;

end if;
end process shreg_lut;

-- Constant net driving output net
sr_op <= '1';
end architecture rtl;
library IEEE;
use IEEE.std_logic_1164.all;

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 135

entity d_ff is
port (data, clk, rst : in std_logic;

q : out std_logic);
end d_ff;

architecture behav of d_ff is
begin

FF1:process (clk) begin
if (clk'event and clk = '1') then

if (rst = '1') then
q <= '0';

else q <= data;
end if;

end if;
end process FF1;

end behav;
See the following RTL and Technology views; the Technology view shows the
constant net tied to the output.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
136 Synopsys Confidential Information February 2021

status_report
Writes out the results of reports displayed in the Project Status view after
synthesizing a design.

Syntax
status_report -name reportName [-parameter reportSectionName]

[-csv] [-output_file fileName] [-msgtype msgStatus] [-status] [-help]

Examples
status_report -name area_report
status_report -name timing_report -csv -output_file reports
status_report -name area_report -parameter io_port
status_report -name run_status -msgtype warnings
status_report -name timing_report -help

Option Description

-name reportName The type of report to access. Use any of the
following keywords for reportName:
• area_report
• timing_report
• opt_report
• cp_report
• hier_area_report
• run_status

-parameter reportSectionName Specifies a specific section of the area, timing, or
message reports to access. See Parameters, on
page 137 for details of the appropriate keywords to
use for the section names.

-csv Generates the report as a comma-separated list.

-output_file fileName Specifies the name of the file that writes out the
report. If you do not specify an output file, the
report is displayed in the Tcl window.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 137

Parameters
For the area, timing, and message reports you can report results for specific
sections by specifying the appropriate keywords for the -parameter argument.

-msgtype msgStatus Generates the number of messages found for the
following types of messages:
• Errors
• Warnings
• Notes

-status Generates the status for a job. The results of the
job can be specified with one of the following
conditions:
• Completed
• Failed

-help Allows you to get help on a parameter list.
Use -help * for a list of parameters.

Area Report section keywords for -parameter io_port
non_io_reg
total_io_reg
v_ram
dsp_used
total_luts

Timing Report section keywords for -parameter clock_name
req_freq
est_freq slack

Run Status section keywords for -parameter compiler
premap
fpga_mapper

Option Description

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
138 Synopsys Confidential Information February 2021

For example:

% status_report -name area_report
I/O ports(io_port) 26
Non I/O Register bits(non_io_reg)242 (0%)
I/O Register bits(total_io_reg) 24
Block Rams(v_ram) 0 (1030)
DSP Blocks(dsp_used) 1 (2800)
LUTs(total_luts) 310 (0%)

Additional Reporting Commands
There are other commands available from the command line to report
commonly-required information: report_timing_summary, report_area, and
report_opt.

• Report Timing Summary

% report_timing_summary
Timing Summary
Clock Name Req Freq Est Freq Slack
eight_bit_uc|clock 198.9 MHz 169.1 MHz-0.887

• Report Area

% report_area
LUTs for combinational functions0
Non I/O Registers 0
I/O Pins 66
I/O registers 0
DSP Blocks 0 (256)
Memory Bits 32768

• Report Optimizations

% report_opt
Combined Clock Conversion 1 / 0

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 139

Messages Reporting Commands
Here are examples of commands available from the command line to report
message information using the option: run_status.

%status_report -name run_status
{compiler {notes "8"}{warnings "0"}{errors "0"}

{job_status "Completed"}}
{fpga_mapper {notes "46"}{warnings "1"}{errors "0"}

{job_status "Completed"}}
{premap {notes "3"}{warnings "2"}{errors "0"}

{job_status "Completed"}}
% status_report - name run_status -msgtype warnings
{compiler {warnings "0"}}
{fpga_mapper {warnings "10"}}
{premap {warnings "0"}}
% status_report - name run_status -parameter {compiler premap}

-msgtype warnings
{compiler {warnings "0"}}
{premap {warnings "0"}}
% status_report -name run_status -parameter compiler -status
{compiler {job_status "Completed"}}
% status_report -name run_status -parameter premap -status

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
140 Synopsys Confidential Information February 2021

sub_impl
Sub-implementation editing command.

Syntax
sub_impl

implName -add jobType
implName -remove
implName -type
implName -run mode
implName -cancel
implName -option optionName [optionValue]
-list

Arguments and Options

Option Description

implName -add jobType Creates a new sub-implementation that belongs to
an active implementation.

implName -remove Removes an active sub-implementation.

implName -type Lists a sub-implementation type.

implName -run mode Runs sub-implementation.

implName -cancel Cancels a running sub-implementation.

implName -option optionName
[optionValue]

Sets option for sub-implementation.

-list Lists all sub-implementations for an active
implementation.

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 141

synplify_pro
Starts the FPGA synthesis tool and runs synthesis from the command line.
Use the appropriate command for the tool you are using. The command to
start the synthesis tool from the command line includes a number of
command line options.

Syntax
synplify_pro

[options ...]
[projectFile]

The following table describes the options you can specify:

projectFile Specifies the project (prj) file to use. If no file is specified, the tool
defaults to the last project file opened.

options Any of the command line options described in the next table. These
options control tool action on startup and, in many cases, can be
combined on the same command line. See the next table for a
description of the options you can specify.

Option Description

-batch Synplify Pro (except node-locked)
Starts the synthesis tool in batch mode from the specified
project or Tcl file without opening the Project window.

-compile Compiles the project, but does not map it.

-evalhostid Reports host ID for node-locked and floating licenses.

-help Lists available command line options and descriptions.

-history filename Records all Tcl commands and writes them to the specified
history log file when the command exits.

-Identify_dir dir Specifies the location of the Identify installation directory for
launching the Identify tool set. The installation path
specified appears in the Configure Identify Launch dialog box
(Options->Configure Identify Launch).

-impl impName Runs only the specified implementation. You can use this
option in conjunction with the -batch keyword.
The Synplify tool supports only a single implementation.

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
142 Synopsys Confidential Information February 2021

-ip_license_wait
waitTime

Specifies how long to wait for a Synopsys DesignWare IP
license when one is not immediately available. If you do not
specify the -ip_license_wait option, license queuing is not
enabled.
If all requested licenses are checked out or if the specified
wait time elapses, the tool excludes the IP and continues to
process the rest of the design. Any IP block without a license
is treated either as an error or a black box.
License queuing allows you to wait until a license becomes
available or specify a wait time in seconds. You can use this
option in conjunction with the -batch keyword. For details,
see Queuing Licenses, on page 508 in the User Guide.
The waitTime value determines license queuing and sets a
maximum wait time:
• Undefined or 0 = Queuing off
• 1 = Queuing enabled, indefinite wait time
• >1 = Queuing enabled for the specified time

-license_release Releases FPGA synthesis licenses for a session after the
place-and-route job is launched. The software allows place
and route to continue running even after exiting the
synthesis tool so that it does not consume an FPGA license.
This command option must be run in batch mode. Specify
the following command:
toolName -batch -license_release
For details, see Releasing the Synthesis License During
Place and Route, on page 554.

-licensetype
featureName

Specifies a license if you work in an environment with
multiple Synopsys FPGA licenses. You can use this option in
conjunction with the -batch keyword.
If you have licenses for multiple products, separate each
feature license by a colon so that licenses can be searched in
the order they are read until an available license is found.

Option Description

 Tcl Synthesis Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 143

-license_wait
waitTime

Specifies how long to wait for a Synopsys FPGA license. If
you do not specify the -license_wait option, license queuing is
not enabled.
License queuing allows you to wait until a license becomes
available or specify a wait time in seconds. You can use this
option in conjunction with the -batch keyword. For details,
see Queuing Licenses, on page 508 in the User Guide.
The waitTime value determines license queuing and sets a
maximum wait time in seconds:
• Undefined or 0 = Queuing off
• 1 = Queuing enabled, indefinite wait time
• >1 = Queuing enabled for the specified wait time

-log filename Writes all output to the specified log file.

-loga filename Writes all output to be appended to the specified log file.

-max_parallel_jobs
value

Specifies the maximum number of concurrent processes
used for synthesis.

-nopopup Suppresses popup dialog boxes.

-run implName Runs the specified implementation in the project file.

-runall Runs all the implementations in the project file.
The Synplify tool supports only a single implementation.

-shell Starts synthesis tool in shell mode.
Note: The FPGA synthesis tools only support the -shell option
on UNIX and Linux platforms.

-tcl prjFile | Tclscript Starts the synthesis tool in the graphical user interface
using the specified project or Tcl file.

-tclcmd command Specifies Tcl command to be executed on startup.

-verbose_log Writes messages to stdout.log in verbose mode.

-version Reports version of specified synthesis tool.

Option Description

LO

 Tcl Synthesis Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
144 Synopsys Confidential Information February 2021

Tcl Command Categories
The following tables group Tcl commands together by type or functionality.

Log File Commands, on page 144

Technology-Specific Tcl Commands, on page 144

Technology-Specific Tcl Commands, on page 144

Log File Commands
These Tcl commands let you filter messages in the log file.

Technology-Specific Tcl Commands
You can find vendor-specific Tcl commands in the appropriate vendor
chapter.

log_filter Lets you filter errors, notes, and warning messages.

log_report Lets you write out the results of the log_filter command to a
file.

message_override Allows you to suppress or override the log file message ID
specification.

Vendor/Family Tcl Command Lists

Microchip Microchip Tcl set_option Command Options, on
page 418

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 145

C H A P T E R 3

Tcl Find, Expand, and Collection
Commands

The FPGA synthesis software includes powerful search functionality in the
Tcl find and expand commands. Objects located by these commands can be
grouped into collections and manipulated. The following sections describe the
commands and collections in detail:

• find, on page 147

• find -filter, on page 154

• expand, on page 161

• Collection Commands, on page 164

• Query Commands, on page 174

• Synopsys Standard Collection Commands, on page 204

The find, expand, and collection commands are listed alphabetically in the
following table.

add_to_collection all_clocks

all_fanin all_fanout

all_inputs all_outputs

all_registers append_to_collection

c_diff c_info

c_intersect c_list

LO

 Tcl Find, Expand, and Collection Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
146 Synopsys Confidential Information February 2021

c_print c_symdiff

c_union copy_collection

define_collection define_scope_collection

expand find (Tcl find)

foreach_in_collection get_cells

get_clocks get_flat_cells

get_flat_nets get_flat_pins

get_nets get_object_name

get_pins get_ports

get_prop index_collection

object_list remove_from_collection

report_timing set

sizeof_collection

find Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 147

find
The Tcl find command identifies design objects based on specified criteria. Use
this command to locate multiple objects with a common characteristic. If you
want to locate objects that share connectivity, use the expand command
instead of the find command (expand, on page 161).

You can specify the find command from the SCOPE environment or enter it as
a Tcl command. This command operates on the RTL database.

You can define objects identified by find as a group or collection, and operate
on all the objects in the collection at the same time. To do this, you embed the
find command as part of a collection creation or manipulation command to do
this in a single step. The combination of find and collection commands
provides you with very powerful functionality to operate on and manipulate
multiple design objects simultaneously.

The table summarizes where to find detailed information:

For ... See ...

Command syntax Tcl Find Syntax, on page 148

Syntax details: object
types, expressions, case
sensitivity, and special
characters

Tcl Find Command Object Types, on page 149
Wildcards and Special Characters, on page 150
Tcl Find Command Case Sensitivity, on page 150

Examples of find syntax Tcl Find Syntax Examples, on page 151

Filtering find searches by
property

find -filter, on page 154
Find Filter Properties, on page 155
Refining Tcl Find Results with -filter, on page 147 in
the User Guide.

Using find search
patterns and using find
in collections

Finding Objects with Tcl find and expand, on page 145
in the User Guide.

LO

 Tcl Find, Expand, and Collection Commands find

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
148 Synopsys Confidential Information February 2021

Tcl Find Syntax
Finds design objects based on specified criteria.

Find is available as part of the HDL Analyst tool.

Syntax
find

[-flat]
[-inst]
[-net]
[-port]
[-pin]
[-view]
[-nocase]
[-print]
[-depth value]
[-filter expression]
[-seq]
[pattern]

-flat
Extends the search to all levels. The * wildcard character matches
hierarchy separators as well as characters. See Wildcards and Special
Characters, on page 150 for additional information.

-inst
Finds matching instances. If no -type (-inst, -net, -port, -pin, or -view) option
is set, results include instances, nets, and ports.

-net
Finds matching nets. If no -type (-inst, -net, -port, -pin, or -view) option is set,
results include instances, nets, and ports.

-port
Finds matching ports. If no -type (-inst, -net, -port, -pin, or -view) option is
set, results include instances, nets, and ports.

-pin
Finds matching pins. If no -type (-inst, -net, -port, -pin, or -view) option is set,
results include instances, nets, and ports.

-view
Finds matching views. If no -type (-inst, -net, -port, -pin, or -view) option is
set, results include instances, nets, and ports.

find Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 149

-nocase
The -nocase option makes the search case-insensitive.

-print
Prints the first 20 search results. For a full list of objects found, use
c_print or c_list. If you use find from the shell, the results are printed to the
Tcl window; if you find in the constraint file, the results are printed to the
log file at the beginning of the Mapper section. Reported object names
have prefixes that identify the object type and are contained in curly
braces ({ }).

-depth value
Sets the starting depth for the search. Value may be a single number or
a range. When -depth with a range is used, for example -depth 4-7, -hier
and -flat arguments are ignored.

-filter expression
Further refines the results of find by filtering the results using the speci-
fied object property. For syntax details, refer to find -filter, on page 154.

-seq
Finds sequential (clocked) instances (the -inst object type is not required).
This argument is equivalent to -filter @is_sequential.

pattern
The value to search for.

Tcl Find Command Object Types
You can specify the following types of objects:

Object Prefix Example Synopsys

view
(Design)

v: work.cpu.rt1|p:rst is the hierarchical rst port in
the cpu view which points to all
instances of cpu.

lib_cell

inst
(Instance)

i: Default object type. i:core.i_cpu.reg1 points to the
reg1 instance inside i_cpu.

cell

port p: p:data_in[3] points to bit 3 of the primary data_in
port. work.cpu.rt1|p:rst is the hierarchical rst port in
the cpu view which eventually points to all
instances of cpu.

port

LO

 Tcl Find, Expand, and Collection Commands find

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
150 Synopsys Confidential Information February 2021

Wildcards and Special Characters
The Tcl find command significantly differs from a simple Tcl search. A simple
Tcl search does not treat any character, except for the backslash (\), as a
special character, so * matches everything in a string. The Tcl find command
uses various special characters, as shown in the following table.

Use curly brackets { } or double quotes to prevent the interpretation of special
characters within a pattern, and the backslash to escape a single character.

Tcl Find Command Case Sensitivity
Case sensitivity depends on the rules of the language used to specify the
object. In mixed-language designs, the case-sensitivity rules for the parent
object prevail, even when another language is used to define the lower-level
object.

pin t: t:core.i_cpu.rst points to the hierarchical rst pin of
instance i_cpu.

pin

net n: n:core.i_cpu.rst points to the rst net driven in i_cpu. net

seq
(Sequential
instance)

i: i:core.i_cpu.reg[7:0] cell

Syntax Matches ...

* A sequence of 0 or more matches
If you do not specify -hier, the search is restricted to the current view only.
To traverse downward through the hierarchy, either use the -hier
argument or specify the hierarchical levels to be searched by adding the
hierarchical delimiter to the pattern. For example, *.* matches objects one
level below the current view.

? A sequence of 0 or 1 matches

Object Prefix Example Synopsys

find Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 151

Tcl Find Syntax Examples
The following are examples of find syntax:

Use the {} characters to protect patterns that contain [] from Tcl evaluation.
For example, use the following command to find instance reg[4]:

Example Description

find {a*} Finds any object in the current view that
starts with a

find {a*} -hier -nocase Finds any object that starts with a or A

find -net {*synp*} -hier Finds any net the contains synp

find -seq * -filter {@clock==myclk} Finds any register in the current view that is
clocked by myclk

find -flat -seq {U1.*} Finds all sequential elements at any
hierarchical level under U1 (* matches
hierarchy separator)

find -hier -flat -inst {i:A.B.C.*} -filter
@view==ram*

Finds all RAM instances starting from a
submodule and all lower hierarchical levels
from A downwards

find -hier-seq {*} -filter
@clock_enable==ena

Finds all registers enabled by the ena signal

find -hier-seq {*} -filter @slack <{-0.0} Finds all sequential elements with negative
slack

find -hier-seq {*} -filter {@clock ==clk1} Finds all sequential elements within the clk1
clock domain

find -hier-net {*} -filter {@fanout >20} Finds high fanout nets that drive more than
20 destinations

find -hier-seq * -in $all_inst_coll Finds sequential elements inside the
all_inst_coll collection

find -net -regexp {[a-b].*} Finds all nets in hierarchy a and b. This

means {n:a.*} and {n:b.* ; regular expressions

are only supported in the earlier standard

version of the HDL Analyst and are not

supported in the current version.

LO

 Tcl Find, Expand, and Collection Commands find

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
152 Synopsys Confidential Information February 2021

find -inst {reg[4]}

Example: Custom Report Showing Paths with Negative Slack
Use the following commands:

open_design implementation_a/top.srm
set find_negslack[find -hier -seq -inst {*} -filter @slack <

{-0.0}]
c_print -prop slack -prop view $find_negslack -file negslack.txt

The result of running these commands is a report called negslack.txt:

Object Name slack view
{i:CPU_A_SOC.CPU.DATAPATH.GBR[0]} -3.264 "FDE"
{i:CPU_A_SOC.CPU.DATAPATH.GBR[1]} -3.158 "FDE"
{i:CPU_A_SOC.CPU.DATAPATH.GBR[2]} -3.091 "FDE"

Example: Custom Report for Negative Slack FFs in a Clock Domain
The following procedure steps through the commands used to find all
negative slack flip-flops with a given clock domain:

1. Create a collection that contains all sequential elements with negative
slack:

set negFF [find -tech -hier -seq {*} -filter @slack < {-0.0}]
2. Create a collection of all sequential elements within the clk clock domain

set clk1FF find -hier -seq * -filter {@clock==clk1}
3. Isolate the common elements in the two collections:

set clk1Slack [c_intersect $negFF $clk1FF]
4. Generate a report using the c_print command:

c_print [find -hier -net * -filter @fanout>=2]
{n:ack1_tmp}
{n:ack2_tmp}
...
{n:blk_xfer_cntrl_inst.lfsr_data[20:14]}
{n:blk_xfer_cntrl_inst.lfsr_inst.blk_size[6:0]}
{n:blk_xfer_cntrl_inst.lfsr_inst.clk_c}
...

find Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 153

Custom Fanout Report Example
The following command generates a fanout report:

% c_print -prop fanout [find -hier -net * -filter @fanout>=2]
This is an example of the report generated by the command:

Object Name fanout
{n:ack1_tmp} 3
{n:ack2_tmp} 4
...
{n:blk_xfer_cntrl_inst.lfsr_data[14]} 3
{n:blk_xfer_cntrl_inst.lfsr_data[15]} 3
{n:blk_xfer_cntrl_inst.lfsr_data[16]} 2
...

You can add additional information to the report, by specifying more proper-
ties. For example:

% c_print -prop fanout [find -hier -net * -filter @fanout>=2] -prop
pins

This command generates a report like the one shown below:
Object Name Fanout Pins
{n:ack1_tmp} 3 "t:word_xfer_cntrl_inst.ack1_tmp

t:word_xfer_inst.ack1_tmp"
{n:ack2_tmp} 4 "t:blk_xfer_cntrl_inst.ack2_tmp

t:blk_xfer_inst.ack2_tmp"
{n:adr_o_axb_1} 2 "t:blk_xfer_inst.adr_o_axb_1

t:adr_o_cry_1_0.S t:adr_o_s_1.LI"
{n:adr_o_axb_2} 2 "t:blk_xfer_inst.adr_o_axb_2

t:adr_o_cry_2_0.S t:adr_o_s_2.LI"
{n:adr_o_axb_3} 2 "t:blk_xfer_inst.adr_o_axb_3

t:adr_o_cry_3_0.S t:adr_o_s_3.LI"
{n:adr_o_axb_4} 2 "t:blk_xfer_inst.adr_o_axb_4

t:adr_o_cry_4_0.S t:adr_o_s_4.LI"
{n:adr_o_axb_5} 2 "t:blk_xfer_inst.adr_o_axb_5

t:adr_o_cry_5_0.S t:adr_o_s_5.LI"
{n:adr_o_axb_6} 2 "t:blk_xfer_inst.adr_o_axb_6

t:adr_o_cry_6_0.S t:adr_o_s_6.LI"
...

To save the report as a file, use a command like this one:

c_print -prop fanout [find -hier -net * -filter @fanout>=2]
-prop pins -file prop.txt

LO

 Tcl Find, Expand, and Collection Commands find -filter

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
154 Synopsys Confidential Information February 2021

find -filter
The Tcl find command includes the optional -filter option, which provides a
powerful way to further refine the results of the find command and filter
objects based on properties. See the following for details about the find -filter
command:

• Find -filter Syntax, on page 154

• Find Filter Properties, on page 155

• Find Filter Examples, on page 159

For the Tcl find command syntax, see

Find -filter Syntax
find pattern otherOtions -filter {[!]@propertyName operator value}

When specified, the -filter option must be the last option specified for the find
command.

! Optional character to specify the negative. Include the !
character if you are checking for the absence of a property;
leave it out if you are checking for the presence of a
property.

@propertyName Property name to use for filtering. The name must be
prefixed with the @ character. For example, if clock is the
property name, specify {@clock==myclk}.

operator Evaluates and determines the property value used for the
filter expression. For the operators you can use in the
expressions, see Filter Operators, on page 155.

value Property value for the property in the filter expression, when
the property has a value. The value can either be an object
name such as myclk in {@clock==myclk}, or a value, such as
60 in {@fanout>=60}.

find -filter Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 155

Filter Operators
You can use the following relational operators with the -filter option:

You can use the following logical operators with the -filter option:

Find Filter Properties
The object properties are based on the design or constraint, and are used to
qualify searches and build collections. To generate these properties, open
Project->Implementation Options->Device and enable the Annotated Properties for
Analyst check box. The properties display in the Tcl window when the RTL or
Technology view is active. Some properties are only available in a certain
view. The tool creates .sap and .tap files (design and timing properties, respec-
tively) in the project folder.

The table below lists the common filter object properties. It does not include
some vendor-specific properties. Use the table as a guide to filter the proper-
ties you want. Here is how to read the columns:

== Equal

!= Not equal

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

=~ Matches pattern

!~ Does not match pattern

&& And

|| Or

! Not

LO

 Tcl Find, Expand, and Collection Commands find -filter

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
156 Synopsys Confidential Information February 2021

Property Name Property Value HDL View Description

Common Properties

type view|port|net|instance|
pin

All Specifies the type of
object to be filtered
from the netlist
find * -filter -object -print

View Properties

compile_point locked Tech Filters the view based
on compile point
properties
find * -view -filter
@compile_point==locked
-print

is_black_box 1 All Filters the black box
view
find * -view -filter
@is_black_box==1 -print

is_verilog 0|1 All Filters the Verilog
based view
find * -view -filter
@is_verilog=={0|1} -print

is_vhdl 0|1 All Filters the VHDL based
view
find * -view -filter
@is_vhdl=={0|1} -print

orig_inst_of viewName RTL and
Tech

Filters the view based
on original instance
find * -view -filter
@orig_inst_of==viewName
-print

syn_hier remove|flatten|soft|firm
|hard

Tech Filters the view based
on the syn_hier
attribute value
find * -view -filter
@syn_hier=={remove|
flatten|soft|firm|hard} -print

find -filter Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 157

Port Properties

direction input|output|inout All Filters the port based
on port direction
find * -port -filter
@direction=={input|output|
inout} -print

fanout value All Filters the port based
on fanout value
find * -port -filter
@fanout==value -print

Instance Properties

area areaValue Tech

arrival_time value Tech Corresponds to worst
slack

async_reset n:netName All

async_set n:netName All

clock clockName All Could be a list if there
are multiple clocks

clock_edge rise|fall|
high|low

All Could be a list if there
are multiple clocks

clock_enable n:netName All Highest branch name in
the hierarchy, and
closest to the driver

compile_point locked Tech Automatically inherited
from its view

hier_rtl_name hierInstanceName All

inout_pin_count value All

input_pin_count value All

inst_of viewName All

is_black_box 1 (Property added) All Automatically inherited
from its view

Property Name Property Value HDL View Description

LO

 Tcl Find, Expand, and Collection Commands find -filter

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
158 Synopsys Confidential Information February 2021

is_hierarchical 1 (Property added) All

is_sequential 1 (Property added) All

is_combinational 1 (Property added) All

is_pad 1 (Property added) All

is_tristate 1 (Property added) All

is_keepbuf 1 (Property added) All

is_clock_gating 1 (Property added) All

is_vhdl 0|1 All Automatically inherited
from its view

is_verilog 0|1 All Automatically inherited
from its view

kind primitive
For example: inv | and |dff |
mux | statemachine | ...)

All Tech view contains
vendor-specific
primitives

location (x, y) Tech Format can differ

name instanceName All

orientation N | S | E | W Tech

output_pin_count value All

pin_count value All

placement_type unplaced | placed All

rtl_name nonhierInstanceName All

slack value Tech Worst slack of all arcs

slow 1 Tech

sync_reset n:netName All

sync_set n:netName All

syn_hier remove|flatten|
soft|firm|hard

Tech Automatically inherited
from its view

view viewName All

Property Name Property Value HDL View Description

find -filter Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 159

Find Filter Examples
The following examples show how find -filter is used to check for the presence
or absence of a property, with the ! character indicating a negative check:

Pin Properties

arrival_time timingValue Tech

clock clockName All Could be a list if there
are multiple clocks

clock_edge rise|fall|
high|low

All Could be a list if there
are multiple clocks

direction input|output|
inout

All

fanout value All Total fanout (integer)

is_clock 0|1 All

is_const 0|1 All

is_gated_clock 0|1 All Set in addition to
is_clock

slack value Tech

Net Properties

clock clockName All Could be a list if there
are multiple clocks

is_clock 0|1 All

is_gated_clock 0|1 All Set in addition to
is_clock

fanout value All Total fanout (integer)

c_print [find -hier -view {*} -filter
(@is_black_box)]

Finds all objects that are black
boxes.

c_print [find -hier -view {*} -filter
(!@is_black_box)]

Finds all objects that are not black
boxes

Property Name Property Value HDL View Description

LO

 Tcl Find, Expand, and Collection Commands find -filter

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
160 Synopsys Confidential Information February 2021

Positive Check Examples
Finds all ports, pins, and nets from the top level with a fanout greater than 8:

find * -filter {@fanout>8}
Finds all instances other than andv and orv in the design:

find * -hier -filter {!(@view=andv||@view=orv)}
Finds all instances of statemachine throughout the hierarchy:

find -hier -inst * -filter {@inst_of==statemachine}
find -hier -inst * -filter {@kind==statemachine}

Finds all instances throughout the hierarchy that include the string reg and
are clocked by CLK:

find -hier -inst {*reg*} -filter {@clock==CLK}
Finds all nets throughout the hierarchy that have a fanout greater than 4:

find -hier -net {*} -filter {@fanout>4}

Negative Check Example
Finds all instances from the top level that have the include string big, that are
not black boxes, and that have more than 10 pins:

find -inst *big* -filter {!@is_black_box&&(@pin_count>10)}

Example of Boolean Expression Specified on Multiple Properties
Finds all instances from the top level that have more than eight pins and
negative slack:

find * -filter {(@pin_count>8)&&(@slack<0)}

Example of Pin Property Specified for Constants
Finds pins driven by constant 0 or constant 1:

find -pin *.* -filter @const==value -print
Where value of 1 lists all the pins that are tied to a constant.

expand Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 161

expand
The expand command identifies objects based on their connectivity, by
expanding forward from a given starting point. For more information, see
Using the Tcl expand Command to Define Collections, on page 150 of the
User Guide.

Tcl expand Syntax
The syntax for the expand command is as follows:

expand [-objectType] [-from object] [-thru object] [-to object] [-level integer]
[-hier] [-leaf] [-seq] [-print]

Argument Description

-from object Specifies a list or collection of ports, instances, pins, or nets for
expansion forward from all the pins listed. Instances and input
pins are automatically expanded to all output pins of the
instances. Nets are expanded to all output pins connected to the
net.
If you do not specify this argument, backward propagation stops
at all sequential elements.

-hier Searches for the pattern from every level of hierarchy, instead of
just the top level and identifies objects to be expanded based on
their connectivity.
The default for the current view is the top level and is defined
with the define_current_design command as in the compile-point
flow.

-leaf Returns only non-hierarchical instances.

-level integer Limits the expansion to N logic levels of propagation. You cannot
specify more than one -from, -thru, or -to point when using this
option.

-objectType Optionally specifies the type of object to be returned by the
expansion. If you do not specify an objectType, all objects are
returned. The object type is one of the following:
• -instance returns all instances between the expansion points.

This is the default.
• -pin returns all instance pins between the expansion points.
• -net returns all nets between the expansion points.
• -port returns all top-level ports between the expansion points.

LO

 Tcl Find, Expand, and Collection Commands expand

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
162 Synopsys Confidential Information February 2021

-print Evaluates the expand function and prints the first 20 results. If
you use this command from HDL Analyst, these results are
printed to the Tcl window; for constraint file commands, the
results are printed to the log file at the start of the Mapper
section.
For a full list of objects found, you must use c_print or c_list.
Reported object names have prefixes that identify the object
type. There are double quotes around each name to allow for
spaces in the names. For example:
"i:reg1"
"i:reg2"
"i:\weird_name[foo$]"
"i:reg3"
<<found 233 objects. Displaying first 20 objects. Use
c_print or c_list for all. >>

-seq Modifies the range of any expansion to include only sequential
elements. By default, the expand command returns all object
types. If you want just sequential instances, make sure to define
the object_type with the -inst argument, so that you limit the
command to just instances.

-thru object Specifies a list or collection of instances, pins, or nets for
expansion forward or backward from all listed output pins and
input pins respectively. Instances are automatically expanded to
all input/output pins of the instances. Nets are expanded to all
input/output pins connected to the net. You can have multiple
-thru lists for product of sum (POS) operations.

-to object Specifies a list or collection of ports, instances, pins, or nets for
expansion backward from all the pins listed. Instances and
output pins are automatically expanded to all input pins of the
instances. Nets are expanded to all input pins connected to the
net.
If you do not specify this argument, forward propagation stops at
all sequential elements.

Argument Description

expand Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 163

Tcl expand Syntax Examples

Example Description

expand -hier -from {i:reg1} -to {i:reg2} Expands the cone of logic between two
registers. Includes hierarchical instances
below the current view.

expand -inst -from {i:reg1} Expands the cone of logic from one register.
Does not include instances below the current
view.

expand -inst -hier -to {i:reg1} Expands the cone of logic to one register.
Includes hierarchical instances below the
current view.

expand -pin -from {t:i_and2.z} -level 1 Finds all pins driven by the specified pin.
Does not include pins below the current
view.

expand -hier -to {t:i_and2.a} -level 1 Finds all instances driving an instance.
Includes hierarchical instances below the
current view.

expand -hier -from {n:cen} Finds all elements in the transitive fanout of
a clock enable net, across hierarchy.

expand -hier -from {n:cen} -level 1 Finds all elements directly connected to a
clock enable net, across hierarchy.

expand -hier -thru {n:cen} Finds all elements in the transitive fanout
and transitive fanin of a clock enable net,
across hierarchy.

LO

 Tcl Find, Expand, and Collection Commands Collection Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
164 Synopsys Confidential Information February 2021

Collection Commands
A collection is a group of objects. Grouping objects lets you operate on
multiple group members at once; for example you can apply the same
constraint to all the objects in a collection. You can do this from both the
SCOPE editor (see Collections, on page 225) or in a Tcl file.

The following table lists the commands for creating, copying, evaluating,
traversing, and filtering collections, and subsequent sections describe the
collections, except for find and expand, in alphabetical order. For information
on using collections, see Using Collections, on page 154 in the User Guide.

Command Description

Creation

define_collection Creates a collection from a list

set modules Creates a collection

set modules_copy $modules Copies a collection

Creation from Objects Identified by Embedded Commands

find Does a targeted search and finds objects.
Embedding the find command in a collection creation
command first finds the objects, and then creates a
collection out of the identified group of objects.

expand Identifies related objects by expanding from a
selected point. Embedding the expand command in a
collection creation command first finds the objects,
and then creates a collection out of the identified
group of objects.

Operators for Comparison and Analysis

c_diff Identifies differences between lists or collections

c_intersect Identifies objects common to a list and a collection

c_symdiff Identifies objects that belong exclusively to only one
list or collection

c_union Concatenates a list to a collection

Collection Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 165

c_diff

Identifies differences by comparing collections, or a list and a collection. For
this command to work, the design must be open in the GUI.

Syntax
c_diff {$collection1 $collection2 | $collection {list}} [-print]

This command also includes a -print option to display the result.

Operators for Evaluation and Statistics

c_info Prints statistics for a collection

c_list Converts a collection to a Tcl list for evaluation

c_print Displays collections or properties for evaluation

Command Description

LO

 Tcl Find, Expand, and Collection Commands Collection Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
166 Synopsys Confidential Information February 2021

Examples
The following examples combine the set with the c_diff command to create a
new collection that contains the results of the c_diff command. The first
example compares two collections and puts the results in diffCollection:

set diffCollection [c_diff $collection1 $collection2]
The next example creates collection1 consisting of objects i:reg1 and i:reg2,
compares this collection to a Tcl list containing object i:reg1, puts the results
in the collection diffCollection and prints the result (i:reg2).

%set collection1 {i:reg1 i:reg2}
%set diffCollection [c_diff $collection1 {i:reg1}]
%c_print $diffCollection
{i:reg2}

c_info
Returns specifics of a collection, including database name, number of objects
per type, and total number of objects. You can save the results to a Tcl
variable (array) using the -array name option.

Syntax
c_info $mycollection [-array name]

c_intersect

Defines common objects that are included in each of the collections or lists
being compared.

Syntax
c_intersect $collection1 $collection2 | list [-print]

This command also includes a -print option to display the result.

Collection Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 167

Example
The following example uses the set command to create a new collection that
contains the results of the c_intersect command. The example compares a list
to a collection (myCollection) and puts the common elements in a new collec-
tion called commonCollection:

%set myCollection {i:reg1 i:reg2}
%set commonCollection [c_intersect $myCollection {i:reg1 i:reg3}]
%c_print $commonCollection

{i:reg1}

c_list
Converts a collection to a Tcl list of objects. You can evaluate any collection
with this command. If you assign the collection to a variable, you can then
manipulate the list using standard Tcl list commands like lappend and lsort.
Optionally, you can specify object properties to add to the resulting list with
the -prop option:

(object prop_value ... prop_value)...
(object prop_value ... prop_value)

Syntax
c_list $collection|list [-prop propertyName]*

Example
%set myModules [find -view *]
%c_list $myModules
{v:top}{v:block_a}{v:block_b}

%c_list $myModules -prop is_vhdl -prop is_verilog
Name is_vhdl is_verilog
{v:top} 0 1
{v:block_a} 1 0
{v:block_b} 1 0

LO

 Tcl Find, Expand, and Collection Commands Collection Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
168 Synopsys Confidential Information February 2021

c_print
Displays collections or properties in column format. Object properties are
printed using one or more -prop propertyName options.

Syntax
c_print {$collection | {list}} [-prop propertyName]* [-file filename] [-append] [-foot
footer] [-head header]

To print to a file, use the -file option. Use -append to append to the specified
file instead of overwriting it. Use the -head and the -foot options to add the
header and footer respectively, before printing the file. The following
command in a constraint file prints the whole collection to a file:

c_print -file foo.txt $col
The following example adds a header and a footer to the file before printing:

% c_print [find -inst *] -head "Search for all..." -foot "Ends
here."
Total finding took: 0 seconds
Search for all...
{i:inst1}
{i:inst2}
<<Collection has 2 objects>>
Ends here.

Note that the command prints the file to the current working directory. If you
have multiple projects loaded, check that the file is written to the correct
location. You can use the pwd command in the Tcl window to echo the current
directory and then use cd directoryName to change the directory as needed.

Example
%set modules [find -view *]
%c_print $modules
{v:top}
{v:block_a}
{v:block_b}

Collection Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 169

%c_print -prop is_vhdl -prop is_verilog $modules
Name is_vhdl is_verilog
{v:top}0 1
{v:block_a}1 0
{v:block_b}1 0

c_symdiff

Compares a collection to another collection or Tcl list and finds the objects
that are unique, not shared between the collections or Tcl lists being
compared. It is the complement of the c_intersect command (c_intersect, on
page 166).

Syntax
c_symdiff {$collection1 $collection2 | $collection {list}} [-print]

This command also includes a -print option to display the result.

Examples
The following example uses the set command together with the c_symdiff
command to compare two collections and create a new collection (symDiffCol-
lection) that contains the results of the c_symdiff command.

set symDiff_collection [c_symdiff $collection1 $collection2]
The next example is more detailed. It compares a list to a collection (collection1)
and creates a new collection called symDiffCollection from the objects that are
different. In this case, reg1 is excluded from the new collection because it is
common to both the list and collection1.

set collection1 {i:reg1 i:reg2}
set symDiffCollection [c_symdiff $collection1 {i:reg1 i:reg3}]
c_list $symDiffCollection

{"i:reg2" "i:reg3"}

LO

 Tcl Find, Expand, and Collection Commands Collection Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
170 Synopsys Confidential Information February 2021

You can also use the command to compare two collections:

c_union

Adds a collection, or a list to a collection, and removes any redundant
instances. For this command to work, the design must be open in the GUI.

Syntax
c_union {$collection1 $collection2 | $collection {list}} [-print]

The c_union command automatically removes redundant elements. This
command also includes a -print option to display the result.

Examples
You can concatenate two collections into a new collection using the c_union
and set commands, as shown in the following example where collection1 and
collection2 are concatenated into combined_collection:

set combined_collection [c_union $collection1 $collection2]
The following example creates a new collection called sumCollection, which is
generated by adding a Tcl list with one object (reg3) to collection1, which
consists of reg1 and reg2. The new collection created by c_union contains reg 1,
reg2, and reg3.

%set collection1 [find -instance {reg?} -print]
{i:reg1}
{i:reg2}

%set sumcollection [c_union $collection1 {i:reg3}]
%c_list $sumcollection

{i:reg1} {i:reg2} {i:reg3}
If instead you added reg2 and reg3 to collection1 with the c_union command, the
command removes redundant instances (reg2), so that the new collection still
consists of reg1, reg2, and reg3.

Collection Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 171

%set collection1 {i:reg1 i:reg2}
%set sumcollection [c_union $collection1 {i:reg2 i:reg3}]
%c_list $sumcollection

{i:reg1} {i:reg2} {i:reg3}

define_collection
Creates a collection from any combination of single elements, Tcl lists, and
collections. You get a warning message about empty collections if you define
a collection with a leading asterisk and then define an attribute for it, as
shown here:

set noretimesh [define_collection [find -hier -seq *uc_alu]]
define_attribute {$noretimesh} {syn_allow_retiming} {0}

To avoid the error message, remove the leading asterisk and change *uc_alu
to uc_alu.

Example
set modules [define_collection {v:top} {v:cpu} $mycoll $mylist]

define_scope_collection
The define_scope_collection command combines set and define_collection to create
a collection and assigns it to a variable.

define_scope_collection my_regs {find -hier -seq *my*}

get_prop
Returns a single property value for each member of the collection in a Tcl list.

Examples
get_prop -prop clock [find -seq *]
get_prop -array arr [find A1] -all
get_prop $listExpandedInst -prop rtl_name LOROM32X1inst
get_prop $listExpandedInst -prop location SLICE_X1y36

LO

 Tcl Find, Expand, and Collection Commands Collection Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
172 Synopsys Confidential Information February 2021

get_prop $listExpandedInst -prop bel C6LUT
get_prop $listExpandedInst -prop slack 0.678

If this command is used in a Tcl script and the results need to be printed, use
a puts command.

foreach cel [c_list $all_hier] {puts [get_prop -prop view $cel];}

set
Copies a collection to create a new collection. This command copies the
collection but not the name, so the two are independent. Changes to the
original collection do not affect the copied collection.

Syntax
set collectionName collectionCriteria

set copyName $collectionName

Examples
The following syntax examples illustrate how to use the set command:

• Use the set command to copy a collection:

set my_mod_copy $my_module
• Use the set command with a variable name and an embedded find

command to create a collection from the find command results:

set my_module [find -view *]

collectionName The name of the new collection.

collectionCriteria Criteria for defining the elements to be included in the collection.
Use this argument to embed other commands, like Tcl find and
expand, as shown in the examples below, or other collection
commands like define_collection, c_intersect, c_diff, c_union, and
c_symdiff. Refer to these commands for examples.

copyName The name assigned to the copied collection.

$collectionName Name of an existing collection to copy.

Collection Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 173

• Use the set command with define_collection to create a collection:

set my_module [define_collection {v:top} {v:cpu} $col_l $mylist]
For more examples of the set command used with embedded Tcl collec-
tion commands, see the examples in c_diff, on page 165, c_intersect, on
page 166, c_symdiff, on page 169, c_union, on page 170, and define_col-
lection, on page 171.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
174 Synopsys Confidential Information February 2021

Query Commands
The query commands are Synopsys SDC commands from the Design
Compiler® tool for creating collections of specific object types. Functionally,
they are equivalent to the Tcl find and expand commands (find, on page 147
and expand, on page 161).

These query commands are intended to be used in the FDC file or the HDL
Analyst view (see Query Commands in HDL Analyst Tool, on page 175) to
create collections of objects for constraints. This section describes the syntax
for the query commands supported in the FPGA synthesis tools. For complete
documentation on these commands, see the Design Compiler documentation.

Note: Since all the query commands above are used to create Tcl collections of
objects for constraints, they must be enclosed in [] to be applied. For
example:

set_input_delay 0.5 [all_inputs] -clock clk

all_clocks

all_fanin

all_fanout

all_inputs

all_outputs

all_registers

get_cells

get_clocks

get_nets

get_pins

get_ports

object_list

report_timing

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 175

Query Commands in HDL Analyst Tool
Most of the query commands can be used in both the FDC file and the HDL
Analyst view to create collections of objects for constraints. However, the
all_clocks command cannot be implemented in the HDL Analyst view.

To use the query commands in the HDL Analyst RTL view:

1. Enable the option: Implementation Options->Device->Annotate Properties for
Analyst.

2. If results are not as expected, check that this option is turned on during
compile and before you open the SRS view.

Query Commands and Tcl find and expand Commands
The Synopsys get* commands and all* commands are functionally similar to
the Tcl find and expand commands. The get* commands and all* commands
are better suited to use with constraints and the fdc file, because they handle
properties like @clock better than the Tcl find and expand commands. In
certain cases, the .fdc file does not support the find and expand commands,
although you can still enter them in the Tcl window. See Query Commands
and Tcl find and expand Commands, on page 175 for examples.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
176 Synopsys Confidential Information February 2021

Query and Tcl find/expand Examples
The following table lists parallel examples that compare how to use either the
Tcl find/expand or the get/all commands to query design objects and set
constraints.

Return the output pins of top-level registers clocked by clkb (e.g. inst1.inst2.my_reg.Q)

all_registers FDC Constraint:
set_multicycle_path {4} -from [all_registers -no_hierarchy -output_pins -clock

[get_clocks {clkb}]]
set_multicycle_path {4} -from [get_pins -of_objects [get_cells * -filter {@clock

== clkb}] -filter {@name == Q}]

find Tcl Window:
% define_collection [regsub -all {i:([^\s]+)} [join [c_list [find -inst * -filter @clock

== clkfx]]] {t:\1.Q}]

Return all registers in the design clocked by the rising edge of clock clkfx

all_registers FDC Constraint:
set_multicycle_path {3} -to [all_registers -cells -rise_clock [get_clocks {clkfx}]]
set_multicycle_path {3} -to [get_cells -hier * -filter {@clock == clkfx &&

@clock_edge == rise}]

find Tcl Window:
find -hier -inst * -filter {@clock == clkfx && @clock_edge == rise}

Return clock pins of all registers clocked by the falling edge of cklfx

all_registers FDC Constraint:
set_multicycle_path {2} -from [all_registers -clock_pins -fall_clock [get_clocks

{clkfx}]]
set_multicycle_path {2} -from [get_pins -of_objects [get_cells -hier * -filter

{@clock == clkfx && @clock_edge == fall}] -filter {@name == C}]

find Tcl Window:
% find -hier -inst * -filter {@clock == clkfx && @clock_edge == fall}

Return the E pins of all instances of dffre cells (e.g. inst1.inst2.my_reg.E)

get_pins FDC Constraint:
set_multicycle_path -to [get_pins -filter {@name == E} -of_objects [get_cells

-hier * -filter {@inst_of == dffre}]

find Tcl Window and FDC Constraint:
% regsub -all {i:([^\s]+)} [join [c_list [find -hier -inst * -filter @inst_of == dffre]]]

{t:\1.E}]

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 177

all_clocks
Use this command in the .fdc constraint file to return a collection of objects.
This command is not supported in the HDL Analyst view.

Returns a collection of clocks in the current design.

Syntax
This is the supported syntax for the all_clocks command:

all_clocks

This command has no arguments. All clocks must be defined in the design
before using this command. To create clocks, you can use the create_clock
command.

Example
The following constraint sets a multicycle path from all the starting points.

set_multicycle_path 3 -from [all_clocks]

all_fanin
Use this command in the .fdc constraint file to return a collection of objects
and/or in the HDL Analyst view to return a Tcl list of objects.

Reports pins, ports, or cells for the fanin of the specified sinks in the to list.

Syntax
This is the supported syntax for the all_fanin command:

all_fanin
[-break_on_bboxes]
[-endpoints_only]
[-exclude_bboxes]
[-flat]

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
178 Synopsys Confidential Information February 2021

[-levels integer]
[-only_cells]
[-startpoints_only]
-to listC
[-trace_arcs all | timing]

Arguments

-break_on_bboxes Stops timing fanin from traversing on black boxes.

-endpoints_only Returns only timing end points.

-exclude_bboxes Excludes black boxes from the final result.

-flat The fanin function operates in flat mode.
This function can be specified in hierarchical (default) or
flat mode. For hierarchical mode, only objects in the
same hierarchy level as the current sink are returned.
The pins within a level of hierarchy below the sink are
traversed, but are not reported.

-levels integer Stops traversal when the perimeter of the search integer
hops is reached. For example, a level 2 hop traverses
through two levels of combinational logic and stops,
instead of hopping through all levels and stopping at the
first sequential or port object. Counting is performed for
the layers of cells that are equidistant from the sink.

-only_cells Results include a set of all cells from the timing fanin for
listC.

-startpoints_only Returns only timing start points.

-to listC Required. Reports a list of sink pins, ports, or nets in the
design and the timing fanin of each sink in the listC Tcl
list or collection specified. When you specify a net,
effectively all drivers on the net are listed.

-trace_arcs all | timing Specifies the type of combinational arcs to trace while
traversing the fanin. You can specify either:
• all - Permits tracing of all combinational arcs. This is

the default.
• timing - Permits tracing of valid timing arcs only.

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 179

Examples
The following examples show the timing fanin of a port in the design.

all_fanin -to [get_ports y*]
{t:y_obuf[4].O t:y_obuf[3].O t:y_obuf[0].O t:y_obuf[1].O
t:y_obuf[2].O t:y_obuf[5].O t:y_obuf[6].O t:y_obuf[7].O t:GND.G
t:moduley_inst.y_c[0] t:moduley_inst.y_c[1]
t:moduley_inst.y_c[2]}

all_fanin -to [get_ports y*] -startpoints_only -flat
{t:moduley_inst.q[2].Q t:moduley_inst.q[1].Q
t:moduley_inst.q[0].Q}

all_fanin -to [get_ports y*] -startpoints_only -flat -only_cells
{i:moduley_inst.q[0] i:moduley_inst.q[1] i:moduley_inst.q[2]}

all_fanout
Use this command in the .fdc constraint file to return a collection of objects
and/or in the HDL Analyst view to return a Tcl list of objects.

Returns a set of pins, ports, or cells for the fanout of the specified sources in
the from list.

Syntax
This is the supported syntax for the all_fanout command:

all_fanout
[-break_on_bboxes]
-clock_tree | -from listC
[-endpoints_only]
[-exclude_bboxes]
[-flat]
[-levels integer]
[-only_cells]
[-trace_arcs all |timing]

Arguments

-break_on_bboxes Stops timing fanout from traversing on black boxes.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
180 Synopsys Confidential Information February 2021

Examples
The following examples show the timing fanout of a port in the design.

-clock_tree Uses all clock source pins and/or ports in the design as
its list of sources. Clock sources are specified with the
create_clock command. If there are no clocks or clocks
have no sources, then the report is empty. The -clock_tree
option generates a report displaying the clock trees or
networks in the design.
The -clock_tree and -from options are mutually exclusive.

-endpoints_only Returns only timing end points.

-exclude_bboxes Excludes black boxes from the final result.

-flat The fanout function operates in flat mode.
This function can be specified in hierarchical (default) or
flat mode. For hierarchical mode, only objects in the
same hierarchy level as the current source are returned.
The pins within a level of hierarchy below the source are
traversed, but are not reported.

-from listC Specifies a list of source pins, ports, or nets in the
design. The timing fanout for each source of the listC Tcl
list or collection is reported. When you specify a net,
effectively all load pins on the net are listed.
The -clock_tree and -from options are mutually exclusive.

-levels integer Stops traversal when the perimeter of the search integer
hops is reached. For example, a level 2 hop traverses
through two levels of combinational logic and stops,
instead of hopping through all levels and stopping at the
first sequential or port object. Counting is performed for
the layers of cells that are equidistant from the source.

-only_cells Results include a set of all cells from the timing fanout
for the listC.

-trace_arcs all | timing Specifies the type of combinational arcs to trace while
traversing the fanout. You can specify either:
• all - Permits tracing of all combinational arcs. This is

the default.
• timing - Permits tracing of valid timing arcs only.

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 181

all_fanout -from [get_ports {a*}]
{t:a_ibuf[0].I t:a_ibuf[1].I t:a_ibuf[2].I t:hold_a.D
t:modulex_inst.a_c[0] t:modulex_inst.a_c[1]
t:modulex_inst.a_c[2]}

all_fanout -from [get_ports {a*}] -level 1
{t:a_ibuf[0].I t:a_ibuf[1].I t:a_ibuf[2].I}

all_fanout -from [get_ports {a*}] -flat -endpoints_only
{t:hold_a.D t:modulex_inst.qa[0].D t:modulex_inst.qa[1].D
t:modulex_inst.qa[2].D t:modulex_inst.qa_fast[0].D}

all_inputs
Use this command in the .fdc constraint file to return a collection of objects
and/or in the HDL Analyst view to return a Tcl list of objects.

Returns a collection of input or inout ports in the current design.

Syntax
This is the supported syntax for the all_inputs command:

all_inputs
[-clock clockName]
[-exclude_clock_port]

Arguments

Examples
The following constraints set a default input delay.

set_input_delay 3 [all_inputs]
set_input_delay 3 -clock {clk} [all_inputs]

-clock clockName Limits the search to ports that have input delay relative to
clockName.

-exclude_clock_port Excludes clock ports from the search.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
182 Synopsys Confidential Information February 2021

all_outputs
Use this command in the .fdc constraint file to return a collection of objects
and/or in the HDL Analyst view to return a Tcl list of objects.

Returns a collection of output or inout ports in the current design.

Syntax
This is the supported syntax for the all_outputs command:

all_outputs
[-clock clockName]

Arguments

Examples
The following constraints set a default output delay.

set_output_delay 2 [all_outputs]
set_output_delay 2 -clock {clk} [all_outputs]

all_registers
Use this command in the .fdc constraint file to return a collection of objects
and/or in the HDL Analyst view to return a Tcl list of objects.

Returns a collection of sequential cells or pins in the current design.

-clock clockName Limits the search to ports that have output delay relative to
clockName.

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 183

Syntax
This is the supported syntax for the all_registers command:

all_registers
[-clock clockName]
[-rise_clock clockName]
[-fall_clock clockName]
[-cells]
[-data_pins]
[-clock_pins]
[-output_pins]
[-no_hierarchy]

Arguments

-clock clockName Searches only sequential cells that are clocked by the
specified clock.
By default, all sequential cells in the current design are
searched.

-rise_clock
clockName

Searches only sequential cells triggered by the rising edge of
the specified clock.
By default, all sequential cells in the current design are
searched.

-fall_clock
clockName

Searches only sequential cells triggered by the falling edge of
the specified clock.
By default, all sequential cells in the current design are
searched.

-cells Returns a collection of sequential cells that meet the search
criteria.
If you do not specify any of the object types, the command
returns a collection of sequential cells.

-data_pins Returns a collection of data pins for the sequential cells that
meet the search criteria.

-clock_pins Returns a collection of clock pins for the sequential cells
that meet the search criteria.

-output_pins Returns a collection of output pins for the sequential cells
that meet the search criteria.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
184 Synopsys Confidential Information February 2021

Examples
The following constraint sets a max delay target for timing paths leading to all
registers.

set_max_delay 10.0 -to [all_registers]
The following constraint sets a max delay target for timing paths leading to all
registers clocked by PHI2.

set_max_delay 10.0 -to [all_registers -clock [get_clocks PHI2]]

get_cells
Use this command in the .fdc constraint file to return a collection of objects
and/or in the HDL Analyst view to return a Tcl list of objects.

Creates a collection of cells from the current design that is relative to the
current instance.

Syntax
This is the supported syntax for the get_cells command:

get_cells
[-hierarchical]
[-nocase]
[-regexp]
[-filter expression]
[pattern]

Arguments

-no_hierarchy Limits the search to only the current level of hierarchy.
Sub-designs are not searched.
By default, the entire hierarchy is searched.

-hierarchical Searches each level of hierarchy for cells in the design relative to
the current instance. The object name at a particular level must
match the patterns. For the cell block1/adder, a hierarchical
search uses "adder" to find this cell name.
By default, the search is not hierarchical.

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 185

Examples
The following example creates a collection of cells that begin with o and refer-
ence an FD2 library cell.

get_cells "o*" -filter "@ref_name =~ FD2"
The following example creates a collection of cells connected to a collection of
pins.

set pinsel [get_pins o*/cp]
get_cells -of_objects $pinsel

The following example creates a collection of cells connected to a collection of
nets.

set netsel [get_nets tmp]
get_cells -of_objects $netsel

-nocase Ensures that matches are case-insensitive. This applies for both
the patterns argument and the filter operators (=~ and !~).

-regexp Views the patterns argument as a regular expression rather
than a simple wildcard pattern. The behavior of the filter
operators (=~ and !~)have also been modified to use regular
expression rather than simple wildcard patterns.
When using the -regexp option, be careful how you quote the
patterns argument and filter expression. Rigidly quoting with
curly braces around regular expressions is recommended.
Regular expressions are always anchored; that is, the
expression assumes matching begins at the beginning of the
object name and ends matching at the end of an object name.
You can expand the search by adding ".*" to the beginning or
end of the expressions, as needed.

-filter expressions Filters the collection with the specified expression.
For each cell in the collection, the expression is evaluated based
on the cell’s attributes. If the expression evaluates to true, the
cell is included in the result.

pattern Creates a collection of cells whose names match the specified
patterns. Patterns can include the * (asterisk) and ? (question
mark) wildcard characters. Pattern matching is case sensitive
unless you use the -nocase option.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
186 Synopsys Confidential Information February 2021

This example creates a collection of cells with the string BSCAN in its name.
Make sure to use the "=~" operator when performing wildcard matching.

get_cells -hier * -filter {@hier_rtl_name =~ *BSCAN*}

get_clocks
Use this command in the .fdc constraint file and in the HDL Analyst view (on a
limited basis) to return a collection of objects.

Creates a collection of clocks from the current design.

Syntax
This is the supported syntax for the get_clocks command:

get_clocks
[-nocase]
[-regexp]
[-filter expression]
[pattern | -of_objects objects]
[-include_generated_clocks]

Arguments

-nocase Ensures that matches are case-insensitive. This applies for
both the patterns argument and the filter operators (=~ and
!~).

-regexp Views the patterns argument as a regular expression rather
than a simple wildcard pattern. The behavior of the filter
operators (=~ and !~) have also been modified to use regular
expression rather than simple wildcard patterns.
When using the -regexp option, be careful how you quote
the patterns argument and filter expression. Rigidly quoting
with curly braces around regular expressions is
recommended. Regular expressions are always anchored;
that is, the expression assumes matching begins at the
beginning of the object name and ends matching at the end
of an object name. You can expand the search by adding
".*" to the beginning or end of the expressions, as needed.

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 187

Examples
The following example creates a collection of clocks that match the wildcard
pattern.

get_clocks {*BUF_1*derived_clock*}
The following example creates a collection of clocks that match the given
regular expression.

get_clocks -regexp {.*derived_clock}
The following example creates a collection that includes clka and any gener-
ated or derived clocks of clka.

get_clocks -include_generated_clocks {clka}

-filter expressions Filters the collection with the specified expression.
For each clock in the collection, the expression is evaluated
based on the clock’s attributes. If the expression evaluates
to true, the clock is included in the result. This option is not
supported in the HDL Analyst view.

pattern Creates a collection of clocks whose names match the
specified patterns. Patterns can include the * (asterisk) and
? (question mark) wildcard characters. Pattern matching is
case sensitive unless you use the -nocase option.

-of_objects objects Creates a collection of clocks that are defined for the given
net or pin objects.

-include_generated_
clocks

Creates a collection of clocks matching the search criteria
and includes any clocks derived or generated from the
source clocks found. This option is not supported in the
HDL Analyst view.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
188 Synopsys Confidential Information February 2021

get_flat_cells
Creates a collection of leaf cells that match certain criteria in the current
design.

Syntax
get_flat_cells

[-regexp | -exact]
[-nocase]
[-filter exper]
[patterns | -of_objects objects]
[-print]

Arguments

-regexp Views the patterns argument as a regular expression rather
than a simple wildcard pattern. This option also modifies
the behavior of the =~ and !~ filter operators to use regular
expressions rather than simple wildcard patterns.
When using the -regexp option, be careful how you quote
the patterns argument and filter expression. Using rigid
quoting with curly braces around regular expressions is
recommended. Note that regular expressions are always
anchored; that is, the expression is assumed to begin
matching at the beginning of an object name and end
matching at the end of an object name. You can widen the
search by adding ".*" at the beginning or end of the
expressions, as needed.

The -regexp and -exact options are mutually exclusive; you
can use only one.

-exact Considers wildcards to be plain characters, and does not
interpret their meaning as wildcards.

The -regexp and -exact options are mutually exclusive; you
can use only one.

-nocase Makes matches case-insensitive, both for the patterns
argument and for the ==, =~, and !~ filter operators.

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 189

-filter expression Filters the collection with the specified expression. For each
cell in the collection, the expression is evaluated based on
the cell's attributes. If the expression evaluates to true, the
cell is included in the result.

patterns Creates a collection of cells whose full names match the
specified patterns. Patterns can include the * (asterisk) and ?
(question mark) wildcard characters. Pattern matching is
case sensitive unless you use the -nocase option.

When using the patterns argument, the command searches
all leaf cells to match the patterns argument on their full
names regardless of their hierarchical level.

The patterns and -of_objects arguments are mutually
exclusive; you can specify only one. If you do not specify any
of these arguments, the command uses the * (asterisk) as
the default pattern.

-of_objects objects Creates a collection of cells connected to the specified
objects. The patterns and -of_objects arguments are
mutually exclusive; you can specify only one. If you do not
specify any of these arguments, the command uses the *
(asterisk) as the default pattern.

-print Prints the contents of the collection.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
190 Synopsys Confidential Information February 2021

get_flat_nets
Creates a collection of top-level nets of hierarchical net groups in the current
design that match the specified criteria.

Syntax
get_flat_pins

[-regexp | -exact]
[-nocase]
[-filter exper]
[patterns | -of_objects objects]
[-print]

Arguments

-regexp Views the patterns argument as a regular expression rather
than a simple wildcard pattern. This option also modifies
the behavior of the =~ and !~ filter operators to use regular
expressions rather than simple wildcard patterns.
When using the -regexp option, be careful how you quote
the patterns argument and filter expression. Using rigid
quoting with curly braces around regular expressions is
recommended. Note that regular expressions are always
anchored; that is, the expression is assumed to begin
matching at the beginning of an object name and end
matching at the end of an object name. You can widen the
search by adding ".*" at the beginning or end of the
expressions, as needed.

The -regexp and -exact options are mutually exclusive; you
can use only one.

-exact Considers wildcards to be plain characters, and does not
interpret their meaning as wildcards.

The -regexp and -exact options are mutually exclusive; you
can use only one.

-nocase Makes matches case-insensitive, both for the patterns
argument and for the ==, =~, and !~ filter operators.

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 191

-filter expression Filters the collection with the specified expression. For each
net in the collection, the expression is evaluated based on
the net's attributes. If the expression evaluates to true, the
net is included in the result.

patterns Creates a collection of top-level nets of hierarchical net
groups whose full names match the specified patterns.
Patterns can include the * (asterisk) and ? (question mark)
wildcard characters. Patterns can include the asterisk (*)
and question mark (?) wildcard characters. Pattern
matching is case sensitive unless you use the -nocase
option.
When using the patterns argument, the command searches
all top-level nets of hierarchical net groups to match the
patterns argument on their full name.
The patterns and -of_objects arguments are mutually
exclusive; you can specify only one. If you do not specify any
of these arguments, the command uses the * (asterisk) as
the default pattern.

-of_objects objects Creates a collection of top-level nets of hierarchical net
groups that are connected to the specified objects. Each
object is either a named pin, port, net, cell, or a collection
of these objects. The patterns and -of_objects arguments
are mutually exclusive; you can specify only one. If you do
not specify any of these arguments, the command uses
the * (asterisk) as the default pattern.

-print Prints the contents of the collection.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
192 Synopsys Confidential Information February 2021

get_flat_pins
Creates a collection of leaf-cell pins that match specified criteria in the
current design.

Syntax
get_flat_pins

[-regexp | -exact]
[-nocase]
[-filter exper]
[patterns | -of_objects objects]
[-print]

Arguments

-regexp Views the patterns argument as a regular expression rather
than a simple wildcard pattern. This option also modifies
the behavior of the =~ and !~ filter operators to use regular
expressions rather than simple wildcard patterns.
When using the -regexp option, be careful how you quote
the patterns argument and filter expression. Using rigid
quoting with curly braces around regular expressions is
recommended. Note that regular expressions are always
anchored; that is, the expression is assumed to begin
matching at the beginning of an object name and end
matching at the end of an object name. You can widen the
search by adding ".*" at the beginning or end of the
expressions, as needed.

The -regexp and -exact options are mutually exclusive; you
can use only one.

-exact Considers wildcards to be plain characters, and does not
interpret their meaning as wildcards.

The -regexp and -exact options are mutually exclusive; you
can use only one.

-nocase Makes matches case-insensitive, both for the patterns
argument and for the ==, =~, and !~ filter operators.

-filter expression Filters the collection with the specified expression. For each
pin in the collection, the expression is evaluated based on
the pin's attributes. If the expression evaluates to true, the
pin is included in the result.

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 193

patterns Creates a collection of leaf-cell pins whose full names match
the specified patterns. Patterns can include the asterisk (*)
and question mark (?) wildcard characters. Pattern
matching is case sensitive unless you use the -nocase
option.

When using the patterns argument, the command searches
all pins of leaf cells to match the patterns argument on their
full names regardless of their hierarchical level.

The patterns and -of_objects arguments are mutually
exclusive; you can specify only one. If you do not specify any
of these arguments, the command uses the * (asterisk) as
the default pattern.

-of_objects objects Creates a collection of leaf-cell pins connected to the
specified objects. Each object is a named leaf cell, a net, or
a collection of these objects. The patterns and -of_objects
arguments are mutually exclusive; you can specify only
one. If you do not specify any of these arguments, the
command uses the * (asterisk) as the default pattern.

-print Prints the contents of the collection.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
194 Synopsys Confidential Information February 2021

get_nets
Use this command in the .fdc constraint file to return a collection of objects
and/or in the HDL Analyst view to return a Tcl list of objects.

Creates a collection of nets from the current design.

Syntax
This is the supported syntax for the get_nets command:

get_nets
[-hierarchical]
[-nocase]
[-regexp | -exact]
[-filter expression]
[pattern | -of_objects objects]

Arguments

-hierarchical Searches each level of hierarchy for nets in the design relative
to the current instance. The object name at a particular level
must match the patterns. For the net block1/muxsel a
hierarchical search uses muxsel to find this net name.
By default, the search is not hierarchical.

-nocase Ensures that matches are case-insensitive. This applies for
both the patterns argument and the filter operators (=~ and
!~).

-regexp Views the patterns argument as a regular expression rather
than a simple wildcard pattern. The behavior of the filter
operators (=~ and !~) have also been modified to use regular
expression rather than simple wildcard patterns.
When using the -regexp option, be careful how you quote the
patterns argument and filter expression. Rigidly quoting with
curly braces around regular expressions is recommended.
Regular expressions are always anchored; that is, the
expression assumes matching begins at the beginning of the
object name and ends matching at the end of an object name.
You can expand the search by adding ".*" to the beginning or
end of the expressions, as needed.

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 195

Examples
The following example creates a collection of nets connected to a collection of
pins.

set pinsel [get_pins {o_reg1.Q o_reg2.Q}]
get_nets -of_objects $pinsel

The following example creates a collection of nets connected to the E pin of
any cell in the modulex_inst hierarchy.

get_nets {*.*} -filter {@pins =~ modulex_inst.*.E}

get_pins
Use this command in the .fdc constraint file to return a collection of objects
and/or in the HDL Analyst view to return a Tcl list of objects. Creates a
collection of pins from the current design that match the specified criteria.

When used without -hierarchical, include a dot (.) as a pin separator between
the name of the instance and the pin name. Not including the hierarchy
separator results in a warning message.

-filter expressions Filters the collection with the specified expression.
For any nets in the collection, the expression is evaluated
based on the net’s attributes. If the expression evaluates to
true, the net is included in the result.

pattern Creates a collection of nets whose names match the specified
patterns. Patterns can include the * (asterisk) and ? (question
mark) wildcard characters. Pattern matching is case sensitive
unless you use the -nocase option.
The patterns and -of_objects arguments are mutually exclusive;
you can specify only one. If you do not specify any of these
arguments, the command uses * (asterisk) as the default
pattern.

-of_objects objects Creates a collection of nets connected to the specified objects.
Each object can be a pin, port, or cell.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
196 Synopsys Confidential Information February 2021

Syntax
This is the supported syntax for the get_pins command:

get_pins
[-hierarchical]
[-nocase]
[-regexp | -exact]
[-filter expression]
[pattern |-of_objects objects [-leaf]

Arguments
-hierarchical

Searches each level of hierarchy for pins, relative to the current
instance, and reports all instances with that pin name. By default,
searches are not hierarchical.

You can use wildcards with the -hier argument. The object name at a
particular level must match the pattern. For the cell block1/adder/D[0], a
hierarchical search uses adder/D[0] to find pin names.

The pin separator is not required with -hier, although it is required if you
use get_pins without -hier (see Examples of get_pins, on page 197).
However, when narrowing searches by specifying instance names as well
as pin names, make sure to include the hierarchy separator. Otherwise,
you will not get any search results:

% get_pins -hier {*reset_pipe*Q}
{}
% get_pins -hier {*reset_pipe*.Q}
{t:sysip_inst.I_haps80_core\.I_umr_clk_gen\.reset_pipe[0].Q
t:sysip_inst.I_haps80_core\.I_umr_clk_gen\.reset_pipe[1].Q
t:sysip_inst.I_haps80_core\.I_umr_clk_gen\.reset_pipe[2].Q
t:sysip_inst.I_haps80_core\.I_umr_clk_gen\.reset_pipe[3].Q
t:sysip_inst.I_haps80_core\.I_umr_clk_gen\.reset_pipe[4].Q
t:sysip_inst.I_haps80_core\.I_umr_clk_gen\.reset_pipe[5].Q
t:sysip_inst.I_haps80_core\.I_umr_clk_gen\.reset_pipe[6].Q
t:sysip_inst.I_haps80_core\.I_umr_clk_gen\.reset_pipe_0[7].Q}
You cannot use the -hierarchical option with the -of_objects option.

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 197

-nocase
Ensures that matches are case-insensitive. This applies for both the
pattern argument and the filter operators (== and !=).

-regexp|-exact
Views the patterns argument as a regular expression rather than a
simple wildcard pattern. The behavior of the filter operators (== and !=)
have also been modified to use regular expressions rather than simple
wildcard patterns. When using the -regexp option, be careful how you
quote the patterns argument and filter expression. Rigidly quoting with
curly braces around regular expressions is recommended. Regular
expressions are always anchored; that is, the expression assumes
matching begins at the beginning of the object name and ends matching
at the end of an object name. You can expand the search by adding ".*"
to the beginning or end of the expressions, as needed. he -exact option
treats wildcards as plain characters, so the meanings of these wildcard
are not interpreted.

-filter expressions
Filters the collection with the specified expression. For each pin in the
collection, the expression is evaluated based on the pin’s attributes. If
the expression evaluates to true, the pin is included in the result.

pattern|-of_objects objects [-leaf]
Creates a collection of pins whose names match the specified patterns.
Patterns can include the * (asterisk) and ? (question mark) wildcard
characters. Pattern matching is case sensitive unless you use the -nocase
option. The -of_objects option creates a collection of pins connected to the
specified objects. Each object can be a cell or net. By default, the
command considers only pins connected to the specified nets at the
same hierarchical level. To consider only pins connected to leaf cells on
the specified nets, use the -leaf option (the tool can cross hierarchical
boundaries to find pins on leaf cells). You cannot use the -hierarchical
option with the -of_objects option.

Examples of get_pins
This example creates a collection of all pins in the design.

get_pins -hier *.*
This example shows that without a separator, the command returns no
results and generates a warning message:

% get_pins {Q}

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
198 Synopsys Confidential Information February 2021

Warning: No pin separator ('.') specified. Pattern must include a
pin separator.

The following example creates a collection of pins from the top-level hierarchy
that match the regular expression.

get_pins -regexp {.*\.ena}
The following example creates a collection of pins throughout the hierarchy
that match the regular expression.

get_pins -hier - regexp {.*\.ena}
This example illustrates that you do not need the pin separator when you
specify the -hier argument:

% get_pins -hier {Q}
{t:haps_system_capim.capi_di[0].Q t:haps_system_capim.capi_di[1].Q
t:haps_system_capim.capi_di[2].Q t:haps_system_capim.capi_di[3].Q
t:haps_system_capim.capi_di[4].Q t:haps_system_capim.capi_di[5].Q
t:haps_system_capim.capi_di[6].Q t:haps_system_capim.capi_di[7].Q
t:haps_system_capim.capi_di[8].Q t:haps_system_capim.capi_di[9].Q
t:haps_system_capim.capi_di[10].Q
t:haps_system_capim.capi_di[11].Q
...}

The next example creates a collection of hierarchical pin names for the library
cell pin DQSFOUND, and for each instantiation of a library cell named
PHASER_IN_PHY.

get_pins -filter {@name == DQSFOUND} -of_objects [get_cells -hier
* -filter {@inst_of == PHASER_IN_PHY}]

The following example creates a collection of library cell pins with the string
DRCK in its name, for each instantiation of a library cell with the string
BSCAN in its name. Whenever you use wildcards to match names, make sure
to specify the "=~" operator instead of the "==" operator.

[get_pins -filter {@name=~*DRCK} -of_objects [get_cells -hier *
-filter {@hier_rtl_name =~ *BSCAN*}]]

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 199

get_ports
Use this command in the .fdc constraint file to return a collection of objects
and/or in the HDL Analyst view to return a Tcl list of objects.

Creates a collection of top-level ports from that match the specified criteria.

Syntax
This is the supported syntax for the get_ports command:

get_ports
[-nocase]
[-regexp]
[-filter expression]
[pattern]

Arguments

-nocase Ensures that matches are case-insensitive. This applies for both
the patterns argument and the filter operators (=~ and !~).

-regexp Views the patterns argument as a regular expression rather
than a simple wildcard pattern. The behavior of the filter
operators (=~ and !~) have also been modified to use regular
expression rather than simple wildcard patterns.
When using the -regexp option, be careful how you quote the
patterns argument and filter expression. Rigidly quoting with
curly braces around regular expressions is recommended.
Regular expressions are always anchored; that is, the
expression assumes matching begins at the beginning of the
object name and ends matching at the end of an object name.
You can expand the search by adding ".*" to the beginning or
end of the expressions, as needed.

-filter expressions Filters the collection with the specified expression.
For each port in the collection, the expression is evaluated
based on the port’s attributes. If the expression evaluates to
true, the port is included in the result.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
200 Synopsys Confidential Information February 2021

Examples
The following example queries all input ports beginning with mode.

get_ports mode* -filter {@direction =~ input}

object_list
Translates object strings returned by query commands in the HDL Analyst
tool to proper Tcl lists. This allows you to process the results using Tcl
commands.

Syntax
This is the supported syntax for the object_list command:

object_list objectString

Arguments

Examples
For example:

% foreach x [object_list [get_cells -hier {q[*]}]]
{puts "Match: $x"}
Match: i:modulex_inst.q[7:0]
Match: i:moduley_inst\[4\].q[7:0]

pattern Creates a collection of ports whose names match the specified
patterns. Patterns can include the * (asterisk) and ? (question
mark) wildcard characters. Pattern matching is case sensitive
unless you use the -nocase option.
The patterns and -of_objects arguments are mutually exclusive,
so only specify one of them. If you do not specify either
argument, the command uses * (asterisk) as the default pattern.

objectString Converts the object string returned by an FDC query command
to proper Tcl lists.

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 201

report_timing
Alternatively, use this command to generate timing reports for a design from
the Tcl window, which follows the standards set for the Design Compiler or
PrimeTime® commands. One advantage this command has over the Timing
Analyst GUI in the synthesis tool is that the filter options (for example,
-from/-to/-through) support the FDC query commands.

Syntax
This is the supported syntax for the report_timing command:

report_timing
[-delay_type max]
[-fall_from clock]
[-fall_to clock]
[-file string]
[-from list]
[-max_paths int]
[-nworst 1]
[-path_type full]
[-rise_from clock]
[-rise_to clock]
[-slack_margin float]
[-through instance]
[-to list]

Arguments

-delay_type max Specifies the path type for the end points. This default value
can be specified as max; the maximum delay. All other values
are ignored.

-fall_from clock Reports paths from the falling edge of the specified clock. For a
given clock, selects the starting points for paths clocked on the
falling edge of the clock source.

-fall_to clock Reports paths to the falling edge of the specified clock. For a
given clock, selects the ending points for paths clocked on the
falling edge of the clock source.

-file string Allows the report to be re-directed to the specified file.

LO

 Tcl Find, Expand, and Collection Commands Query Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
202 Synopsys Confidential Information February 2021

Examples
The following example reports timing to all registers clocked by clkb.

%report_timing -to [all_registers -clock {clkb}]
START OF TIMING REPORT #####[
Timing Report written on Mon Dec 16 10:35:02 2013|
#
Top view: top
Requested Frequency: 50.0 MHz
Wire load mode: top
Paths requested: 1
to: moduley_inst.qa[7:0] moduley_inst.qb[7:0]
Worst From-To Path Information

-from list Reports paths from the specified port, register, register pin, or
clock.

-max_paths int Reports the number of paths to report for the path group. The
default integer value is 1.

-nworst 1 Reports the maximum number of paths to report for each
timing end point. The default is 1, which reports the single
worst path at a given end point. All other values are ignored.

-path_type full Specifies how to display the timing path. This default value can
be specified as full. A complete timing report is displayed, for
example, containing timing start and end points, required
time, and slack. All other values are ignored.

-rise_from clock Reports paths from the rising edge of the specified clock. For a
given clock, selects the starting points for paths clocked on the
rising edge of the clock source.

-rise_to clock Reports paths to the rising edge of the specified clock. For a
given clock, selects the ending points for paths clocked on the
rising edge of the clock source.

-slack_margin float Reports paths for the specified slack margin, which allows you
to specify a floating point value for the range of worst slack
times.

-through instance Reports paths that pass through the specified pins or nets.

-to list Reports paths to the specified ports, register, register pin, or
clock.

Query Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 203

Path information for path number 1:
Requested Period: 10.000
- Setup time: -1.000
+ Clock delay at ending point: 0.909
= Required time: 11.909
- Propagation time: 0.000
= Slack : 11.909
Number of logic level(s): 1
Starting point: c[7:0] / c[0]
Ending point: moduley_inst.qa[0] / D
The start point is clocked by clkb [rising]
The end point is clocked by clkb [rising] on pin C

Path delay compensated for clock skew. Clock skew is added to clock-to-out
value, and is subtracted from setup time value
End clock path:

END OF TIMING REPORT #####]

Instance/Net
Name Type

Pin
Name

Pin
Dir Delay

Arrival
Time

No. of
Fan Out(s)

c[7:0] Port c[0] In 0.000 0.000 -
c[0] Net - - 0.000 - 1
c_ibuf[0] IBUF I In - 0.000 -
c_ibuf[0] IBUF O Out 0.000 0.000 -
c_c[0] Net - - 0.000 - 1
moduley_inst.qa[0] FDE D In - 0.000 -

Instance/Net
Name Type

Pin
Name

Pin
Dir Delay

Arrival
Time

No. of
Fan Out(s)

clkb Port c[0] In 0.000 0.000 -
clkb Net - - 0.000 - 1
clkb_IBUFG IBUF I In - 0.000 -
clkb_IBUFG IBUF O Out 0.000 0.000 -
clkb_i Net - - 0.000 - 1
moduley_inst.qa[0] FDE D In - 0.000 -

LO

 Tcl Find, Expand, and Collection Commands Synopsys Standard Collection Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
204 Synopsys Confidential Information February 2021

Synopsys Standard Collection Commands
There are a number of Synopsys standard SDC collection commands that can
be included in the .fdc file. These commands are not compatible with the
define_scope_collection command.

The collection commands let you manipulate or operate on multiple design
objects simultaneously by creating, copying, evaluating, iterating, and
filtering collections. This section describes the syntax for the following collec-
tion commands supported in the FPGA synthesis tools; for the complete
syntax for these commands, refer to the Design Compiler documentation.

Use these commands in the FDC constraint file to facilitate the shared
scripting of constraint specifications between the FPGA synthesis and Design
Compiler tools.

add_to_collection
Adds objects to a collection that results in a new collection. The base collec-
tion remains unchanged. Any duplicate objects in the resulting collection are
automatically removed from the collection.

Syntax
This is the supported syntax for the add_to_collection command:

add_to_collection
[collection1]
[objectSpec]

add_to_collection append_to_collection

copy_collection foreach_in_collection

get_object_name index_collection

remove_from_collection sizeof_collection

Synopsys Standard Collection Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 205

Arguments

Description
The add_to_collection command allows you to add elements to a collection. The
result is a new collection representing the objects added from the objectSpec
list to the base collection. Objects are duplicated in the resulting collection,
unless they are removed using the -unique option. If objectSpec is empty, then
the new collection is a copy of the base collection. Depending on the base
collection type (heterogeneous or homogeneous), the searches and resulting
collection may differ.

Heterogeneous Base Collection
If the base collection is heterogeneous, then only collections are added to the
resulting collection. All implicit elements of the objectSpec list are ignored.

Homogeneous Base Collection
If the base collection is homogeneous and any elements of objectSpec are not
collections, then the command searches the design using the object class of
the base collection.

When collection1 is an empty collection, special rules apply to objectSpec. If
objectSpec is not empty, at least one homogeneous collection must be in the
objectSpec list (can be any position in the list). The first homogeneous collec-
tion in the objectSpec list becomes the base collection and sets the object
class for the function.

collection1 Specifies the base collection to which objects are to be added. This
collection is copied to a resulting collection, where objects matching
objectSpec are added to this results collection.

objectSpec Specifies a list of named objects or collections to add.
Depending on the base collection type (heterogeneous or
homogeneous), the searches and resulting collection may differ. For
more information, see Heterogeneous Base Collection, on page 205
and Homogeneous Base Collection, on page 205.

LO

 Tcl Find, Expand, and Collection Commands Synopsys Standard Collection Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
206 Synopsys Confidential Information February 2021

Examples
set result [get_cells{u*}]
get_object_name $result
==> {u:u1} {i:u2} {i:u3}
set result_1 [add_to_collection $result {get_cells {i:clkb_IBUFG}]
get_object_name $result_1
==> {i:u1} {i:u2} {i:u3} {i:clkb_IBUFG}

See Also
• append_to_collection

append_to_collection
Adds objects to the collection specified by a variable, modifying its value.
Objects must be unique, since duplicate objects are not supported.

Syntax
This is the supported syntax for the append_to_collection command:

append_to_collection]
[variableName]
[objectSpec]

Arguments

Description
The append_to_collection command allows you to add elements to a collection.
This command treats the variableName option as a collection, and appends
all the elements of objectSpec to that collection. If the variable does not exist,
it creates a collection with elements from the objectSpec as its value. So, a

variableName Specifies a variable name. The objects matching objectSpec
are added to the collection referenced by this variable.

objectSpec Specifies a list of named objects or collections to add to the
resulting collection.

Synopsys Standard Collection Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 207

collection is created that was referenced initially by variableName or
automatically if the variableName was not provided. However, if the variable
exists but does not contain a collection, then an error is generated.

The append_to_collection command can be more efficient than the add_to_collec-
tion command (add_to_collection, on page 204) when you are building a
collection in a loop.

Examples
set result [get_cells{u*}]
get_object_name $result
==> {u:u1} {i:u2} {i:u3}
append_to_collection result {get_cells {i:clkb_IBUFG}]
get_object_name $result
==> {i:u1} {i:u2} {i:u3} {i:clkb_IBUFG}

See Also
• add_to_collection

copy_collection
Duplicates the contents of a collection that results a new collection. The base
collection remains unchanged.

Syntax
This is the supported syntax for the copy_collection command:

copy_collection
[collection1]

Arguments

collection1 Specifies the collection to be copied.

LO

 Tcl Find, Expand, and Collection Commands Synopsys Standard Collection Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
208 Synopsys Confidential Information February 2021

Description
The copy_collection command is an efficient mechanism to create a duplicate of
an existing collection. It is sometimes more efficient and usually sufficient to
simply have more than one variable referencing the same collection. However,
whenever you want to copy the collection instead of reference it, use the
copy_collection command.

Be aware that if an empty string is used for the collection1 argument, the
command returns an empty string. This means that a copy of the empty
collection is an empty collection.

Examples
set insts [define_collection {u1 u2 u3 u4}]
set result_copy [copy_collection $insts]
get_object_name $result_copy
==> {u1} {u2} {u3} {u4}

foreach_in_collection
Iterates on the elements of a collection.

Syntax
This is the supported syntax for the foreach_in_collection command:

foreach_in_collection
[iterationVariable]
[collections]
[body]

Arguments

iterationVariable Specifies the name of the iteration variable. It is set to a
collection of one object. Any argument that accepts
collections as an argument can also accept the
iterationVariable, as they are the same data type.

collections Specifies a list of collections on which to iterate.

Synopsys Standard Collection Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 209

Description
The foreach_in_collection command is a Design Compiler and PrimeTime
command used to iterate on each element of a collection. This command
requires the following arguments: an iteration variable (do not specify a list),
the collection on which to iterate, and the script to apply for each iteration.

You can nest this command within other control structures, including
another foreach_in_collection command.

You can include the command in an FDC file, but if you are using the Tcl
window and the HDL Analyst tool, you must use the standard Tcl foreach
command instead of foreach_in_collection.

Examples
The following examples show valid methods to reference a collection for this
command:

set seqs[all_registers]
set port[all_inputs]
foreach_in_collection x [all_registers] {body}
foreach_in_collection x $ports {body}
foreach_in_collection x [list $seqs $ports] {body}
foreach_in_collection x {$seqs} {body}
foreach_in_collection x {$seqs $ports} {body}

body Specifies a script to execute for the iteration. If the body of
the iteration is modifying the netlist, all or part of the
collection involved in the iteration can be deleted. The
foreach_in_collection command is safe for such operations. A
message is generated that indicates the iteration ended
prematurely.

LO

 Tcl Find, Expand, and Collection Commands Synopsys Standard Collection Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
210 Synopsys Confidential Information February 2021

get_object_name
Returns a list of names for objects in a collection.

Syntax
This is the supported syntax for the get_object_name command:

get_object_name
[collection1]

Arguments

Examples
set c1[define_collection {u1 u2}]
get_object_name $c1
==> {u1} {u2}

index_collection
Creates a new collection that contains only the single object for the index
specified in the base collection. You must provide an index to the collection.

Syntax
This is the supported syntax for the index_collection command:

index_collection
[collection1]
[index]

Arguments

collection1 Specifies the name of the collection that contains the
requested objects.

collection1 Specifies the collection to be searched.

Synopsys Standard Collection Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 211

Description
You can use the index_collection command to extract a single object from a
collection. The result is a new collection that contains only this object. The
range of indices can be from 0 to one less than the size of the collection. If the
specified index is outside that range, an error message is generated.

Commands that create a collection of objects do not impose a specific order
on the collection, but they do generate the objects in the same, predictable
order each time. Applications that support the sorting of collections allow you
to impose a specific order on a collection.

If you use an empty string for the collection1 argument, then any index to the
empty collection is not valid. This results in an empty collection and gener-
ates an error message.

Be aware that all collections cannot be indexed.

Examples
set c1[get_cells {u1 u2}]]
get_object_name [index_collection $c1 0]
==> {u1}

See Also
• sizeof_collection

index Specifies an index to the collection. Allowed values are
integers from 0 to sizeof_collection -1.

LO

 Tcl Find, Expand, and Collection Commands Synopsys Standard Collection Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
212 Synopsys Confidential Information February 2021

remove_from_collection
Removes objects from a collection that results in a new collection. The base
collection remains unchanged.

Syntax
This is the supported syntax for the remove_from_collection command:

remove_from_collection
[-intersect]
[collection1]
[objectSpec]

Arguments

Description
The remove_from_collection command removes elements from a collection and
creates a new collection.

When the -intersect option is not specified and there are no matches for
objectSpec, the resulting collection is just a copy of the base collection. If
everything in the collection1 option matches the objectSpec, this results in an
empty collection. When using the -intersect option, nothing is removed from
the resulting collection.

-intersect Removes objects from the base collection that are not found
in objectSpec.
By default, when this option is not specified, objects are
removed from the base collection that are found in the
objectSpec.

collection1 Specifies the base collection that is copied to a resulting
collection, where objects matching objectSpec are removed
from this results collection.

objectSpec Specifies a list of named objects or collections to remove.
The object class for each element in this list must be the
same in the base collection. If the name matches an existing
collection, that collection is used. Otherwise, objects are
searched in the design using the object class for the base
collection.

Synopsys Standard Collection Commands Tcl Find, Expand, and Collection Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 213

Heterogeneous Base Collection
If the base collection is heterogeneous, then any elements of objectSpec that
are not collections are ignored.

Homogeneous Base Collection
If the base collection is homogeneous and any elements of objectSpec are not
collections, then the command searches the design using the object class of
the base collection.

Examples
set c1[define_collection {u1 u2 u3}]]
set c2[define_collection {u2 u3 u4}]]
get_object_name [remove_from_collection $c1 $c2]
==> {u1}
get_object_name [remove_from_collection $c2 $c1]
==> {u4}
get_object_name [remove_from_collection -intersect $c1 $c2]
==> {u2} {u3}

See Also
• add_to_collection

sizeof_collection
Returns the number of objects in a collection.

Syntax
This is the supported syntax for the sizeof_collection command:

sizeof_collection
[collection1]

LO

 Tcl Find, Expand, and Collection Commands Synopsys Standard Collection Commands

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
214 Synopsys Confidential Information February 2021

Arguments

Examples
set c1[define_collection {u1 u2 u3}]
sizeof_collection $c1
==> 3

collection1 Specifies the name of the collection for which the number of
objects is requested.
If no collection argument is specified, then the command
returns 0.

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 215

C H A P T E R 4

Constraint Commands

The SCOPE (Synthesis Constraints OPtimization Environment®) editor
automatically generates syntax for synthesis constraints. Enter information
in the SCOPE tabs, panels, columns, and pull-downs to define constraints
and parameter values. You can also drag and drop objects from the HDL
Analyst UI to populate values in the constraint fields.

This interface creates Tcl-format Synopsys Standard timing constraints and
Synplify-style design constraints and saves the syntax to an FPGA design
constraints (FDC) file that is automatically added to your synthesis project.
See Constraint Types, on page 124 for definitions of synthesis constraints.

Topics in this section include:

• SCOPE Constraints Editor, on page 216

• SCOPE Tabs, on page 217

• Industry I/O Standards, on page 242

• Delay Path Timing Exceptions, on page 245

• Specifying From, To, and Through Points, on page 250

• Conflict Resolution for Timing Exceptions, on page 258

You can also specify Tcl equivalents for the timing and design constraints
that are included in the SCOPE editor or a constraint file. For the constraint
command syntax, see:

• Timing Constraints, on page 262.

• Design Constraints, on page 301

LO

 Constraint Commands SCOPE Constraints Editor

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
216 Synopsys Confidential Information February 2021

SCOPE Constraints Editor
The SCOPE editor contains a number of panels for creating and managing
timing constraints and design attributes. This GUI offers the easiest way to
create constraint files for your project. The syntax is saved to a file using an
FDC extension and can be included in your design project.

From this editor, you specify timing constraints for clocks, ports, and nets as
well as design constraints such as attributes, collections, and compile points.
However, you cannot set black-box constraints from the SCOPE window.

To bring up the editor, use one of the following methods from the Project view:

• For a new file (the project file is open and the design is compiled):

– Choose File->New-> FPGA Design Constraints; select FPGA Constraint File
(SCOPE).

– Click the SCOPE icon in the toolbar; select FPGA Constraint File (SCOPE).

• You can also open the editor using an existing constraint file.
Double-click the constraint file (FDC), or use File->Open, specifying the
file type as FPGA Design Constraints File (*.fdc).

For more information about using FPGA timing constraints with your project,
see Using the SCOPE Editor, on page 122 in the User Guide.

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 217

SCOPE Tabs
Here is a summary of the constraints created through the SCOPE editor:

If you choose an object from a SCOPE pull-down menu, it has the appropriate
prefix appended automatically. If you drag and drop an object from an RTL
view, for example, make sure to add the prefix appropriate to the language
used for the module. See Naming Rule Syntax Commands, on page 298 for
details.

SCOPE Panel See ...

Clocks Clocks, on page 218

Generated Clocks Generated Clocks, on page 223

Collections Collections, on page 225

Inputs/Outputs Inputs/Outputs, on page 228

Registers Registers, on page 231

Delay Paths Delay Paths, on page 232

Attributes Attributes, on page 235

I/O Standards I/O Standards, on page 236

Compile Points Compile Points, on page 237

TCL View TCL View, on page 240

LO

 Constraint Commands SCOPE Tabs

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
218 Synopsys Confidential Information February 2021

Clocks
You use the Clocks panel of the SCOPE spreadsheet to define a signal as a
clock.

The Clocks panel includes the following options:

Field Description

Name Specifies the clock object name.
Clocks can be defined on the following objects:
• Pins
• Ports
• Nets
For virtual clocks, the field must contain a unique name not
associated with any port, pin, or net in the design.

Period Specifies the clock period in nanoseconds. This is the
minimum time over which the clock waveform repeats. The
period must be greater than zero.

Waveform Specifies the rise and fall edge times for the clock waveforms of
the clock in nanoseconds, over an entire clock period. The first
time in the list is a rising transition, typically the first rising
transition after time zero. There must be two edges, and they
are assumed to be rise and then fall. The edges must be
monotonically increasing. If you do not specify this option, a
default waveform is assumed, which has a rise edge of 0.0 and
a fall edge of period/2.

Add Delay Specifies whether to add this delay to the existing clock or to
overwrite it. Use this option when multiple clocks must be
specified on the same source for simultaneous analysis with
different clock waveforms. When you use this option, you
must also specify the clock, and clocks with the same source
must have different names.

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 219

Clock Groups
Clock grouping is associative; two clocks can be asynchronous to each other
but both can be synchronous with a third clock.

The SCOPE GUI prompts you for a clock group for each clock that you define.
By default, the tool assigns all clocks to the default clock group. When you
add a name that differs from the default clock group name, the clock is
assigned its own clock group and is asynchronous to the default clock group
as well as all other named clock groups.

This section presents scenarios for defining clocks and includes the following
examples:

• Example 1 - SCOPE Definition

• Example 2 - Equivalent Tcl Syntax

• Example 3 - Establish Clock Relationships

• Example 4 - Using a Single Group Option

• Example 5 - Legacy Clock Grouping

Clock Group Assigns clocks to asynchronous clock groups. The clock
grouping is inclusionary (for example, clk2 and clk3 can each be
related to clk1 without being related to each other). For details,
see Clock Groups, on page 219.

Latency Specifies the clock latency applied to clock ports and clock
aliases. Applying the latency constraint on a port can be used
to model the off-chip clock delays in a multichip environment.
Clock latency can only:
• Apply to clocks defined on input ports.
• Be used for source latency.
• Apply to port clock objects.

Uncertainty Specifies the clock uncertainty (skew characteristics) of the
specified clock networks. You can only apply latency to clock
objects.

Field Description

LO

 Constraint Commands SCOPE Tabs

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
220 Synopsys Confidential Information February 2021

Example 1 - SCOPE Definition
A design has three clocks, clk1, clk2, clk3. You want clk1 and clk2 to be in the
same clock group—synchronous to each other but asynchronous to clk3. You
can apply this clock definition by adding a name in the Clock Group column, as
shown below:

This definition assigns clk1 and clk2 to clock group group1, synchronous to
each other and asynchronous to clk3. The equivalent Tcl command for this
appears in the text editor window as follows:

set_clock_groups -derive -asynchronous -name {group1}
-group {{c:clk1} {c:clk2}}

Example 2 - Equivalent Tcl Syntax
A design has three clocks: clk1, clk2, clk3. Use the following commands to set
clk2 synchronous to clk3, but asynchronous to clk1:

set_clock_groups -asynchronous -group [get_clocks {clk3 clk2}]
set_clock_groups -asynchronous -group [get_clocks {clk1}]

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 221

Example 3 - Establish Clock Relationships
A design has the following clocks defined:

create_clock -name {clka} {p:clka} -period 10 -waveform {0 5.0}
create_clock -name {clkb} {p:clkb} -period 20 -waveform {0 10.0}
create_clock -name {my_sys} {p:sys_clk} -period 200 -waveform {0
100.0}

You want to define clka and clkb as asynchronous to each other and clka and
clkb as synchronous to my_sys.

For the tool to establish these relationships, multiple -group options are
needed in a single set_clock_groups command. Clocks defined by the first
–group option are asynchronous to clocks in the subsequent -group option.
Therefore, you can use the following syntax to establish the relationships
described above:

set_clock_groups -asynchronous -group [get_clocks {clka}]
-group [get_clocks {clkb}]

Example 4 - Using a Single Group Option
set_clock_groups has a unique behavior when a single -group option is specified
in the command. For this example, the following constraint specifications are
applied:

set_clock_groups -asynchronous -name {default_clkgroup_0} -group
[get_clocks {clka my_sys}]
set_clock_groups -asynchronous -name {default_clkgroup_1} -group
[get_clocks {clkb my_sys}]

The first statement assigns clka AND my_sys as asynchronous to clkb, and the
second statement assigns clkb AND my_sys as asynchronous to clka. Therefore,
with this specification, all three clocks are established as asynchronous to
each other.

Example 5 - Legacy Clock Grouping
This section shows how the legacy clock group definitions (Synplify-style
timing constraints) are converted to the Synopsys standard timing syntax
(FDC). Legacy clock grouping can be represented through Synopsys standard
constraints, but the multi-grouping in the Synopsys standard constraints
cannot be represented in legacy constraints.

LO

 Constraint Commands SCOPE Tabs

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
222 Synopsys Confidential Information February 2021

For example, the following table shows legacy clock definitions and their
translated FDC equivalents:

The create_generated_clock constraints used in legacy SDC are preserved in
FDC. The -derive option directs the create_generated_clock command to inherit
the -source clock group. This behavior is unique to FDC and is an extension of
the Synopsys SDC standard functionality.

See Also
For equivalent Tcl syntax, see the following sections:

• create_clock, on page 263

• create_generated_clock, on page 265

• set_clock_latency, on page 277

• set_clock_uncertainty, on page 279

For information about other SCOPE panels, see SCOPE Tabs, on page 217.

Legacy
Definition

define_clock -name{clka}{p:clka}-period 10 -clockgroup default_clkgroup_0
define_clock -name {clkb}{p:clkb} -freq 150 -clockgroup default_clkgroup_1
define_clock -name {clkc} {p:clkc} -freq 200 -clockgroup default_clkgroup_1

FDC
Definition

###==== BEGIN Clocks - (Populated from SCOPE tab, do not edit)
create_clock -name {clka} {p:clka} -period 10 -waveform {0 5.0}
create_clock -name {clkb} {p:clkb} -period 6.667 -waveform {0 3.3335}
create_clock -name {clkc} {p:clkc} -period 5.0 -waveform {0 2.5}
set_clock_groups -derive -name default_clkgroup_0 -asynchronous

-group {c:clka}
set_clock_groups -derive -name default_clkgroup_1 -asynchronous

-group {c:clkb c:clkc}
###==== END Clocks

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 223

Generated Clocks
Use the Generated Clocks panel of the SCOPE spreadsheet to define a signal as
a generated clock. The equivalent Tcl constraint is create_generated_clock; its
syntax is described in create_generated_clock, on page 265.

The Generated Clocks panel includes the following options:

Field Description

Name Specifies the name of the generated clock.
If this option is not used, the clock gets the name of the first
clock source specified in the source.

Source Specifies the master clock pin, which is either a master
clock source pin or a fanout pin of the master clock driving
the generated clock definition pin. The clock waveform at
the master pin is used for deriving the generated clock
waveform.

Object Generated clocks can be defined on the following objects:
• Pins
• Ports
• Nets
• Instances

Master Clock Specifies the master clock to be used for this generated
clock, when multiple clocks fan into the master pin.

LO

 Constraint Commands SCOPE Tabs

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
224 Synopsys Confidential Information February 2021

Examples
In the following example, the generated clock genclk1 is created with the same
frequency as the source clock clkin, but its phase is shifted by 180. Each of
the edges of the generated clock shifts by 5 ns, which is specified by the
-edges and -edge_shift options.

Generate Type Specifies any of the following:
edges - Specifies a list of integers that represents edges from
the source clock that are to form the edges of the generated
clock. The edges are interpreted as alternating rising and
falling edges and each edge must not be less than its
previous edge. The number of edges must be an odd number
and not less than 3 to make one full clock cycle of the
generated clock waveform. For example, 1 represents the
first source edge, 2 represents the second source edge, and
so on.

divide_by - Specifies the frequency division factor. If the
divide factor value is 2, the generated clock period is twice
as long as the master clock period.

multiply_by - Specifies the frequency multiplication factor. If
the multiply factor value is 3, the generated clock period is
one-third as long as the master clock period.

Generate Parameters Specifies integers that define the type of generated clock.

Generate Modifier Defines the secondary characteristics of the generated
clock.

Modify Parameters Defines modifier values of the generated clock.

Invert Specifies whether to use invert - Inverts the generated clock
signal (in the case of frequency multiplication and division).

Add Either add this clock to the existing clock or overwrite it.
Use this option when multiple generated clocks must be
specified on the same source, because multiple clocks fan
into the master pin. Ideally, one generated clock must be
specified for each clock that fans into the master pin. If you
specify this option, you must also specify the clock and
master clock. The clocks with the same source must have
different names.

Field Description

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 225

For this example, a generated clock is created with half the frequency of the
source clock.

For more information about other SCOPE options, see SCOPE Tabs, on
page 217.

Collections
The Collections tab allows you to set constraints for a group of objects you
have defined as a collection with the Tcl command. For details, see Creating
and Using SCOPE Collections, on page 155 of the User Guide.

LO

 Constraint Commands SCOPE Tabs

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
226 Synopsys Confidential Information February 2021

You can crossprobe the collection results to an HDL Analyst view. To do this,
right-click in the SCOPE cell and select the option Select in Analyst.

Collection Commands
You can use the collection commands on collections or Tcl lists. Tcl lists can
be just a single element long.

Field Description

Enable Enables the row.

Name Enter the collection name.

Command Select a collection creation command from the drop-down
menu. See Collection Commands, on page 226 for
descriptions of the commands.

Comment Enter comments that are included in the constraints file.

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 227

For information about all SCOPE panels, see SCOPE Tabs, on page 217.

To ... Use this command ...

Create a collection set modules
To create and save a collection, assign it to a variable.
You can also use this command to create a collection
from any combination of single elements, TCL lists and
collections:
set modules [define_collection {v:top} {v:cpu} $mycoll $mylist]
Once you have created a collection, you can assign
constraints to it in the SCOPE interface.

Copy a collection set modules_copy $modules
This copies the collection, so that any change to $modules
does not affect $modules_copy.

Evaluate a collection c_print
This command returns all objects in a column format.
Use this for visual inspection.
c_list
This command returns a Tcl list of objects. Use this to
convert a collection to a list. You can manipulate a Tcl
list with standard Tcl list commands.

Concatenate a list to a
collection

c_union

Identify differences
between lists or
collections

c_diff
Identifies differences between a list and a collection or
between two or more collections. Use the -print option to
display the results.

Identify objects
common to a list and a
collection

c_intersect
Use the -print option to display the results.

Identify objects
common to two or more
collections

c_sub
Use the -print option to display the results.

Identify objects that
belong exclusively to
only one list or
collection

c_symdiff
Use this to identify unique objects in a list and a
collection, or two or more collections. Use the -print
option to display the results.

LO

 Constraint Commands SCOPE Tabs

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
228 Synopsys Confidential Information February 2021

Inputs/Outputs
The Inputs/Outputs panel models the interface of the FPGA with the outside
environment. You use it to specify delays outside the device.

The Inputs/Outputs panel includes the following options:

Field Description

Delay Type Specifies whether the delay is an input or output delay.

Port Specifies the name of the port.

Rise Specifies that the delay is relative to the rising transition on
specified port.
Currently, the synthesis tool does not differentiate between
the rising and falling edges for the data transition arcs on the
specified ports. The worst case path delay is used instead.
However, the -rise option is preserved and forward annotated to
the place-and-route tool.

Fall Specifies that the delay is relative to the falling transition on
specified port
Currently, the synthesis tool does not differentiate between
the rising and falling edges for the data transition arcs on the
specified ports. The worst case path delay is used instead.
However, the -fall option is preserved and forward annotated to
the place-and-route tool.

Max Specifies that the delay value is relative to the longest path.
Note: The -max delay values are reported in the top-level log file
and are forward annotated to the place-and-route tool.

Min Specifies that the delay value is relative to the shortest path.
Note: The synthesis tool does not optimize for hold time
violations and only reports -min delay values in the
synlog/topLevel_fpga_mapper.srr_Min timing report
section of the log file. The -min delay values are forward
annotated to the place-and-route tool.

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 229

Input Delays
Here is how this constraint applies for input delays:

• Clock Fall - The default is the rising edge or rising transition of a reference
pin. If you specify clock fall, you must also specify the name of the clock.

• Add Delay - Use this option to capture information about multiple paths
leading to an input port relative to different clocks or clock edges.

For example, set_input_delay 5.0 -max -rise -clock phi1 {A} removes all
maximum rise input delay from A, because the -add_delay option is not
specified. Other input delays with different clocks or with -clock_fall are
removed.

In this example, the -add_delay option is specified as set_input_delay 5.0
-max -rise -clock phi1 -add_delay {A}. If there is an input maximum rise delay
for A relative to clock phi1 rising edge, the larger value is used. The
smaller value does not result in critical timing for maximum delay. For
minimum delay, the smaller value is used. If there is maximum rise
input delay relative to a different clock or different edge of the same
clock, it remains with the new delay.

Clock Specifies the name of a clock for which the specified delay is
applied. If you specify the clock fall, you must also specify the
name of the clock.

Clock Fall Specifies that the delay relative to the falling edge of the clock.
For examples, see Input Delays, on page 229 and Output
Delays, on page 230.

Add Delay Specifies whether to add delay information to the existing
input delay or overwrite the input delay. For examples, see
Input Delays, on page 229 and Output Delays, on page 230.

Value Specifies the delay path value.

Field Description

LO

 Constraint Commands SCOPE Tabs

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
230 Synopsys Confidential Information February 2021

Output Delays
Here is how this constraint applies for output delays:

• Clock Fall - If you specify clock fall, you must also specify the name of the
clock.

• Add Delay - By using this option, you can capture information about
multiple paths leading from an output port relative to different clocks or
clock edges.

For example, the set_output_delay 5.0 -max -rise -clock phi1 {OUT1} command
removes all maximum rise output delays from OUT1, because the
-add_delay option is not specified. Other output delays with a different
clock or with the -clock_fall option are removed.

In this example, the -add_delay option is specified: set_output_delay 5.0 -max
-rise -clock phi1 -add_delay {Z}. If there is an output maximum rise delay for
Z relative to the clock phi1 rising edge, the larger value is used. The
smaller value does not result in critical timing for maximum delay. For
minimum delay, the smaller value is used. If there is a maximum rise
output delay relative to a different clock or different edge of the same
clock, it remains with the new delay.

Priority of Multiple I/O Constraints
You can specify multiple input and output delays constraints for the same
I/O port. This is useful for cases where a port is driven by or feeds multiple
clocks. The priority of a constraint and its use in your design is determined
by a few factors:

• The software applies the tightest constraint for a given clock edge, and
ignores all others. All applicable constraints are reported in the timing
report.

• You can apply I/O constraints on three levels, with the most specific
overriding the more global:

– Global (top-level netlist), for all inputs and outputs

– Port-level, for the whole bus

– Bit-level, for single bits

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 231

If there are two bit constraints and two port constraints, the two bit
constraints override the two port constraints for that bit. The other bits
get the two port constraints. For example, take the following constraints:

a[3:0]3 clk1:r
a[3:0]3 clk2:r
a[0]2 clk1:r

In this case, port a[0] only gets one constraint of 2 ns. Ports a[1], a[2], and
a[3] get two constraints of 3 ns each.

• If at any given level (bit, port, global) there is a constraint with a refer-
ence clock specified, then any constraint without a reference clock is
ignored. In this example, the 1 ns constraint on port a[0] is ignored.

a[0]2 clk1:r
a[0]1

See Also
For equivalent Tcl syntax, see:

• set_input_delay, on page 284

• set_output_delay, on page 294

For information about all SCOPE panels, see SCOPE Tabs, on page 217.

Registers
This panel lets the advanced user add delays to paths feeding into/out of
registers, in order to further constrain critical paths. You use this constraint
to speed up the paths feeding a register. See set_reg_input_delay, on
page 297, and set_reg_output_delay, on page 298 for the equivalent Tcl
commands.

LO

 Constraint Commands SCOPE Tabs

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
232 Synopsys Confidential Information February 2021

The Registers SCOPE panel includes the following fields:

Delay Paths
Use the Delay Paths panel to define the timing exceptions.

Field Description

Enabled (Required) Turn this on to enable the constraint.

Delay Type (Required) Specifies whether the delay is an input or output
delay.

Register (Required) Specifies the name of the register. If you have
initialized a compiled design, you can choose from the
pull-down list.

Route (Required) Improves the speed of the paths to or from the
register by the given number of nanoseconds. The value shrinks
the effective period for the constrained registers without
affecting the clock period that is forward-annotated to the
place-and-route tool.

Comment Lets you enter comments that are included in the constraints
file.

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 233

The Path Delay panel includes the following options:

Field Description

Delay Type Specifies the type of delay path you want the synthesis tool to
analyze. Choose one of the following types:
• Multicycle
• False
• Max Delay
• Reset Path
• Datapath Only

From Starting point for the path. From points define timing start
points and can be defined for clocks (c:), registers (i:), top-level
input or bi-directional ports (p:), black box output pins (i:) or
sequential cell clock pins. For details, see the following:
• Defining From/To/Through Points for Timing Exceptions
• Naming Rule Syntax Commands, on page 298

Through Specifies the intermediate points for the timing exception.
Intermediate points can be combinational nets (n:),
hierarchical ports (t:), or instantiated cell pins (t:). If you click
the arrow in a column cell, you open the Product of Sums (POS)
interface where you can set through constraints. For details, see
the following:
• Product of Sums Interface
• Defining From/To/Through Points for Timing Exceptions
• Naming Rule Syntax Commands, on page 298

To Ending point of the path. To points must be timing end points
and can be defined for clocks (c:), registers (i:), top-level output
or bi-directional ports (p:), or black box input pins (i:). For
details, see the following:
• Defining From/To/Through Points for Timing Exceptions
• Naming Rule Syntax Commands, on page 298

Max Delay Specifies the maximum delay value for the specified path in
nanoseconds.

LO

 Constraint Commands SCOPE Tabs

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
234 Synopsys Confidential Information February 2021

See Also
• For equivalent Tcl syntax, see:

– set_multicycle_path, on page 290

– set_false_path, on page 281

– set_max_delay, on page 287

– reset_path, on page 269

• For more information on timing exception constraints and how the tool
resolves conflicts, see:

– Delay Path Timing Exceptions, on page 245

– Conflict Resolution for Timing Exceptions, on page 258

• For information about all SCOPE panels, see SCOPE Tabs, on page 217.

Setup Specifies the setup (maximum delay) calculations used for
specified path.

Start/End Used for multicycle paths with different start and end clocks.
This option determines the clock period to use for the
multiplicand in the calculation for clock distance. If you do not
specify a start or end clock, the end clock is the default.

Cycles Specifies the number of cycles required for the multicycle
path.

Field Description

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 235

Attributes
You can assign attributes directly in the editor.

Here are descriptions for the Attributes columns:

Column Description

Enabled (Required) Turn this on to enable the constraint.

Object Type Specifies the type of object to which the attribute is assigned.
Choose from the pull-down list, to filter the available choices
in the Object field.

Object (Required) Specifies the object to which the attribute is
attached. This field is synchronized with the Attribute field, so
selecting an object here filters the available choices in the
Attribute field.

Attribute (Required) Specifies the attribute name. You can choose from
a pull-down list that includes all available attributes for the
specified technology. This field is synchronized with the Object
field. If you select an object first, the attribute list is filtered. If
you select an attribute first, the Synopsys FPGA synthesis
tool filters the available choices in the Object field. You must
select an attribute before entering a value.
If a valid attribute does not appear in the pull-down list,
simply type it in this field and then apply appropriate values.

Value (Required) Specifies the attribute value. You must specify the
attribute first. Clicking in the column displays the default
value; a drop-down arrow lists available values where
appropriate.

LO

 Constraint Commands SCOPE Tabs

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
236 Synopsys Confidential Information February 2021

Enter the appropriate attributes and their values, by clicking in a cell and
choosing from the pull-down menu.

To specify an object to which you want to assign an attribute, you may also
drag-and-drop it from the RTL or Technology view into a cell in the Object
column. After you have entered the attributes, save the constraint file and
add it to your project.

See Also
• For information about all SCOPE panels, see SCOPE Tabs, on page 217.

I/O Standards
You can specify a standard I/O pad type to use in the design. Define an I/O
standard for any port appearing in the I/O Standards panel.

Val Type Specifies the kind of value for the attribute. For example, string
or boolean.

Description Contains a one-line description of the attribute.

Comment Lets you enter comments about the attributes.

Field Description

Enabled (Required) Turn this on to enable the constraint, or off to
disable a previous constraint.

Port (Required) Specifies the name of the port. If you have
initialized a compiled design, you can select a port name from
the pull-down list. The first two entries let you specify global
input and output delays, which you can then override with
additional constraints on individual ports.

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 237

See Also
• The Tcl equivalent of this constraint is define_io_standard.

• For information about all SCOPE panels, see SCOPE Tabs, on page 217.

Compile Points
Use the Compile Points panel to specify compile points in your design, and to
enable/disable them. This panel, available only if the device technology
supports compile points, is used to define a top-level constraint file.

Type (Required) Specifies whether the delay is an input or output
delay.

I/O Standard Supported I/O standards by Synopsys FPGA products. See
Industry I/O Standards, on page 242 for a description of the
standards.

Slew Rate
Drive Strength
Termination
Power
Schmitt

The values for these parameters are based on the selected
I/O standard.

Description Describes the selected I/O Standard.

Comment Enter comments about an I/O standard.

LO

 Constraint Commands SCOPE Tabs

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
238 Synopsys Confidential Information February 2021

Here are the descriptions of the fields in the Compile Points panel.

Constraints for Compile Points
You can set constraints at the top-level or for modules to be used as the
compile points from the Current Design pull-down menu shown below. Use the
Compile Points tab to select compile points and specify their types.

Field Description

Enabled (Required) Turn this on to enable the constraint.

Module (Required) Specifies the name of the compile-point module.
You must specify a view module, with a v: prefix to identify
the module as a view. For example: v:alu.

Type (Required) Specifies the type of compile point:
• locked (default) - no timing reoptimization is done on the

compile point. The hierarchical interface is unchanged
and an interface logic model is constructed for the
compile point.

• locked, partition - locked compile point, for which compile
point information is forward annotated to the place and
route tool. This mode provides place and route runtime
advantages and allows for obtaining stable results for a
completed design.

• soft - compile point is included in the top-level synthesis,
boundary optimizations can occur.

• hard - compile point is included in the top-level synthesis,
boundary optimizations can occur, however, the
boundary remains unchanged. Although, the boundary is
not modified, instances on both sides of the boundary
can be modified using top-level constraints.

For details, see Compile Point Types, on page 440 in the
User Guide.

Comment Lets you enter a comment about the compile point.

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 239

See Also
• The Tcl equivalent is define_compile_point.

• For more information on compile points and using the Compile Points
panel, see Synthesizing Compile Points, on page 455 in the User Guide.

• For information about all SCOPE panels, see SCOPE Tabs, on page 217.

LO

 Constraint Commands SCOPE Tabs

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
240 Synopsys Confidential Information February 2021

TCL View
The TCL View is an advanced text file editor for defining FPGA timing and
design constraints.

This text editor provides the following capabilities:

• Uses dynamic keyword expansion and tool tips for commands that

– Automatically completes the command from a popup list

– Displays complete command syntax as a tool tip

– Displays parameter options for the command from a popup list

– Includes a keyword command syntax help

• Checks command syntax and uses color indicators that

– Validate commands and command syntax

– Identifies FPGA design constraints and SCOPE legacy constraints

SCOPE Tabs Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 241

• Allows for standard editor commands, such as copy, paste,
comment/un-comment a group of lines, and highlighting of keywords

For information on how to use this Tcl text editor, see Using the TCL View of
SCOPE GUI, on page 134.

See Also
• For Tcl timing constraint syntax, see Timing Constraints, on page 262.

• For Tcl design constraint syntax, see Design Constraints, on page 301.

LO

 Constraint Commands Industry I/O Standards

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
242 Synopsys Confidential Information February 2021

Industry I/O Standards
The synthesis tool lets you specify a standard I/O pad type to use in your
design. You can define an I/O standard for any port supported from the
industry standard and proprietary I/O standards.

For industry I/O standards, see Industry I/O Standards, on page 242.

Industry I/O Standards
The following table lists industry I/O standards.

I/O Standard Description

BLVDS_25
CTT

Bus Differential Transceiver
Center Tap Terminated - EIA/JEDEC Standard JESD8-4

DIFF_HSTL_15_Class_I

DIFF_HSTL_15_Class_II

DIFF_HSTL_18_Class_I

DIFF_HSTL_18_Class_II

DIFF_SSTL_18_Class_II

DIFF_SSTL_2_Class_I

DIFF_SSTL_2_Class_II

1.5 volt - Differential High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - Differential High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - Differential High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-9A
1.8 volt - Differential High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-9A
1.8 volt - Differential Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-6
2.5 volt - Pseudo Differential Stub Series
Terminated Logic - EIA/JEDEC Standard JESD8-9A
2.5 volt - Pseudo Differential Stub Series
Terminated Logic - EIA/JEDEC Standard JESD8-9A

GTL

GTL+
GTL25

GTL+25
GTL33

GTL+33

Gunning Transceiver Logic
- EIA/JEDEC Standard JESD8-3
Gunning Transceiver Logic Plus
Gunning Transceiver Logic
- EIA/JEDEC Standard JESD8-3
Gunning Transceiver Logic Plus
Gunning Transceiver Logic
- EIA/JEDEC Standard JESD8-3
Gunning Transceiver Logic Plus

Industry I/O Standards Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 243

HSTL_12

HSTL_15_Class_II

HSTL_18_Class_I

HSTL_18_Class_II

HSTL_18_Class_III

HSTL_18_Class_IV

HSTL_Class_I

HSTL_Class_II

HSTL_Class_III

HSTL_Class_IV

HyperTransport

1.2 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
2.5 volt - Hypertransport - HyperTransport Consortium

I/O Standard Description

LO

 Constraint Commands Industry I/O Standards

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
244 Synopsys Confidential Information February 2021

LVCMOS_12
LVCMOS_15
LVCMOS_18
LVCMOS_25
LVCMOS_33
LVCMOS_5
LVDS
LVDSEXT_25
LVPECL
LVTTL
MINI_LVDS

1.2 volt - EIA/JEDEC Standard JESD8-16
1.5 volt - EIA/JEDEC Standard JESD8-7
1.8 volt - EIA/JEDEC Standard JESD8-7
2.5 volt - EIA/JEDEC Standard JESD8-5
3.3 volt CMOS - EIA/JEDEC Standard JESD8-B
5.0 volt CMOS
Differential Transceiver - ANSI/TIA/EIA-644-95
Differential Transceiver
Differential Transceiver - EIA/JEDEC Standard JESD8-2
3.3 volt TTL - EIA/JEDEC Standard JESD8-B
Mini Differential Transceiver

PCI33

PCI66

PCI-X_133

PCML
PCML_12
PCML_14
PCML_15
PCML_25
RSDS

3.3 volt PCI 33MHz - PCI Local Bus Spec. Rev. 3.0
(PCI Special Interest Group)
3.3 volt PCI 66MHz - PCI Local Bus Spec. Rev. 3.0
(PCI Special Interest Group)
3.3 volt PCI-X - PCI Local Bus Spec. Rev. 3.0
(PCI Special Interest Group)
3.3 volt - PCML
1.2 volt - PCML
1.4 volt - PCML
1.5 volt - PCML
2.5 volt - PCML
Reduced Swing Differential Signalling

SSTL_18_Class_I

SSTL_18_Class_II

SSTL_2_Class_I

SSTL_2_Class_II

SSTL_3_Class_I

SSTL_3_Class_II

ULVDS_25

1.8 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-15
1.8 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-15
2.5 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-9B
2.5 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-9B
3.3 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-8
3.3 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-8
Differential Transceiver

I/O Standard Description

Delay Path Timing Exceptions Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 245

Delay Path Timing Exceptions
For details about the following path types, see:

• Multicycle Paths, on page 245

• False Paths, on page 248

Multicycle Paths
Multicycle paths lets you specify paths with multiple clock cycles. The
following table defines the parameters for this constraint. For the equivalent
Tcl constraints, see set_multicycle_path, on page 290. This section describes
the following:

• Multi-cycle Path with Different Start and End Clocks, on page 245

• Multicycle Path Examples, on page 246

Multi-cycle Path with Different Start and End Clocks
The start/end option determines the clock period to use for the multiplicand in
the calculation for required time. The following table describes the behavior of
the multi-cycle path constraint using different start and end clocks. In all
equations, n is number of clock cycles, and clock_distance is the default,
single-cycle relationship between clocks that is calculated by the tool.

Basic required time for a multi-cycle path clock_distance + [(n-1) * end_clock_period]

Required time with no end clock defined clock_distance + [(n-1) * global_period]

Required time with -start option defined clock_distance + [(n-1) * start_clock_period]

Required time with no start clock defined clock_distance + [(n-1) * global_period]

LO

 Constraint Commands Delay Path Timing Exceptions

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
246 Synopsys Confidential Information February 2021

If you do not specify a start or end option, by default the end clock is used for
the constraint. Here is an example:

Multicycle Path Examples

Multicycle Path Example 1
If you apply a multicycle path constraint from D1 to D2, the allowed time is
#cycles x normal time between D1 and D2. In the following figure, CLK1 has a
period of 10 ns. The data in this path has only one clock cycle before it must
reach D2. To allow more time for the signal to complete this path, add a
multiple-cycle constraint that specifies two clock cycles (10 x 2 or 20 ns) for
the data to reach D2.

Delay Path Timing Exceptions Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 247

Multicycle Path Example 2
The design has a multiplier that multiplies signal_a with signal_b and puts the
result into signal_c. Assume that signal_a and signal_b are outputs of registers
register_a and register_b, respectively. The RTL view for this example is shown
below. On clock cycle 1, a state machine enables an input enable signal to
load signal_a into register_a and signal_b into register_b. At the beginning of clock
cycle 2, the multiply begins. After two clock cycles, the state machine enables
an output_enable signal on clock cycle 3 to load the result of the multiplication
(signal_c) into an output register (register_c).

The design frequency goal is 50 MHz (20 ns) and the multiply function takes
35 ns, but it is given 2 clock cycles. After optimization, this 35 ns path is
normally reported as a timing violation because it is more than the 20 ns
clock-cycle timing goal. To avoid reporting the paths as timing violations, use
the SCOPE window to set 2-cycle constraints (From column) on register_a and
register_b, or include the following in the timing constraint file:

Paths from register_a use 2 clock cycles
set_multicycle_path -from register_a 2
Paths from register_b use 2 clock cycles
set_multicycle_path -from register_b 2

Alternatively, you can specify a 2-cycle SCOPE constraint (To column) on
register_c, or add the following to the constraint file:

Paths to register_c use 2 clock cycles
set_multicycle_path -to register_c 2

LO

 Constraint Commands Delay Path Timing Exceptions

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
248 Synopsys Confidential Information February 2021

False Paths
You use the Delay Paths constraint to specify clock paths that you want the
synthesis tool to ignore during timing analysis and assign low (or no) priority
during optimization. The equivalent Tcl constraint is described in set_false_-
path, on page 281.

This section describes the following:

• Types of False Paths, on page 248

• False Path Constraint Examples, on page 249

Types of False Paths
A false path is a path that is not important for timing analysis. There are two
types of false paths:

• Architectural false paths

These are false paths that the designer is aware of, like an external reset
signal that feeds internal registers but which is synchronized with the
clock. The following example shows an architectural false path where
the primary input x is always 1, but which is not optimized because the
software does not optimize away primary inputs.

• Code-introduced false paths

These are false paths that you identify after analyzing the schematic.

Delay Path Timing Exceptions Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 249

False Path Constraint Examples
In this example, the design frequency goal is 50 MHz (20ns) and the path
from register_a to register_c is a false path with a large delay of 35 ns. After
optimization, this 35 ns path is normally reported as a timing violation
because it is more than the 20 ns clock-cycle timing goal. To lower the
priority of this path during optimization, define it as a false path. You can do
this in many ways:

• If all paths from register_a to any register or output pins are not
timing-critical, then add a false path constraint to register_a in the
SCOPE interface (From), or put the following line in the timing constraint
file:

#Paths from register_a are ignored
set_false_path -from {i:register_a}

• If all paths to register_c are not timing-critical, then add a false path
constraint to register_c in the SCOPE interface (To), or include the
following line in the timing constraint file:

#Paths to register_c are ignored
set_false_path -to {i:register_c}

• If only the paths between register_a and register_c are not timing-critical,
add a From/To constraint to the registers in the SCOPE interface (From
and To), or include the following line in the timing constraint file:

#Paths to register_c are ignored
set_false_path -from {i:register_a} -to {i:register_c}

LO

 Constraint Commands Specifying From, To, and Through Points

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
250 Synopsys Confidential Information February 2021

Specifying From, To, and Through Points
The following section describes from, to, and through points for timing excep-
tions specified by the multicycle paths, false paths, and max delay paths
constraints.

• Timing Exceptions Object Types, on page 250

• From/To Points, on page 250

• Through Points, on page 252

• Product of Sums Interface, on page 253

• Clocks as From/To Points, on page 256

Timing Exceptions Object Types
Note the following timing exceptions for object types:

• Timing exceptions must contain the type of object in the constraint
specification. You must explicitly specify an object type, n: for a net, or i:
for an instance, in the instance name parameter of all timing exceptions.
For example:

set_multicycle_path -from {i:inst2.lowreg_output[7]}
-to {i:inst1.DATA0[7]} 2

If you use the SCOPE GUI to specify timing exceptions, it automatically
attaches the object type qualifier to the object name.

• When defining constraints for the fdc file from the Tcl View window in
SCOPE, it is recommended you use get_* as the object type qualifier.

For example, use get_ports, get_nets, get_pins, or get_cells instead of p:, n:, t:,
or i:.

From/To Points
From specifies the starting point for the timing exception. To specifies the
ending point for the timing exception. When you specify an object, use the
appropriate prefix (see syn_black_box, on page 63) to avoid confusion. The
following table lists the objects that can serve as starting and ending points:

Specifying From, To, and Through Points Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 251

You can specify multiple from points in a single exception. This is most
common when specifying exceptions that apply to all the bits of a bus. For
example, you can specify constraints From A[0:15] to B - in this case, there is an
exception, starting at any of the bits of A and ending on B.

Similarly, you can specify multiple to points in a single exception. If you
specify both multiple starting points and multiple ending points such as From
A[0:15] to B[0:15], there is actually an exception from any start point to any end
point. In this case, the exception applies to all 16 * 16 = 256 combinations of
start/end points.

From Points To Points

Clocks. See Clocks as From/To Points,
on page 256 for more information.

Clocks. See Clocks as From/To Points,
on page 256 for more information.

Registers Registers

Top-level input or bi-directional ports Top-level output or bi-directional ports

Instantiated library primitive cells (gate
cells)

Instantiated library primitive cells (gate
cells)

Black box outputs Black box inputs

LO

 Constraint Commands Specifying From, To, and Through Points

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
252 Synopsys Confidential Information February 2021

Through Points
Through points are limited to nets, hierarchical ports, and pins of instanti-
ated cells. There are many ways to specify these constraints.

• Single Point

• Single List of Points

• Multiple Through Points

• Multiple Through Lists

You define these constraints in the appropriate SCOPE panels, or in the POS
GUI (see Product of Sums Interface, on page 253). When a port and net have
the same name, preface the name of the through point with n: for nets or t: for
hierarchical ports. For example, you can specify n:regs_mem[2] or t:dmux.bdpol.
The n: prefix must be specified to identify nets; otherwise, the associated
timing constraint will not be applied for valid nets.

Single Point
You can specify a single through point. In this case, the constraint is applied to
any path that passes through net regs_mem[2] as follows:

set_false_path -through n:regs_mem[2]
set_false_path -through [get_nets {regs_mem[2]}]

Single List of Points
If you specify a list of through points, the through option behaves as an OR
function and applies to any path that passes through any of the points in the
list. In the following example, the constraint is applied to any path through
regs_mem[2] OR prgcntr.pc[7] OR dmux.alub[0] with a maximum delay value of 5
ns (-max 5):

set_max_delay
-through {t:regs_mem[2] t:prgcntr.pc[7] t:dmux.alub[0]} 5

Specifying From, To, and Through Points Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 253

Multiple Through Points
You can specify multiple points for the same constraint by preceding each
point with the -through option. In the following example, the constraint
operates as an AND function and applies to paths through regs_mem[2] AND
prgcntr.pc[7] AND dmux.alub[0]:

set_max_delay
-through t:regs_mem[2]
-through t:prgcntr.pc[7]
-through t:dmux.alub[0] 5

Multiple Through Lists
If you specify multiple -through lists, the constraint is applied as an AND/OR
function and is applied to the paths through all points in the lists. The
following constraint applies to all paths that pass through nets {A1 or A2
or...An} AND nets {B1 or B2 or B3}:

set_false_path -through {n:A1 n:A2...n:An} -through {n:B1 n:B2 n:B3}

In this example,

set_multicycle_path
-through {n:net1 n:net2}
-through {n:net3 n:net4} 2

all paths that pass through the following nets are constrained at 2 clock
cycles:

net1 AND net3
OR net1 AND net4
OR net2 AND net3
OR net2 AND net4

Product of Sums Interface
You can use the SCOPE GUI to format -through points for nets with multicycle
path, false path, and max delay path constraints in the Product of Sums (POS)
interface of the SCOPE editor. You can also manually specify constraints that
use the -through option. For more information, see Defining From/To/Through
Points for Timing Exceptions, on page 139 in the User Guide.

LO

 Constraint Commands Specifying From, To, and Through Points

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
254 Synopsys Confidential Information February 2021

The POS interface is accessible by clicking the arrow in a Through column cell
in the following SCOPE panels:

• Multi-Cycle Paths

• False Paths

• Delay Paths

Field Description

Prod 1, 2, etc. Type the first net name in a cell in a Prod row, or drag the
net from a HDL Analyst view into the cell. Repeat this
step along the same row, adding other nets in the Sum
columns. The nets in each row form an OR list.

Sum 1, 2, etc. Type the first net name in the first cell in a Sum column,
or drag the net from a HDL Analyst view into the cell.
Repeat this step down the same Sum column. The nets in
each column form an AND list.

Specifying From, To, and Through Points Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 255

Drag and Drop Goes Along Row - places objects in multiple Sum columns,
utilizing only one Prod row.
Down Column - places objects in multiple Prod rows, utilizing
only one Sum column.

Drag and Drop Inserts New Cells - New cells are created when dragging and
dropping nets.
Overwrites Cells - Existing cells are overwritten when
dragging and dropping nets.

Save/Cancel Saves or cancels your session.

LO

 Constraint Commands Specifying From, To, and Through Points

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
256 Synopsys Confidential Information February 2021

Clocks as From/To Points
You can specify clocks as from/to points in your timing exception constraints.
Here is the syntax:

set_timing_exception -from | -to {c:clock_name [:edge]}

where

• timing_exception is one of the following constraint types: multicycle path,
false path, or max delay

• c:clock_name:edge is the name of the clock and clock edge (r or f). If you do
not specify a clock edge, by default both edges are used.

See the following sections for details and examples on each timing exception.

Multicycle Path Clock Points
When you specify a clock as a from or to point, the multicycle path constraint
applies to all registers clocked by the specified clock.

The following constraint allows two clock periods for all paths from the rising
edge of the flip-flops clocked by clk1:

set_multicycle_path -from {c:clk1:r} 2
You cannot specify a clock as a through point. However, you can set a
constraint from or to a clock and through an object (net, pin, or hierarchical
port). The following constraint allows two clock periods for all paths to the
falling edge of the flip-flops clocked by clk1 and through bit 9 of the hierar-
chical net:

set_multicycle_path -to {c:clk1:f} -through (n:MYINST.mybus2[9]} 2

Specifying From, To, and Through Points Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 257

False Path Clock Points
When you specify a clock as a from or to point, the false path constraint is set
on all registers clocked by the specified clock. False paths are ignored by the
timing analyzer. The following constraint disables all paths from the rising
edge of the flip-flops clocked by clk1:

set_false_path -from {c:clk1:r}
You cannot specify a clock as a through point. However, you can set a
constraint from or to a clock and through an object (net, pin, or hierarchical
port). The following constraint disables all paths to the falling edge of the
flip-flops clocked by clk1 and through bit 9 of the hierarchical net.

set_false_path -to {c:clk1:f} -through (n:MYINST.mybus2[9]}

Path Delay Clock Points
When you specify a clock as a from or to point for the path delay constraint,
the constraint is set on all paths of the registers clocked by the specified
clock. This constraint sets a max delay of 2 ns on all paths to the falling edge
of the flip-flops clocked by clk1:

set_max_delay -to {c:clk1:f} 2
You cannot specify a clock as a through point, but you can set a constraint
from or to a clock and through an object (net, pin, or hierarchical port). The
next constraint sets a max delay of 0.2 ns on all paths from the rising edge of
the flip-flops clocked by clk1 and through bit 9 of the hierarchical net:

set_max_delay -from {c:clk1:r} -through (n:MYINST.mybus2[9]}.2

LO

 Constraint Commands Conflict Resolution for Timing Exceptions

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
258 Synopsys Confidential Information February 2021

Conflict Resolution for Timing Exceptions
The term timing exceptions refers to the false path, max path delay, and
multicycle path timing constraints. When the tool encounters conflicts in the
way timing exceptions are specified through the constraint file, the software
uses a set priority to resolve these conflicts. Conflict resolution is categorized
into four levels, meaning that there are four different tiers at which conflicting
constraints can occur, with one being the highest. The table below summa-
rizes conflict resolution for constraints. The sections following the table
provide more details on how conflicts can occur and examples of how they are
resolved.

In addition to the four levels of conflict resolution for timing exceptions, there
are priorities for the way the tool handles multiple I/O delays set on the same
port and implicit and explicit false path constraints. For information on
resolving these types of conflicts, see Priority of Multiple I/O Constraints, on
page 230.

Conflict
Level

Constraint Conflict Priority For Details, see ...

1 Different timing
exceptions set on the
same object.

1 - False Path
2 - Path Delay
3 - Multi-cycle Path

Conflicting Timing
Exceptions, on
page 259.

2 Timing exceptions of
the same constraint
type, using different
semantics
(from/to/through).

1 - From
2 - To
3 - Through

Same Constraint
Type with Different
Semantics, on
page 260.

3 Timing exceptions of
the same constraint
type using the same
semantic, but set on
different objects.

1 - Ports/Instances/Pins
2 - Clocks

Same Constraint
and Semantics with
Different Objects,
on page 261.

4 Identical timing
constraints, except
constraint values differ.

Tightest, or most
constricting constraint.

Identical
Constraints with
Different Values, on
page 261.

Conflict Resolution for Timing Exceptions Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 259

Conflicting Timing Exceptions
The first (and highest) level of resolution occurs when timing exceptions—
false paths, max path delay, or multicycle path constraints—conflict with
each other. The tool follows this priority for applying timing exceptions:

1. False Path

2. Path Delay

3. Multicycle Path

For example:

set_false_path -from {c:C1:r}
set_max_delay -from {i:A} -to {i:B} 10
set_multicycle_path -from {i:A} -to {i:B} 2

These constraints are conflicting because the path from A to B has three
different constraints set on it. When the tool encounters this type of conflict,
the false path constraint is honored. Because it has the highest priority of all
timing exceptions, set_false_path is applied and the other timing exceptions are
ignored.

LO

 Constraint Commands Conflict Resolution for Timing Exceptions

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
260 Synopsys Confidential Information February 2021

Same Constraint Type with Different Semantics
The second level of resolution occurs when conflicts between timing excep-
tions that are of the same constraint type, use different semantics
(from/to/through). The priority for these constraints is as follows:

1. From

2. To

3. Through

If there are two multicycle constraints set on the same path, one specifying a
from point and the other specifying a to point, the constraint using -from takes
precedence, as in the following example.

set_multicycle_path -from {i:A} 3
set_multicycle_path -to {i:B} 2

In this case, the tool uses:

set_multicycle_path -from {i:A} 3
The other constraint is ignored even though it sets a tighter constraint.

Conflict Resolution for Timing Exceptions Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 261

Same Constraint and Semantics with Different Objects
The third level resolves timing exceptions of the same constraint type that use
the same semantic, but are set on different objects. The priority for design
objects is as follows:

1. Ports/Instances/Pins

2. Clocks

If the same constraints are set on different objects, the tool ignores the
constraint set on the clock for that path.

set_multicycle_path -from {i:mac1.datax[0]} -start 4
set_multicycle_path -from {c:clk1:r} 2

In the example above, the tool uses the first constraint set on the instance
and ignores the constraint set on the clock from i:mac1.datax[0], even though
the clock constraint is tighter.

For details on how the tool prioritizes multiple I/O delays set on the same
port or implicit and explicit false path constraints, see Priority of Multiple I/O
Constraints, on page 230.

Identical Constraints with Different Values
Where timing constraints are identical except for the constraint value, the
tightest or most constricting constraint takes precedence. In the following
example, the tool uses the constraint specifying two clock cycles:

set_multicycle_path -from {i:special_regs.trisa[7:0]} 2
set_multicycle_path -from {i:special_regs.trisa[7:0]} 3

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
262 Synopsys Confidential Information February 2021

Timing Constraints
The FPGA synthesis tools support FPGA timing constraints for a subset of the
clock definition, I/O delay, and timing exception constraints.

The remainder of this section describes the constraint file syntax for the
following FPGA timing constraints in the FPGA synthesis tools.

Note: When adding comments for constraints, use standard Tcl syntax
conventions. Otherwise, invalid specifications can cause the constraint to be
ignored. The (#) comment must begin on a new line or needs to be preceded
by a (;), if the comment is on the same line as the constraint. For example:

create_clock -period 10 [get_ports CLK]; # comment text
comment text
set_clock_groups -asynchronous -group
MMCM_module|clk100_90_MMCM_derived_clock_CLKIN1

create_clock

create_generated_clock

reset_path

set_clock_groups

set_clock_latency

set_clock_uncertainty

set_false_path

set_input_delay

set_max_delay

set_multicycle_path

set_output_delay

set_reg_input_delay

set_reg_output_delay

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 263

create_clock
Creates a clock object and defines its waveform in the current design.

Syntax
The supported syntax for the create_clock constraint is:

create_clock
-name clockName [-add] {objectList} |

-name clockName [-add] [{objectList}] |
[-name clockName [-add]] {objectList}

-period value
[-waveform {riseValue fallValue}]
[-disable]
[-comment commentString]

Arguments

-name
clockName

Specifies the name for the clock being created, enclosed in quotation
marks or curly braces. If this option is not used, the clock gets the
name of the first clock source specified in the objectList option. If you
do not specify the objectList option, you must use the -name option,
which creates a virtual clock not associated with a port, pin, or net.
You can use both the -name and objectList options to give the clock a
more descriptive name than the first source pin, port, or net. If you
specify the -add option, you must use the -name option and the clocks
with the same source must have different names.

-add Specifies whether to add this clock to the existing clock or to
overwrite it. Use this option when multiple clocks must be specified
on the same source for simultaneous analysis with different clock
waveforms. When you specify this option, you must also use the
-name option.

-period value Specifies the clock period in nanoseconds. This is the minimum time
over which the clock waveform repeats. The value type must be
greater than zero.

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
264 Synopsys Confidential Information February 2021

Examples
Refer to the following examples.

Example 1
A clock named clk_in1 is created for port clk_in1 that uses a period of 10 with
rising edge of 0 and falling edge of 5.

create_clock -name {clk_in1} -period 10 [get_ports {clk_in1}]

Example 2
A clock named clk is created for port clk_in that uses a period of 10.0 with
rising edge of 5.0 and falling edge of 9.5.

create_clock -name {clk} -period 10 -waveform {5.0 9.5}
[get_ports {clk_in}]

Example 3
A virtual clock named CLK is created that uses a period of 12 with a rising
edge of 0.0 and falling edge of 6.0.

create_clock -name {CLK} -period 12

-waveform
riseValue
fallValue

Specifies the rise and fall edge times for the clock waveforms of the
clock in nanoseconds, over an entire clock period. The first time is a
rising transition, typically the first rising transition after time zero.
There must be two edges, and they are assumed to be rise followed
by fall. The edges must be monotonically increasing. If you do not
specify this option, a default waveform is assumed, which has a rise
edge of 0.0 and a fall edge of periodValue/2.

objectList Clocks can be defined on the following objects: pins, ports, and nets
The FPGA synthesis tools support nets and instances, where
instances have only one output (for example, BUFGs).

-disable Disables the constraint.

-comment
textString

Allows the command to accept a comment string. The tool honors
the annotation and preserves it with the object so that the exact
string is written out when the constraint is written out. The
comment remains intact through the synthesis, place-and-route,
and timing-analysis flows.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 265

create_generated_clock
Creates a generated clock object.

Syntax

The supported syntax for the create_generated_clock constraint is:

create_generated_clock
-name clockName [-add]] | {clockObject}
-source masterPinName
[-master_clock clockName]
[-divide_by integer | -multiply_by integer [-duty_cycle value]]
[-invert]
[-edges {edgeList}]
[-edge_shift {edgeShiftList}]
[-combinational]
[-disable]
[-comment commentString]

Arguments

-name
clockName

Specifies the name of the generated clock. If this option is not
used, the clock gets the name of the first clock source specified
in the -source option (clockObject). If you specify the -add option,
you must use the -name option and the clocks with the same
source must have different names.

-add Specifies whether to add this clock to the existing clock or to
overwrite it. Use this option when multiple generated clocks
must be specified on the same source, because multiple clocks
fan into the master pin. Ideally, one generated clock must be
specified for each clock that fans into the master pin. If you
specify this option, you must also use the -name and
-master_clock options.

clockObject The first clock source specified in the -source option in the
absence of clockName. Clocks can be defined on pins, ports, and
nets. The FPGA synthesis tools support nets and instances,
where instances have only one output (for example, BUFGs).

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
266 Synopsys Confidential Information February 2021

-source
masterPinName

Specifies the master clock pin, which is either a master clock
source pin or a fanout pin of the master clock driving the
generated clock definition pin. The clock waveform at the master
pin is used for deriving the generated clock waveform.

-master_clock
clockName

Specifies the master clock to be used for this generated clock,
when multiple clocks fan into the master pin.

-divide_by
integer

Specifies the frequency division factor. If the divideFactor value
is 2, the generated clock period is twice as long as the master
clock period.

-multiply_by
integer

Specifies the frequency multiplication factor. If the
multiplyFactor value is 3, the generated clock period is one-third
as long as the master clock period.

-duty_cycle
percent

Specifies the duty cycle, as a percentage, if frequency
multiplication is used. Duty cycle is the high pulse width.
Note: This option is valid only when used with the -multiply_by
option.

-invert Inverts the generated clock signal (in the case of frequency
multiplication and division).

-edges edgeList Specifies a list of integers that represents edges from the source
clock that are to form the edges of the generated clock. The
edges are interpreted as alternating rising and falling edges and
each edge must not be less than its previous edge. The number
of edges must be set to 3 to make one full clock cycle of the
generated clock waveform. For example, 1 represents the first
source edge, 2 represents the second source edge, and so on.

-edge_shift
edgeShiftList

Specifies a list of floating point numbers that represents the
amount of shift, in nanoseconds, that the specified edges are to
undergo to yield the final generated clock waveform. The
number of edge shifts specified must be equal to the number of
edges specified. The values can be positive or negative; positive
indicating a shift later in time, while negative indicates a shift
earlier in time. For example, 1 indicates that the corresponding
edge is to be shifted by one library time unit.

-combinational The source latency paths for this type of generated clock only
includes the logic where the master clock propagates. The
source latency paths do not flow through sequential element
clock pins, transparent latch data pins, or source pins of other
generated clocks.

-disable Disables the constraint.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 267

Examples
Refer to the following examples.

Example 1
A frequency of -divide_by 2 is used for the generated clock.

create_generated_clock -name {gen_clk} -source
[get_pins {DCM0.CLK0}] [get_pins {BUFGMUX_inst.O}] -divide_by 2

Example 2
A generated clock is created whose edges are 1, 3, and 5 of the master clock
source. If the master clock period is 30 and the master waveform is {24 30},
then the generated clock period becomes 60 with waveform {24 54}.

create_generated_clock -name {genclk} -source
[get_ports {clk_in1}] [get_nets {dut.clk_out2}] -edges {1 3 5}

Example 3
This example shows the generated clock from the previous example with each
derived edge shifted by 1 time unit. If the master clock period is 30 and the
master waveform is {24 36}, then the generated clock period becomes 60 with
waveform {25 55}.

create_generated_clock -name {genclk}
-source [get_ports {clk_in1}] [get_nets {dut.clk_out2}]
-edges {1 3 5} -edge_shift {1 1 1}

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis,
place-and-route, and timing-analysis flows.

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
268 Synopsys Confidential Information February 2021

Example 4
This example shows the generated clock with the same edges as the master
clock, where edge 2 is shifted by 0.8 time unit and edge 3 is shifted by -0.4
time unit. If the master clock period is 4 and the master waveform is {0 2},
then the generated clock period becomes 3.6 and the waveform is {0 2.8}.

create_generated_clock -name {genclk}
-source [get_ports {clk_in1}] [get_nets {dut.clk_out2}]
-edges {1 2 3} -edge_shift {0 0.8 -0.4}

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 269

reset_path
Resets the specified paths to single-cycle timing.

Syntax
The supported syntax for the reset_path constraint is:

reset_path [-setup]
[-from {objectList}]
[-through {objectList} [-through {objectList} ...]]
[-to {objectList}]
[-disable]
[-comment commentString]

Arguments

-setup Specifies that setup checking (maximum delay) is reset to
single-cycle behavior.

-from Specifies the names of objects to use to find path start points.
The -from objectList includes:
• Clocks
• Registers
• Top-level input or bi-directional ports)
• Black box outputs
• Sequential cell clock pins
When the specified object is a clock, all flip-flops, latches, and
primary inputs related to that clock are used as path start
points

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
270 Synopsys Confidential Information February 2021

-through Specifies the intermediate points for the timing exception. The
-through objectList includes:
• Combinational nets
• Hierarchical ports
• Pins on instantiated cells
By default, the through points are treated as an OR list. The
constraint is applied if the path crosses any points in objectList.
If more than one object is included, the objects must be
enclosed either in quotation marks ("") or in braces ({}). If you
specify the -through option multiple times, reset_path applies to
the paths that pass through a member of each objectList. If you
use the -through option in combination with the -from or -to
options, reset_path applies only if the -from or -to and the -through
conditions are satisfied.

-to Specifies the names of objects to use to find path end points.
The -to objectList includes:
• Clocks
• Registers
• Top-level output or bi-directional ports
• Black box inputs
• Sequential cell data input pins
If a specified object is a clock, all flip-flops, latches, and primary
outputs related to that clock are used as path end points.

-disable Disables the constraint.

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis,
place-and-route, and timing-analysis flows.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 271

set_clock_groups
Specifies clock groups that are mutually exclusive or asynchronous with each
other in a design. Clocks created with create_clock are considered synchro-
nous as long as no set_clock_groups constraints specify otherwise. Paths
between asynchronous clocks are not considered for timing analysis.

Clock grouping in the FPGA synthesis environment is inclusionary or exclu-
sionary. For example, clk2 and clk3 can each be related to clk1 without being
related to each other.

Syntax
set_clock_groups

-asynchronous | -physically_exclusive | -logically_exclusive
[-name clockGroupname]
-group {clockList} [-group {clockList} …]
-derive
[-disable]
[-comment commentString]

Arguments

-asynchronous Specifies that the clock groups are asynchronous to each
other (the default assumes all clock groups are
synchronous). Two clocks are asynchronous with respect
to each other if they have no phase relationship at all.

-physically_exclusive Specifies that the clock groups are physically exclusive to
each other. An example is multiple clocks that are defined
on the same source pin.
Synthesis accepts this option, but treats it as -asynchronous.

-logically_exclusive Specifies that the clock groups are logically exclusive to
each other. An example is multiple clocks that are selected
by a multiplexer, but might have coupling with each other
in the design.
Synthesis accepts this option, but treats it as -asynchronous.

-name
{clockGroupName}

Specifies a unique name for a clock grouping. This option
allows you to easily identify specified clock groups, which
are exclusive or asynchronous with all other clock groups
in the design.

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
272 Synopsys Confidential Information February 2021

Restrictions
Be aware of the restrictions for the following set_clock_groups options:

-group Option
Do not insert commas between clock names when you use the -group option,
because the tool treats the comma as part of the clock name. This is true for
all constraints that contain lists. This means that if you specify the following
constraint, the tool generates a warning that it cannot find clk1,:

set_clock_groups -asynchronous -group {clk1, clk2}

Examples
The following examples illustrate how to use this constraint.

-group {clockList} Specifies a space-separated list of clocks in {clockList} that
are asynchronous to all other clocks in the design, or
asynchronous to the clocks specified in other -group
arguments in the same command.
If you specify only one group, the clocks in that group are
exclusive or asynchronous with all other clocks in the
design. Whenever a new clock is created, it is automatically
included in the default “other” group that includes all the
other clocks in the design.
If you specify -group multiple times in a single command
execution, the listed clocks are only asynchronous with the
clocks in the other groups specified in the same command.
You can include a clock in only one group in a single
command execution. To include a clock in multiple groups,
use multiple set_clock_groups commands.
Do not use commas between clock names in the list. See
-group Option, on page 272.

-disable Disables the constraint.

-comment textString Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so
that the exact string is written out when the constraint is
written out. The comment remains intact through the
synthesis, place-and-route, and timing-analysis flows.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 273

Example 1
This set_clock_groups constraint specifies that clk4 is asynchronous to all other
clocks in the design.

set_clock_groups -asynchronous -group {clk4}

Example 2
This set_clock_groups constraint specifies that clock clk1, clk2, and clk3 are
asynchronous to all other clocks in the design. If a new clock called clkx is
added to the design, clk1, clk2, and clk3 are asynchronous to it too.

set_clock_groups -asynchronous -group {clk1 clk2 clk3}

Example 3
The following set_clock_groups constraint has multiple -group arguments, and
specifies that clk1 and clk2 are asynchronous to clk3 and clk4.

set_clock_groups -asynchronous -group {clk1 clk2}
-group {clk3 clk4}

Example 4
The following set_clock_groups constraint specifies that clk1 and clk2 which were
synchronous when defined with the create_clock command, are now asynchro-
nous.

create_clock [get_ports {c1}] -name clk1 -period 10
create_clock [get_ports {c2}] -name clk2 -period 16
create_clock [get_ports {c3}] -name clk3 -period 5
set_clock_groups -asynchronous -group [get_clocks {clk1}]

-group [get_clocks {clk2}]
The following constructs are equivalent:

set_clock_groups -asynchronous -group [get_clocks {clk1}]
set_clock_groups -asynchronous -group {clk1}

Example 5
The following constraint specifies that test|clkout0_derived_clock_CLKIN1 and
test|clkout1_derived_clock_CLKIN1 are asynchronous to all other clocks in the
design:

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
274 Synopsys Confidential Information February 2021

set_clock_groups -asynchronous -group [get_clocks {*clkout*}]

Example 6
This example defines the clock on the u1.clkout0 net is asynchronous to all
other clocks in the design:

set_clock_groups -asynchronous -group [get_clocks -of_objects
{n:u1.clkout0}]

Examples of Asynchronous Clocks

Example 1: Multiple -group Arguments for Asynchronous Clock Definition
This method uses multiple -group arguments in one constraint:

set_clock_groups -asynchronous -group {clk1 clk2} -group {clk3
bclk4} -group {clk5 cclk6}

With this constraint, members of the same group are synchronous, but
relationships between clocks from different groups defined in this constraint
are asynchronous. This has the following implications:

• clk1 and clk2 are synchronous to each other, but asynchronous to clocks
in all other groups defined in this constraint

• clk3 and clk4 are synchronous to each other, but asynchronous to clocks
in all other groups defined in this constraint

• clk5 and clk6 are synchronous to each other, but asynchronous to clocks
in all other groups defined in this constraint

Example 2: Single -group Argument for Asynchronous Clock Definition
Asynchronous clocks defined with a single -group argument in a constraint
are asynchronous to all other clocks in the design. You can specify multiple
such constraints. In this example, all six clocks are asynchronous, because
each individual constraint makes that clock asynchronous to all others.

set_clock_groups -asynchronous -group {clk1}
set_clock_groups -asynchronous -group {clk2}
set_clock_groups -asynchronous -group {clk3}
set_clock_groups -asynchronous -group {clk4}
set_clock_groups -asynchronous -group {clk5}
set_clock_groups -asynchronous -group {clk6}

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 275

Examples of Defining Clocks for Clock Muxes
The definition of clocks that are to be muxed together varies slightly,
depending on whether the clocks have the same frequency or not. The
following procedures use this example as an illustration:

Defining Muxed Clocks with Different Frequencies
If the clocks are asynchronous, separate clock paths must be defined, as
described below.

1. Define the clocks with create_clock constraints.

For the example, two clocks are defined:

create_clock -name {clk1} [get_nets {clk1}] -period 10.0
-waveform {0 5.0}

create_clock -name {clk2} [get_nets {clk2}] -period 10.0 -waveform {0 5.0}

2. Use multiple set_clock_groups constraints to mark them as asynchronous
to each other:

set_clock_groups -derive -asynchronous -name {default_clkgroup_0} -group
[get_clocks {clk1}]

set_clock_groups -derive -asynchronous -name {default_clkgroup_1} -group
[get_clocks {clk2}]

3. Check the timing report.

For the example, the tool reports two separate clock paths, one for each
clock.

Defining Muxed Clocks with the Same Frequency
If the clocks have the same phase and frequency, follow this procedure to
define the clocks.

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
276 Synopsys Confidential Information February 2021

1. Define the clock at the net connected to the output pin of the mux.

For example:

create_clock -name {clk} [get_nets {clk}] -period 10.0
-waveform {0 5.0}

2. Define the mux output clock as asynchronous to all other clocks, using
a set_clock_groups constraint:

set_clock_groups -derive -asynchronous -name {default_clkgroup_2} -group
[get_clocks {clk}]

3. Check the timing report.

In this case, there should be a single clock path, instead of separate
paths.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 277

set_clock_latency
Specifies clock network latency.

Syntax
The supported syntax for the set_clock_latency constraint is:

set_clock_latency
-source
[-clock {clockList}]
delayValue
{objectList}
[-disable]

Arguments

Description
In the FPGA synthesis tools, the set_clock_latency constraint accepts both clock
objects and clock aliases. Applying a set_clock_latency constraint on a port can
be used to model the off-chip clock delays in a multi-chip environment.

In the above syntax, objectList references either input ports with defined
clocks or clock aliases defined on the input ports. When more than one clock
is defined for an input port, the -clock option can be used to apply different
latency values to each alias.

Restrictions
The following limitations are present in the FPGA synthesis environment:

-source Indicates that the specified delay is applied to the clock source
latency.

-clock clockList Indicates that the specified delay is applied with respect to the
specified clocks. By default, the specified delay is applied to all
specified objects.

delayValue Specifies the clock latency value.

objectList Specifies the input ports for which clock latency is to be set

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
278 Synopsys Confidential Information February 2021

• Clock latency can only be applied to clocks defined on input ports.

• The set_clock_latency constraint is only used for source latency.

• The constraint only applies to port clock objects.

• Latency on clocks defined with create_generated_clock is not supported.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 279

set_clock_uncertainty
Specifies the uncertainty (skew) of the specified clock networks.

Syntax
The supported syntax for the set_clock_uncertainty constraint is:

set_clock_uncertainty
{objectList}
-from fromClock |-rise_from riseFromClock | -fall_from fallFromClock
-to toClock |-rise_to riseToClock | -fall_to fallToClock
value

Arguments

objectList Specifies the clocks for simple uncertainty. The uncertainty is
applied to the capturing latches clocked by one of the specified
clocks. You must specify either this argument or a clock pair
with the -from/-rise_from/-fall_from and -to/-rise_to/-fall_to options;
you cannot specify both an object list and a clock pair.

-from fromClock Specifies the source clocks for interclock uncertainty. You can
use only one of the -from, -rise_from, and -fall_from options and you
must specify a destination clock with one of the -to, -rise_to, and
-fall_to options.

-rise_from
riseFromClock

Specifies that the uncertainty applies only to the rising edge of
the source clock. You can use only one of the -from, -rise_from,
and -fall_from options and you must specify a destination clock
with one of the -to, -rise_to, and -fall_to options.

-fall_from
fallFromClock

Specifies that the uncertainty applies only to the falling edge of
the source clock. You can use only one of the -from, -rise_from,
and -fall_from options and you must specify a destination clock
with one of the -to, -rise_to, and -fall_to options.

-to toClock Specifies the destination clocks for interclock uncertainty. You
can use only one of the -to, -rise_to, and -fall_to options and you
must specify a source clock with one of the -from, -rise_from, and
-fall_from options.

-rise_to
riseToClock

Specifies that the uncertainty applies only to the rising edge of
the destination clock. You can use only one of the -to, -rise_to,
and -fall_to options and you must specify a source clock with one
of the -from, -rise_from, and -fall_from options.

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
280 Synopsys Confidential Information February 2021

Examples
Refer to the following examples.

Example 1
All paths to registers clocked by clk are specified with setup uncertainty of 0.4
in the following example:

set_clock_uncertainty 0.4 -setup [get_clocks clk]

Example 2
For this example, interclock uncertainties are specified between clock clk and
clk2:

set_clock_uncertainty -from [get_clocks clk] -to
[get_clocks clk2] 0.2

set_clock_uncertainty -from [get_clocks clk2] -to
[get_clocks clk] 0.1

Example 3
For this example, interclock uncertainties are specified between clock clk and
clk2 with specific edges:

set_clock_uncertainty -rise_from [get_clocks clk2] -to
[get_clocks clk] 0.5

set_clock_uncertainty -rise_from [get_clocks clk2] -rise_to
[get_clocks clk] 0.1

set_clock_uncertainty -from [get_clocks clk2] -fall_to
[get_clocks clk] 0.1

-fall_to fallToClock Specifies that the uncertainty applies only to the falling edge of
the destination clock. You can use only one of the -to, -rise_to,
and -fall_to options and you must specify a source clock with one
of the -from, -rise_from, and -fall_from options.

value Specifies a floating-point number that indicates the uncertainty
value. Only positive uncertainty numbers are acceptable.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 281

set_false_path
Removes timing constraints from particular paths.

Syntax
The supported syntax for the set_false_path constraint is:

set_false_path
[-setup]
[-from {objectList}]
[-through {objectList} [-through {objectList} ...]]
[-to {objectList}]
[-disable]
[-comment commentString]

Arguments

-setup Specifies that setup checking (maximum delay) is reset to
single-cycle behavior.

-from Specifies the names of objects to use to find path start points.
The -from objectList includes:
• Clocks
• Registers
• Top-level input or bi-directional ports
• Black box outputs
• Sequential cell clock pins
• When the specified object is a clock, all flip-flops, latches, and

primary inputs related to that clock are used as path start
points.

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
282 Synopsys Confidential Information February 2021

Examples
Refer to the following examples.

Example 1
All the paths from the sequential cell output pins and clock pins in module
gen_sub\[*\].u_sub with names matching out* (i.e. registers out1 and out2 in
modules gen_sub\[0\].u_sub, gen_sub\[1\].u_sub, and gen_sub\[2\].u_sub) are set as
false paths.

-through Specifies the intermediate points for the timing exception. The
-through objectList includes:
• Combinational nets
• Hierarchical ports
• Pins on instantiated cells
By default, the through points are treated as an OR list. The
constraint is applied if the path crosses any points in objectList.
If more than one object is included, the objects must be
enclosed either in quotation marks ("") or in braces ({}). If you
specify the -through option multiple times, set_path applies to the
paths that pass through a member of each objectList. If you use
the -through option in combination with the -from or -to options,
set_false_path applies only if the -from or -to and the -through
conditions are satisfied.

-to Specifies the names of objects to use to find path end points.
The -to objectList includes:
• Clocks
• Registers
• Top-level output or bi-directional ports
• Black box inputs
• Sequential cell data input pins
If a specified object is a clock, all flip-flops, latches, and primary
outputs related to that clock are used as path end points.

-disable Disables the constraint.

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis,
place-and-route, and timing-analysis flows.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 283

set_false_path -from [get_pins {gen_sub\[*\]\.u_sub.out*.*}]

Note: Only sequential clock pins are valid pins that can be used as
start points for a timing path. Note that hierarchical module pins
are not valid as starting points for a timing path.

Example 2
All the paths from the sequential cells in module gen_sub\[*\].u_sub with names
matching out* (i.e. registers out1 and out2 in modules gen_sub\[0\].u_sub,
gen_sub\[1\].u_sub, and gen_sub\[2\].u_sub) are set as false paths.

set_false_path -from [get_cells {gen_sub\[*\]\.u_sub.out*}]

Example 3
All paths from top-level input ports with names in* are set as false paths.

set_false_path -from [get_ports {in*}]

Note: Only top-level ports are valid port based start points for timing
paths. Do not use the get_ports command to reference hierarchical
module pins.

Example 4
All paths with end points clocked by clock clka are set as false paths.

set_false_path -to [get_clocks {clka}]

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
284 Synopsys Confidential Information February 2021

set_input_delay
Sets input delay on pins or input ports relative to a clock signal.

Syntax
The supported syntax for the set_input_delay constraint is:

set_input_delay
[-clock clockName [-clock_fall]]
[-rise|-fall]
[-min|-max]
[-add_delay]
delayValue
{portPinList}
[-disable]
[-comment commentString]

Argument

-clock clockName Specifies the clock to which the specified delay is related. If
-clock_fall is used, -clock clockName must be specified. If -clock is
not specified, the delay is relative to time zero for combinational
designs. For sequential designs, the delay is considered relative
to a new clock with the period determined by considering the
sequential cells in the transitive fanout of each port.

-clock_fall Specifies that the delay is relative to the falling edge of the clock.
The default is the rising edge.

-rise Specifies that delayValue refers to a rising transition on the
specified ports of the current design. If neither -rise nor -fall is
specified, rising and falling delays are assumed to be equal.
Currently, the synthesis tool does not differentiate between the
rising and falling edges for the data transition arcs on the
specified ports. The worst case path delay is used instead.
However, the -rise option is preserved and forward annotated to
the place-and-route tool.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 285

-fall Specifies that delayValue refers to a falling transition on the
specified ports of the current design. If neither -rise nor -fall is
specified, rising and falling delays are assumed equal.
Currently, the synthesis tool does not differentiate between the
rising and falling edges for the data transition arcs on the
specified ports. The worst case path delay is used instead.
However, the -fall option is preserved and forward annotated to
the place-and-route tool.

-min Specifies that delayValue refers to the shortest path. If neither
-max nor -min is specified, maximum and minimum input delays
are assumed equal.
Note: The synthesis tool does not optimize for hold time
violations and only reports -min delay values in the
synlog/topLevel_fpga_mapper.srr_Min timing report section
of the log file. The -min delay values are forward annotated to the
place-and-route tool.

-max Specifies that delayValue refers to the longest path. If neither
-max nor -min is specified, maximum and minimum input delays
are assumed equal.
Note: The -max delay values are reported in the top-level log file
and are forward annotated to the place-and-route tool.

-add_delay Specifies if delay information is to be added to the existing input
delay or if is to be overwritten. The -add_delay option enables you
to capture information about multiple paths leading to an input
port that are relative to different clocks or clock edges.

-disable Disables the constraint.

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis,
place-and-route, and timing-analysis flows.

delayValue Specifies the path delay. The delayValue must be in units
consistent with the technology library used during optimization.
The delayValue represents the amount of time the signal is
available after a clock edge. This represents a combinational
path delay from the clock pin of a register.

portPinList Specifies a list of input port names in the current design to
which delayValue is assigned. If more than one object is
specified, the objects are enclosed in quotes ("") or in braces ({}).

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
286 Synopsys Confidential Information February 2021

Examples
Refer to the following examples.

Example 1
This example sets an input delay of 1.0 relative to the rising edge of clk.

set_input_delay 1.00 -clock clk [get_ports {din1 din2}]

Example 2
The following example sets an input delay of 1.0 relative to the rising edge of
clk for all inputs in the design.

set_input_delay 1.00 -clock clk [all_inputs]

Example 3
In this scenario, there are two paths to the input port din1. The input delay for
the first path is relative to the rising edge of clk. For the second path, the
input delay is relative to the falling edge of clk. The -add_delay option indicates
that the new input delay information does not cause old information to be
removed.

set_input_delay 1.00 -clock clk [get_ports {din1}]
set_input_delay 2.00 -clock clk [get_ports {din1}] -add_delay

-clock_fall

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 287

set_max_delay
Specifies a maximum delay target for paths in the current design.

Syntax
The supported syntax for the set_max_delay constraint is:

set_max_delay
[-from {objectList}]
[-through {objectList} [-through {objectList} ...]]
[-to {objectList}]
delayValue
[-disable]
[-comment commentString]

Arguments

-from Specifies the names of objects to use to find path start points.
The -from objectList includes:
• Clocks
• Registers
• Top-level input or bi-directional ports
• Black box outputs
• Sequential cell clock pins
When the specified object is a clock, all flip-flops, latches, and
primary inputs related to that clock are used as path start
points. All paths from these start points to the end points in the
-from objectList are constrained to delayValue. If a -to objectList is
not specified, all paths from the -from objectList are affected. If
you include more than one object, you must enclose the objects
in quotation marks ("") or braces ({}).

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
288 Synopsys Confidential Information February 2021

-through Specifies the intermediate points for the timing exception. The
-through objectList includes:
• Combinational nets
• Hierarchical ports
• Pins on instantiated cells
By default, the through points are treated as an OR list. The
constraint is applied if the path crosses any points in objectList.
The max delay value applies only to paths that pass through
one of the points in the -through objectList. If more than one
object is included, the objects must be enclosed either in
quotation marks ("") or in braces ({}). If you specify the -through
option multiple times, set_max_delay applies to the paths that
pass through a member of each objectList. If you use the -through
option in combination with the -from or -to options, set_max_delay
applies only if the -from or -to and the -through conditions are
satisfied.

-to Specifies the names of objects to use to find path end points.
The -to objectList includes:
• Clocks
• Registers
• Top-level output or bi-directional ports
• Black box inputs
• Sequential cell data input pins
If a specified object is a clock, all flip-flops, latches, and primary
outputs related to that clock are used as path end points. All
paths to the end points in the -to objectList are constrained to
delayValue. If a -from objectList is not specified, all paths to the
-to objectList are affected. If you include more than one object,
you must enclose the objects in quotation marks ("") or braces
({}).

-disable Disables the constraint.

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis,
place-and-route, and timing-analysis flows.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 289

Examples
Refer to the following example.

Example 1
This example shows how to specify that all paths from cell temp1 to cell temp2
must be less than 4.0 units.

set_max_delay -from [get_cells {temp1}] -to [get_cells {temp2}] 4

delayValue Specifies the value of the desired maximum delay for paths
between start and end points. You must express delayValue in
the same units as the technology library used during
optimization. If a path start point is on a sequential device,
clock skew is included in the computed delay. If a path start
point has an input delay specified, that delay value is added to
the path delay. If a path end point is on a sequential device,
clock skew and library setup time are included in the computed
delay. If the end point has an output delay specified, that delay
is added into the path delay.

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
290 Synopsys Confidential Information February 2021

set_multicycle_path
Modifies the single-cycle timing relationship of a constrained path.

Syntax
The supported syntax for the set_multicycle_path constraint is:

set_multicycle_path
[-setup |-hold]
[-start |-end]
[-from {objectList}]
[-through {objectList} [-through {objectList} ...]]
[-to {objectList}]
pathMultiplier
[-disable]
[-comment commentString]

Arguments

-setup |-hold The option -setup specifies the pathMultiplier to be used for the
setup (maximum delay) calculations.
The option -hold enables you to over-ride the default hold
multiplier—{pathMultiplier – 1}— that is forward annotated to the
vendor constraint file. If you use this option, you must specify
the hold value for each of the defined multicycle constraints.
If you do not provide -setup or -hold, the pathMultiplier is used
for setup.

-start | -end Specifies if the multi-cycle information is relative to the period of
either the start clock or the end clock. These options are only
needed for multi-frequency designs; otherwise start and end are
equivalent. The start clock is the clock source related to the
register or primary input at the path start point. The end clock
is the clock source related to the register or primary output at
the path endpoint. The default is to move the setup check
relative to the end clock, and the hold check relative to the start
clock. A setup multiplier of 2 with -end moves the relation
forward one cycle of the end clock. A setup multiplier of 2 with
-start moves the relation back one cycle of the start clock. A hold
multiplier of 1 with -start moves the relation forward one cycle of
the start clock. A hold multiplier of 1 with -end moves the
relation back one cycle of the end clock. If you do not provide
-start or -end, -end is assumed.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 291

-from Specifies the names of objects to use to find path start points.
The -from objectList includes:
• Clocks
• Registers
• Top-level input or bi-directional ports
• Black box outputs
• Sequential cell clock pins
When the specified object is a clock, all flip-flops, latches, and
primary inputs related to that clock are used as path start
points. If a -to objectList is not specified, all paths from the -from
objectList are affected. If you include more than one object, you
must enclose the objects in quotation marks ("") or braces ({}).

-through Specifies the intermediate points for the timing exception. The
-through objectList includes:
• Combinational nets
• Hierarchical ports
• Pins on instantiated cells
The multi-cycle values apply only to paths that pass through
one of the points in the -through objectList. If more than one
object is included, the objects must be enclosed either in double
quotation marks ("") or in braces ({}). If you specify the -through
option multiple times, set_multicycle_delay applies to the paths
that pass through a member of each objectList. If the -through
option is used in combination with the -from or -to options, the
multi-cycle values apply only if the -from or -to conditions and
the -through conditions are satisfied.

-to Specifies the names of objects to use to find path end points.
The -to objectList includes:
• Clocks
• Registers
• Top-level output or bi-directional ports
• Black box inputs
• Sequential cell data input pins
If a specified object is a clock, all flip-flops, latches, and primary
outputs related to that clock are used as path end points. If a
-from objectList is not specified, all paths to the -to objectList are
affected. If you include more than one object, you must enclose
the objects in quotation marks ("") or braces ({})..

-disable Disables the constraint.

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
292 Synopsys Confidential Information February 2021

Examples
Refer to the following examples.

Example 1
All the paths from the sequential cell output pins and clock pins in module
gen_sub\[*\].u_sub with names matching out* (i.e. registers out1 and out2 in
modules gen_sub\[0\].u_sub, gen_sub\[1\].u_sub, and gen_sub\[2\].u_sub) provide 2
timing cycles before the data is required at the end point.

set_multicycle_path -from [get_pins{gen_sub\[*\]\.u_sub.out*.*}] 2

Note: Only sequential clock pins are pins that can be used as valid
start points for a timing path. Note that hierarchical module pins
cannot be used as starting points for a timing path.

Example 2
All the paths from the sequential cells in module gen_sub\[*\].u_sub with names
matching out* (i.e. registers out1 and out2 in modules gen_sub\[0\].u_sub,
gen_sub\[1\].u_sub, and gen_sub\[2\].u_sub) support the timing cycle set to 2.

set_multicycle_path -from [get_cells {gen_sub\[*\]\.u_sub.out*}] 2

Example 3
All paths from top-level input ports with names in* provide 2 timing cycles
before the data is required at the end point.

set_multicycle_path -from [get_ports {in*}] 2

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis,
place-and-route, and timing-analysis flows.

pathMultiplier Specifies the number of cycles that the data path must have for
setup or hold relative to the start point or end point clock before
data is required at the end point.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 293

Note: Only top-level ports are valid port based start points for timing
paths. Do not use the get_ports command to reference hierarchical
module pins.

Example 4
All paths with end points clocked by clock clka provide 2 timing cycles before
the data is required at the end point.

set_multicycle_path -to [get_clocks {clka}] 2

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
294 Synopsys Confidential Information February 2021

set_output_delay
Sets output delay on pins or output ports relative to a clock signal.

Syntax
The supported syntax for the set_output_delay constraint is:

set_output_delay
[-clock clockName [-clock_fall]]
[-rise|[-fall]
[-min|-max]
[-add_delay]
delayValue
{portPinList}
[-disable]
[-comment commentString]

Arguments

-clock clockName Specifies the clock to which the specified delay is related. If
-clock_fall is used, -clock clockName must be specified. If -clock is
not specified, the delay is relative to time zero for combinational
designs. For sequential designs, the delay is considered relative
to a new clock with the period determined by considering the
sequential cells in the transitive fanout of each port.

-clock_fall Specifies that the delay is relative to the falling edge of the clock.
If -clock is specified, the default is the rising edge.

-rise Specifies that delayValue refers to a rising transition on the
specified ports of the current design. If neither -rise nor -fall is
specified, rising and falling delays are assumed to be equal.
Currently, the synthesis tool does not differentiate between the
rising and falling edges for the data transition arcs on the
specified ports. The worst case path delay is used instead.
However, the -rise option is preserved and forward annotated to
the place-and-route tool.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 295

-fall Specifies that delayValue refers to a falling transition on the
specified ports of the current design. If neither -rise nor -fall is
specified, rising and falling delays are assumed equal.
Currently, the synthesis tool does not differentiate between the
rising and falling edges for the data transition arcs on the
specified ports. The worst case path delay is used instead.
However, the -fall option is preserved and forward annotated to
the place-and-route tool.

-min Specifies that delayValue refers to the shortest path. If neither
-max nor -min is specified, maximum and minimum output
delays are assumed equal.
Note: The synthesis tool does not optimize for hold time
violations and only reports -min delay values in the
synlog/topLevel_fpga_mapper.srr_Min timing report section
of the log file. The -min delay values are forward annotated to the
place-and-route tool.

-max Specifies that delayValue refers to the longest path. If neither
-max nor -min is specified, maximum and minimum output
delays are assumed equal.
Note: The -max delay values are reported in the top-level log file
and are forward annotated to the place-and-route tool.

-add_delay Specifies whether to add delay information to the existing
output delay or to overwrite. The -add_delay option enables you
to capture information about multiple paths leading to an
output port that are relative to different clocks or clock edges.

-disable Disables the constraint.

-comment
textString

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis,
place-and-route, and timing-analysis flows.

delayValue Specifies the path delay. The delayValue must be in units
consistent with the technology library used during optimization.
The delayValue represents the amount of time that the signal is
required before a clock edge. For maximum output delay, this
usually represents a combinational path delay to a register plus
the library setup time of that register. For minimum output
delay, this value is usually the shortest path delay to a register
minus the library hold time

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
296 Synopsys Confidential Information February 2021

Examples
Refer to the following examples.

Example 1
This example sets an output delay of 1.00 relative to the rising edge of clk for
all the output ports in the design.

set_output_delay 1.00 -clock clk [all_outputs]

Example 2
The following example sets an output delay of 2.00 relative to the falling edge
of clk for the output port dout1. The -add_delay option indicates that this delay
value is to be added to any existing output delays defined on this port.

set_output_delay 2.0 -clock clk [get_ports {dout1}] -add_delay
-clock_fall

portPinList A list of output port names in the current design to which
delayValue is assigned. If more than one object is specified, the
objects are enclosed in double quotation marks ("") or in braces
({}).

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 297

set_reg_input_delay
Speeds up paths feeding a register by a given number of nanoseconds.

Syntax
set_reg_input_delay {registerName} [-route ns] [-disable] [-comment textString]

Arguments

Description
The set_reg_input_delay timing constraint speeds up paths feeding a register by
a given number of nanoseconds. The Synopsys FPGA synthesis tool attempts
to meet the global clock frequency goals for a design as well as the individual
clock frequency goals (set with create_clock). Use this constraint to speed up
the paths feeding a register. For information about the equivalent SCOPE
spreadsheet interface, see Registers, on page 231.

Use this constraint instead of the legacy constraint, define_reg_input_delay.

registerName A single bit, an entire bus, or a slice of a bus.

-route Advanced user option that you use to tighten constraints during
resynthesis, when the place-and-route timing report shows the
timing goal is not met because of long paths to the register.

-comment Allows the command to accept a comment string. The tool honors the
annotation and preserves it with the object so that the exact string is
written out when the constraint is written out. The comment remains
intact through the synthesis, place-and-route, and timing-analysis
flows.

-disable Disables the constraint.

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
298 Synopsys Confidential Information February 2021

set_reg_output_delay
Speeds up paths coming from a register by a given number of nanoseconds.

Syntax
set_reg_output_delay {registerName} [-route ns] [-disable] [-comment textString]

Arguments

Description
The set_reg_output_delay constraint speeds up paths coming from a register by
a given number of nanoseconds. The synthesis tool attempts to meet the
global clock frequency goals for a design as well as the individual clock
frequency goals (set with create_clock). Use this constraint to speed up the
paths coming from a register. For information about the equivalent SCOPE
spreadsheet interface, see Registers, on page 231.

Use this constraint instead of the legacy constraint, define_reg_output_delay.

Naming Rule Syntax Commands
The FPGA synthesis environment uses a set of naming conventions for design
objects in the RTL when your project contains constraint files. The following
naming rule commands are added to the constraint file to change the
expected default values. These commands must appear at the beginning of

registerName A single bit, an entire bus, or a slice of a bus.

-route Advanced user option that you use to tighten constraints during
resynthesis, when the place-and-route timing report shows the
timing goal is not met because of long paths from the register.

-comment Allows the command to accept a comment string. The tool honors
the annotation and preserves it with the object so that the exact
string is written out when the constraint is written out. The
comment remains intact through the synthesis, place-and-route,
and timing-analysis flows.

-disable Disables the constraint.

Timing Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 299

the constraint file before any other constraints. Similarly, when multiple
constraint files are included in the project, the naming rule commands must
be in the first constraint file read.

set_hierarchy_separator Command
The set_hierarchy_separator command redefines the hierarchy separator
character (the default separator character is the period in the FPGA synthesis
environment). For example, the following command changes the separator
character to a forward slash:

set_hierarchy_separator {/}
Embedded Tcl commands, such as get_pins must be enclosed in brackets []
for the software to execute the command. Also, the curly brackets { } are
required when object names include the escape (\) character or square
brackets. For example, the following syntax is honored by the tool:

set_hierarchy_separator {/}
create_clock -name {clk1} [get_pins
{pdp_c/ib_phy_c/port_g\.1\.phy_c/c7_g\.gtxe2_common_0_i/GTREFCLK[0]}]
-period {10}

set_rtl_ff_names Command
The set_rtl_ff_names command controls the stripping of register suffixes in the
object strings of delay-path constraints (for example, set_false_path, set_multicy-
cle_path). Generally, it is only necessary to change this value from its default
when constraints that target ASIC designs are being imported from the
Design Compiler (in the Design Compiler, inferred registers are given a _reg
suffix during the elaboration phase; constraints targeting these registers
must include this suffix). When importing constraints from the Design
Compiler, include the following command to change the value of this naming
rule to {_reg} to automatically recognize the added suffix.

set_rtl_ff_names {_reg}
For example, using the above value allows the DC exception

set_false_path -to [get_cells {register_bus_reg[0]}]
to apply to the following object without having to manually modify the
constraint:

[get_cells {register_bus[0]}]

LO

 Constraint Commands Timing Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
300 Synopsys Confidential Information February 2021

bus_naming_style Command
The bus_naming_style command redefines the format for identifying bits of a
bus (by default, individual bits of a bus are identified by the bus name
followed by the bus bit enclosed in square brackets). For example, the
following command changes the bus-bit identification from the default
busName[busBit] format to the busName_busBit format:

bus_naming_style {%s_%d}

bus_dimension_separator_style Command
The bus_dimension_separator_style command redefines the format for identifying
multi-dimensional arrays (by default, multidimensional arrays such as row 2,
bit 3 of array ABC[n x m] are identified as ABC[2][3]). For example, the
following command changes the bus-dimension separator from individual
square bracket sets to an underscore:

bus_dimension_separator_style {_}
The resulting format for the above example is:

ABC[2_3]

read_sdc Command
Reads in a script in Synopsys FPGA constraint format. The supported syntax
for the read_sdc constraint is:

read_sdc fileName

Design Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 301

Design Constraints
This section describes the constraint file syntax for the following non-timing
design constraints:

• define_compile_point, on page 302

• define_current_design, on page 303

• define_io_standard, on page 304

LO

 Constraint Commands Design Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
302 Synopsys Confidential Information February 2021

define_compile_point
The define_compile_point command defines a compile point in a top-level
constraint file. You use one define_compile_point command for each compile
point you define. For the equivalent SCOPE spreadsheet interface, see
Compile Points, on page 237. (Compile points are only available for certain
technologies.)

This is the syntax:

define_compile_point [-disable] {moduleName}
-type {soft|hard|locked|locked, partition} [-comment textString]

Refer to Guidelines for Entering and Editing Constraints, on page 136 for
details about the syntax and prefixes for naming objects.

Here is a syntax example:

define_compile_point {v:work.prgm_cntr} -type {locked}

-disable Disables a previous compile point definition.

-type Specifies the type of compile point. This can be soft, hard, locked, or
locked, partition. See Compile Point Types, on page 440 for more
information.

Design Constraints Constraint Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 303

define_current_design
The define_current_design command specifies the module to which the
constraints that follow it apply. It must be the first command in a block-level
or compile-point constraint file. The specified module becomes the top level
for objects defined in this hierarchy and the constraints applied in the respec-
tive block-level or compile-point constraint file.

This is the syntax:

define_current_design {regionName | libraryName.moduleName}

Refer to Guidelines for Entering and Editing Constraints, on page 136 for
details about the syntax and prefixes for naming objects.

Here is an example:

define_current_design {lib1.prgm_cntr}
Objects in all constraints that follow this command relate to prgm_cntr.

LO

 Constraint Commands Design Constraints

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
304 Synopsys Confidential Information February 2021

define_io_standard
Specifies a standard I/O pad type to use for various vendor-specific families.
See I/O Standards, on page 236 for details of the SCOPE equivalent.

define_io_standard [-disable] {p:portName} -delay_type input|output|bidir
syn_pad_type {IO_standard} [parameter {value}...]

In the above syntax:

portName
is the name of the input, output, or bidirectional port.

-delay_type
identifies the port direction which must be input, output, or bidir.

syn_pad_type
is the I/O pad type (I/O standard) to be assigned to portName.

parameter
is one or more of the parameters defined in the following table. Note that
these parameters are device-family dependent.

Examples:

define_io_standard {p:DATA1[7:0]} -delay_type input
syn_pad_type {LVCMOS_33} syn_io_slew {high}
syn_io_drive {12} syn_io_termination {pulldown}

define_io_standard {p:en} -delay_type input
syn_pad_type {LVCMOS_18} syn_io_dci {DCI}
syn_io_dv2 {DV2}

Parameter Function

syn_io_termination The termination type; typical values are pullup and
pulldown.

syn_io_drive The output drive strength; values include low and high
or numerical values in mA.

syn_io_dv2 Switch to use a 2x impedance value (DV2).

syn_io_dci Switch for digitally-controlled impedance (DCI).

syn_io_slew The slew rate for single-ended output buffers; values
include slow and fast or low and high.

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 305

C H A P T E R 5

User Interface Commands

The following describe the graphical user interface (GUI) commands available
from the menus:

• File Menu, on page 306

• Edit Menu, on page 311

• View Menu, on page 325

• Project Menu, on page 333

• Implementation Options Command, on page 346

• Run Menu, on page 382

• Analysis Menu, on page 401

• HDL Analyst Menu, on page 413

• Options Menu, on page 425

• Web Menu, on page 455

• Help Menu, on page 456

For information about context-sensitive commands accessed from right-click
popup menus, see Chapter 6, GUI Popup Menu Commands.

LO

 User Interface Commands File Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
306 Synopsys Confidential Information February 2021

File Menu
Use the File menu for opening, creating, saving, and closing projects and files.
The following table describes the File menu commands.

Command Description

New Can create any of the following types of files: Text, Tcl Script,
VHDL, Verilog, P&R Options file, Design Constraints, Analysis
Design Constraints, or Project file. See New Command, on
page 307.

Open Opens a project or file.

Close Closes a project file.

Save Saves a project or a file.

Save As Saves a project or a file to a specified name.

Save All Saves all projects or files.

Print Prints a file. For more information about printing, see the
operating system documentation.

Print Setup Specify print options.

Create Image This command is available in the following views:
• HDL Analyst Views
• FSM Viewer
A camera pointer () appears. Drag a selection rectangle
around the region for which you want to create an image, then
release the mouse button. You can also simply click in the
current view, then the Create Image dialog appears. See Create
Image Command, on page 308.

Build Project Creates a new project based on the file open in the Text Editor
(if active), or lets you choose files to add to a new project. See
Build Project Command, on page 310.

Open Project Opens a project. See Open Project Command, on page 311.

New Project Creates a new project. If a project is already open, it prompts
you to save it before creating a new one. If you want to open
multiple projects, select Allow multiple projects to be opened in the
Project View dialog box. See Project View Options Command, on
page 430.

File Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 307

New Command
Select File->New to display the New dialog box, where you can select a file type
to be created (for example, Verilog, VHDL, text, Tcl script, P&R options,
design constraints, analysis design constraints, or project). For most file
types, a text editor window opens to allow you to define the file contents. You
must provide a file name. You can automatically add the new file to your
project by enabling the Add To Project checkbox before clicking OK.

Close Project Closes the current project.

Recent Projects Lists recently accessed projects. Choose a project listed in the
submenu to open it.

Recent files
(listed as separate
menu items)

Lists the last files you recently opened as separate menu items.
Choose a file to open it.

Exit Exits the session.

Command Description

LO

 User Interface Commands File Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
308 Synopsys Confidential Information February 2021

Create Image Command
Select File->Create Image to create a capture image from any of the following
views:

File Type Opens Window Directory Name Extension

Verilog Text Editor Verilog .v

VHDL Text Editor VHDL .vhd

Text Text Editor Other .txt

Tcl Script Text Editor Tcl Script .tcl

FPGA Design Constraints SCOPE Constraint .fdc

Analysis Design Constraints SCOPE Analysis Design Constraint .adc

Project None None .prj

File Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 309

• HDL Analyst Views

• FSM Viewer

Drag the camera cursor to define the area for the image. When you release
the cursor, the Create Image dialog box appears. Use the dialog box to copy the
image, save the image to a file, or to print the image.

Field/Option Description

Copy to Clipboard Copies the image to the clipboard so you can paste it into a
selected application (for example, a Microsoft Word file).
When you copy an image to the clipboard, a green check
mark appears in the Copy To Clipboard field.

Save to File Saves the image to the specified file. You can save the file
in a number of formats (platform dependent) including
bmp, jpg, png, ppm, tif, xbm, and xpm.

Add to Project Adds the saved image file to the Images folder in the Project
view. This option is enabled by default.

LO

 User Interface Commands File Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
310 Synopsys Confidential Information February 2021

Build Project Command
Select File->Build Project to build a new project. This command behaves differ-
ently if an HDL file is open in the Text Editor.

• When an active Text Editor window with an HDL file is open, File->Build
Project creates a project with the same name as the open file.

• If no file is open, File->Build Project prompts you to add files to the project
using the Select Files to Add to New Project dialog box. The name of the new
project is the name of the first HDL file added. See Add Source File
Command, on page 334.

Save to File button You must click this button to save an image to the
specified file. When you save the image, a green check
mark appears in the Save To File field.

Print Prints the image. When you print the image, a green check
mark appears in the Print field.

Options Allows you to select the resolution of the image saved to a
file or copied to the clipboard. Use the Max Pixels slider to
change the image resolution.

Caption Allows you to enter a caption for a saved or copied image.
The overlay for the caption is at the top-left corner of the
image.

Field/Option Description

Edit Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 311

Open Project Command
Select File->Open Project to open an existing project or to create a new project.

Edit Menu
You use the Edit menu to edit text files (such as HDL source files) in your
project. This includes cutting, copying, pasting, finding, and replacing text;
manipulating bookmarks; and commenting-out code lines. The Edit menu
commands available at any time depend on the active window or view
(Project, Text Editor, SCOPE spreadsheet, RTL, or Technology views).

The available Edit menu commands vary, depending on your current view.
The following table describes all of the Edit menu commands:

Field/Option Description

Existing Project Displays the Open Project dialog box for opening an existing
project.

New Project Creates a new project and places it in the Project view.

LO

 User Interface Commands Edit Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
312 Synopsys Confidential Information February 2021

Command Description

Basic Edit Menu Commands

Undo Cancels the last action.

Redo Performs the action undone by Undo.

Cut Removes the selected text and makes it available to
Paste.

Copy Duplicates the selected text and makes it available to
Paste.

Paste Pastes text that was cut (Cut) or copied (Copy).

Delete Deletes the selected text.

Find Searches the file for text matching a given search
string; see Find Command (Text), on page 314. In the
RTL view, opens the Object Query dialog box, which lets
you search your design for instances, symbols, nets,
and ports, by name; see Find Command (HDL
Analyst), on page 317. In the project view, searches
files for text strings; see Find Command (In Project),
on page 315.

Find Next Continues the search initiated by the last Find.

Find in Files Performs a string search of the target files. See Find in
Files Command, on page 321.

Edit Menu Commands for the Text Editor

Select All Selects all text in the file.

Replace Finds and replaces text. See Replace Command, on
page 323.

Goto Goes to a specific line number. See Goto Command, on
page 324.

Toggle bookmark Toggles between inserting and removing a bookmark on
the line that contains the text cursor.

Next bookmark Takes you to the next bookmark.

Previous bookmark Takes you to the previous bookmark.

Delete all bookmarks Removes all bookmarks from the Text Editor window.

Edit Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 313

Advanced->Comment Code Inserts the appropriate comment prefix at the current
text cursor location.

Advanced-> Uncomment
Code

Removes comment prefix at the current text cursor
location.

Advanced->Uppercase Makes the selected string all upper case.

Advanced->Lowercase Makes the selected string all lower case.

Select->All Selects all text in the file (same as All).

Command Description

LO

 User Interface Commands Edit Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
314 Synopsys Confidential Information February 2021

Find Command (Text)
Select Edit->Find to display the Find dialog box. In the SCOPE window, the FSM
Viewer, and the Text Editor window, the command has basic text-based
search capabilities. Some search features, like regular expressions and
line-number highlighting, are available only in the Text Editor. See Find
Command (In Project), on page 315, to search for files in the Project.

The HDL Analyst Find command is different; see Find Command (HDL
Analyst), on page 317 for details.

Field/Option Description

Find What/Search for Search string matching the text to find. In the text editor,
you can use the pull-down list to view and reuse search
strings used previously in the current session.

Match whole word only
(text editor only)

When enabled, matches the entire word rather than a
portion of the word.

Match Case When enabled, searching is case sensitive.

Regular expression
(text editor only)

When enabled, wildcard characters (* and ?) can be used in
the search string: ? matches any single character; * matches
any string of characters, including an empty string.

Edit Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 315

Find Command (In Project)
Select Edit->Find to display the Find File dialog box. In the Project view, the
command has basic text-based search capabilities to locate files in the
project.

Direction/Reverse Changes search direction. In the text editor, buttons select
the search direction (Up or Down).

Find Next Initiates a search for the search string (see Find What/Search
for). In the text editor, searching starts again after reaching
the end (Down) or beginning (Up) of the file.

Wrap
(SCOPE only)

When enabled, searching starts again after reaching the end
or beginning (Reverse) of the spread sheet.

Mark All
(Text editor only)

Highlights the line numbers of the text matching the search
string and closes the Find dialog box.

Field/Option Description

LO

 User Interface Commands Edit Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
316 Synopsys Confidential Information February 2021

Field/Option Description

All or part of the file
name

Search string matching the file to find. You can specify all or
part of the file name.

Look in Search for files in all projects or limit the search to files only in
the specified project.

Match Case When enabled, searching is case sensitive.

Search up Searches in the up direction (search terminates when an end
of tree is reached in either direction).

Exclude path Excludes the path name during the search.

Find Next Initiates a search for the file name string.

Edit Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 317

Find Command (HDL Analyst)
In the RTL or Technology view, use Edit->Find to display the Object Query
dialog box. For a detailed procedure about using this command, see Using
Find for Hierarchical and Restricted Searches, on page 318 of the User Guide.

The available Find menu commands vary, depending on your current view.
The following table describes all of the Find menu commands:

Field/Option Description

Instances,
Symbols,
Nets, Ports

Tabbed panels for finding different kinds of objects. Choose a panel
for a given object type by clicking its tab. In terms of memory
consumption, searching for Instances is most efficient, and searching
for Nets is least efficient.

Search Where to search: Entire Design, Current Level & Below, or Current
Level Only. See Using Find for Hierarchical and Restricted
Searches, on page 318 of the User Guide.

LO

 User Interface Commands Edit Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
318 Synopsys Confidential Information February 2021

UnHighlighted Names of all objects of the current panel type, in the level(s) chosen
to Search, that match the Highlight Search (*?) filter. This list is
populated by the Find 200 and Find All buttons.
To select an object as a candidate for highlighting, click its name in
this list. The complete name of the selected object appears near the
bottom of the dialog box. You can select part or all of this complete
name, then use the Ctrl-C keyboard shortcut to copy it for pasting.
You can select multiple objects by pressing the Ctrl or Shift key while
clicking; press Ctrl and click a selection to deselect it. The number of
objects selected, and the total number listed, are displayed above the
list, after the UnHighlighted: label: # selected of # total.
To confirm a selection for highlighting and move the selected objects
to the Highlighted list, click the -> button.

Highlight
Search (*?)

Determines which object names appear in the UnHighlighted area,
based on the case-sensitive filter string that you enter. For tips
about using this field, see Using Wildcards with the Find
Command, on page 321 of the User Guide.
The filter string can contain the following wildcard characters:
• * (asterisk) - matches any sequence of characters
• ? (question mark) - matches any single character
• . (period) - does not match any characters, but indicates a change

in hierarchical level.
Wildcards * and ? only match characters within the current
hierarchy level; a*b*, for example, will not cross levels to match
alpha.beta (where the period indicates a change in hierarchy).
If you must match a period character occurring in a name, use \.
(backslash period) in the filter string. The backslash prevents
interpreting the period as a wildcard.
The filter string is matched at each searched level of the hierarchy
(the Search levels are described above). Use filter strings that are as
specific as possible to limit the number of unwanted matches.
Unnecessarily extensive search can be costly in terms of memory
performance.

-> Moves the selected names from the UnHighlighted area to the
Highlighted area, and highlights their objects in the RTL and
Technology views.

<- Moves the selected names from the Highlighted area to the
UnHighlighted area, and unhighlights their objects in the RTL and
Technology views.

Field/Option Description

Edit Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 319

All -> Moves all names from the UnHighlighted to the Highlighted area, and
highlights their objects in the RTL and Technology views.

<- All Moves all names from the Highlighted to the UnHighlighted area, and
unhighlights their objects in the RTL and Technology views.

Highlighted Complementary and analogous to the UnHighlighted area. You select
object names here as candidates for moving to the UnHighlighted list.
(You move names to the UnHighlighted list by clicking the <- button
which unselects and unhighlights the corresponding objects.)
When you select a name in the Highlighted list, the view is changed to
show the (original, unfiltered) schematic sheet containing the object.

Un-Highlight
Selection (*?)

Complementary and analogous to the Highlight Search area: selects
names in the Highlighted area, based on the filter string you input
here.

Jump to
location

When enabled, jumps to another sheet if necessary to show target
objects.

Name Space:
Tech View

Searches for the specified name using the mapped (.srm) database.
For more information, see Using Find for Hierarchical and
Restricted Searches, on page 318 of the User Guide.

Name Space:
Netlist

Searches for the specified name using the output netlist file. For
more information, see Using Find for Hierarchical and Restricted
Searches, on page 318 of the User Guide.

Field/Option Description

LO

 User Interface Commands Edit Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
320 Synopsys Confidential Information February 2021

For more information on using the Object Query dialog box, see Using Find for
Hierarchical and Restricted Searches, on page 318 of the User Guide.

Find 200 Adds up to 200 more objects that match the filter string to the
UnHighlighted list. This button becomes available after you enter a
Highlight Search (*?) filter string. This button does not find objects in
HDL Analyst views. It matches names of design objects against the
Highlight Search (*?) filter and provides the candidates listed in the
UnHighlighted list, from which you select the objects to find.
Using the Enter (Return) key when the cursor is in the Highlight
Search (*?) field is equivalent to clicking the Find 200 button.
Usage note:
Click Find 200 before Find All to prevent unwanted matches in case the
Highlight Search (*?) string is less selective than you expect.

Find All Places all objects that match the Highlight Search (*?) filter string in the
UnHighlighted list. This button does not find objects in HDL Analyst
views. It matches names of design objects against the Highlight
Search (*?) filter and provides the candidates listed in the
UnHighlighted list, from which you select the objects to find. (Enter a
filter string before clicking this button.) See Usage Note for Find 200,
above.

Field/Option Description

Edit Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 321

Find in Files Command
The Find in Files command searches the defined target for the occurrence of a
specified search string. The list of files containing the string is reported in the
display area at the bottom of the dialog box. For information on using this
feature, see Searching Files, on page 102 of the User Guide.

LO

 User Interface Commands Edit Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
322 Synopsys Confidential Information February 2021

Field/Option Description

Find what Text string object of search.

Files Contained in
Project

Drop-down menu identifying the source project of the files to
be searched.

Implementation
Directory

Drop-down menu restricting project search to a specific
implementation or all implementations.

Directory Identifies directory for files to be searched.

Result Window Allows a secondary search string (Find what) to be applied to
the targets reported from the initial search.

Include sub-folders
for directory searches

When checked, extends the search to sub-directories of the
target directory.

File filter Excludes files from the search by filename extension.

Search Options Standard string search options; check to enable.

Find Initiates search.

Result Display List of files containing search string. Status line lists the
number of matches in each file and the number of files
searched.

Edit Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 323

Replace Command
Use Edit->Replace to find and optionally replace text in the Text Editor.

Feature Description

Find what Search string matching the text to find. You can use the
pull-down list to view and reuse search strings used
previously in the current session.

Replace with The text that replaces the found text. You can use the
pull-down list to view and reuse replacement text used
previously in the current session.

Match whole word
only

Finds only occurrences of the exact string (strings longer than
the Find what string are not recognized).

Match case When enabled, searching is case sensitive.

Regular expression When enabled, wildcard characters (* and ?) can be used in
the search string: ? matches any single character; * matches
any string of characters, including the empty string.

Selection Replace All replaces only the matched occurrence.

Whole file Replace All replaces all matching occurrences.

Find Next Initiates a search for the search string (see Find What).

Replace Replaces the found text with the replacement text, and locates
the next match.

Replace All Replaces all text that matches the search string.

LO

 User Interface Commands Edit Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
324 Synopsys Confidential Information February 2021

Goto Command
Use Edit->Goto to go to a specified line number in the Text Editor.

View Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 325

View Menu
Use the View menu to set the display and viewing options, choose toolbars,
and display result files. The commands in the View menu vary with the active
view. The following tables describe the View menu commands in various
views.

• View Menu Commands: All Views, on page 325

• View Menu: Zoom Commands, on page 326

• View Menu: RTL and Technology Views Commands, on page 326

• View Menu: FSM Viewer Commands, on page 327

View Menu Commands: All Views

Command Description

Font Size Changes the font size in the Project UI of the synthesis tools.
You can select one of the following options:
• Increase Font Size
• Decrease Font Size
• Reset Font Size (default size)

Toolbars Displays the Toolbars dialog box, where you specify the
toolbars to display. See Toolbar Command, on page 328.

Status Bar When enabled, displays context-sensitive information in the
lower-left corner of the main window as you move the mouse
pointer over design elements. This information includes
element identification.

Refresh Updates the UI display of project files and folders.

Output Windows Displays or removes the Tcl Script/Messages and Watch
windows simultaneously in the Project view. Refer to the Tcl
Window and Watch Window options for more information.

Tcl Window When enabled, displays the Tcl Script and Messages
windows. All commands you execute in the Project view
appear in the Tcl window. You can enter or paste Tcl
commands and scripts in the Tcl window. Check for notes,
warning, and errors in the Messages window.

LO

 User Interface Commands View Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
326 Synopsys Confidential Information February 2021

View Menu: Zoom Commands

View Menu: RTL and Technology Views Commands
These commands are available when the RTL view or Technology view is
active. These commands are available in addition to the commands described
in View Menu Commands: All Views, on page 325 and View Menu: Zoom
Commands, on page 326.

Watch Window When enabled, displays selected information from the log
file in the Watch window.

View Log File Displays a log file report that includes compiler, mapper,
and timing information on your design. See View Log File
Command, on page 330.

View Result File Displays a detailed netlist report.

Command Description

Zoom In

Zoom Out

Lets you Zoom in or out. When selected, a Z-shaped mouse
pointer () appears. Zoom in or out on the view by clicking or
dragging a box around (lassoing) the region. Clicking zooms in
or out on the center of the view; lassoing zooms in or out on
the lassoed region. Right-click to exit zooming mode.
In the SCOPE spreadsheet, selecting these commands
increases or decreases the view in small increments.

Pan Lets you pan (scroll) a schematic or FSM view using the
mouse.
If your mouse has a wheel feature, use the wheel to pan up
and down. To pan left and right, use the Shift key with the
wheel.

Full View Zooms the active view so that it shows the entire design.

Normal View Zooms the active view to normal size and centers it where you
click. If the view is already normal size, clicking centers the
view.

Command Description

View Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 327

View Menu: FSM Viewer Commands
The following commands are available when the FSM viewer is active. These
commands are in addition to the common commands described in View
Menu Commands: All Views, on page 325 and View Menu: Zoom Commands,
on page 326.

.

Command Description

Push/Pop
Hierarchy

Traverses design hierarchy using the push/pop mode - see
Exploring Design Hierarchy (Standard), on page 308 of the
User Guide.

Previous Sheet Displays the previous sheet of a multiple-sheet schematic.

Next Sheet Displays the next sheet of a multiple-sheet schematic.

View Sheets Displays the Goto Sheet dialog box where you can select a
sheet to display from a list of all sheets. See View Sheets
Command, on page 329.

Visual Properties Toggles the display of information for nets, instances, pins,
and ports in the HDL Analyst view.
To customize the information that displays, set the values
with Options->HDL Analyst Options->Visual Properties. See Visual
Properties Panel, on page 453.

Back Goes backward in the history of displayed sheets for the
current HDL Analyst view.

Forward Goes forward in the history of displayed sheets for the current
HDL Analyst view.

Filter Filters the RTL/Technology view to display only the selected
objects.

Command Description

Filter->Selected Hides all but the selected state(s).

Filter->By output
transitions

Hides all but the selected state(s), their output transitions,
and the destination states of those transitions.

Filter->By input
transitions

Hides all but the selected state(s), their input transitions,
and the origin states of those transitions.

LO

 User Interface Commands View Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
328 Synopsys Confidential Information February 2021

Toolbar Command
Select View->Toolbars to display the Toolbars dialog box, where you can:

• Choose the toolbars to display

• Customize their appearance

Filter->By any
transition

Hides all but the selected state(s), their input and output
transitions, and their predecessor and successor states.

Unfilter Restores a filtered FSM diagram so that all the states and
transitions are showing.

Cross Probing Enables cross probing between FSM nodes and RTL view
schematic.

Select All States Selects all the states.

FSM Table Toggles display of the transition table.

FSM Graph Toggles FSM state diagram on or off.

Annotate Transitions Toggles display of state transitions on or off on FSM state
diagram.

Selection Transcription

Tool Tips Toggles state diagram tool tips on or off.

FSM Properties Displays FSM Properties dialog box.

Unselect All Unselects all states and transitions.

Command Description

View Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 329

View Sheets Command
Select View->View Sheets to display the Goto Sheet dialog box and select a sheet
to display. The Goto Sheet dialog box is only available in an RTL or Technology
view, and only when a multiple-sheet design is present.

Feature Description

Toolbars Lists the available toolbars. Select the toolbars that you want to
display.

Show Tooltips When selected, a descriptive tooltip appears whenever you position
the pointer over an icon.

Large Buttons When selected, large icons are used.

LO

 User Interface Commands View Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
330 Synopsys Confidential Information February 2021

To see if your design has multiple sheets, check the sheet count display at
the top of the schematic window.

View Log File Command
View->View Log File displays the log file report for your project. The log file is
available in either text (project_name.srr) or HTML (project_name_srr.htm)
format. To enable or disable the HTML file format for the log file, select the
View log file in HTML option in the Options->Project View Options dialog box.

When opening the log file, a table of contents appears. Selecting an item from
the table of contents takes you to the corresponding HTML page. To go back,
right-click the HTML page and select Back from the menu.

View Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 331

You can use the search field to find an item in the table of contents. Enter all
or part of the header name in the search field, then click Find. The log file
displays the resulting section.

Find searches within collapsed tables. It expands the tables to show your
results.

LO

 User Interface Commands View Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
332 Synopsys Confidential Information February 2021

If the file changes while the search window is open, click the Refresh button to
update the table of contents.

Project Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 333

Project Menu
You use the Project menu to set implementation options, add or remove files
from a project, change project filenames, create new implementations, and
archive or copy the project. The Project menu commands change, depending
on the view you are in. For example, the HDL Analyst RTL and Technology
views only include a subset of the Project menu commands.

The following table describes the Project menu commands.

Command Description

Implementation Options Displays the Implementation Options dialog box, where you
set options for implementing your design. See
Implementation Options Command, on page 346.

Add Source File Displays the Select Files to Add to Project dialog box. See
Add Source File Command, on page 334.
Tcl equivalent: add_file -fileType filename

Remove Implementation Displays the Remove Implementation dialog box that allows
you to remove the selected implementation. See Remove
Implementation, on page 336.
Tcl equivalent: impl -remove implementationName

Remove File From Project Removes selected files from your project.
Tcl equivalent: project_file -remove filename

Change File Replaces the selected file in your project with another
that you choose. See Change File Command, on
page 337.
Tcl equivalent: project_file -name "originalFile" "newFile"

Set VHDL Library Displays the File Options dialog box, where you choose
the library (Library Name) for synthesizing VHDL files. The
default library is called work. See Set VHDL Library
Command, on page 337.

Add Implementation Creates a new implementation for a current design.
Each implementation pertains to the same design, but it
can have different options settings and/or constraints
for synthesis runs. See Add Implementation Command,
on page 338).
Tcl equivalent: impl -add implementation_1 implementation
-type implementationType

LO

 User Interface Commands Project Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
334 Synopsys Confidential Information February 2021

Add Source File Command
Select Project->Add Source File to add files, such as HDL source files, to your
project. This selection displays the Select Files to Add to Project dialog box.

New Identify
Implementation

Creates a new Identify implementation for a current
design. To launch the Identify toolset, see the Identify
Instrumentor Command, on page 388 and Launch
Identify Debugger Command, on page 390.
Tcl equivalent: impl -add implementation_1 implementation

Archive Project Archives a design project. Use this command to archive
a full or partial project, or to add files to or remove files
from an archived project. See Archive Project
Command, on page 339 for a description of the utility
wizard options.

Un-Archive Project Loads an archived project file to the specified directory.
See Un-Archive Project Command, on page 340 for a
description of the utility wizard options.

Copy Project Creates a copy of a full or partial design project. See
Copy Project Command, on page 343 for a description
of the utility wizard options.

Command Description

Project Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 335

Feature Description

Look in The directory of the file to add. You can use the pull-down
directory list or the Up One Level button to choose the
directory.

File name The name of a file to add to the project. If you enter a name
using the keyboard, then you must include the file-type
extension.

Files of type The type (extension) of files to be added to the project.
Only files in the active directory that match the file type
selected from the drop-down menu are displayed in the list
of files. Use All Files to list all files in the directory.

LO

 User Interface Commands Project Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
336 Synopsys Confidential Information February 2021

Remove Implementation
Displays the Remove Implementation dialog box that allows you to remove the
selected implementation. You can select any of the following:

• Remove implementation only - Removes the implementation from the project
only.

• Remove impl. and delete directory - Removes the implementation from the
project and deletes the directory on the disk.

• No - Do not remove the implementation.

Choose the appropriate option shown in the dialog box below.

Files To Add To Project The files to add to the project. You add files to this list with
the <-Add and <-Add All buttons. You remove files from this
list with the Remove -> and Remove All -> buttons.
For information about adding files to custom folders, see
Creating Custom Folders, on page 70.
Tcl equivalent: add_file -type filename

Use relative paths When you add files to the project, you can specify either to
use the relative path or full path names for the files.

Add files to Folders When you add files to the project, you can specify whether
or not to automatically add the files to folders. See the
Folder Options described below.

Folder Options When you add files to folders, you can specify the folder
name as either the:
• Operating System (OS) folder name
• Parent path name from a list provided in the display

Feature Description

Project Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 337

Change File Command
Select Project->Change File to replace a file in the project files list with another
of the same type. This displays the Source File dialog box, where you specify
the replacement file. You must first select the file to replace, in the Project
view, before you can use this command.

Set VHDL Library Command
Select Project->Set VHDL Library to display the File Options dialog box, where you
view VHDL file properties and specify the VHDL library name. See File
Options Popup Menu Command, on page 473. This is the same dialog box as
that displayed by right-clicking a VHDL filename in the Project view and
choosing File Options.

LO

 User Interface Commands Project Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
338 Synopsys Confidential Information February 2021

Add Implementation Command
Select Project->Add Implementation to create a new implementation for the
selected project. This selection displays the Implementation Options dialog box,
where you define the implementation options for the project - see Implemen-
tation Options Command, on page 346. This is the same dialog box as that
displayed by Project->Implementation Options, except that there is no list of Imple-
mentations to the right of the tabbed panels.

Project Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 339

Archive Project Command
Use the Project->Archive Project command to store files for a design project into
a single archive file in Synopsys Proprietary Format (.sar). You can archive an
entire project or selected files from the project.

The Archive Project command displays the Synopsys Archive Utility wizard
consisting of either two (all files archived) or three (custom file selection) tabs.

Option Description

Project Path and Filename Path and filename of the .prj file.

Root Directory Top-level directory that contains the project files.

Destination Directory Pathname of the directory to store the archive .sar file.

LO

 User Interface Commands Project Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
340 Synopsys Confidential Information February 2021

For step-by-step details on how to use the archive utility, see Archive Project
Command, on page 339.

Un-Archive Project Command
Use the Project->Un-Archive Project command to extract the files from an
archived design project.

This command displays a Synplify Un-Archive Utility wizard.

Archive Style The type of archive:
• Create a fully self-contained copy - all project files are

archived; includes project input files and result files.
• If the project contains more than one implementation:

- All Implementation includes all implementations in the
project.

- Active Implementation includes only the active
implementation.

• Customized file list - only project files that you select are
included in the archive.

• Local copy for internal network - only project input files are
archived, no result files will be included.

Create Project using If you select the Customized file list option in the wizard,
you can choose one the following options on the second
tab:
• Source Files - Includes all design files in the archive.

You cannot enable the SRS option if this option is
enabled.

• SRS - Includes all .srs files (RTL schematics) in the
archive. You cannot enable the Source Files option
when this option is enabled.

Add Extra Files If you select the Customized file list option in the wizard,
you can use this button on the second tab to add
additional files to the archive.

Option Description

Project Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 341

Option Description

Archive Filename Path and filename of the .prj file.

Project Name Top-level directory that contains the project files.

Destination Directory Pathname of the directory to store the archive .sar file.

Original File Reference/
Resolved File Reference

Displays the files in the archive that will be extracted.
You can exclude files from the .sar by unchecking the file
in the Original File Reference list. Any unchecked files are
commented out in the .prj file.
If there are unresolved reference files in the .sar file, you
must fix (Resolve button) or uncheck them. Or, if there
are files that you want to change when project files are
extracted, use the Change button and select files, as
appropriate. See Resolve File Reference, next for more
details.

LO

 User Interface Commands Project Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
342 Synopsys Confidential Information February 2021

For step-by-step details on how to use the un-archive utility, see Un-Archive
Project Command, on page 340.

Resolve File Reference
When you use the Un-Archive Utility wizard to extract a project, if there are
unresolved file references, use the Resolve button next to the file to point to a
new file location. You can also optionally replace project files in the destina-
tion directory by clicking the Change button next to the file you want to
replace. The Change and Resolve buttons bring up the following dialog box:

Option Description

Filename Specifies the path and name of the file you want to
change or resolve.

Original Directory Specifies the location of the project at the time it was
archived.

Project Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 343

Copy Project Command
Use the Project->Copy Project command to create a copy of a design project. You
can copy an entire project or selected files from the project.

The Copy Project command displays the Synopsys Copy Utility wizard consisting of
either two (all files copied) or three (custom file selection) tabs.

Replace directory with Specifies the new location of the project files you want to
use to replace files.

Final Filename Specifies the path name of the directory and the file
name of the replace file.

Replace buttons • Replace - replaces only the file specified in the Filename
field when the project is extracted.

• Replace Unresolved - replaces any unresolved files in the
project, with files of the same name from the Replace
directory.

• Replace All - replaces all files in the archived project
with files of the same name from the Replace directory.

• To undo any replace-file references, clear the Replace
directory with field, then click Replace. This causes the
utility to point back to the Original Directory and
filenames.

Option Description

LO

 User Interface Commands Project Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
344 Synopsys Confidential Information February 2021

Option Description

Project Path and Filename Path and filename of the .prj file.

Root Directory Top-level directory that contains the project files.

Destination Directory Pathname of the directory to store the archive .sar file.

Project Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 345

For step-by-step details on how to use the copy utility, see Copy Project
Command, on page 343.

Copy Style The type of archive:
• Create a fully self-contained copy - all project files are

archived; includes project input files and result files.
• If the project contains more than one implementation:

- All Implementation includes all implementations in the
project.

- Active Implementation includes only the active
implementation.

• Customized file list - only project files that you select are
included in the archive.

• Local copy for internal network - only project input files are
archived, no result files will be included.

Create Project using If you select the Customized file list option in the wizard,
you can choose one the following options on the second
tab:
• Source Files - Includes all design files in the archive.

You cannot enable the SRS option if this option is
enabled.

• SRS - Includes all .srs files (RTL schematics) in the
archive. You cannot enable the Source Files option if
this option is enabled.

Add Extra Files If you select the Customized file list option in the wizard,
you can use this button on the second tab to add
additional files to the archive.

Option Description

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
346 Synopsys Confidential Information February 2021

Implementation Options Command
You use the Implementation Options dialog box to define the implementation
options for the current project. You can access this dialog box from
Project->Implementation Options, by clicking the button in the Project view, or by
clicking the text in the Project view that lists the current technology options.

This section describes the following:

• Device Panel, on page 347. For device-specific details of the options,
refer to the appropriate vendor chapter.

• Options Panel, on page 349

• Constraints Panel, on page 351

• Implementation Results Panel, on page 353

• Timing Report Panel, on page 355

• High Reliability Panel, on page 357

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 347

• VHDL Panel, on page 358

• Verilog Panel, on page 363

• Place and Route Panel, on page 380

• Place and Route Panel, on page 380

Device Panel
You use the Device panel to set mapping options for the selected technology.

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
348 Synopsys Confidential Information February 2021

The mapping options vary, depending on the technology. See Setting Device
Options, on page 78 in the User Guide for a procedure, and the relevant
vendor sections in this reference manual for technology-specific descriptions
of the options.

The table below lists the following category of options. Not all options are
available for all tools and technologies.

Option Description

Technology
Vendor

Specify the device technology you want to synthesize. You can also
select the part, package, and speed grade to use.
For more information, see the appropriate vendor appendix in the
Reference manual.

Device
Mapping
Options

The device mapping options vary depending on the device
technology you select.
For more information, see the appropriate vendor appendix in the
Reference manual.

Option
Description

Click on a device mapping option to display its description in this
field. Refer to the relevant vendor sections for technology-specific
descriptions of the options.

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 349

Options Panel
You use the Options panel of the Implementation Options dialog box to define
general options for synthesis optimization. See Setting Optimization Options,
on page 81 of the User Guide for details.

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
350 Synopsys Confidential Information February 2021

The following table lists the options alphabetically. Not all options are avail-
able for all technologies.

Option Description

Auto Compile
Point

Enables the automatic compile point flow, which can analyze a
design and identify modules that can automatically be defined as
compile points and mapped in parallel using multiprocessing.
See The Automatic Compile Point Flow, on page 456 in the User
Guide.
Tcl equivalent: set_option -automatic_compile_point 0|1

Continue on
Error

When enabled for Synplify Pro synthesis, it only affects
compile-point synthesis, allowing the operation to continue and
synthesize other compile points.
See Using Continue on Error, on page 219 in the User Guide.
Tcl equivalent: set_option -continue_on_error 0|1

Enable 64-bit
Synthesis

Enables/disables the 64-bit mapping switch. When enabled, this
switch allows you to run client programs in 64-bit mode, if available
on your system.
This option is supported on the Windows and Linux platforms.
Tcl equivalent: set_option -enable64bit 0|1

FSM Compiler Determines whether the FSM Compiler is run. See Running the
FSM Compiler, on page 425 in the User Guide.
Tcl equivalent: set_option -symbolic_fsm_compiler 0|1

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 351

Constraints Panel
You use the Constraints panel of the Implementation Options dialog box to specify
target frequency and timing constraint files for design synthesis. Depending
on the synthesis tool you are using and the device you specify, the types of
constraint files you can apply for the implementation may vary. See the table
below for a complete list of option types you can apply.

See Specifying Global Frequency and Constraint Files, on page 83, in the
User Guide for details.

FSM Explorer Determines whether the FSM Explorer is run. See Running the
FSM Explorer, on page 429 in the User Guide.
Tcl equivalent: set_option -use_fsm_explorer 0|1

Resource
Sharing

Determines whether you optimize area by sharing resources. When
enabled, this optimization technique runs during the compilation
stage of synthesis.
Even if it is disabled, the mapper can still flatten the netlist and
re-optimize adders, multipliers as needed to improve timing,
because this setting does not affect the mapper. See Sharing
Resources, on page 422 for information for how to use this option
in the User Guide.
Enabling this option generates the resource sharing report in the
log file (see Resource Usage Report, on page 160).
Tcl equivalent: set_option -resource_sharing 0|1

Retiming Determines whether the tool moves storage devices across
computational elements to improve timing performance in
sequential circuits. Note that the tool might retime registers
associated with RAMs, DSPs, and generated clocks, regardless of
the Retiming setting.
See Retiming, on page 406 in the User Guide.
Tcl equivalent: set_option -retiming 0|1

Option Description

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
352 Synopsys Confidential Information February 2021

Option Description

Frequency Sets the default global frequency. You can either set the
global frequency here or in the Project view. To override the
default you set here, set individual clock constraints from the
SCOPE interface.
Tcl equivalent: set_option -frequency frequency

Auto Constrain When enabled and no clocks are defined, the software
automatically constrains the design to achieve the best
possible timing. It does this by reducing periods of each
individual clock and the timing of any timed I/O paths in
successive steps. See Using Auto Constraints, on page 376
in the User Guide for information about using this option.
You can also set this option in the Project view.
Tcl equivalent: set_option -frequency auto

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 353

Implementation Results Panel
You use the Implementation Results panel to specify the implementation name
(default: rev_1), the results directory, and the name and format of the top-level
output netlist file (Result File). You can also specify output constraint and
netlist files. See Specifying Result Options, on page 85 of the User Guide for
details.

The results directory is a subdirectory of the project file directory. Clicking
the Browse button brings up the Select Run Directory dialog box to allow you to
browse for the results directory. You can change the location of the results
directory, but its name must be identical to the implementation name.

Use clock period for
unconstrained IO

Determines whether default constraints are used for I/O
ports that do not have user-defined constraints.
When disabled, only set_input_delay or set_output_delay
constraints are considered during synthesis or
forward-annotated after synthesis.
When enabled, the software considers any explicit
set_input_delay or set_output_delay constraints. In addition, for
all ports without explicit constraints, it uses constraints
based on the clock period of the attached registers. Both the
explicit and implicit constraints are used for synthesis and
forward-annotation. The default is off (disabled) for new
designs.
Tcl equivalent: set_option -auto_constrain_io 0|1

Constraint Files
FDC

Specifies which timing constraints (FDC) files to use for the
implementation. Select the check box to choose a file.
For block-level files in the compile-point flows, the Module
column shows the name of the module or compile point.

Constraint Files
SDC

Specifies which timing constraints (SDC) files to use for the
implementation. Select the check box to choose a file.
For block-level files in the compile-point flows, the Module
column shows the name of the module or compile point.

Identify (IDC) Specifies the instrumentation design constraints (IDC) files
that add compiler pragmas in these files to the design RTL for
the instrumented signals and break points. Enable the check
box to select a file.

Option Description

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
354 Synopsys Confidential Information February 2021

Select optional output file check boxes to generate the corresponding Verilog
netlist, VHDL netlist, or vendor constraint files.

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 355

Timing Report Panel
Use the Timing Report panel (Implementation Options dialog box) to set criteria for
the (default) output timing report. Specify the number of critical paths and
the number of start and end points to appear in the timing report. See Speci-
fying Timing Report Output, on page 87 in the User Guide for details. For a
description of the report, see Timing Reports, on page 162.

Option Description

Implementation
Name
Results Directory
Result Base Name

Displays implementation name, directory path for results,
and the base name for the result files.
Tcl equivalent: set_option -result_file pathtoResultFile

Result Format Select the output that corresponds to the technology you are
using. See the Appendices of the Reference manual for a
vendor-specific in the User Guidelist of netlist formats.
Tcl equivalent: set_option -result_format format

Write Mapped Verilog
Netlist
Write Mapped VHDL
Netlist

Generates mapped Verilog or VHDL netlist files.
Tcl equivalent: set_option -write_verilog 0|1
Tcl equivalent: set_option -write_vhdl 0|1

Write Vendor
Constraint File

Generates a vendor-specific constraint file for forward
annotation.
Tcl equivalent: set_option -write_apr_constrain 0|1

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
356 Synopsys Confidential Information February 2021

See also:

• Timing Reports, on page 162, for more information on the default timing
report, which is affected by the Timing Report panel settings.

• Analysis Menu, on page 401, information on creating additional custom
timing reports for certain device technologies.

Option Description

Number of Critical
Paths

Set the number of critical paths for the software to report.
Tcl equivalent: set_option -num_critical_paths numberOfPaths

Number of Start/End
Points

Specify the number of start and end points to see reported in
the critical path sections.
Tcl equivalent: set_option -num_startend_points numberOfPoints

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 357

High Reliability Panel
Use the High Reliability panel (Implementation Options dialog box) to implement safe
logic for the design. For more information about high reliability support, see
Chapter 15, Handling High-Reliability Designs.

Option Description

Preserve and Decode
Unreachable States (FSM,
Counters, Sequential Logic)

When enabled, this option turns off sequential
optimizations on all counters, FSMs, and sequential
logic, to increase the reliability of the circuit.
If you do not want to implement this globally, use the
syn_safe_case directive (syn_safe_case, on page 227)
on individual FSMs.
Tcl equivalent: set_option -safe_case 0|1

Report and Preserve CDC
paths

Enables or disables CDC reporting. The option is ON,
by default.
Tcl equivalent: set_option -report_preserve_cdc 1/0

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
358 Synopsys Confidential Information February 2021

VHDL Panel
You use the VHDL panel in the Implementation Options dialog box to specify
various language-related options. With mixed HDL designs, the VHDL and
Verilog panels are both available. See Setting Verilog and VHDL Options, on
page 87, of the User Guide for details.

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 359

The following table describes the options available.

Feature Description

Top Level Entity The name of the top-level entity of your design.
If the top-level entity does not use the default work
library to compile the VHDL files, you must specify the
library file where the top-level entity can be found. To
do this, the top-level entity name must be preceded by
the VHDL library followed by a period (.). To specify
VHDL library files, see Project Menu, on page 333 for
the Set VHDL Library command, or the File Options
Popup Menu Command, on page 473.
Tcl equivalent: set_option -top_module topLevelName

Default Enum Encoding The default enumeration encoding to use. This is only
for enumerated types; the FSM compiler automatically
determines the state-machine encoding, or you can
specify the encoding using the syn_encoding attribute.
Tcl equivalent: set_option -default_enum_encoding
encodingType
Note: Enable FSM Compiler before attempting to
change the encoding style.

Push Tristates When enabled (default), tristates are pushed across
process/block boundaries. For more information, see
Push Tristates Option, on page 367.
Tcl equivalent: set_option -compiler_compatible 0|1

Synthesis On/Off
Implemented as Translate
On/Off

When enabled, the software ignores any VHDL code
between synthesis_on and synthesis_off directives. It
treats these third-party directives like
translate_on/translate_off directives (see
translate_off/translate_on, on page 285 for details).
Tcl equivalent: set_option -synthesis_onoff_pragma 0|1

VHDL 2008 When enabled, allows you to use VHDL 2008 language
standards.
Tcl equivalent: set_option -vhdl2008 0|1

VHDL 2019 When enabled, allows you to implement VHDL 2019
conditional analysis. See VHDL 2019 Conditional
Analysis, on page 360.

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
360 Synopsys Confidential Information February 2021

VHDL 2019 Conditional Analysis
This section describes how to implement VHDL 2019 conditional analysis
identifiers and values:

1. Open the Implementation Options dialog box and select the VHDL tab.

2. Select the VHDL 2019 option to specify VHDL analysis.

Implicit Initial Value Support When enabled, the compiler passes init values through
a syn_init property to the mapper. For more information,
see VHDL Implicit Data-type Defaults, on page 336.
Tcl equivalent: set_option -supporttypedflt 0|1

Beta Features for VHDL Enables use of any VHDL beta features included in the
release. Enabling this checkbox is equivalent to
including a set_option -hdl_define -set
_BETA_FEATURES_ON_ directive in the project file.
Tcl equivalent: set_option -beta_vhfeatures 0|1

Loop Limit Overrides the default compiler loop limit value of 2000
in the RTL and sets a new global default. You can apply
limits on a per-loop basis using the Verilog loop_limit or
the VHDL syn_looplimit directive for individual loops.
For details about these directives, see loop_limit, on
page 47 and syn_looplimit, on page 121 in the
Attribute Reference.
Tcl equivalent: set_option -looplimit loopLimitValue

Generics Shows generics extracted with Extract Generic Constants.
You can override the default and set a new value for the
generic constant. The value is valid for the current
implementation.

Extract Generic Constants Extracts generics from the top-level entity and displays
them in the table.

Feature Description

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 361

3. Use the VHDL 2019 Conditional Analysis Identifiers File text box to set the file
containing
user-provided identifier/string pairs.

– The format is one identifier and one value per line.

– The values must be strings, enclosed in quotes. An example of lines
from a file is given below:

VHDL_VERSION "2019"
TOOL_TYPE "SYNTHESIS"
DEBUG_LEVEL "2"

The VHDL 2019 LRM includes pre-defined identifiers:

VHDL_VERSION <value>
TOOL_TYPE <value>
TOOL_VENDOR <value>
TOOL_NAME <value>
TOOL_EDITION <value>
TOOL_VERSION <value>

The <value> for these pre-defined identifiers depends on the version of the
Synplify tool used. Override these pre-defined identifiers values by providing
a file (VHDL 2019 Conditional Analysis Identifiers file) containing the
identifier/value pairs.

For example, the values from a Synplify project log file for the message CL324
are given below.

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
362 Synopsys Confidential Information February 2021

@N:CL324 : | Built-in conditional analysis identifier 'vhdl_version' has value
"2019"
@N:CL324 : | Built-in conditional analysis identifier 'tool_type' has value
"SYNTHESIS"
@N:CL324 : | Built-in conditional analysis identifier 'tool_vendor' has value
"SYNOPSYS"
@N:CL324 : | Built-in conditional analysis identifier 'tool_name' has value
"FPGA_COMPILER”
@N:CL324 : | Built-in conditional analysis identifier 'tool_edition' has value
"SYNPLIFY"

Inferring constraints from initial values for signals and variables
In VHDL 2019, constraints are automatically inferred from the initialization
expression.

Example: Subtype of the product is determined from the initial value expres-
sion.

variable product: sfixed := in1 * in2;

Initial values with conditional expressions
The when-else VHDL 2019 constructs can be correctly recognized and
processed by the compiler.

Example: Use of when-else construct in initial value expression.

variable zvar: signed(3 downto 0) := in1 when ival > 3
else in2 when ival=3
else in3

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 363

Verilog Panel
You use the Verilog panel in the Implementation Options dialog box to specify
various language-related options. With mixed HDL designs, the VHDL and
Verilog panels are both available. See Setting Verilog and VHDL Options, on
page 87 of the User Guide for details.

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
364 Synopsys Confidential Information February 2021

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 365

Feature Description

Top Level Module The name of the top-level module of your design.
Tcl equivalent: set_option -top_module moduleName

Compiler Directives and
Parameters

Shows design parameters extracted with Extract
Parameters. You can override the default and set a new
value for the parameter. The value is valid for the
current implementation.

Extract Parameters Extracts design parameters from the top-level module
and displays them in the table. See Compiler Directives
and Design Parameters, on page 370.

Compiler Directives Provides an interface where you can enter compiler
directives that you would normally enter in the code with
‘ifdef and ‘define statements. See Compiler Directives and
Design Parameters, on page 370.

Verilog Language - Verilog
2001

When enabled, the default Verilog standard for the
project is Verilog 2001. When both Verilog 2001 and
SystemVerilog are disabled, the default standard is Verilog
95. For information about Verilog 2001, see Verilog
2001 Support, on page 35.
You can override the default project standard on a per
file basis by selecting the file, right-clicking, and
selecting the File Options command (see File Options
Popup Menu Command, on page 473).
Tcl equivalent: set_option -vlog_std v2001

Verilog Language -
SystemVerilog

When enabled, the default Verilog standard for the
project is SystemVerilog which is the default standard
for all new projects. Enabling SystemVerilog automatically
enables Verilog 2001.
Tcl equivalent: set_option -vlog_std sysv

Push Tristates When enabled (default), tristates are pushed across
process/block boundaries. For details, see Push
Tristates Option, on page 367.
Tcl equivalent: set_option -compiler_compatible 0|1

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
366 Synopsys Confidential Information February 2021

Allow Duplicate Modules
CRM 9001291474

Allows the use of duplicate modules in your design.
When enabled, the last definition of the module is used
by the software and any previous definitions are ignored.
You should not use duplicate module names in your
Verilog design, therefore this option is disabled by
default. However, if you need to, you can allow for
duplicate modules by enabling this option.
Tcl equivalent: set_option -allow_duplicate_modules 0|1

Multiple File Compilation
Unit

When enabled (the default), the Verilog compiler uses the
compilation unit for modules defined in multiple files.
See SystemVerilog Compilation Units, on page 232 for
additional information.
Tcl equivalent: set_option -multi_file_compilation_unit 0|1

Beta Features for Verilog Enables use of any Verilog beta features included in the
release. Enabling this checkbox is equivalent to
including a set_option -hdl_define -set
_BETA_FEATURES_ON_ directive in the project file.
Tcl equivalent: set_option -beta_vfeatures 0|1

Loop Limit Overrides the default compiler loop limit value of 2000 in
the RTL and sets a new global default. You can apply
limits on a per-loop basis using the Verilog loop_limit or
the VHDL syn_looplimit directive for individual loops.
For details about these directives, see loop_limit, on
page 47 and syn_looplimit, on page 121 in the Attribute
Reference.
Tcl equivalent: set_option -looplimit loopLimitValue

Include Path Order
(Relative to Project File)

Specifies the search paths for the include commands in
the Verilog design files of your project. Use the buttons
in the upper right corner of the box to add, delete, or
reorder the paths. The include paths are relative. See
Updating Verilog Include Paths in Older Project Files,
on page 68 in the User Guide for additional information.

Feature Description

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 367

Push Tristates Option
Pushing tristates is a synthesis optimization option you set with Project->Imple-
mentation Options->Verilog or VHDL.

Description
When the Push Tristates option is enabled, the Synopsys FPGA compiler
pushes tristates through objects such as muxes, registers, latches, buffers,
nets, and tristate buffers, and propagates the high-impedance state. The
high-impedance states are not pushed through combinational gates such as
ANDs or ORs.

Library Directories or Files Specifies all the paths to the directories which contain
the Verilog library files to be included in your design for
the project. You can also add custom library files with
module definitions for the design in a single file. See
Verilog Single Library File Support, on page 369. The
names of files read from the library path must match
module names. Mismatches result in error messages.
Tcl equivalent:
set_option -library_path ./libraryPath or libraryFile

Library Extensions (space
separated)

Adds library extensions to Verilog library files included
in your design for the project and searches the directory
paths you specified that contain these Verilog library
files. To use library extensions, see Using Library
Extensions for Verilog Library Files, on page 45 in the
User Guide.
Tcl equivalent:
set_option -libext .libextName
Enter a space between each unique library extension.

Feature Description

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
368 Synopsys Confidential Information February 2021

If there are multiple tristates, the software muxes them into one tristate and
pushes it through. The software pushes tristates through loops and stores
the high impedance across multiple cycles in the register.

Advantages and Disadvantages
The advantage to pushing tristates to the periphery of the design is that you
get better timing results because the software uses tristate output buffers.

The Synopsys FPGA software approach to tristate inference matches the
simulation approach. Simulation languages are defined to store and propa-
gate 0, 1, and Z (high impedance) states. Like the simulation tools, the
Synopsys FPGA synthesis tool propagates the high-impedance states instead
of producing tristate drivers at the outputs of process (VHDL) or always
(Verilog) blocks.

The disadvantage to pushing tristates is that you might use more design
resources.

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 369

Effect on Other Synthesis Options
Tristate pushing has no effect on the syn_tristatetomux attribute. This is
because tristate pushing is a compiler directive, while the syn_tristatetomux
attribute is used during mapping.

Verilog Single Library File Support
You can add a single library file to your project for easier migration from a
VCS environment and to ensure their behaviors are consistent for the design.
To do this, either:

• Select the Add a file icon from the Verilog tab of the Implementation
Options panel. Then, specify the library file to be added to the project
from the Library Directories and Files option.

• Add the following Tcl command to your project file:

set_option -library_path {./libPath/libFile.v}

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
370 Synopsys Confidential Information February 2021

Compiler Directives and Design Parameters
When you click the Extract Parameters button in the Verilog panel (Implementation
Options dialog box), parameter values from the top-level module are displayed
in the table. You can also override the default by setting a new value for the
parameter. The value is valid for the current implementation only.

The Compiler Directives field provides an interface where you can enter compiler
directives that you would normally enter in the code using ‘ifdef and ‘define
statements. Use spaces to separate the statements. The directives you enter
are stored in the project file. For example, if you enter the directive shown
below to the Compiler Directives field of the Verilog panel:

The software writes the following statement to the project file:

set_option -hdl_define -set "ABC=30"
To define multiple variables in the GUI, use a space delimiter. For example:

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 371

The software writes the following statement to the prj file:

set_option hdl_define -set "ABC=30 XYZ=12 vj"
More information is provided for the following Verilog compiler directives:

Compiler Directive Description

__ALLOWNESTEDBLOCKCOMMENTSTART__ Allows for nested comment blocks.

_BETA_FEATURES_ON_ Explicitly enables beta HDL
language features.

IGNORE_VERILOG_BLACKBOX_GUTS Ignores the contents of a black box.

__SEARCHFILENAMEONLY__ Provides workarounds for archive
utility limitations.

SYN_COMPATIBLE Ensure compatibility between
different Synopsys tools.

__SYN_COMPATIBLE_INCLUDEPATH__ Specifies that the search path order
for includes to be the same as the
one used by the simulation tool
(VCS).

__SYN_STRICT_MODPORTS__ Requires that modports defined
strictly access the associated
interface ports specified in the
instantiation.

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
372 Synopsys Confidential Information February 2021

IGNORE_VERILOG_BLACKBOX_GUTS
When you use the syn_black_box directive, the compiler parses the contents of
the black box and can determine whether illegal syntax or incorrect code is
defined within it. Whenever this occurs, an error message is generated. You
can specify the IGNORE_VERILOG_BLACKBOX_GUTS compiler directive to
ignore the contents of the black box. However, make sure that the black box
is syntactically correct.

If you want the tool to ignore the contents of your black box, set the:

• Built-in compiler directive IGNORE_VERILOG_BLACKBOX_GUTS in the
Compiler Directives field of the Verilog panel on the Implementation Options
dialog box.

The software writes the following command to the project file:

set_option -hdl_define -set "IGNORE_VERILOG_BLACKBOX_GUTS"
• `define IGNORE_VERILOG_BLACKBOX_GUTS directive in the Verilog file.

This option is implemented globally for the project file.

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 373

Example of the IGNORE_VERILOG_BLACKBOX_GUTS Directive
Note that the IGNORE_VERILOG_BLACKBOX_GUTS directive ignores the contents
of the black box. However, whenever you use this directive, you must first
define the ports for the black box correctly. Otherwise, the IGNORE_VERIL-
OG_BLACKBOX_GUTS directive generates an error. See the following valid
Verilog example:

`define IGNORE_VERILOG_BLACKBOX_GUTS
module b1_fpga1 (A,B,C,D) /* synthesis syn_black_box */;
input B;
output A;
input [2:0] D;
output [2:0] C;
temp;
assign A = B;
assign C = D;

endmodule

module b1_fpga1_top (inout A, B, inout [2:0] C, D);
b1_fpga1 b1_fpga1_inst(A,B,C,D);
endmodule

_BETA_FEATURES_ON_
Beta features for the Verilog, SystemVerilog, or VHDL language must be
explicitly enabled. In the UI, a Beta Features checkbox is included on the VHDL
or Verilog tab of the Implementations Options dialog box. A _BETA_FEATURES_ON_
compiler directive is also available. This directive is specified with a set_option
-hdl_define command added to the project file as shown below:

set_option -hdl_define -set _BETA_FEATURES_ON_
The directive can also be added to the Compiler Directives field of the Verilog
panel.

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
374 Synopsys Confidential Information February 2021

Current beta features that must be explicitly enabled for the compiler include
the following:

__SEARCHFILENAMEONLY__
This directive provides a workaround for some known limitations of the
archive utility.

If Verilog 'include files belong in any of the following categories, you may
encounter problems when compiling a design after un-archiving:

1. The include paths have relative paths to the project file.

`include "../../../defines.h"
2. The include paths have absolute paths to the project file.

`include "c:/temp/params.h"

HDL Language Constructs Descriptions

Aggregates • Multi-assignments for array aggregates
• Assignments for the union of variable types

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 375

`include "/remote/sbg_home/user/params.h"
3. The include paths have the same file names, but are located in different

directories relative to the project file.

`include "../myflop.v"
…
`include "../../myflop.v"

Use the _SEARCHFILENAMEONLY_ directive to resolve categories 1 and 2
above. Category 3 is a known limitation; in this case it is recommended that
you adopt standard coding practices to avoid files with the same name and
different content.

When you un-archive a sar file that contains relative or absolute include
paths for the files in the project, you can add the _SEARCHFILENAMEONLY_
compiler directive to the unarchived project. This has the compiler remove
the relative/absolute paths from the `include and search only for the file
names.

This directive is specified with a set_option -hdl_define command added to an
implementation within the project file as shown below:

set_option -hdl_define -set "__SEARCHFILENAMEONLY__"
The directive can also be added to the Compiler Directives field of the Verilog
panel as shown below.

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
376 Synopsys Confidential Information February 2021

The compiler generates the following warning message whenever it extracts
include files using this directive:

@W: | Macro _SEARCHFILENAMEONLY_ is set: fileName not found
attempting to search for base file name fileName

__ALLOWNESTEDBLOCKCOMMENTSTART__
Verilog/SystemVerilog comments can be included in RTL code as a

• One-line comment starting with the characters // and ending with a
new line

• Block comment starting with /* and ending with */

However, nested block comments are not supported according to the LRM, so
most tools generate a warning and ignore these comments in the RTL code.
To match this behavior, the synthesis tools must also ignore various nested
block comments, such as:

/*....../*....*/
(An incorrect pair)

/*....../*......./*.......*/

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 377

To do this, the compiler uses the __ALLOWNESTEDBLOCKCOMMENTSTART__
directive and parses the first /* until it encounters the associated pair */, then
ignores all content between and including any number of these lines and the
block comments.

You can specify the __ALLOWNESTEDBLOCKCOMMENTSTART__ directive with a
set_option -hdl_define command added to the project file as shown below:

set_option -hdl_define -set __ALLOWNESTEDBLOCKCOMMENTSTART__
The directive can also be added to the Compiler Directives field of the Verilog
panel.

__SYN_COMPATIBLE_INCLUDEPATH__
Specifies that the search path order for includes to be the same as the one
used by the simulation tool (VCS), instead of the following default search
order, which searches the current logical library of the file where the module
is instantiated first, then the library path for the current logical library, and
lastly other logical libraries.

With __SYN_COMPATIBLE_INCLUDEPATH__, this is the search path order:

• Current working directory

• Include file directories, with first priority to RTL includes and then
include paths

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
378 Synopsys Confidential Information February 2021

You can specify the __SYN_COMPATIBLE_INCLUDEPATH__ directive with a
set_option -hdl_define command added to the project file as shown below:

set_option -hdl_define -set __SYN_COMPATIBLE_INCLUDEPATH__
The directive can also be added to the Compiler Directives field of the Verilog
panel.

SYN_COMPATIBLE
Use the SYN_COMPATIBLE macro to ensure compatibility between different
Synopsys tools. Some Synopsys tools, such as Design Compiler (DC), ignore
dynamic initialization assignments, unlike the synthesis tool. In the following
example, note the line logic a=b; DC leaves the output unconnected, because
DC does not handle inline assignments. By contrast, the synthesis tool
handles inline assignments, so input b drives the output q.

module test (b, q);
input b;
output q;
logic a = b;
assign q = a;
endmodule

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 379

The tool warns you of the difference in handling (warning message @W:
CG879), and treats the assignment as a regular assign. If you are using
modules from DC and need it to be compatible with the synthesis tool, there
are two ways to match the behavior and ignore the non-constant initial
values:

1. Specify a macro with a Tcl command.

set_option -hdl_define -set SYN_COMPATIBLE=DC

2. Specify a macro through the GUI.

– To specify it from the GUI, go to the Verilog tab of the Implementation
Options dialog box.

– In the Compiler Directives field, set SYN_COMPATIBLE=DC.

__SYN_STRICT_MODPORTS__
Use the __SYN_STRICT_MODPORTS__ macro to require that modports defined
strictly access the associated interface ports specified for the instantiation.
You might encounter the following error:

@E: CS172 The number of ports in the instantiation does not match the number of ports
in the module definition for instance instanceName

LO

 User Interface Commands Implementation Options Command

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
380 Synopsys Confidential Information February 2021

This can occur if you have specified a global interface instantiation for
modports using the “.*” syntax to access the ports. Set the __SYN_STRICT_-
MODPORTS__ macro to ensure mapping completes successfully.

1. To specify the macro with a Tcl command.

set_option -hdl_define -set __SYN_STRICT_MODPORTS__

2. To specify the macro through the GUI.

– To specify it from the GUI, go to the Verilog tab of the Implementation
Options dialog box.

– In the Compiler Directives field, set __SYN_STRICT_MODPORTS__.

Place and Route Panel
The Place and Route panel allows you to run selected place-and-route jobs after
design synthesis. To create a place-and-route job, see Add P&R Implementa-
tion Popup Menu Command, on page 478 or Options for Place & Route Jobs
Popup Menu Command, on page 480 for details.

Implementation Options Command User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 381

LO

 User Interface Commands Run Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
382 Synopsys Confidential Information February 2021

Run Menu
You use the Run menu to perform the following tasks:

• Compile a design, without mapping it.

• Synthesize (compile and map) or resynthesize a design.

• Check design syntax and synthesis code, and check source code errors.

• Check constraint syntax and how/if constraints are applied to the
design.

• Run Tcl scripts.

• Run all implementations at once.

• Check the status of the current job.

The following table describes the Run menu commands.

Command Description

Run Synthesizes (compiles and maps) the top-level design. For
the compile point flow, this command also synthesizes
any compile points whose constraints, implementation
options, or source code changed since the last synthesis
run. You can view the result of design synthesis in the
RTL and Technology views.
Same as clicking the Run button in the Project view.
Tcl equivalent: project -run

Resynthesize All Resynthesizes (compiles and maps) the entire design,
including the top level and all compile points, whether or
not their constraints, implementation options, or source
code changed since the last synthesis. If you do not want
to force a recompilation of all compile points, then use
Run->Run instead.
Tcl equivalent: project -run synthesis -clean

Compile Only Compiles the design into technology-independent
high-level structures. You can view the result in the RTL
view.
Tcl equivalent: project -run compile

Run Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 383

Write Output Netlist Only Generates an output netlist after synthesis has been run.
This command generates the netlists you specify on the
Implementation Results tab of the Implementation Options
dialog box.
You can also use this command in an incremental timing
analysis flow. See Generating Custom Timing Reports
with STA, on page 366 for details.
Tcl equivalent: project -run write_netlist

FSM Explorer Analyzes finite state machines contained in a design, and
selects the optimum encoding style. This menu command
is not available in some views.
Tcl equivalent: project -run fsm_explorer

Syntax Check Runs a syntax check on design code. The status bar at
the bottom of the window displays any error messages. If
the active window shows an HDL file, then the command
checks only that file; otherwise, it checks all project
source code files.
Tcl equivalent: project -run syntax_check

Synthesis Check Runs a synthesis check on your design code. This
includes a syntax check and a check to see if the
synthesis tool could map the design to the hardware. No
optimizations are carried out. The status bar at the
bottom of the window displays any error messages. If the
active window shows an HDL file, then the command
checks only that file; otherwise, it checks all project
source code files.
Tcl equivalent: project -run synthesis_check

Constraint Check Checks the syntax and applicability of the timing
constraints in the .fdc/.sdc file for your project and
generates a report (projectName_cck.rpt). The report
contains information on the constraints that can be
applied, cannot be applied because objects do not exist,
and wildcard expansion on the constraints.
See Constraint Checking Report, on page 173.
Tcl equivalent: project -run constraint_check

Arrange VHDL files Reorders the VHDL source files for synthesis.
Tcl equivalent: project -run hdl_info_gen fileorder

Command Description

LO

 User Interface Commands Run Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
384 Synopsys Confidential Information February 2021

Launch Identify
Instrumentor

Launches the Identify Instrumentor within the FPGA
synthesis tools; SeeWorking with the Identify Tools, on
page 556 to launch the debugger tools.

Launch Identify Debugger Launches the Identify debugger tool. For more
information, see: Working with the Identify Tools, on
page 556 of the User Guide.
To launch the Identify debugger in batch mode, use the
set_option -identify_debug_mode 1 Tcl command to create an
Identify implementation.

Launch SYNCore Opens the Synopsys FPGA IP Core Wizard. This tool helps
you build IP blocks such as memory or FIFO models for
your design.
See the Launch SYNCore Command, on page 390 for
details.

Configure and Launch
VCS Simulator

Allows you to configure and launch the VCS simulator.
See Configure and Launch VCS Simulator Command,
on page 390.

Run Tcl Script Displays the Open dialog box, where you choose a Tcl
script to run. See Run Tcl Script Command, on
page 385.

Run Implementations
Setup

Runs all selected implementations for one project at the
same time. See Run Implementations Setup Command,
on page 386.
Tcl equivalent: run -impl "implementation1 implementation2..."
-parallel

Job Status During compilation, tells you the name of the current job,
and gives you the runtime and directory location of your
design. This option is enabled during synthesis. See Job
Status Command, on page 388. Clicking in the status
area of the Project view is a shortcut for this command.

Command Description

Run Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 385

Run Tcl Script Command
Select Run->Run Tcl Script to display the Open dialog box, where you specify the
Tcl script file to execute. The File name area is filled automatically with the
wildcard string “*.tcl”, corresponding to Tcl files.

This dialog box is the same as that displayed with File->Open, except that no
Open as read-only check box is present. See Open Project Command, on
page 311, for an explanation of the features in the Open dialog box.

Next Error/Warning Shows the next error or warning in your source code file.

Previous Error/Warning Shows the previous error or warning in your source code
file.

Log File Message Filter Allows messages in the current session to be elevated in
severity (for example, promoted to an error from a
warning), lowered in severity (for example, demoting a
warning to a note), or suppressed from the log file after
the next run through the Log File Filter dialog box. For
more information, see Log File Message Controls, on
page 213.

Command Description

LO

 User Interface Commands Run Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
386 Synopsys Confidential Information February 2021

Run Implementations Setup Command
Select Run->Run Implementations Setup to run selected implementations of a
Project file in batch mode. To use the Batch Run Setup dialog box, check one or
more implementations from the list displayed and click the Run button.

Run Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 387

You can also choose to run the selected implementations with one or more of
the following options:

Command Description

Parallel Runs specified implementations concurrently. This
may require additional licenses.
Tcl equivalent: run -impl implName -parallel

Force Rerun Runs specified implementations, while ignoring
up-to-date checking. This option clears all
previous results and forces a complete rerun.
Tcl equivalent: run -impl implName -clean

Background Runs specified implementations in non-blocking
background mode.
Tcl equivalent: run -impl implName -bg

Run All Runs all implementations of the active project.
Tcl equivalent: run -all

LO

 User Interface Commands Run Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
388 Synopsys Confidential Information February 2021

Job Status Command
Select Run->Job Status to monitor the synthesis jobs that are running, their
run times, and their associated commands. This information appears in the
Job Status dialog box. This dialog box is also displayed when you click in the
status area of the Project view (see The Project View, on page 22).

You can cancel a displayed job by selecting it in the dialog box and clicking
Cancel Job.

Identify Instrumentor Command
The Identify Instrumentor command lets you start the integrated or stand-alone
Identify instrumentor from within the synthesis interface. Before you can use
this command, you must define an Identify implementation in the project
view. For a description of the work flow using the Identify instrumentor, see
Working with the Identify Tools, on page 556 in the User Guide.

Configure Identify Launch Dialog Box
Select Options->Configure Identify Launch to display this dialog box or which is
automatically displayed when the location of the Identify executable has not
been previously defined.

Run Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 389

Command Description

Select Instrumentor Click the radio button to select which version of the
instrumentor to use. You can choose either the
integrated or stand-alone Identify Instrumentor.

Locate Identify
Installation (for the
Identify Debugger)

A pointer to the Identify install directory. Use the (...)
button to navigate to the directory location.

Identify License Option Radio buttons to select the Identify license option. Select
Use current synthesis license when only a single TSL license
is available; select Use separate Identify Instrumentor license
when multiple licenses are available. With a single TSL
license, you are prohibited from compiling or mapping in
the synthesis tool while the Identify instrumentor is
open.

LO

 User Interface Commands Run Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
390 Synopsys Confidential Information February 2021

Launch Identify Debugger Command
The Launch Identify Debugger command launches a stand-alone version the
Identify Debugger software from the synthesis interface. Before you can use
this command, you must have an active Identify implementation and an
instrumented design. For a description of the work flow using the
Identify/Identify RTL Debugger software, see Working with the Identify Tools,
on page 556 in the User Guide.

Launch SYNCore Command
The SYNCore wizard helps you build IP cores. The wizard can compile RAM
and ROM memories including a byte-enable RAM, a FIFO, an
adder/subtractor, and a counter. The resulting Verilog models can be synthe-
sized and simulated. For details about using the wizard to build these
models, see the following topics:

• SYNCore FIFO Compiler, on page 250

• SYNCore RAM Compiler, on page 281

• SYNCore Byte-Enable RAM Compiler, on page 303

• SYNCore ROM Compiler, on page 319

• SYNCore Adder/Subtractor Compiler, on page 334

• SYNCore Counter Compiler, on page 358

Configure and Launch VCS Simulator Command
The Configure and Launch VCS Simulator command enables you to launch VCS
simulation from within the Synopsys FPGA synthesis tools. Additionally,
configuration information, such as libraries and options can be specified on
the Run VCS Simulator dialog box before running VCS simulation. You can
launch this simulation tool from the synthesis tools on Linux platforms only.

For a step-by-step procedure on setting up and launching this tool, see
Simulating with the VCS Tool, on page 565 in the User Guide.

The Run VCS SimulationType Simulation dialog box contains unique pages for
specific tasks, such as specifying simulation type, VCS options, and libraries
or test bench files. From this dialog box:

Run Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 391

• Choose a category, which simplifies the data input for each task.

• A task marked with () means that data has automatically been filled
in; however, an () requires that data must be filled in.

• You are prompted to save, after canceling changes made in the dialog
box.

Simulation Type
The following dialog box displays the Simulation Type task.

LO

 User Interface Commands Run Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
392 Synopsys Confidential Information February 2021

The Run VCS Simulator dialog box contains the following options:

Command Description

Choose a Category
Simulation Type

Select Simulation Type and choose the type of simulation to
run:
• Pre-synthesis - RTL simulation
• Post-synthesis - Post-synthesis netlist simulation
• Post-P&R - Post-P&R netlist simulation
See Simulation Type, on page 391 to view the dialog box.

Choose a Category
Top Level Module

Select Top Level Module and specify the top-level VCS module
or modules for simulation. You can use any combination of
the semi-colon (;), comma (,), or a space to separate
multiple top-level modules.
See Top Level Module, on page 394 to view the dialog box.

Choose a Category
VCS Options

Select VCS Options and specify options for each VCS step:
• Verilog compiler - VLOGAN command options for compiling

and analyzing Verilog, such as the -q option.
• VHDL compiler - VHDLAN options for compiling and

analyzing VHDL.
• Elaboration - VCS command options. The default setting is

-debug_all.
• Simulation - SIMV command options. The default setting is

-gui.
The default settings use the FPGA version of VCS and open
the VCS GUI for the debugger (DBE) and the waveform
viewer.
See VCS Options, on page 395 to view the dialog box.

Choose a Category
Libraries

Select Libraries and specify library files typically used for
Post-synthesis or Post-P&R simulation. These library files
are automatically populated in the display window. You can
choose to:
• Add a library
• Edit the selected library
• Remove the selected library
See Libraries, on page 396 and Changing Library and Test
Bench Files, on page 398 for more information.

Run Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 393

Choose a Category
Test Bench Files

Select Test Bench Files and specify the test bench files
typically used for Post-synthesis or Post-P&R simulation.
These test bench files are automatically populated in the
display window. You can choose to:
• Add a test bench file
• Edit the selected test bench file
• Remove the selected test bench file
See Test Bench Files, on page 396 and Changing Library
and Test Bench Files, on page 398 for more information.

Choose a Category
Run Directory

Select Run Directory and specify the results directory to run
the VCS simulation.
See Run Directory, on page 397 to view the dialog box.

Choose a Category
Post P&R Netlist

Select Post P&R Netlist and specify the post place-and-route
netlist to run the VCS simulation.
See Post P&R Netlist, on page 397 to view the dialog box.

Run Runs VCS simulation.

View Script View the script file with the specified VCS commands and
options before generating it. For an example, see VCS Script
File, on page 399.

Load From Use this option to load an existing VCS script.

Save As Generates the VCS script. The tool generates the XML script
in the directory specified.

Restore Defaults Restores all the default VCS settings.

Command Description

LO

 User Interface Commands Run Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
394 Synopsys Confidential Information February 2021

Top Level Module
The following dialog box displays the Top Level Module task.

Run Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 395

VCS Options
The following dialog box displays the VCS Options task.

Vendor Version
The following dialog box displays the Vendor Versions task.

LO

 User Interface Commands Run Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
396 Synopsys Confidential Information February 2021

Libraries
The following dialog box displays the Libraries task.

Test Bench Files
The following dialog box displays the Test Bench Files task.

Run Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 397

Run Directory
The following dialog box displays the Run Directory task.

Post P&R Netlist
The following dialog box displays the Post P&R Netlist task.

LO

 User Interface Commands Run Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
398 Synopsys Confidential Information February 2021

Changing Library and Test Bench Files
You can add Post-synthesis or Post place-and-route library files and test
bench files before you launch the VCS simulator. For example, specify
options on the following dialog box.

You can also edit library files and test bench files before you launch the VCS
simulator. For example: specify options on the following dialog box.

Run Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 399

VCS Script File
When you select the VCS Script button on the Run VCS Simulator dialog box, you
can view the VCS script generated by the synthesis software for this VCS run.
You can also save this VCS script to a file by clicking on Save a Copy.

LO

 User Interface Commands Run Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
400 Synopsys Confidential Information February 2021

Analysis Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 401

Analysis Menu
When you synthesize a design, a default timing report is automatically
written to the log file (projectName.srr), located in the results directory. This
report provides a clock summary, I/O timing summary, and detailed critical
path information for the design. However, you can also generate a custom
timing report that provides more information than the default report (specific
paths or more than five paths) or one that provides timing based on
additional analysis constraint files without rerunning synthesis.

Command Description

Timing Analyst Displays the Timing Report Generation dialog box to specify
parameters for a stand-alone customized report. See Timing
Report Generation Parameters, on page 402 for
information on setting these options, and Analyzing Timing
in Schematic Views, on page 358 in the User Guide for
more information.
If you click OK in the dialog box, the specified parameters
are saved to a file. To run the report, click Generate. The
report is created using your specified parameters.

Generate Timing Generates and displays a report using the timing option
parameters specified above. See the following:
• Generating Custom Timing Reports with STA, on

page 366 for specifics on how to run this report.
• Timing Report Generation Parameters, on page 402 for

information on setting parameters for the report. This
includes information on filtering and options for running
backannotation data and power consumption reports.

LO

 User Interface Commands Analysis Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
402 Synopsys Confidential Information February 2021

Timing Report Generation Parameters
You can use the Analysis->Timing Analyst command to specify parameters for a
stand-alone timing report. See Timing Reports, on page 162 for information
on the file contents.

Analysis Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 403

The following table provides brief descriptions of the parameters for running a
stand-alone timing report.

Timing Report Option Description

From or
To

Specifies the starting (From) or ending (To) point of the path
for one or more objects. It must be a timing start point
(From) or end (To) point for each object. Use this option in
combination with the others in the Filters section of the
dialog box. See Combining Path Filters for the Timing
Analyzer, on page 406 for examples of using filters.
Tcl equivalent: set_option -reporting_filter "-from {object1} -to
{object2}"

Through Reports all paths through the specified point or list of
objects. See for more information on using this filter. Use
this option in combination with the others in the Filters
section of the dialog box. See the following for additional
information:
• Timing Analyzer Through Points, on page 405
• Combining Path Filters for the Timing Analyzer, on

page 406.
Tcl equivalent: set_option -reporting_filter "-from {object1} -to
{object2} -through {object3}"

Generate
Asynchronous Clock
Report

Generates a report for paths that cross between clock
groups. Generally paths in different clock groups are
automatically handled as false paths. This option provides
a file that contains information on each of the paths and
can be viewed in a spreadsheet. This file is in the results
directory (projectName_async_clk.rpt.csv). For details on the
report, see Asynchronous Clock Report, on page 170.
Tcl equivalent: set_option -reporting_async_clock 0|1

Limit Number of Critical
Start/End Points to

Specifies the maximum number of start/end paths to
display for critical paths in the design. The default is 5. Use
this option in combination with the others in the Filters
section of the dialog box.
Tcl equivalent: set_option -num_startend_points
numberOfPaths

Limit Number of Paths
to

Specifies the maximum number of paths to report. The
default is 5. Use this option in combination with the others
in the Filters section of the dialog box.
Tcl equivalent: set_option -reporting_number_paths
numberOfPaths

LO

 User Interface Commands Analysis Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
404 Synopsys Confidential Information February 2021

Enable Slack Margin
(ns)

Limits the report to paths within the specified distance of
the critical path. Use this option in combination with the
others in the Filters section of the dialog box.
Tcl equivalent: set_option -reporting_margin slackValue

Open Report When enabled, clicking the Generate button opens the Text
Editor on the generated custom timing report specified in
the timing report file (.ta).

Open Schematic When enabled, clicking the Generate button opens a
Technology view showing the netlist specified in the timing
report netlist file (.srm).
Tcl equivalent: set_option -reporting_output_srm 0|1

Output Files Displays the name of the generated report:
• Async Clock Report File contains the spreadsheet data for

the asynchronous clock report. This file is not
automatically opened when report generation is complete.
You can locate this file in the results directory. Default
name is projectName_async_clk.rpt.csv (name cannot be
changed).

Tcl equivalent: set_option -reporting_async_clock 0|1
• Timing Analyst Results File is the standard timing report file,

located in the Implementation Results directory. The file
is also listed in the Project view. Default filename is
projectName.ta.

Tcl equivalent: set_option -reporting_filename filename.ta
• SRM File updates the Technology view so that you can

display the results of the timing updates in the HDL and
Physical Analyst tools. The file is also listed in the Project
view.

Tcl equivalent: set_option -reporting_netlist filename
For more details on any of these reports, see Timing
Reports, on page 162.

Constraint Files Enables analysis design constraint files (.adc) to be used for
stand-alone timing analysis only. See Input Files, on
page 144 for information on this file.

Generate Clicking this button generates the specified timing report
file and timing view netlist file (.srm) if requested, saves the
current dialog box entries for subsequent use, then closes
the dialog box.

Timing Report Option Description

Analysis Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 405

Timing Analyzer Through Points
You can specify through points for nets (n:), hierarchical ports (t:), or instanti-
ated cell pins (t:). You can specify the through points in two ways:

See Defining From/To/Through Points for Timing Exceptions, on page 139 in
the User Guide for more information about specifying through points.

Filtering Points: OR List of Through Points
This example reports the five worst paths through port bdpol or net aluout. You
can enter the through points as a space-separated list (enclosing the list in
braces is optional.)

OR list Enter the points as a space-separated list. The points are treated as an OR
list and paths are reported if they crosses any of the points in the list. For
example, when you type the following, the tool reports paths that pass
through points b or c:

{n:b n:c}
See Filtering Points: OR List of Through Points, on page 405.

AND
list

Enter the points in a product of sums (POS) format. The tool treats them as
an AND list, and only reports the path if it passes through all the points in
the list. The POS format for the timing report is the same as for timing
constraints. The POS format is as follows:

{n:b n:c},{n:d n:e}
This constraint translates as follows:
b AND d
OR b AND e
OR c AND d
OR c AND e
See Filtering Points: AND List of Through Points, on page 406.

LO

 User Interface Commands Analysis Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
406 Synopsys Confidential Information February 2021

Filtering Points: AND List of Through Points
This example reports the five worst paths passing through port bdpol and net
aluout. Enclose each list in braces { } and separate the lists with a comma.

Combining Path Filters for the Timing Analyzer
This section describes how to use a combination of path filters to specify what
you need and how to specify start and end points for path filtering.

Number and Slack Path Filters
The Limit Number of Paths To option specifies the maximum number of paths to
report and the Enable Slack Margin option limits the report to output only paths
that have a slack value that is within the specified value. When you use these

Analysis Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 407

two options together, the tighter constraint applies, so that the actual
number of paths reported is the minimum of the option with the smallest
value. For example, if you set the number of paths to report to 10 and the
slack margin for 1 ns, if the design has only five paths within 1 ns of critical,
then only five paths are reported (not the 10 worst paths). But if, for example,
the design has 15 paths within a 1 ns of critical, only the first 10 are
reported.

From/To/Through Filters
You can specify the from/to points for a path. You can also specify just a from
point or just a to point. The from and to points are one or more hierarchical
names that specify a port, register, pin on a register, or clock as object (clock
alias). Ports and instances can have the same names, so prefix the name with
p: for top-level port, i: for instance, or t: for hierarchical port or instance pin.
However, the c: prefix for clocks is required for paths to be reported.

The timing analyst searches for the from/to objects in the following order:
clock, port, bit port, cell (instance), net, and pin. Always use the prefix quali-
fier to ensure that all expected paths are reported. Remember that the timing
analyst stops at the first occurrence of an object match. For buses, all
possible paths from the specified start to end points are considered.

You can specify through points for nets, cell pins, or hierarchical ports.

You can simply type in from/to or through points. You can also cut-and-paste or
drag-and-drop valid objects from the RTL or Technology views into the appro-
priate fields on the Timing Report Generation dialog box. Timing analysis requires
that constraints use the Tech View name space. Therefore, it is recommended
that you cut-and-paste or drag-and-drop objects from the Technology view
rather than the RTL view.

LO

 User Interface Commands Analysis Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
408 Synopsys Confidential Information February 2021

This following examples show how to specify start, end, or through point
combinations for path filtering.

Filtering Points: Single Register to Single Register

Filtering Points: Clock Object to Single Register

Filtering Points: Single Bit of a Bus to Single Register

Analysis Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 409

Filtering Points: Single Bit of a Bus to Single Bit of a Bus

Filtering Points: Multiple Bits of a Bus to Multiple Bits of a Bus

Filtering Points: With Hierarchy
This example reports the five worst paths for the net foo:

LO

 User Interface Commands Analysis Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
410 Synopsys Confidential Information February 2021

Filtering Points: Through Point for a Net

Filtering Points: Through Point for a Hierarchical Port
This example reports the five worst paths for the hierarchical port bdpol:

Examples Using Wildcards
You can use the question mark (?) or asterisk (*) wildcard characters for
object searching and name substitution. These characters work the same
way in the synthesis tool environment as in the Linux environment.

Analysis Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 411

The ? Wildcard
The ? matches single characters. If a design has buses op_a[7:0], op_b[7:0], and
op_c[7:0], and you want to filter the paths starting at each of these buses,
specify the start points as op_?[7:0]. See Example: ? Wildcard in the Name, on
page 411 for another example.

The * Wildcard
The * matches a string of characters. In a design with buses op_a2[7:0],
op_b2[7:0], and op_c2[7:0], where you want to filter the paths starting at each of
these objects, specify the start points as op_*[*]. The report shows all paths
beginning at each of these buses and for all of the bits of each bus. See
Example: * Wildcard in the Name (With Hierarchy), on page 412 and
Example: * Wildcard in the Bus Index, on page 412 for more examples.

Example: ? Wildcard in the Name
The ? is not supported in bus indices.

LO

 User Interface Commands Analysis Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
412 Synopsys Confidential Information February 2021

Example: * Wildcard in the Name (With Hierarchy)
This example reports the five worst paths, starting at block rxu_fifo and ending
at block rxu_channel within module nac_core. Each register in the design has
the characters reg in the name.

Example: * Wildcard in the Bus Index
This example reports the five worst paths, starting at op_b, and ending at
d_out, taking into account all bits on these buses.

HDL Analyst Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 413

HDL Analyst Menu
In the Project View, the HDL Analyst menu contains commands that provide
project analysis in the following views:

• RTL View

• Technology View

This section describes the HDL Analyst menu commands for the RTL and
Technology views. Commands may be disabled, depending on the current
context. Generally, the commands enabled in any context reflect those avail-
able in the corresponding popup menus. The descriptions in the table
indicate when commands are context-dependent. For explanations about the
terms used in the table, such as filtered and unfiltered, transparent and
opaque, see Filtered and Unfiltered Schematic Views, on page 85 and Trans-
parent and Opaque Display of Hierarchical Instances, on page 91. For proce-
dures on using the HDL Analyst tool, see Analyzing With the Standard
HDL Analyst Tool, on page 336 of the User Guide.

For ease of use, the commands have been divided into sections that corre-
spond to the divisions in the HDL Analyst menu.

• HDL Analyst Menu->RTL and Technology View Submenus, on page 413

• HDL Analyst Menu: Hierarchical and Current Level Submenus, on
page 414

• HDL Analyst Menu: Filtering and Flattening Commands, on page 416

• HDL Analyst Menu: Timing Commands, on page 420

• HDL Analyst Menu: Analysis Commands, on page 420

• HDL Analyst Menu: Selection Commands, on page 424

• HDL Analyst Menu: FSM Commands, on page 424

HDL Analyst Menu->RTL and Technology View Submenus
This table describes the commands that appear on the HDL Analyst->RTL and
HDL Analyst->Technology submenus when the RTL or Technology View is active.
For procedures on using these commands, see Analyzing With the Standard
HDL Analyst Tool, on page 336 of the User Guide.

LO

 User Interface Commands HDL Analyst Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
414 Synopsys Confidential Information February 2021

HDL Analyst Menu: Hierarchical and Current Level Submenus
This table describes the commands on the HDL Analyst->Hierarchical and HDL
Analyst->Current Level submenus. For procedures on using these commands,
see Analyzing With the Standard HDL Analyst Tool, on page 336 of the User
Guide.

HDL Analyst Command Description

RTL->Hierarchical View Opens a new, hierarchical RTL view. The schematic
is unfiltered.

RTL->Flattened View Opens a new RTL view of your entire design, with a
flattened, unfiltered schematic at the level of generic
logic cells. See Usage Notes for Flattening, on
page 418 for some usage tips.

Technology->Hierarchical
View

Opens a new, hierarchical Technology view. The
schematic is unfiltered.

Technology->Flattened View Creates a new Technology view of your entire design,
with a flattened, unfiltered schematic at the level of
technology cells. See Usage Notes for Flattening, on
page 418 for tips about flattening.

Technology->Flattened to Gates
View

Creates a new Technology view of your entire design,
with a flattened, unfiltered schematic at the level of
Boolean logic gates. See Usage Notes for Flattening,
on page 418 for tips about flattening.

Technology->Hierarchical
Critical Path

Creates a new Technology view of your design, with
a hierarchical, filtered schematic showing only the
instances and paths whose slack times are within
the slack margin you specified in the Slack Margin
dialog. This command automatically enables HDL
Analyst->Show Timing Information.

Technology->Flattened Critical
Path

Creates a new Technology view of your design, with
a flattened, filtered schematic showing only the
instances and paths whose slack times are within
the slack margin you specified in the Slack Margin
dialog. This command automatically enables HDL
Analyst->Show Timing Information.
See Usage Notes for Flattening, on page 418 for
tips about flattening.

HDL Analyst Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 415

HDL Analyst Command Description

Hierarchical->Expand Expands paths from selected pins and/or ports up to
the nearest objects on any hierarchical level, according
to pin/port directions. The result is a filtered
schematic. Operates hierarchically, on lower schematic
levels as well as the current level.
Successive Expand commands expand the paths further,
based on the new current selection.

Hierarchical->Expand to
Register/Port

Expands paths from selected pins and/or ports, in the
port/pin direction, up to the next register, port, or black
box. The result is a filtered schematic. Operates
hierarchically, on lower schematic levels as well as the
current level.

Hierarchical->Expand Paths Shows all logic, on any hierarchical level, between two
or more selected instances, pins, or ports. The result is
a filtered schematic. Operates hierarchically, on lower
schematic levels as well as the current level.

Hierarchical->Expand
Inwards

Expands within the hierarchy of an instance, from the
lower-level ports that correspond to the selected pins, to
the nearest objects and no further. The result is a
filtered schematic. Operates hierarchically, on lower
schematic levels as well as the current level.

Hierarchical->Goto Net
Driver

Displays the unfiltered schematic sheet that contains
the net driver for the selected net. Operates
hierarchically, on lower schematic levels as well as the
current level.

Hierarchical->Select Net
Driver

Selects the driver for the selected net. The result is a
filtered schematic. Operates hierarchically, on lower
schematic levels as well as the current level.

Hierarchical->Select Net
Instances

Selects instances connected to the selected net. The
result is a filtered schematic. Operates hierarchically,
on lower schematic levels as well as the current level.

Current Level->Expand Expands paths from selected pins and/or ports up to
the nearest objects on the current level, according to
pin/port directions. The result is a filtered schematic.
Limited to all sheets on the current schematic level.
This command is only available if a HDL Analyst view is
open.
Successive Expand commands expand the paths further,
based on the new current selection.

LO

 User Interface Commands HDL Analyst Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
416 Synopsys Confidential Information February 2021

HDL Analyst Menu: Filtering and Flattening Commands
This table describes the filtering and flattening commands on the HDL Analyst
menu. For procedures on filtering and flattening, see Analyzing With the
Standard HDL Analyst Tool, on page 336 of the User Guide.

Current Level->Expand to
Register/Port

Expands paths from selected pins and/or ports,
according to the pin/port direction, up to the next
register, ports, or black box on the current level. The
result is a filtered schematic. Limited to all sheets on
the current schematic level.

Current Level->Expand
Paths

Shows all logic on the current level between two or more
selected instances, pins, or ports. The result is a filtered
schematic. Limited to the current schematic level (all
sheets).

Current Level->Goto Net
Driver

Displays the unfiltered schematic sheet that contains
the net driver for the selected net. Limited to all sheets
on the current schematic level.

Current Level->Select Net
Driver

Selects the driver for the selected net. The result is a
filtered schematic. Limited to all sheets on the current
schematic level.

Current Level->Select Net
Instances

Selects instances on the current level that are
connected to the selected net. The result is a filtered
schematic. Limited to all sheets on the current
schematic level.

HDL Analyst Command Description

Filter Schematic Filters your entire design to show only the selected
objects. The result is a filtered schematic. For more
information about using this command, see Filtering
Schematics, on page 340 of the User Guide.
This command is only available with an open HDL
Analyst view.

HDL Analyst Command Description

HDL Analyst Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 417

Flatten Current Schematic
(Unfiltered Schematic)

In an unfiltered schematic, the command flattens the
current schematic, at the current level and all levels
below. In an RTL view, the result is at the generic logic
level. In a Technology view, the result is at the
technology-cell level. See the next table entry for
information about flattening a filtered schematic.
This command does not do the following:
• Flatten your entire design (unless the current level is

the top level)
• Open a new view window
• Take into account the number of Dissolve Levels defined

in the Schematic Options dialog box
See Usage Notes for Flattening, on page 418 for tips.

HDL Analyst Command Description

LO

 User Interface Commands HDL Analyst Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
418 Synopsys Confidential Information February 2021

Usage Notes for Flattening
It is usually more memory-efficient to flatten only parts of your design, as
needed. The following are a few tips for flattening designs with different
commands. For detailed procedures, see Flattening Schematic Hierarchy, on
page 347 of the User Guide.

Flatten Current Schematic
(Filtered Schematic)

In a filtered schematic, flattening is a two-step process:
• Only unhidden transparent instances (including nested

ones) are flattened in place, in the context of the entire
design. Opaque and hidden hierarchical instances
remain hierarchical. The effect of this command is that
all hollow boxes with pale yellow borders are removed
from the schematic, leaving only what was displayed
inside them.

• The original filtering is restored.
In an RTL view, the result is at the generic logic level. In a
Technology view, the result is at the technology-cell level.
This command does not do the following:
• Flatten everything inside a transparent instance. It only

flattens transparent instances and any nested
transparent instances they contain.

• Open a new view window.
• Take into account the number of Dissolve Levels defined

in the Schematic Options dialog box.
See Usage Notes for Flattening, on page 418 for usage
tips.

Unflatten Current
Schematic

Undoes any flattening operations and returns you to the
original schematic, as it was before flattening and any
filtering.
This command is available only if you have explicitly
flattened a hierarchical schematic using HDL
Analyst->Flatten Current Schematic, for example. It is not
available for flattened schematics created directly with
the RTL and Technology submenus of the HDL Analyst menu.

HDL Analyst Command Description

HDL Analyst Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 419

RTL/Technology->Flattened View Commands

• Use Flatten Current Schematic to flatten only the current hierarchical level and
below.

• Flatten selected hierarchical instances with Dissolve Instances (followed by Flatten
Current Schematic, if the schematic is filtered).

• To make hierarchical instances transparent without flattening them, use Dissolve
Instances in a filtered schematic. This shows their details nested inside the
instances.

Flatten Current Schematic Command (Unfiltered View)

• Flatten selected hierarchical instances with Dissolve Instances.
• To see the lower-level logic inside a hierarchical instance, push into it instead of

flattening.
• Selectively flatten your design by hiding the instances you do not need, flattening,

and then unhiding the instances.
• Flattening erases the history of displayed sheets for the current view. You can no

longer use View->Back. You can, however, use UnFlatten Schematic to get an
unflattened view of the design.

Flatten Current Schematic Command (Filtered View)

• Flatten selected hierarchical instances with Dissolve Instances, followed by Flatten
Current Schematic.

• Selectively flatten your design by hiding the instances you do not need, flattening,
and then unhiding the instances.

• Flattening erases the history of displayed sheets for the current view. You can no
longer use View->Back. You can do the following:

• Use View->Back for a view of the transparent instance flattened in the context of
the entire design. This is the view generated after step 1 of the two-step flattening
process described above. Use UnFlatten Schematic to get an unflattened view of the
design.

LO

 User Interface Commands HDL Analyst Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
420 Synopsys Confidential Information February 2021

HDL Analyst Menu: Timing Commands
This table describes the timing commands on the HDL Analyst menu. For
procedures on using the timing commands, see Analyzing With the Standard
HDL Analyst Tool, on page 336 of the User Guide.

HDL Analyst Menu: Analysis Commands
This table describes the analysis commands on the HDL Analyst menu. For
procedures on using the analysis commands, see Analyzing With the
Standard HDL Analyst Tool, on page 336 of the User Guide.

HDL Analyst Command Description

Set Slack Margin Displays the Slack Margin dialog box, where you set the
slack margin. HDL Analyst->Show Critical Path displays
only those instances whose slack times are worse than
the limit set here. Available only in a Technology view.

Show Critical Path Filters your entire design to show only the instances
and paths whose slack times exceed the slack margin
set with Set Slack Margin, above. The result is flat if the
entire design was already flat. This command also
enables Show Timing Information (see below). Available only
in a Technology view.

Show Timing Information When enabled, Technology view schematics are
annotated with timing numbers above each instance.
The first number is the cumulative path delay; the
second is the slack time of the worst path through the
instance. Negative slack indicates that timing has not
met requirements. Available only in a Technology view.
For more information, see Viewing Timing Information,
on page 358 on the User Guide.

HDL Analyst Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 421

HDL Analyst Command Description

Isolate Paths Filters the current schematic to display only paths
associated with all the pins of the selected instances.
The paths follow the pin direction (from output to input
pins), up to the next register, black box, port, or
hierarchical instance.
If the selected objects include ports and/or pins on
unselected instances, the result also includes paths
associated with those selected objects.
The range of the operation is all sheets of a filtered
schematic or just the current sheet of an unfiltered
schematic. The result is always a filtered schematic.
In contrast to the Expand operations, which add to what
you see, Isolate Paths can only remove objects from the
display. While Isolate Paths is similar to Expand to
Register/Port, Isolate Paths reduces the display while
Expand to Register/Port augments it.

Show Context Shows the original, unfiltered schematic sheet that
contains the selected instance. Available only in a
filtered schematic.

Hide Instances Hides the logic inside the selected hierarchical
(non-primitive) instances. This affects only the active
HDL Analyst view; the instances are not hidden in other
HDL Analyst views.
The logic inside hidden instances is not loaded (saving
dynamic memory), and it is unrecognized by searching,
dissolving, flattening, expansion, and push/pop
operations. (Crossprobing does recognize logic inside
hidden instances, however.) See Usage Notes for Hiding
Instances, on page 423 for tips.

Unhide Instances Undoes the effect of Hide Instances: the selected hidden
hierarchical instances become visible (susceptible to
loading, searching, dissolving, flattening, expansion,
and push/pop operations). This affects only the current
HDL Analyst view; the instances are not hidden in other
HDL Analyst views.

LO

 User Interface Commands HDL Analyst Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
422 Synopsys Confidential Information February 2021

Show All Hier Pins Shows all pins on the selected transparent,
non-primitive instances. Available only in a filtered
schematic. Normally, transparent instance pins that are
connected to logic that has been filtered out are not
displayed. This command lets you display these pins
that connected to logic that has been filtered out. Pins
on primitives are always shown.

Dissolve Instances Shows the lower-level details of the selected non-hidden
hierarchical instances. The number of levels dissolved
is determined by the Dissolve Levels value in the HDL
Analyst Options dialog box (Standard HDL Analyst
Options Command, on page 445). For usage tips, see
Usage Notes for Dissolving Instances, on page 423.

Dissolve to Gates Dissolves the selected instances by flattening them to
the gate level. This command displays the lower-level
hierarchy of selected instances, but it dissolves
technology primitives as well as hierarchical instances.
Technology primitives are dissolved to generic synthesis
symbols. The command is only available in the
Technology view.
The number of levels dissolved is determined by the
Dissolve Levels value in the HDL Analyst Options dialog box
(Standard HDL Analyst Options Command, on
page 445).
Dissolving an instance one level redraws the current
sheet, replacing the hierarchical dissolved instance with
the logic you would see if you pushed into it using
Push/pop mode. Unselected objects or selected hidden
instances are not dissolved.
The effect of the command varies:
• In an unfiltered schematic, this command flattens the

selected instances. This means the history of
displayed sheets is removed. The resulting schematic
is unfiltered.

• In a filtered schematic, this command makes the
selected instances transparent, displaying their
internal, lower-level logic inside hollow boxes. History
is retained. You can use Flatten Schematic to flatten the
transparent instances, if necessary. The resulting
schematic if filtered.

HDL Analyst Command Description

HDL Analyst Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 423

Usage Notes for Hiding Instances
The following are a few tips for hiding instances. For detailed procedures, see
Flattening Schematic Hierarchy, on page 347of the User Guide.

• Hiding hierarchical instances soon after startup can often save memory.
After the interior of an instance has been examined (by searching or
displaying), it is too late for this savings.

• You can save memory by creating small, temporary working files:
File->Save As .srs or .srm files does not save the hidden logic (hidden
instances are saved as black boxes). Restarting the synthesis tool and
loading such a saved file can often result in significant memory savings.

• You can selectively flatten instances by temporarily hiding all the others,
flattening, then unhiding.

• You can limit the range of Edit->Find (see Find Command (HDL Analyst),
on page 317) to prevent it looking inside given instances, by temporarily
hiding them.

Usage Notes for Dissolving Instances
Dissolving an instance one level redraws the current sheet, replacing the
hierarchical dissolved instance with the logic you would see if you pushed
into it using Push/pop mode. Unselected objects or selected hidden instances
are not dissolved. For additional information about dissolving instances, see
Flattening Schematic Hierarchy, on page 347 of the User Guide.

The type (filtered or unfiltered) of the resulting schematic is unchanged from
that of the current schematic. However, the effect of the command is different
in filtered and unfiltered schematics:

• In an unfiltered schematic, this command flattens the selected
instances. This means the history of displayed sheets is removed.

• In a filtered schematic, this command makes the selected instances
transparent, displaying their internal, lower-level logic inside hollow
boxes. History is retained. You can use Flatten Schematic to flatten the
transparent instances, if necessary. This command is only available if
an HDL Analyst view is open.

LO

 User Interface Commands HDL Analyst Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
424 Synopsys Confidential Information February 2021

HDL Analyst Menu: Selection Commands
This table describes the selection commands on the HDL Analyst menu.

HDL Analyst Menu: FSM Commands
This table describes the FSM commands on the HDL Analyst menu.

HDL Analyst Command Description

Select All Schematic
->Instances
->Ports

Selects all Instances or Ports, respectively, on all sheets of
the current schematic. All other objects are unselected.
This does not select objects on other schematics.

Select All Sheet
->Instances
->Ports

Selects all Instances or Ports, respectively, on the current
schematic sheet. All other objects are unselected.

Unselect All Unselects all objects in all HDL Analyst views.

HDL Analyst Command Description

View FSM Displays the selected finite state machine in the FSM
Viewer. Available only in an RTL view.

View FSM Info File Displays information about the selected finite state
machine module, including the number of states, the
number of inputs, and a table of the states and
transitions. Available only in an RTL view.

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 425

Options Menu
Use the Options menu to configure the VHDL and Verilog compilers, customize
toolbars, and set options for the Project view, Text Editor, and HDL Analyst
schematics. When using certain technologies, additional menu commands let
you run technology-vendor software from this menu.

The following table describes the Options menu commands.

Command Description

Basic Options Menu Commands for all Views

Configure VHDL Compiler Opens the Implementation Options dialog box where you
can set the top-level entity and the encoding method
for enumerated types. State-machine encoding is
automatically determined by the FSM compiler or FSM
explorer, or you can specify it explicitly using the
syn_encoding attribute. See Implementation Options
Command, on page 346.

Configure Verilog Compiler Opens the Implementation Options dialog box where you
can specify the top-level module and the include search
path. See Implementation Options Command, on
page 346.

Configure Parallel or Compile
Point Process

Lets you specify the maximum number of parallel
synthesis jobs that can be run and how errors are
treated, for example with compile points. See
Configure Parallel or Compile Point Process
Command, on page 426.

Toolbars Lets you customize the toolbars.

Project View Options Sets options for organizing files in the Project view. See
Project View Options Command, on page 430.

Editor Options Sets your Text Editor syntax coloring, font, and tabs.
See Editor Options Command, on page 437.

P&R Environment Options Displays the environmental variable options set for the
place-and-route tool. See Place and Route
Environment Options Command, on page 440.

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
426 Synopsys Confidential Information February 2021

Configure Parallel or Compile Point Process Command
Use the Configure Parallel or Compile Point Process command to run parallel jobs
for multiprocessing with compile points or distributed processing. For
example, this option allows the software to run multiple, independent
compile point jobs simultaneously, providing additional runtime improve-
ments for the compile point synthesis flow.

This feature is supported on Windows and Linux for certain technologies
only. The command is disabled for technologies that are not supported.

Configure 3rd Party Tool
Options

Lets you invoke third-party tools, for example to
modify the files generated or debug problems from the
EDK tool within the FPGA synthesis products. See
Configure 3rd Party Tools Options Command, on
page 441.

Project Status Page Location Saves the current project status to a location of your
choice. See Project Status Page Location, on
page 442.

HDL Analyst Options Sets display preferences for New HDL Analyst
schematics (RTL and Technology views). See HDL
Analyst Options Command, on page 444.

Standard HDL Analyst
Options

Sets display preferences for HDL Analyst schematics
(RTL and Technology views). See Standard HDL
Analyst Options Command, on page 445.

Configure External Programs Lets you set browser and Acrobat Reader options on
Linux platforms. See Configure External Programs
Command, on page 454.

Options Menu Commands Specifically for the Project View

Configure Identify Launch If Identify software is not properly installed, you might
run into problems when you try to launch it from the
synthesis tools. Use the Configure Identify Launch dialog
box to help you resolve these issues. For guidelines to
follow, see Handling Problems with Launching
Identify, on page 560 in the User Guide.

Command Description

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 427

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
428 Synopsys Confidential Information February 2021

Field/Option Description

Maximum Number of Parallel
Synthesis Jobs

Sets the maximum number of parallel synthesis
jobs to run multiprocessing with compile points or
distributed processing. It displays the current value
from the .ini file, and allows you to reset it. Use this
option for multiprocessing or distributed processing
to run jobs in parallel.
Set a value based on the number of available
licenses. With each license, you can run four jobs in
parallel by default. See Multiprocessing With
Compile Points, on page 536.
When you set this option, it resets the
MaxParallelJobs value in the .ini file. See Setting
Number of Parallel Jobs, on page 513 in the User
Guide and Maximum Parallel Jobs, on page 429
for other ways to specify this value.

Continue on Error Allows the software to continue on an error in a
compile point and synthesize the rest of the design,
even when there might be problems with a portion
of the design.
The Continue on Error mode automatically enables the
MultiProcessing option to run with compile points
using a single license; this is the default. For
additional runtime improvements, you can specify
multiple synthesis jobs that run in parallel. See
Chapter 14, Improving Runtime for details.
For more information about Continue on Error mode
during compile-point synthesis, see Combining
Compile Points with Multiprocessing, on page 470
in the User Guide.
Tcl equivalent: set_option -continue_on_error 0|1

Copy Previous Compile-Point
Netlists to New Implementation

Allows you to copy compile point netlist (.srd) files
generated from the previous implementation into a
new implementation that has been created.

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 429

Maximum Parallel Jobs
There are three ways to specify the maximum number of parallel jobs:

License Utilization for Multiprocessing
When you decide to run parallel synthesis jobs, additional licenses may be
required for the compile point jobs. By default, four parallel jobs use one
license. For example, if you set the Maximum number of parallel synthesis jobs to
12, the synthesis tool consumes one license to run 4 compile point jobs and
can utilize the two additional licenses to run 8 more parallel jobs if they are
available for your computing environment. Licenses are released as jobs
complete, and then consumed by new jobs which need to run.

The actual number of licenses utilized depends on the following:

1. Synthesis software scheme for the compile point requirements used to
determine the maximum number of parallel jobs or licenses a particular
design tries to use.

2. Value set on the Configure Parallel or Compile Point Process dialog box.

.ini File Set this variable in the MaxParallelJobs variable in the
product ini file:

[JobSetting]
MaxParallelJobs=<n>

This value is used by the UI as well as in batch mode, and
is effective until you specify a new value. You can change it
with the Options->Configure Parallel or Compile Point Process
command.

Tcl Variable Set the following variable in a Tcl file, the project files, or
from the Tcl window:

set_option -max_parallel_jobs=<n>
This is a global option that is applied to all project files and
their implementations. This value takes effect immediately.
If you set it in the Tcl file or project file, it remains in effect
until you specify a new value. If you set it from the Tcl
window, the max_parallel_jobs value is only effective for the
session and will be lost when you exit the application.

Configure Compile Point
Process Command

The Maximum Number of Parallel Synthesis Jobs option displays
the current ini file value and allows you to reset it.

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
430 Synopsys Confidential Information February 2021

3. Number of licenses actually available. You can use Help->Preferred License
Selection to check the number of available license. If you need to increase
the number of available licenses, you can specify multiple license types.
For more information, see Using Different License Types for
Multiprocessing, on page 538.

Note that factors 1 and 3 above can change during a single synthesis run.
The number of jobs equals the number of licenses, which then equates the
lowest value of these three factors.

Project View Options Command
Select Options->Project View Options to display the Project View Options dialog box,
where you define how projects appear and are organized in the Project view.

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 431

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
432 Synopsys Confidential Information February 2021

The following table describes the Project View Options dialog box features.

Field/Option Description

Show Project File Library When enabled, displays the corresponding VHDL
library next to each source VHDL filename, in the
Project Tree view of the Project view. For example,
with library dune, file pc.vhd is listed as [dune] pc.vhd
if this option is enabled, and as pc.vhd if it is
disabled.
See also Set VHDL Library Command, on
page 337, for how to change the library of a file.

Beep when a job completes When enabled, sounds an audible signal whenever
a project finishes running.

View Project Files in Type
Folders

When enabled, organizes project files into separate
folders by type. See View Project Files in Type
Folders Option, on page 434 and add_file, on
page 23.

View Project Files in Custom
Folders

When enabled, allows you to view files contained
within the custom folders created for the project.
See View Project Files in Custom Folders Option,
on page 434.

Order files alphabetically When enabled, the software orders the files within
folders alphabetically instead of in project order.
You can also use the Sort Files option in the Project
view.

Autoload projects from previous
session

Enable/Disable automatically loading projects from
the previous session. Otherwise, projects will not be
loaded automatically. This option is enabled by
default. See Loading Projects With the Run
Command, on page 435.

Auto-save project on Run Enable/Disable automatically saving projects when
the Run button is selected. See Automatically Save
Project on Run, on page 436.

Open Log file following Run Enable/Disable automatically opening and
displaying log file after a synthesis run.

Show all files in results directory When enabled, shows all files in the
Implementation Results view. When disabled, the
results directory shows only files generated by the
synthesis tool itself.

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 433

Allow multiple projects to be
opened

When enabled, multiple projects are displayed at
the same time. See Allow Multiple Projects to be
Opened Option, on page 435.

View log file in HTML Enable/Disable viewing of log file report in HTML
format versus text format. See Log File, on
page 157.

Project file name display From the drop-down menu, select one the following
ways to display project files:
• File name only
• Relative file path
• Full file path

Use links in SRR log file to
individual job logs

Determines if individual job logs use links in the
srr log file. You can select:
• off—appends individual job logs to the srr log file.
• on—always link to individual job logs.
• if_up_to_date—only links to individual job logs if the

module is up-to-date.

Field/Option Description

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
434 Synopsys Confidential Information February 2021

View Project Files in Type Folders Option

View Project Files in Custom Folders Option
Selecting this option enables you to view user-defined custom folders that
contain a predefined subset of project files in various hierarchy groupings or
organizational structures. Custom folders are distinguished by their blue
color. For information on creating custom folders, see Creating Custom
Folders, on page 70 in the User Guide.

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 435

Allow Multiple Projects to be Opened Option

Loading Projects With the Run Command
When you load a project that includes the project -run command, a dialog box
appears in the Project view with the following message:

Project run command encountered during project load. Are you sure
you want to run?

Project 2

Project 1

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
436 Synopsys Confidential Information February 2021

You can reply with either yes or no.

Automatically Save Project on Run
If you have modified your project on the disk directory since being loaded into
the Project view and you run your design, a message is generated that infers
the UI is out-of-date.

The following dialog box appears with a message to which you must reply.

You can specify one of the following:

• Yes — The Auto-save project on Run switch on the Project View Options dialog
box is automatically enabled, and then your design is run.

• No — The Auto-save project on Run switch on the Project View Options dialog
box is not enabled, but your design is run.

• Cancel — Closes this message dialog box and does not run your design.

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 437

Editor Options Command
Select Options->Editor Options to display the Editor Options dialog box, where you
select either the internal text editor or an external text editor.

The following table describes the Editor Options dialog box features.

Feature Description

Select Editor Select an internal or external editor.

• Synopsys Editor Sets the Synopsys text editor as the default text editor.

• External Editor Uses the specified external text editor program to view text
files from within the Synopsys tool. The executable specified
must open its own window for text editing. See Using an
External Text Editor, on page 44 of the User Guide for a
procedure.
Note: Files opened with an external editor cannot be
crossprobed.

Options Set text editing preferences.

• File Type You can define text editor preferences for the following file
types: project files, HDL files, log files, constraint files, and
default files.

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
438 Synopsys Confidential Information February 2021

Color Options
Click in the Foreground or Background field for the corresponding object in the
Syntax Coloring field to display the color palette.

• Font Lets you define fonts to use with the text editor.

• Font Size Lets you define font size to use with the text editor.

• Keep Tabs
• Tab Size

Lets you define whether to use tab settings with the text
editor.

• Syntax Coloring Lets you define foreground or background syntax coloring to
use with the text editor. See Color Options, on page 438.

Feature Description

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 439

You can set syntax colors for some common syntax options listed in the
following table.

Syntax Description

Comment Comment strings contained in all file types.

Error Error messages contained in the log file.

Gates Gates contained in HDL source files.

Info Informational messages contained in the log file.

Keywords Generic keywords contained in the project, HDL source,
constraint, and log files.

Line Comment Line comments contained in the HDL source, C, C++, and log
files.

Note Notes contained in the log file.

SDCKeyword Constraint-specific keywords contained in the .sdc file.

Strength Strength values contained in HDL source files.

String DQ String values within double quotes contained in the project,
HDL source, constraint, C, C++, and log files.

String SQ String values within single quotes contained in the project,
HDL source, constraint, C, C++, and log files.

SVKeyword SystemVerilog keywords contained in the Verilog file.

Types Type values contained in HDL source files.

Warning Warning messages contained in the log file.

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
440 Synopsys Confidential Information February 2021

Place and Route Environment Options Command
Select Options->P&R Environment Options to display the environment variable
options set for the place-and-route tool. This option allows you to change the
specified location of the selected place-and-route tool set on your system; the
software locates and runs this updated version of the P&R tool for the current
session of the synthesis tool.

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 441

Configure 3rd Party Tools Options Command
Use the Configure 3rd Party Tools Option command to invoke third-party tools,
such as the Embedded Development Kit (EDK) from within the Synopsys
FPGA products. This allows you to modify source files or libraries added to
your synthesis projects from within the third-party tool directly. Use the
following dialog box to configure the location and common arguments for the
tools.

For more information, see Invoking Third-Party Vendor Tools, on page 530 in
the User Guide.

The 3rd Party Tool Configuration dialog box includes the following options:

Feature Description

Application Tag Name Specifies an application or Tcl procedure name. Type
in the name or select a preconfigured application from
the list.

Direct Execution Sets up the direct invocation of a third-party tool from
within the FPGA synthesis tool, using the path defined
for the executable in Application Name with Path.

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
442 Synopsys Confidential Information February 2021

Project Status Page Location
Lets you save the current project status to a location of your choice. You can
then view the project status offline with any browser on a mobile device.

Tcl Mode Sets up the tool to execute the Tcl procedure from
within the FPGA synthesis tool, using the path defined
for the procedure in Tcl Procedure Name. You must
execute this Tcl script from the Tcl window to register
the invocation procedure for the third-party tool.

Application Name with Path When using direct execution, specifies the path to the
executable for the application.

Tcl Procedure Name When using Tcl mode, specifies the Tcl procedure
name.

Command Argument if any Defines any additional arguments for the third-party
application. You can select arguments from the
drop-down list or type them.
Note: For internal Synopsys tools, you must include
the $Syncode parameter.

Procedure Arguments if any Defines additional arguments for the Tcl procedure.
You can select arguments from the drop-down list or
type them.

Feature Description

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 443

The following table describes the Project Status Page Location dialog box options.

Option Description

Select Implementation Select the implementation for the design for
which you want synthesis results. You can
select multiple implementations.

Select Status Page Location
• Use Environment Variable

SYNPLIFY_REMOTE_REPORT_LOCATION
• Save to Different Location

Select the location on your computer where
you want to save the project status reports:
• Use the environment variable to specify a

standard location for the project status
reports. Choose this option if you always
want to save the reports to the same
location.

• Choose a location for the project status
reports for the current implementation.
You can change this as often as you like.

For more information, see Accessing Results
Remotely, on page 195 in the User Guide.

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
444 Synopsys Confidential Information February 2021

HDL Analyst Options Command
Select Options->Schematic Options to display a dialog box where you define
preferences for the HDL Analyst schematic. For details see Setting Schematic
Preferences, on page 242 in the User Guide.

The following options are on the HDL Analyst Options panel.

Field/Option Description

Default View Specify how you want the schematic views to display:
• Clocks View - Displays all sequential elements

connected to clock nets so that clocks in the design
can be debugged.

• Dataflow View - Displays objects from a left to right
datapath flow. This is the default.

Routing Detail Specify how the tool determines the detailed routing
for the design:
• Standard - This is the default.
• Quick - Direct net connections

Display Instance Limit When enabled, uses the specified limit to display
instances. The default is 10000.

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 445

Standard HDL Analyst Options Command
Select Options->HDL Analyst Options to display the HDL Analyst Options dialog box,
where you define preferences for the HDL Analyst schematic views (RTL and
Technology views). Some preferences take effect immediately, others only
take effect in the next view that you open. For details, see Setting Schematic
Preferences, on page 305 in the User Guide.

For information about the options, see the following, which correspond to the
tabs on the dialog box:

• Text Panel, on page 446

• General Panel, on page 447

• Sheet Size Panel, on page 451

• Visual Properties Panel, on page 453

Expand Instance Limit When enabled, uses the specified limit to expand
instances. The default is 1000.

Grow Label Zoom Factor Specify a zoom factor for labels displayed in the
schematic view.
Select a value between 1 and 10, where labels are
shown increasing in size respectively. Changes will
appear in the next opened schematic view. The default
is 2.

Allow Automatic Grouping When enabled, automatic grouping is performed.

Show View Names When enabled, module names are displayed.

Show Instance Names When enabled, instance names are displayed.

Show Port Names When enabled, port names are displayed.

Show Pin Names When enabled, pin names are displayed.

Show design out of date
popup message

When enabled, shows the design out of date popup
message.

Restore Defaults Click this button to reset all options to their defaults.

Field/Option Description

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
446 Synopsys Confidential Information February 2021

Text Panel

The following options are on the Text panel.

Field/Option Description

Show text Enables the selective display of schematic labels. Which
labels are displayed is governed by the other Show * features
and Instance name, described below.

Show port name When enabled, port names are displayed.

Show symbol name When enabled, symbol names are displayed.

Show pin name When enabled, pin names are displayed.

Show bus width When enabled, connectivity bit ranges are displayed near
pins (in square brackets: []), indicating the bits used for
each bus connection.

Instance name Determines how to display instance names:
• Show instance name
• Show short instance name
• No instance name

Set Defaults Set the dialog box to display the default values.

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 447

General Panel

The following options are on the General panel.

Field/Option Description

Show hierarchy browser When enabled, a hierarchy browser is present at the
left pane of RTL and Technology views.

Show tooltip in schematic When enabled, displays tooltips that hover objects as
you move over them in the RTL and Technology
schematic views.

Compact symbols When enabled, symbols are displayed in a slightly
more compact manner, to save space in schematics.
When this is enabled, Show cell interior is disabled.

Show cell interior When enabled, the internal logic of cells that are
technology-specific primitives (such as LUTs) is shown
in Technology views. This is not available if Compact
symbols is enabled.

Show sheet connector index When enabled, sheet connectors show connecting
sheet numbers - see Sheet Connectors, on page 89.

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
448 Synopsys Confidential Information February 2021

Color-coded Clock Nets
Clock nets are displayed with the color green in the RTL and Technology
views.

Compress buses When enabled, buses having the same source and
destination instances are displayed as bundles, to
reduce clutter. A single bundle can connect to more
than one pin on a given instance. The display of a
bundle of buses is similar to that of a single bus.

No buses in technology view When enabled, buses are not displayed, they are only
indicated as bits in a Technology View. This applies
only to flattened views created by HDL
Analyst->Technology->Flattened View (or Flattened to Gates
View), not to hierarchical views that you have flattened
(using, for example, HDL Analyst->Flatten Current
Schematic).

Display color-coded clock
nets

Displays clock nets in the HDL Analyst View with the
color green. See Color-coded Clock Nets, on
page 448.

Dissolve levels The number of levels to dissolve, during HDL
Analyst->Dissolve Instances. See Dissolve Instances, on
page 422.

Instances added for
expansion

The maximum number of instances to add during any
operation (such as HDL Analyst->Hierarchical->Expand)
that results in a filtered schematic. When this limit is
reached, you are prompted to continue adding more
instances.

Maximum Routable
Endpoints

Specifies the maximum number of endpoints for nets,
which the synthesis tool routes to their explicit
connection endpoints in the design to improve HDL
Analyst performance.
The default value is set to 2000. You can use this
option to change this value. For more information, see
Results of Maximum Routable Endpoints in the HDL
Analyst View, on page 449.

Field/Option Description

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 449

Results of Maximum Routable Endpoints in the HDL Analyst View
Use the Maximum Routable Endpoints option to specify the maximum number of
endpoints for nets in the design to be explicitly routed to their connection
endpoints. When you adjust the default value of 2000 sufficiently, improve-
ments in performance can be seen in the HDL Analyst tool.

If the number of connection endpoints routed for the design has been
reduced, you will see dashes (---) for these endpoints in the HDL Analyst (RTL
or Technology) view. Note that you can still select these endpoints and
perform any viable operation for these nets as shown in the RTL view below.

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
450 Synopsys Confidential Information February 2021

Note: Occasionally, the software does not route nets for some reason.
You will see dashes (---) for these endpoints in the HDL Analyst
(RTL or Technology) view. Note that you can still select these nets
and perform any viable operation for them.

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 451

Sheet Size Panel

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
452 Synopsys Confidential Information February 2021

The following options are on the Sheet Size panel.

Maximum instances Defines the maximum number of instances to display
on a single sheet of an unfiltered schematic. If a given
hierarchical level has more than this number of
instances, then it will be partitioned into multiple
sheets. See Multiple-sheet Schematics, on page 102.

Maximum filtered instances Defines the maximum number of instances to display
on a filtered schematic sheet, at any visible
hierarchical level. This limit is applied recursively, at
each visible level, when
• the sheet itself is a level, and
• each transparent instance is a level (even if inside

another transparent instance).
Whenever a given level has more child instances inside
it than the value of Filtered Instances, it is divided into
multiple sheets.
(Only children are counted, not grandchildren or
below. Instance A is a child of instance B if it is inside
no other instance that is inside B.)
In fact, at each level except the sheet itself, an
additional margin of allowable child instances is added
to the Maximum filtered instances value, increasing its
effective value. This means that you can see more
child instances than Maximum filtered instances itself
implies.
The Maximum filtered instances value must be at least the
Maximum instances value. See Multiple-sheet
Schematics, on page 102.

Maximum Instance Ports Defines the maximum number of instance pins to
display on a schematic sheet.

Options Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 453

Visual Properties Panel
Controls the display of the selected property in open HDL Analyst views. The
properties are displayed as colored boxes on the relevant objects. To display
these properties, the View->Visual Properties command must also be enabled.
For more information about properties, see Viewing Object Properties, on
page 297 in the User Guide.

The following options are on the Visual Properties panel.

Show Toggles the property name and value is displayed in a
color-coded box on the object.

Property Sets the properties to display.

RTL Enables or disables the display of visual properties in the RTL
view.

Tech View Enables or disables the display of visual properties of in the
Technology view.

Value Only Displays only the value of an item and not its property name.

LO

 User Interface Commands Options Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
454 Synopsys Confidential Information February 2021

Configure External Programs Command
This command is for Linux platforms only. It lets you specify the web browser
and PDF reader for accessing Synopsys support (see Web Menu, on page 455
for details) and online documentation.

Field/Option Description

Web Browser Specify your web browser as an absolute path. You can use the
Browse button to locate the browser you need. The default is
netscape. If your browser requires additional environment
settings, you must do so outside the synthesis tool.

Acrobat Reader Specify your PDF reader as an absolute path. You can use the
Browse button to locate the reader you need. The default is
acroread.

Web Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 455

Web Menu
This menu contains commands that access up-to-date information from
Synopsys Support.

Command Description

Synopsys Home Opens the Synopsys home web page for
Synopsys products.

FPGA Implementation Tools Opens the Synopsys FPGA design solution web
page for Synopsys FPGA products. You can find
information about the full line of Synopsys FPGA
Implementation products here.

LO

 User Interface Commands Help Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
456 Synopsys Confidential Information February 2021

Help Menu
There are four help systems accessible from the Help menu:

• Help on the Synopsys FPGA synthesis tool (Help->Help Topics)

• Help on standard Tcl commands (Help->TCL)

• Help on using messages (Help->Error Messages)

• Help on using online help (Help->How to Use Help)

The following table describes the Help menu commands.

Command Description

Help Topics Displays hyperlinked online help for the product.

Additional Products Displays the Synopsys FPGA family of products with a
brief description.

How to Use Help Displays help on how to use Synopsys FPGA online help.

PDF Documents Displays an Open dialog box with hyperlinked PDF
documentation for the product including user guide and
reference manuals. You need Adobe Acrobat Reader® to
view the PDF files.

Error Messages Displays help on the message viewer.

TCL Displays help for Tcl commands.

Mouse Stroke Tutor Displays the Mouse Stroke Tutor dialog box which provides
information on the available mouse strokes - see Using
Mouse Strokes, on page 53 for details.

License Agreement Displays the Synopsys software license agreement.

Floating License Usage Specifies the number of floating licenses currently being
used and their users.

Help Menu User Interface Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 457

Preferred License Selection Command
Select Help->Preferred License to display the Select Preferred License dialog box,
listing the available licenses for you to choose from. Select a license from the
License Type column and click Save. Close and restart the Synopsys tool, then
the new session uses the preferred license you selected.

Preferred License
Selection

Displays the floating licenses that are available for your
selection. See Preferred License Selection Command, on
page 457.

Tip of the Day Displays a daily tip on how to use the Synopsys tools
better. See Tip of the Day Command, on page 458.

About this program Displays the About dialog box, showing the tool product
name, license expiration date, customer identification
number, version number, and copyright.
Clicking the Versions button in the About dialog box displays
the Version Information dialog box, listing the installation
directory and the versions of all the compiler and mapper
programs for the tool.

Command Description

LO

 User Interface Commands Help Menu

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
458 Synopsys Confidential Information February 2021

Tip of the Day Command
Select Help->Tip of the Day to display a dialog box with a daily tip on how to best
use the Synopsys tool. This dialog box also displays automatically when you
first start the tool. To prevent it from redisplaying at product startup, deselect
Show Tips at Startup.

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 459

C H A P T E R 6

GUI Popup Menu Commands

In addition to the GUI menu commands described in Chapter 5, User Inter-
face Commands, the FPGA synthesis tools also have context-sensitive
commands that are accessed from popup or right-click menus in different
parts of the interface. Most of these commands have an equivalent menu
command. This chapter only describes the unique commands that are not
documented in the previous chapter.

See the following sections for details:

• Popup Menus, on page 460

• Project View Popup Menus, on page 466

• RTL and Technology Views Popup Menus, on page 483

LO

 GUI Popup Menu Commands Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
460 Synopsys Confidential Information February 2021

Popup Menus
Popup menus, available by clicking the right mouse button, offer quick ways
to access commonly used menu commands that are specific to the view
where you click. Commands shown greyed out (dimmed) are currently
inaccessible. Popup menu commands generally duplicate commands avail-
able from the regular menus, but sometimes have commands that are only
available from the popup menu. The following table lists the popup menus:

Watch Window Popup Menu
The Watch window popup menu contains the following commands:

For more information on the Watch window and the Configure Watch dialog
box, see Watch Window, on page 37.

Popup Menu Description

Project view See Project View Popup Menus, on page 466 for details.

SCOPE window Contains commonly used commands from the Edit menu.

Watch Window See Watch Window Popup Menu, on page 460 for details.

Tcl window Contains commands from the Edit menu. For details, see Edit
Menu Commands for the Text Editor, on page 312.

Text Editor window See Text Editor Popup Menu, on page 461 for more
information.

RTL and Technology
views

See RTL and Technology Views Popup Menus, on page 483.

FSM viewer See FSM Viewer Popup Menu, on page 463.

Command Description

Configure Watch Displays the Log Watch Configuration dialog box, where you
choose the implementations to watch.

Refresh Refreshes (updates) the window display.

Clear Parameters Empties the Watch window.

Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 461

Tcl Window Popup Menu
The Tcl window popup menu contains the Copy, Paste, and Find commands
from the Edit menu, as well as the Clear command, which empties the Tcl
window. For information on the Edit menu commands available in the Tcl
window, see Edit Menu Commands for the Text Editor, on page 312.

Text Editor Popup Menu
The popup menu in the Text Editor window contains the following commonly
used text-editing commands from the Edit menu: Undo, Redo, Cut, Copy, Paste,
and Toggle Bookmark. In addition, HDL Analyst specific commands appear
when both an HDL Analyst view and it’s corresponding HDL source file is
open. For details of these commands, see Edit Menu Commands for the Text
Editor, on page 312 and HDL Analyst Menu, on page 413.

The following table lists the commands that are unique to the popup menu:

Log File Popup Menu
The popup menu in the log file contains commands that control operations in
the log file. The popup menu differs when the log file is opened in the HTML
mode or in the ASCII text mode.

Log File Filter Dialog Box

The Log File Filter dialog box is available by selecting Log File Message Filter from
the log file popup menu when the log file is opened in the HDML mode. The
dialog box allows messages in the current session to be promoted or demoted
in severity or suppressed from the log files for subsequent sessions. For
additional information on using this dialog box, see Log File Message
Controls, on page 213 of the User Guide.

Command Description

Filter Analyst Filters your design to show only the currently selected objects in the
HDL text file. This is the same as HDL Analyst->Filter Schematic.

Select in
Analyst

Crossprobes from the Text Editor and selects the objects in the HDL
Analyst view. To use this command, the Enhanced Text Crossprobing
(option must be engaged.

LO

 GUI Popup Menu Commands Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
462 Synopsys Confidential Information February 2021

The following table describes the dialog box functions.

Function Description

Log File
Messages
window

Displays the message ID and text and the default message type
of messages generated during the current session.

Suppress
Message button

Suppresses the selected note, warning, or advisory message. The
selected message is removed from the upper Log File Messages
window and displayed in the lower window with the Override
column indicating suppress status. Note that error messages
cannot be suppressed.

Make Error button Promotes the status of the selected warning (or note) to an error.
The selected message is removed from the upper Log File
Messages window and displayed in the lower window with the
Override column indicating error status.

Make Warning
button

Promotes the status of the selected note to a warning. The
selected message is removed from the upper Log File Messages
window and displayed in the lower window with the Override
column indicating warning status.

Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 463

FSM Viewer Popup Menu
The popup menu in the FSM Viewer contains commands that determine what
is shown in the FSM Viewer. The following table lists the popup commands in
the FSM Viewer.

Make Note button Demotes the status of the selected warning to a note. The
selected message is removed from the upper Log File Messages
window and displayed in the lower window with the Override
column indicating note status.

Remove Override
button

Removes the override status on the selected message in the lower
window and returns the message to the upper Log File Messages
window.

Read Message
File

Select the message filter file (project.pfl) to be read for the project.

lower window Lists the status of all messages that have been promoted,
demoted, or suppressed.

OK button Updates the status of any changed messages in the .pfl file. Note
that you must recompile/resynthesize the design before any
message status changes become effective.

Command Description

Properties Displays the Object Properties dialog box and view properties of
a selected state or transition. Information about a selected
transition includes the conditions enabling the transition and
the identities of its origin and destination states. Information
about a selected state includes its name, RTL encoding, and
mapped encoding.

Filter See View Menu: FSM Viewer Commands, on page 327.

Unfilter See View Menu: FSM Viewer Commands, on page 327.

FSM Properties Displays the Object Properties dialog box indicating the FSM
identity and location, encoding style, reset state, and the
number of states and transitions.

Function Description

LO

 GUI Popup Menu Commands Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
464 Synopsys Confidential Information February 2021

Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 465

Field/Option Description

Icons indicating the object type: FSM, state, or transition.

Name The name of the selected state or transition, or FSM if
nothing is selected.

Inst Path The full name and position of the state machine in the
hierarchy.

Signal Name Prefix The position of the state machine in the hierarchy.

Encoding The style of encoding used for the state machine. This can be
onehot, sequential, gray, or safe. See syn_encoding, on
page 77, for information on changing the encoding type.

Reset State The initial state of the FSM: the active state after resetting.

States The number of states in the state machine.

Transitions The number of transitions in the state machine.

RTL Encoding The name (address) of the selected state, as referred to in the
RTL (HDL) file.

Mapped Encoding The encoding of the selected state.

From The origin state of the selected transition.

To The destination state of the selected transition.

Conditions (min-terms) The conditions enabling the selected transition, as defined in
the RTL (HDL) file.

LO

 GUI Popup Menu Commands Project View Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
466 Synopsys Confidential Information February 2021

Project View Popup Menus
The popup menu commands available in the Project view are context-sensi-
tive, depending on what is currently selected and where in the view you click
to open the popup menu. Most commands duplicate commands from the File,
Project, Run, and Options menus.

Project Management View Popup Commands
The following table describes the Project Management view commands that
are not duplicated on other menus in the tool:

Command Description

Project Management View, No Selections

Open Project Displays the Open Project Dialog. See Open Project
Command, on page 311.

New Project Creates a new empty project in the Project Window.

Refresh Refreshes the display.

Project View Options Displays the Project View Options dialog. See Project View
Options Command, on page 430.

Project Selected

Open as Text Opens the selected file in the Text Editor.

Add File Displays the Add Files to Project dialog. See Add Source File
Command, on page 334.

Synthesize Compiles and maps the selected design.

Compile Only Compiles the selected design.

Write Output Netlist
Only

Writes the mapped output netlist to structural Verilog (.vm)
or VHDL (.vhm) format.
Same as enabling:
• Write Mapped Verilog Netlist
• Write Mapped VDHL Netlist
on the Implementation Results tab of the Implementation
Options dialog box.

Arrange VHDL Files Reorders the VHDL source files.

Project View Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 467

Save Project Displays the Save Project As dialog box.

Close Project Closes your project.

Project Folder or File Selected

Add Folder Creates a folder with the new name you specified and adds it
to the Project view. See Add Folder Command, on page 470.

Rename Folder Renames an existing folder with the new name you specified
in the Project view. See Rename Folder Command, on
page 470.

Delete Folder Deletes the specified folder and all its contents as necessary.
See Delete Folder Command, on page 471.

Remove from Folder Removes the selected file from its corresponding folder.

Place in Folder Places the selected file into the folder you specify.

Launch Tools->Run
Vendor Tool

Launches the vendor application or Tcl procedure tool from
the Project view for the selected file of folder. See Vendor
Tool Invocation Popup Menu Command, on page 472.

Constraint File Selected

File Options Displays the File Options dialog box. See File Options Popup
Menu Command, on page 473.

Open Opens the SCOPE window.

Open as Text Opens the selected file in the Text Editor.

Copy File Displays the Copy File dialog box, where you copy the
selected file and add it to the current project. You specify a
new name for the file. See Copy File Popup Menu
Command, on page 475.

Change File Opens the Source File dialog box where you choose a new file
to replace the selected file. See Change File Command, on
page 337.

Remove File From
Project

Removes the file from the project.

HDL File Selected

File Options Displays the File Options dialog box. See File Options Popup
Menu Command, on page 473.

Command Description

LO

 GUI Popup Menu Commands Project View Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
468 Synopsys Confidential Information February 2021

Open Opens the file in the Text Editor.

Syntax Check Runs a syntax check on your design code. Reports errors,
warnings, or notes in the Tcl Window.

Synthesis Check Runs a synthesis check on your design code. This includes a
syntax check and a check to see if the synthesis tool could
map the design to the hardware. No optimizations are
performed. Reports errors, warnings, or notes in the Tcl
Window.

Copy File Displays the Copy File dialog box, where you copy the
selected file and add it to the current project. You specify a
new name for the file. See Copy File Popup Menu
Command, on page 475.

Change File Opens the Source File dialog box where you choose a new file
to replace the selected file. See Change File Command, on
page 337.

Remove File From
Project

Removes the file from the project.

Implementation Selected

Implementation
Options

Displays the Implementation Options dialog box. See
Implementation Options Command, on page 346.

Change
Implementation Name

Displays the Implementation Name dialog box, where you
rename the selected implementation. See Change
Implementation Popup Menu Commands, on page 476.

Copy Implementation Copies the selected implementation and adds it to the
current project with the name you specify in the dialog box.
See Change Implementation Popup Menu Commands, on
page 476.

Remove
Implementation

Removes the selected implementation from the project.

RTL View Creates an RTL View based on the properties of the selected
implementation.

Tech View Creates a Technology View based on the properties of the
selected implementation.

Add P&R
Implementation

Displays the Add New Place & Route Task dialog box where you
set options to run place & route after synthesis. See Add
P&R Implementation Popup Menu Command, on page 478

Command Description

Project View Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 469

Project Management Commands
The following table lists the popup commands in the Project Management
views that are not available on the tool command menus. The Project
Management view consists of two tabs, and the table lists the popup
commands available in both tabs.

For the Design Hierarchy tab, the tools support all the project management
commands listed in Project Management View Popup Commands, on
page 466, as well as the unique commands listed here.

Run Starts a synthesis run on your design.

Identify Implementation Selected

Identify Instrumentor Displays the Identify Instrumentor tool, so that you can
instrument signals based on the RTL and SRS netlist (after
compile). See Working with the Identify Tools, on page 556.

Launch Identify
Debugger

Launches the Identify Debugger tool to debug the
instrumented design. See Working with the Identify Tools,
on page 556.

Place & Route Implementation Selected

Add Place & Route
Job

Displays the Add New Place & Route Task dialog box, so you
can set options and run placement and routing. See Add
P&R Implementation Popup Menu Command, on
page 478.

Remove Place &
Route Job

Deletes the place-and-route implementation from the
project.

Run Place & Route
Job

Runs the place-and-route job for the design.

Command Description

LO

 GUI Popup Menu Commands Project View Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
470 Synopsys Confidential Information February 2021

Project Management View Popup Folder Commands
The Project view popup menu includes commands for manipulating folders.

Add Folder Command
Use this option to add a folder to the Project view.

Rename Folder Command
Use this option to rename an existing folder in the Project view.

Command Description

Project Management View -> Project FilesTab Popup Commands

All Synplify project
management
commands

Refer to the table in Project Management View Popup
Commands, on page 466 for descriptions of these
commands.

Project Options With the project selected, displays project properties such as
name and location. See Project Options Popup Menu
Command, on page 477.

Show Compile Points Displays the compile points of the selected implementation
and lets you edit them. See Show Compile Points Popup
Menu Command, on page 476.

P & R Options With a place-and-route implementation selected, displays
the Options for Place & Route on Implementation dialog box, so
you can change options and rerun placement and routing.
See Options for Place & Route Jobs Popup Menu
Command, on page 480 for a description of the features.

Project View Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 471

Delete Folder Command
Use this option to delete a folder from the Project view.

This dialog box includes the following options:

Feature Description

Yes Select Yes to delete the folder and all files contained in
the folder from the Project view.

No Select No to delete just the folder from the Project view.

Cancel Select Cancel, to discontinue the operation.

LO

 GUI Popup Menu Commands Project View Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
472 Synopsys Confidential Information February 2021

Vendor Tool Invocation Popup Menu Command
Use the Vendor Tool Invocation command to invoke third-party tools, such as the
Embedded Development Kit (EDK) from within the Synopsys FPGA products.
This allows you to modify source files or libraries added to your synthesis
projects from within the third-party tool directly. Use the following dialog box
to run the vendor tools.

For more information, see Invoking Third-Party Vendor Tools, on page 530 in
the User Guide.

The Vendor Tool Invocation dialog box includes the following options:

Feature Description

Application Tag Name Specifies an application or Tcl procedure name. Type
in the name or select a preconfigured application from
the list.

Additional Options Defines any additional arguments for the Tcl
procedure or third-party application. You can select
arguments from the drop-down list or type them.
Note: For internal Synopsys tools, you must include
the $Syncode parameter.

Project View Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 473

File Options Popup Menu Command
To display the File Options dialog box, right-click on a project file and select File
Options from the popup menu. Specify the path as relative or absolute when
listing the file in the project (prj) file and if the file is to be passed to the
place-and-route tool or used only for simulation.

Command Preview Sets up the direct invocation of a third-party tool from
within the FPGA synthesis tool, using the path defined
for the executable in Application Name with Path or to
execute the Tcl procedure from within the FPGA
synthesis tool, using the path defined for the
procedure in Tcl Procedure Name.

Run The synthesis tool launches the third-party tool or
runs the Tcl procedure with the arguments you
specified.

Field/Option Description

File Path Path to the selected file.

File Type The folder type for the selected file. You can select the file folder
type from a large list of file types.
Changing the folder file type does not change the file contents or
its extension; it simply places the file in the specified Project view
folder. For example, if you change the file type of a VHDL file to
Verilog, the file retains its Verilog extension, but is moved from the
VHDL folder to the Verilog folder.

Library Names Name of the library which must be compatible with the HDL
simulator. For VHDL files, the dialog box is the same as that
accessed by Project->Set VHDL Library - see Set VHDL Library
Command, on page 337.

Last modified Date the file was last modified.

Save file The format for the path type: choose either Relative to Project (the
default) or with an Absolute Path.

Feature Description

LO

 GUI Popup Menu Commands Project View Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
474 Synopsys Confidential Information February 2021

The following is the Verilog dialog box:

Verilog Standard
(Verilog only)

Select the Verilog file type from the menu: Use Project Default,
Verilog 95, Verilog 2001, or SystemVerilog.
Use Project Default sets the type of the selected file to the default for
the project (new projects default to SystemVerilog).

Use for Place
and Route

Determines if files are automatically passed to the backend
place-and-route tool. The files are copied to the place-and-route
implementation directory and then invoked when the
place-and-route tool is run.

Use for
Simulation Only

Determines if files are only to be used for simulation. For example,
files such as test benches containing HDL constructs used only for
simulation can be specified using this option.

Field/Option Description

Project View Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 475

The following is the VHDL dialog box:

Copy File Popup Menu Command
With a file selected, select the Copy File popup menu command to copy the
selected file and add it to the current project. This displays the Copy File dialog
box where you specify the name of the new file.

LO

 GUI Popup Menu Commands Project View Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
476 Synopsys Confidential Information February 2021

Change Implementation Popup Menu Commands
With an implementation selected, right-click and select the Change Implementa-
tion Name or Copy Implementation popup menu commands to display a dialog
box where you specify the new name.

Show Compile Points Popup Menu Command
With an implementation selected, select the Show Compile Points popup menu
command to display the Compile Points dialog box and view or edit the compile
points of the selected implementation.

Compile points are only available for certain technologies. For more informa-
tion on compile points and the compile-point synthesis flow, see Compile
Point Types, on page 440 and Synthesizing Compile Points, on page 455 of
the User Guide.

Command Description

Change
Implementation Name

The implementation name you specify is the new name for
the implementation.

Copy Implementation The currently selected implementation is copied and saved
to the project with the new implementation name you
specify.

Project View Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 477

The columns Enable, Module, Type, and Comment in the dialog box correspond
to the columns Enabled, Module, Type, and Comment in the SCOPE spreadsheet
for the compile point. The File column lists the top-level constraint file where
the compile point is defined.

To open and edit the SCOPE spreadsheet for a compile point, either
double-click the row of the compile point or select it and click the Edit Compile
Point button.

Project Options Popup Menu Command
With a project selected, select the Project Options popup menu command to
display the Project Properties dialog box and change the implementation of a
project.

In the dialog box, select an implementation in the Implementations list, then
click OK or Apply to make it the active implementation of the project.

LO

 GUI Popup Menu Commands Project View Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
478 Synopsys Confidential Information February 2021

Add P&R Implementation Popup Menu Command
Displays the Add New Place & Route Task dialog box. For information about
using this command for place-and-route encapsulation, see Running P&R
Automatically after Synthesis, on page 554 in the User Guide.

Project View Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 479

Command Description

Place & Route
Implementation Name

Enter a name for the place & route implementation. Do
not use spaces for the implementation name.

Flow Settings

Run Place & Route
following synthesis

Enable/disable the running of the place & route tool from
the synthesis tool immediately following synthesis.

LO

 GUI Popup Menu Commands Project View Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
480 Synopsys Confidential Information February 2021

Once the par implementation is created, then you can right-click and perform
any of the following options:

• P&R Options—See Options for Place & Route Jobs Popup Menu
Command, on page 480.

• Add Place & Route Job—See Add P&R Implementation Popup Menu
Command, on page 478.

• Run Place & Route Job—Runs the place-and-route job.

Options for Place & Route Jobs Popup Menu Command
You can select a place-and-route job for a particular implementation, easily
change options and then rerun the job. These options are the same found on
the Options for Place & Route on Implementation dialog box. For a description of
these options, see Add P&R Implementation Popup Menu Command, on
page 478.

Add Place & Route
Options File
Existing Options File

This option opens the Select Place & Route option file dialog
box where you browse for an existing place & route
options file. See Running P&R Automatically after
Synthesis, on page 554 for information about using this
feature.

Add Place & Route
Options File
Create New Options File

This option opens the Create Place & Route Options File
dialog box where you specify a new place & route options
file. See Running P&R Automatically after Synthesis, on
page 554 for information about creating a new options
file.

Command Description

Project View Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 481

LO

 GUI Popup Menu Commands Project View Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
482 Synopsys Confidential Information February 2021

 in the User Guide

RTL and Technology Views Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 483

RTL and Technology Views Popup Menus
Some commands are only available from the popup menus in the RTL and
Technology views, but most of the commands are duplicates of commands
from the HDL Analyst, Edit, and View menus. The popup menus in the RTL and
Technology views are nearly identical. See the following:

• Hierarchy Browser Popup Menu Commands, on page 483

• RTL View and Technology View Popup Menu Commands, on page 483

Hierarchy Browser Popup Menu Commands
The following commands become available when you right-click in the
Hierarchy Browser of an RTL or Technology view. The Filter, Hide Instances, and
Unhide Instances commands are the same as the corresponding commands in
the HDL Analyst menu. The following commands are unique to this popup
menu.

RTL View and Technology View Popup Menu Commands
The commands on the popup menu are context-sensitive, and vary
depending on the object selected, the kind of view, and where you click. In
general, if you have a selected object and you right-click in the background,
the menu includes global commands as well as selection-specific commands
for the objects.

Most of the commands duplicate commands available on the HDL Analyst
menu (see HDL Analyst Menu, on page 413). The following table lists the
unique commands.

Command Description

Collapse All Collapses all trees in the Hierarchy Browser.

Filter Highlights and filters objects such as ports, instances, and
primitives in the HDL analyst window.

Reload Refreshes the Hierarchy Browser. Use this if the Hierarchy
Browser and schematic view do not match.

Hide/Unhide
Instances

Hides or unhides selected instances in the HDL analyst window.
For more information on hidden instances, see Hidden
Hierarchical Instances, on page 93.

LO

 GUI Popup Menu Commands RTL and Technology Views Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
484 Synopsys Confidential Information February 2021

Common Commands

Command See ...

Show Critical Path HDL Analyst Menu: Timing Commands, on
page 420.

Timing Analyst HDL Analyst Menu: Timing Commands, on
page 420.

Find Find Command (HDL Analyst), on page 317.

Filter Schematic HDL Analyst Menu: Filtering and Flattening
Commands, on page 416.

Push/Pop Hierarchy HDL Analyst Menu->RTL and Technology
View Submenus, on page 413.

Select All Schematic HDL Analyst Menu: Selection Commands, on
page 424.

Select All Sheet HDL Analyst Menu: Selection Commands, on
page 424.

Unselect All HDL Analyst Menu: Selection Commands, on
page 424.

Flatten Schematic HDL Analyst Menu: Filtering and Flattening
Commands, on page 416.

Unflatten Current Schematic HDL Analyst Menu: Filtering and Flattening
Commands, on page 416.

HDL Analyst Options HDL Analyst Options Command, on page 444.

SCOPE->Edit Attributes
(object name)

Opens a SCOPE window where you can enter
attributes for the selected object. It displays the
Select Constraint File dialog box (Edit Attributes
Popup Menu Command, on page 487), where you
select the constraint file to edit. If no constraint file
exists, you are prompted to create one.

RTL and Technology Views Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 485

SCOPE->Edit Compile Point
Constraints (module
moduleName)

For technologies that support compile points, it
opens a SCOPE window where you can enter
constraints for the selected compile point. It
displays the Select Compile Point Definition File dialog
box and lets you create or edit a compile-point
constraint file for the selected region or instance.
See Edit Attributes Popup Menu Command, on
page 487.

SCOPE->Edit Module
Constraints (module
moduleName)

Opens a SCOPE window so you can define module
constraints for the selected module). If you do not
have a constraint file, it prompts you to create one.
The file created is a separate, module-level
constraint file.

Instance Selected

Command See ...

Isolate Paths Isolate Paths, on page 421.

Expand Paths Hierarchical->Expand Paths, on page 415.

Current Level Expand Paths Current Level->Expand Paths, on page 416.

Show Context Show Context, on page 421.

Hide Instance Hide Instances, on page 421.

Unhide Instance Unhide Instances, on page 421.

Show All Hier Pins Show All Hier Pins, on page 422.

Dissolve Instance Dissolve Instances, on page 422.

Dissolve to Gates Dissolve to Gates, on page 422.

Port Selected

Command See ...

Expand to Register/Port Hierarchical->Expand to Register/Port, on page 415.

Expand Inwards Hierarchical->Expand Inwards, on page 415.

Current Level->Expand Current Level->Expand, on page 415.

Current Level->Expand to
Register/Port

Current Level->Expand to Register/Port, on page 416.

Current Level->Expand Paths Current Level->Expand Paths, on page 416.

LO

 GUI Popup Menu Commands RTL and Technology Views Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
486 Synopsys Confidential Information February 2021

Set Net Color Popup Menu Command

The set net color command sets the color of the selected net in the HDL Analyst
for the current session. To use the command, select the desired net or nets in
the RTL view and select set net color from the popup menu to display the dialog
box.

Properties Properties Popup Menu Command, on page 487.

Net Selected

Command See ...

Goto Net Driver Hierarchical->Goto Net Driver, on page 415.

Select Net Driver Hierarchical->Select Net Driver, on page 415.

Select Net Instances Hierarchical->Select Net Instances, on page 415.

Current Level->Goto Net Driver Current Level->Goto Net Driver, on page 416.

Current Level->Select Net
Driver

Current Level->Select Net Driver, on page 416.

Current Level->Select Net
Instances

Current Level->Select Net Instances, on page 416.

Set Net Color Sets the color of the selected net from a color pallet.
For details, see Set Net Color Popup Menu
Command, on page 486.

RTL and Technology Views Popup Menus GUI Popup Menu Commands

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 487

Double click the corresponding color in the Color column to display the color
pallet and then double click the desired color and click OK. Nets can be
grouped and assigned to the same color by selecting the same group number
in the Group Number column.

Properties Popup Menu Command
The software displays property information about the selected object when
you right-click on a net, instance, pin, or port in an HDL Analyst view. See
Visual Properties Panel, on page 453 or Viewing Object Properties, on
page 297 in the User Guide for more information about viewing object proper-
ties.

Edit Attributes Popup Menu Command
You use the Select a Constraint File dialog box to choose or create a constraint
file. You can open the constraint file and edit it. For technologies that support
the compile points, it lets you create or edit a compile-point constraint file for
the selected region or instance.

LO

 GUI Popup Menu Commands RTL and Technology Views Popup Menus

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
488 Synopsys Confidential Information February 2021

Synplify Pro for Microchip Edition Command Reference © 2021 Synopsys, Inc.
February 2021 Synopsys Confidential Information 489

Index

Symbols
__ALLOWNESTEDBLOCKCOMMENTSTA

RT__ directive 376
SEARCHFILENAMEONLY

directive 374
! character, find command 159
? wildcard

Timing Analyzer 411
.srr file

See log file
.srs file

See srs file

Numerics
64-bit mapping 350

A
aborting a synthesis run 388
About this program command 457
add files

-_include tcl argument 24
Add Implementation command 333
Add P&R Implementation command 478
Add Place & Route Options File

command 480
Add Place and Route Job command 478
Add Source File command 333
add_file Tcl command 23
add_folder Tcl command 27
add_to_collection command 204
Additional Products command 456
annotated properties for analyst

object properties for filtering 155
append_to_collection command 206
archive utility

SEARCHFILENAMEONLY
directive 374

copy tcl command 85
unarchive tcl command 85

Arrange VHDL files command 383
asynchronous clock report

generation option 403
Attributes panel, SCOPE 235
auto constraints

Maximize option (Constraints tab) 352

B
Back command 327
batch mode 141
Build Project command 306
bus bundling 448
bus_dimension_separator_style

command 300
bus_naming_style command 300
buses

compressed display 448
enabling bit range display 446
hiding in flattened Technology

views 448
By any transition command 328
By input transitions command 327
By output transitions command 327

C
c_diff command (collections) 227
c_intersect command (collections) 227
c_print command (collections) 227
c_sub command (collections) 227
c_symdiff command (collections) 227
c_symdiff command, examples 169
c_union command (collections) 227

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
490 Synopsys Confidential Information February 2021

camera mouse pointer 306
case sensitivity, Tcl find command 150
cell interior display,

enabling/disabling 447
Change File command 333
Change Implementation Name

command 468
check_fdc_query command 32
check_fdc_query Tcl command 32
Clear Parameters command 460
clock alias 407
clock as object 407
clock groups, SCOPE 219
clock paths, ignoring 248
Clocks panel, SCOPE 218
Close command 306
Close Project command 307
Collapse All command 483
collection commands

c_diff 165
c_intersect 166
c_list 167
c_print 168
c_symdiff 169
c_union 170
SCOPE 226

collections
Synopsys standard commands 204

Collections panel, SCOPE 225
commands

Add Place & Route Job 478
Hierarchy Browser 483
menu

See individual command entries
set_modules (Tcl) 172
Tcl

See Tcl commands
Tcl collection 164
Tcl command equivalents 14
Tcl expand 161
Tcl find 147

Comment Code command 313
Compile Only command 382
compile point constraints

editing 485
Compile Points panel, SCOPE 237
compiler directives

__ALLOWNESTEDBLOCKCOMMENTS
TART__ 376

__SYN_COMPATIBLE_INCLUDEPATH_
_ 377

_BETA_FEATURES_ON_ 373
SEARCHFILENAMEONLY 374
IGNORE_VERILOG_BLACKBOX_GUTS

372
UI option 365
Verilog 370

Configure External Programs
command 454

Configure Mapper Parallel Job
command 425

Configure Verilog Compiler
command 425

Configure VHDL Compiler
command 425

Configure Watch command 460
connectivity, enabling bit range

display 446
constraint checker

check_fdc_query command 32
constraint file

define_compile_point 302
define_current_design 303

constraint files
editing compile point files 485
SCOPE spreadsheet 216

constraint_file Tcl command 37
constraints

automatic. See auto constraints
check constraints 383
FPGA timing 262

Constraints panel
Implementation Options dialog box 351

context-sensitive popup menus
See popup menus

Continue on Error
Configure Compile Point Process 428

Continue on Error compile point
option 428

Copy command 312

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
491 Synopsys Confidential Information February 2021

Copy File command 467
Copy Implementation command 468
copy_collection command 207
copying image

Create Image command 306
Create Image command 306
Create Place & Route Options file dialog

box 480
create_clock timing constraint 263
create_generated_clock timing

constraint 265
critical paths

creating new schematics 414
custom timing reports 402
finding 420
Timing Report panel, Implementation

Options dialog box 356
custom folders

project_folder Tcl command 96
Customize command 425
customizing

project files 432
Cut command 312

D
define_compile_point

Tcl 302
define_current_design

Tcl 303
defining I/O standards 236
delay paths

POS 254
Delay Paths panel, SCOPE 232
Delete all bookmarks command 312
design parameters (Verilog)

extracting 370
Device panel

Conservative Register
Optimization 122

Implementation Options dialog box 347
dialog boxes

Implementation Options 346
directives

SEARCHFILENAMEONLY 374

beta features 373
ignore syntax check 372
IGNORE_VERILOG_BLACKBOX_GUTS

372
specifying for the compiler (Verilog) 370

disabling sequential optimizations 121
display settings

Project view 432
Dissolve Instances command 422
Dissolve to Gates command 422
dissolving instances 422
duplicate modules (Verilog)

Tcl option 117

E
Edit Attributes command 484
Edit Compile Point Constraints

command 485
Edit menu 311

Advanced submenu 313
Edit Module Constraints command 485
Editor Options command 425
Enable Slack Margin 406
encoding

enumeration, default (VHDL) 359
state machine

displaying 465
encryptIP script

command-line arguments 53
syntax 53

encryptP1735 script 56
command-line arguments 56
public keys repository file 57
syntax 56
use models 59

enumeration encoding, default
(VHDL) 359

environment variables
accessing, get_env Tcl command 66

examples
Tcl find command syntax 151

Exit command 307
Expand command

current level 415

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
492 Synopsys Confidential Information February 2021

hierarchical 415
Expand Inwards command 415
Expand Paths command

current level 416
hierarchical 415

Expand to Register/Port command
current level 416
hierarchical 415

expanding
paths between schematic objects 415

export project Tcl command 66
Extract Parameters 370

F
false paths

architectural 248
clocks as from/to points 257
code-introduced 248
defined 248
POS 254

FDC
create_clock constraint 263
create_generated_clock 265
reset_path 269
set_clock_groups 271
set_clock_latency 277
set_clock_uncertainty 279
set_false_path 281
set_input_delay 284
set_max_delay 287
set_multicycle_path 290
set_output_delay 294
set_reg_input_delay 297
set_reg_output_delay 298
standard collection commands 204

File menu
Recent Projects submenu 307

File Options command 473
files

.ta See also timing report file 404
adding to project 23, 334
constraint 37
copying 467, 468
include 24
log. See log file
opening recent project 307
organization into folders 432

project 94
removing from project 333
replacing in project 337
srs See srs file
stand-alone timing report (.ta) 401
temporary 423
timing report. See also timing report

file 404
Filter Schematic command 416

popup menu 461
filtering

critical paths 420
FSM states and transitions 327
paths from pins or ports 421
selected objects 416
timing reports 403

Find again command 312
Find command

HDL Analyst 317
Text Editor 312

find command
batch mode 80
filter properties 155

finding
critical paths 420

Flatten Current Schematic command
filtered schematic 418
unfiltered schematic 417

Flattened Critical Path command 414
flattened schematic, creating 414
Flattened to Gates View command 414
Flattened View command 414
flattening

instances 422
schematics 417

Floating License Usage command 456
folders

adding to project 27
folders for project files 432
foreach_in_collection command 208
Forward command 327
FPGA Implementation Tools

command 455
FPGA timing constraints 262
from points

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
493 Synopsys Confidential Information February 2021

clocks 256
multiple 251
object search order (Timing

Analyzer) 407
objects 250
timing analyzer 407

FSM Explorer command 383
FSM Table command 328
FSM Viewer

popup menu 463
popup menu commands 463

FSMs
optimizing with FSM Compiler 125

Full View command 326

G
Generated Clocks panel, SCOPE 223
get_env Tcl command 66
get_object_name command 210
get_option Tcl command 66
Goto command 312
Goto Net Driver command

current level 416
hierarchical 415

H
HDL Analyst

Find command 317
Visual Properties 327

HDL Analyst menu 413
Current Level submenu 415
Hierarchical submenu 415
RTL submenu 414
Select All Schematic submenu 424
Select All Sheet submenu 424
Technology submenu 414

HDL Analyst Options command 426
HDL Analyst tool

displaying timing information 420
HDL parameter overrides 68
hdl_define Tcl command 67
hdl_param Tcl command 68
Help command 456

Help menu 456
Hide Instances command 421
hiding instances 421
Hierarchical Critical Path command 414
Hierarchical View command 414
hierarchy

flattening 417
Hierarchy Browser

commands 483
popup menu 483
refreshing 483

hierarchy browser
enabling/disabling display 447

hierarchy separator 299
High Reliability panel

Implementation Options dialog box 357
How to Use Help command 456

I
I/O constraints

multiple on same port 230
I/O Standards panel, SCOPE 236
impl Tcl command 72
implementation options

Options Panel 349
Implementation Options

command 333, 346
Implementation Options dialog

box 338, 346
Constraints panel 351
Device panel 347
High Reliability panel 357
Options panel 349
Place and Route panel 380
Timing Report panel 355
Verilog panel 363
VHDL panel 358

implementation options, device
partdata tcl command 82

Implementation Results panel
Options for implementation dialog

box 353
implementations

creating 333
naming 468

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
494 Synopsys Confidential Information February 2021

include command
verilog library directories 367

include files 24
index_collection command 210
Inputs/Outputs panel, SCOPE 228
instances

dissolving 422
expanding paths between 415
expansion maximum limit 448
expansion maximum limit (per filtered

sheet) 452
expansion maximum limit (per

unfiltered sheet) 452
finding by name 312
hiding and unhiding 421
isolating paths through 421
making transparent 422
name display 446
selecting all in schematic 424

Instances command
schematic selection 424
sheet selection 424

IP
license queuing syntax 142

IP core wizard 384
IP cores (SYNCore)

building ram models 390
Isolate Paths command 421

J
Job Status command 384, 388
job tcl command 74

L
labels, displaying 446
Launch Identify Instrumentor

command 388, 390
levels

See hierarchy
license

floating 456
saving 457
specifying in batch mode 141

License Agreement command 456

license queuing 143
Limit Number of Paths 406
Linux, 64-bit mapping 350
Log File

HTML 330
text 330

log file
displaying 326
Tcl commands for filtering 144

Log File command
View menu 330

Log Watch window
popup menu 460

Log Watch Window command 326
log_filter Tcl command

syntax 75
log_report Tcl command 77
Lowercase command 313

M
maximum parallel jobs 429
memory compiler 390
memory, saving 423
menubar 16
menus

context-sensitive
See popup menus

Edit 311
HDL Analyst 413
Help 456
Options 425
popup

See popup menus
Project 333
Run 382
View 325

Messages
Tcl Window command 325

Mouse Stroke Tutor command 456
multicycle paths

clocks as from/to points 256
examples 246
POS 254
using different start/end clocks 245

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
495 Synopsys Confidential Information February 2021

multiple drivers
resolving 129

Multiple File Compilation Unit
Verilog panel 366

multiple projects
displaying project files 433

MultiProcessing
Continue on Error mode 428

multiprocessing
maximum parallel jobs 429

N
naming rules 298
net drivers

displaying and selecting 415
netlist formats

Implementation Options dialog box,
Implementation Results
panel 355

nets
expanding hierarchically from pins and

ports 415
finding by name 312
selecting instances on 415

New command 306
New Implementation command 338
New Project command 306
Next Bookmark command 312
Next Error command 385
Next Sheet command 327
Normal View command 326

O
object prefixes

Tcl find command 149
object properties

annotated properties for analyst 155
object search order (Timing

Analyzer) 407
object types

Tcl find command 149
objects

displaying compactly 447
expanding paths between 415

filtering 416
unselecting

all in schematic 424
Open command

File menu 306
Open Project command 306
open_design command 80
open_file command 81
opening

project 306
operators

Tcl collection 164
option settings

reporting 66
options

setting 113
Options for implementation dialog box

Implementation Results panel 353
Options menu 425
Options panel

Implementation Options dialog box 349
output files

log. See log file
srs

See srs file
overriding FSM Compiler 121

P
Pan command 326
parameters

overriding HDL 68
partdata tcl command 82
Paste command 312
path delays

clocks as from/to points 257
path filtering 406
paths

expanding hierarchically from pins and
ports 415

pins
displaying names 446
displaying on transparent

instances 422
expanding hierarchically from 415

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
496 Synopsys Confidential Information February 2021

expanding paths between 415
isolating paths from 421
maximum on schematic sheet 452

place & route
run from the synthesis tool 479

Place and Route panel
Implementation Options dialog box 380

place and route tcl commands
job 74

pointers, mouse
zoom 326

popup menus
FSM Viewer 463
Hierarchy Browser 483
Log Watch window 460
Project view 466
RTL view 483
Tcl window 461
Technology view 483

ports
displaying names 446
expanding hierarchically from 415
expanding paths between 415
finding by name 312
isolating paths from 421
selecting all in schematic 424

Ports command
schematic 424
sheet 424

POS
interface 253

preferences
project file display 432

Preferred License Selection
command 457

prefixes
Timing Analyzer points 407

Previous bookmark command 312
Previous Error/Warning command 385
Previous Sheet command 327
primitives

internal logic, displaying 447
Print command 306
Print Setup command 306
printing

view 306

printing image
Create Image command 306

Product of Sums
See POS

program_terminate command 83
program_version command 84
project files

organization into folders 432
Project menu 333

commands 333
Project Options command 470
project Tcl command 85
Project view

display settings 432
popup menu 466
setting up 430

Project View Options command 425
project_data Tcl command 93
project_file Tcl command 94
project_folder

Tcl command 96
projects

adding files 334
closing 307
creating (Build Project) 306
creating (New) 306
displaying multiple 433
opening 306

properties
find command 155
project 93

Push Tristates
Verilog panel 365

Push/Pop Hierarchy command 327

Q
quitting a synthesis run 388

R
recent projects, opening 307
recording command 104
Redo command 312
Refresh command 460

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
497 Synopsys Confidential Information February 2021

Registers panel, SCOPE 231
regular expressions

Tcl find command 150
Reload command 483
Remove Files From Project

command 333
Remove Implementation command 468
remove_from_collection command 212
Replace command

Text Editor 312
replacing

text 323
report_clocks command 105
report_messages command 106
reports

timing report (.ta file) 401
reset_path timing constraint 269
Resolve Multiple Drivers option 129
resolving conflicting timing

constraints 258
resource sharing

Resource Sharing option 351
Resynthesize All command 382
RTL view

displaying 81
opening hierarchical view 414
popup menu 483
popup menu commands 483

Run All Implementations command 384
Run menu 382
Run Tcl Script command 384, 385
running place & route 479

S
sar file

Archive Project command 339
Save All command 306
Save As command 306
Save command 306
schematic objects

displaying compactly 447
expanding paths between 415
filtering 416

unselecting all 424
schematics

displaying labels 446
flattening 417
navigating sheets 326
opening hierarchical RTL 414
sheet connectors 447
unselecting objects 424

SCOPE
Attributes panel 235
clock groups 219
Clocks panel 218
Collections panel 225
Compile Points panel 237
Delay Paths panel 232
Generated Clocks panel 223
I/O Standards panel 236
Inputs/Outputs panel 228
Registers panel 231
TCL View 240

SCOPE spreadsheet
popup menu commands 460
starting 216

SCOPE timing constraints summary 217
sdc

standard sdc collection commands 204
sdc2fdc utility 111
Select All command 312
Select All States command 328
Select in Analyst command 461
Select Net Driver command

current level 416
hierarchical 415

Select Net Instances command
current level 416
hierarchical 415

Select Place & Route option file dialog
box 480

Selected command 327
sequential elements

naming 299
sequential optimizations

disabling 121
Set Library command 333
set modules command (collections) 227

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
498 Synopsys Confidential Information February 2021

set modules_copy command
(collections) 227

Set Slack Margin command 420
Set VHDL Library command 333
set_clock_groups timing constraint 271
set_clock_latency timing constraint 277
set_clock_uncertainty timing

constraint 279
set_false_path timing constraint 281
set_hierarchy_separator command 299
set_input_delay timing constraint 284
set_max_delay timing constraint 287
set_multicycle_path timing

constraint 290
set_option

Resolve Multiple Drivers 129
set_option Tcl command 113
set_output_delay timing constraint 294
set_reg_input_delay timing

constraint 297
set_reg_output_delay timing

constraint 298
set_rtl_ff_names command 299
settings

reporting option 66
sheet connectors 447
Show All Hier Pins command 422
Show Compile Points command 470
Show Context command 421
Show Critical Path command 420
Show Timing Information command 420
sizeof_collection command 213
slack

margin
setting 420

slack margin 406
srm file

hidden logic not saved 423
srr file

See log file
srs file

hidden logic not saved
start/end points

Timing Report panel, Implementation
Options dialog box 356

state machines
See also FSM Compiler, FSM viewer,

FSMs.
displaying in FSM viewer 424
encoding

displaying 465
filtering states and transitions 327

Status Bar command 325
status_report Tcl command 136
stopping a synthesis run 388
symbols

enabling name display 446
finding by name 312

syn_reference_clock attribute
effect on multiple I/O constraints 231

syn_tristatetomux attribute
effect of tristate pushing 369

SYNCore wizard 384, 390
Synopsys FPGA implementation tools

product information 455
Synopsys FPGA products 455
Synopsys Home Page command 455
synplify command-line command 141
synplify_pro command-line

command 141
syntax

bus dimension separator 300
bus naming 300

Syntax Check command 383
synthesis

stopping 388
Synthesis Check command 383
synthesis jobs

monitoring 388
synthesis_off directive, handling 359
synthesis_on directive, handling 359
Synthesize command 382
SystemVerilog 365

T
Tcl

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
499 Synopsys Confidential Information February 2021

c_diff collection command 165
c_intersect collection command 166
c_list collection command 167
c_print collection command 168
c_symdiff collection command 169
c_union collection command 170
collection commands 164
set_modules collection command 172
-verilog argument 23
-vhdl argument 23

Tcl (Tool Command Language) 14
tcl argument

-_include 24
Tcl collection commands 164

c_diff 165
c_intersect 166
c_list 167
c_print 168
c_symdiff 169
c_union 170
set_modules 172

Tcl collection operators 164
Tcl commands

add_file 23
add_folder 27
collections 226
constraint_file 37
get_env 66
get_option 66
hdl_param 68
impl 72
log file commands 144
project 85
project_data 93
project_file 94
project_folder 96
set_option 113

Tcl conventions 14
Tcl expand command 161
Tcl find command 147

case sensitivity 150
examples 151
object prefixes 149
object types 149
regular expression syntax 150
special characters 150
wildcards 150

TCL Help command 456

Tcl Script
Tcl Window command 325

Tcl scripts
running 384, 385

Tcl shell command
sdc2fdc 111

TCL View, SCOPE 240
Tcl window

popup menu 461
Tcl Window command 325
Technical Resource Center

specifying PDF reader (UNIX) 454
specifying web browser (UNIX) 454

Technology view
creating 414
popup menu 483
popup menu commands 483

technology view
displaying 81

text
copying, cutting and pasting 311
replacing 323

Text Editor
popup menu commands 461

through constraints
point-to-point delays 233

through points
clocks 257
lists, multiple 253
lists, single 252
multiple 253
product of sums UI 253
single 252
specifying for timing exceptions 252
specifying for timing report 405

timing analyst
generating report 401

timing analyzer
wildcards 410

timing constraints
checking 383
conflict resolution 258
constraint priority 258
create_clock 263
create_generated_clock 265
FPGA 262

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
500 Synopsys Confidential Information February 2021

reset_path 269
set_clock_groups 271
set_clock_latency 277
set_clock_uncertainty 279
set_false_path 281
set_input_delay 284
set_max_delay 287
set_multicycle_path 290
set_output_delay 294
set_reg_input_delay 297
set_reg_output_delay 298

timing exceptions
False Paths panel 248
multicycle paths 245
priority 258
specifying paths/points 248

timing information, displaying (HDL
Analyst tool) 420

timing report
asynchronous clock report 403
defining through points 405
file (.ta) 401
specifying slack margin 406
using path filtering 406

timing report file
generating custom 402
stand-alone 404

Timing Report panel
Implementation Options dialog box 355
Number of Critical Paths 356
Start/End Points 356

timing reports
file. See timing report file
filtering 403
parameters 401
stand-alone 401
stand-alone (.ta file) 401

Tip of the Day command 457
to points 407

clocks 256
multiple 251
objects 250
Timing Analyzer 407

Toggle bookmark command 312
Toolbars command 325
tooltips

displaying 329

transparent instances
displaying pins 422

tristates
pushing tristates, description 367
pushing tristates, example 367
pushing tristates, pros and cons 368

U
Uncomment Code 313
Undo command 312
Unfilter command 328
unfiltering 421

FSM diagram 328
schematic 421

Unflatten Current Schematic
command 418

Unhide Instances command 421
unhiding hidden instance 421
UNIX

configure external programs 426
Unselect All command 424

View menu (FSM Viewer) 328
Uppercase command 313
utilities

sdc2fdc 111

V
variables

accessing, get_env Tcl command 66
reporting 66

VCS Simulator command 384
Vendor Constraints

Implementation Results panel,
Implementation Options dialog
box 355

writing 355
Verilog
‘ifdef and ‘define statements 370
allow duplicate modules (Tcl

option) 117
beta features 373
compiler, configuring 425
extract design parameters 370
library directories 367
specifying compiler directives 370

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
501 Synopsys Confidential Information February 2021

Verilog 2001
Verilog panel 365

-verilog argument
Tcl 23

Verilog include files
using _SEARCHFILENAMEONLY_

directive 374
Verilog panel 365

Implementation Options dialog box 363
Multiple File Compilation Unit 366
options 365
Push Tristates 365
SystemVerilog 365

version information 457
VHDL

compiler, configuring 425
enumeration encoding, default 359
ignoring code with synthesis off/on 359

-vhdl argument
Tcl 23

VHDL libraries
setting up 337

VHDL panel
Implementation Options dialog box 358

View FSM command 424
View FSM Info File command 424
View Log File command 326
View menu 325

Filter submenu 327
Log File command 330
RTL and Technology view

commands 326
View Result File command 326
View Sheets command 327
Visual Properties command 327

W
web browser

specifying for UNIX 454
wildcards

Tcl find command 150
text Find 314
text replacement 323
timing analyzer 410

Windows, 64-bit mapping 350

Write Output Netlist Only command 383

Z
zoom mouse pointer 326
Zoom Out command 326

LO

© 2021 Synopsys, Inc. Synplify Pro for Microchip Edition Command Reference
502 Synopsys Confidential Information February 2021

	Synplify Pro for Microchip Command Reference Manual
	Copyright Notice and Proprietary Information
	Free and Open-Source Licensing Notices
	Destination Control Statement
	Disclaimer
	Trademarks
	Third-Party Links

	Overview of the Synthesis Commands
	About Tcl Commands
	About the GUI Commands

	Tcl Synthesis Commands
	IEEE 1735 Encryption Use Models
	get_option
	program_terminate
	program_version

	Tcl Find, Expand, and Collection Commands
	find
	Tcl Find Syntax
	Tcl Find Syntax Examples

	find -filter
	expand
	Collection Commands
	c_diff
	c_info
	c_intersect
	c_list
	c_print
	c_symdiff
	c_union
	define_collection
	define_scope_collection
	get_prop
	set

	Query Commands
	all_clocks
	all_fanin
	all_fanout
	all_inputs
	all_outputs
	all_registers
	get_cells
	get_clocks
	get_flat_cells
	get_flat_nets
	get_flat_pins
	get_nets
	get_pins
	get_ports
	object_list
	report_timing

	Synopsys Standard Collection Commands
	add_to_collection
	append_to_collection
	copy_collection
	foreach_in_collection
	get_object_name
	index_collection
	remove_from_collection
	sizeof_collection

	Constraint Commands
	SCOPE Constraints Editor
	SCOPE Tabs
	Clocks
	Generated Clocks
	Collections
	Inputs/Outputs
	Registers
	Delay Paths
	Attributes
	I/O Standards
	Compile Points
	TCL View

	Industry I/O Standards
	Industry I/O Standards

	Delay Path Timing Exceptions
	Multicycle Paths
	False Paths

	Specifying From, To, and Through Points
	Timing Exceptions Object Types
	From/To Points
	Through Points
	Product of Sums Interface
	Clocks as From/To Points

	Conflict Resolution for Timing Exceptions
	Timing Constraints
	Naming Rule Syntax Commands

	Design Constraints

	User Interface Commands
	File Menu
	New Command
	Create Image Command
	Build Project Command
	Open Project Command

	Edit Menu
	Find Command (Text)
	Find Command (In Project)
	Find Command (HDL Analyst)
	Find in Files Command
	Replace Command
	Goto Command

	View Menu
	Toolbar Command
	View Sheets Command
	View Log File Command

	Project Menu
	Add Source File Command
	Remove Implementation
	Change File Command
	Set VHDL Library Command
	Add Implementation Command
	Archive Project Command
	Un-Archive Project Command
	Copy Project Command

	Implementation Options Command
	Device Panel
	Options Panel
	Constraints Panel
	Implementation Results Panel
	Timing Report Panel
	High Reliability Panel
	VHDL Panel
	Verilog Panel
	Compiler Directives and Design Parameters
	Place and Route Panel

	Run Menu
	Run Tcl Script Command
	Run Implementations Setup Command
	Job Status Command
	Identify Instrumentor Command
	Launch Identify Debugger Command
	Launch SYNCore Command
	Configure and Launch VCS Simulator Command

	Analysis Menu
	Timing Report Generation Parameters

	HDL Analyst Menu
	HDL Analyst Menu->RTL and Technology View Submenus
	HDL Analyst Menu: Hierarchical and Current Level Submenus
	HDL Analyst Menu: Filtering and Flattening Commands
	HDL Analyst Menu: Timing Commands
	HDL Analyst Menu: Analysis Commands
	HDL Analyst Menu: Selection Commands
	HDL Analyst Menu: FSM Commands

	Options Menu
	Configure Parallel or Compile Point Process Command
	Project View Options Command
	Editor Options Command
	Place and Route Environment Options Command
	Configure 3rd Party Tools Options Command
	Project Status Page Location
	HDL Analyst Options Command
	Standard HDL Analyst Options Command
	Configure External Programs Command

	Web Menu
	Help Menu
	Preferred License Selection Command
	Tip of the Day Command

	GUI Popup Menu Commands
	Popup Menus
	Watch Window Popup Menu
	Tcl Window Popup Menu
	Text Editor Popup Menu
	Log File Popup Menu
	FSM Viewer Popup Menu

	Project View Popup Menus
	Project Management View Popup Folder Commands
	Vendor Tool Invocation Popup Menu Command
	File Options Popup Menu Command
	Copy File Popup Menu Command
	Change Implementation Popup Menu Commands
	Show Compile Points Popup Menu Command
	Project Options Popup Menu Command
	Add P&R Implementation Popup Menu Command
	Options for Place & Route Jobs Popup Menu Command

	RTL and Technology Views Popup Menus
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

