This document is released with Libero SoC Design Suite v11.8 SP4 without changes from v11.8 SP3.

SmartDebug User Guide
v11.8 SP1, SP2, and SP3

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

& Microsemi

Power Matters.”

SmartDebug User Guide

Power Matters.
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email:
sales.support@microsemi.com
Www.microsemi.com

©2017 Microsemi Corporation. All
rights reserved. Microsemi and
the Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks
and service marks are the
property of their respective
owners.

& Microsemi

Power Matters.”

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does Microsemi
assume any liability whatsoever arising out of the application or use of any product or circuit. The
products sold hereunder and any other products sold by Microsemi have been subject to limited
testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must
conduct and complete all performance and other testing of the products, alone and together with,
or installed in, any end-products. Buyer shall not rely on any data and performance specifications
or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine
suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such
information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party
any patent rights, licenses, or any other IP rights, whether with regard to such information itself or
anything described by such information. Information provided in this document is proprietary to
Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor and
system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated
circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization
devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions;
security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet
ICs and midspans; as well as custom design capabilities and services. Microsemi is
headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn
more at www.microsemi.com.

5-02-00638-3/07.17

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

SmartDebug User Guide Q Micmsemi,

Power Matters.”

Table of Contents

Welcome to SMartDEDUQGcoooeeeeiiei s 7
Introduction to SMArtDEDUQGuuiiiii e 7
Supported Families, Programmers, and Operating SYStEMScooccvvveiieeeeiiiiiniieeee e e e s 8
YU o] ol ¢ (=To I oo] <P UPPTT TP 8
Getting Started With SMartDEDUQuviiiiiii e 8
Using SmartDebug with SmartFusion and FUSION.............ueiieeeiiiiiie e 9
Using SmartDebug with SmartFusion2, IGLOO2, and RTGA4..........uuueeiiaiiiiiiiiiieeee e 9
Create Standalone SmartDebug Project ... 9
Import from DDC File (created from LIDEIO)ccccoiviiiiiiiiie e 10
CoNStruCt AULOMALICAIYt e e e e e e e e sneeeee s 10
Configuring @ GENEIIC DEVICE ...cccciiiiiiiiiii ettt e e e e e e e nae e 10
Connected FIaShPRO ProgramIMErSuuucciiiicciiieeteeeesssieeeeeeeeesssnsnteeeeeaeessansssseneseaesssnnssssenes 11
SmartDebug User INterface. ... 12
Standalone SmartDebug USer INTErfaceoocuuiiiiiiiiiiiieee e 12
Programming Connectivity and INTErface..........oocueiiiiiiiiiii e 13
View Device Status (SmartFusion2, IGLOO2, and RTG4)ueeiiiiiiiiiiiiiiiiiee e e e 16

Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion2 and IGLOO2 Only)18

DEDUGGING e 21
Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4)ccoiiuuiiiiiieeieiiiiieeee e 21
HIETAICNICAI VIBW ..ottt e e s ann e e s 21
INETIST VIBW ..ttt ettt e s e st e e e n e e ne e e nnre e e nnneennneena 23
Live Probes (SmartFusion2, IGLOO2, and RTGA)uuuiiiiiiiiiiiiiiiiee et 24
Active Probes (SmartFusion2, IGLOO2, and RTGA)uiiiiiiiiiiiiiieea e 26
Probe Grouping (ACtive Probes ONIY) ...t e e e e 28
Memory Blocks (SmartFusion2, IGLOO2, anNd RTG4)ccoiiiiiiiiiiiiiieeeee e 32
Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4ccccvvieeeeeeiiiiiiiieeenn. 37
Pseudo Static Signal PolliNGccuuiiiiiieciccce e e e e e e e e e e e 40
Debug SERDES (SmartFusion2, IGLOO2, and RTG4)......ccoeiiiiiiiiiiiaeeeeiiiieee e 42
Debug SERDES — LOOPDACK TESE....uuiiiiiiiiiiiiiiieie ettt e e aieaeeeea e 44
Debug SERDES — PRBS TSt ...iiiiiiiiiie ittt e s sttt e e e s s st e e e e e e s s sntaae e e e e e e s e nnnnnnnenaeees 46
Debug SERDES — PHY RESEL ittt e e e e 51
Inspect Device Dialog Box (SmartFusion, Fusion, and ProASIC3 Only)........ccccceeviniiiiieeenenn. 52
Device Status Report (SmartFusion and FUsion ONlY) ..o 52
Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion and Fusion Only)......... 53
Embedded Flash Memory: Browse Retrieved Data (SmartFusion and Fusion Only) 54
Embedded Flash Memory: Compare Memory Client (SmartFusion and Fusion Only) 56
FlashROM Content Dialog Box (Fusion and SmartFusion Only)cccocciieiiiiiniiiiiiinenenn. 57

SmartDebug User Guide Q Micmsemi,

Power Matters.”

Analog Block Configuration Dialog Box (SmartFusion and Fusion Only)...........cccccoeiiiieeennn. 58
SmartDebug Tcl CommandsS.........cooiiiiiiiiii e 61
SmartDebug Tcl Support (SmartFusion2, IGLOO2, and RTGA4)cccvvveeeeeeiiiiiieeeeee e 61
Device Debug / SmartDebug Tcl Commands (SmartFusion, IGLOO, ProASIC3, and Fusion

L0111) IR 62
F=To (o I o] o] o= T F57=1 1 (o T N o011 | SR 64
add_to_probe_group (SmartFusion2, IGLOO2, and RTG4)ccovvvcviviieeeeeiiiiiieeeee e 64
ChecCk_flasSh _MEMOIY ... e e e e e e 65
(ofo]] o =Yg =TE= 1o =1 (o o [oo] 1T S 66
compare_flashrom_ClENT..........ooii i e e e e 67
COMPAre_MEMOIY _CHENT.... ..t e e e e e aeb e e e e e e e e e e snneeeeeas 67
create_probe_group (SmartFusion2, IGLOO2, and RTG4)cccevvvvviiiieieeeiiiiieeeee e 68
delete _aCtVE _PrODE.......ci i 68
export_smart_debug_data (SmartFusion2, IGLOO2, and RTG4)cceveeiiiiiiiiiiieeaeeieiiieen 69
(o T=Y N oY o To = 1o a1 0= S 1Yo SRS 70
[0ad_aCtiVe_Probe ISteeiii i 70
loopback_test (SmartFusion2, IGLOO2, RTGA4) ..c.ccoiiiiiiiiieea ettt iveeee e 71
move_to_probe_group (SmartFusion2, IGLOO2, and RTGA4)......ccceeveeeeiiiiciviieeee e eiieeeeeeens 71
prbs_test (SmartFusion2, IGLOO2, RTGA)uuuiiiieeiiiiiieieee e e e s esiiee e e e e e s e snniaaer e e e e e s s snnaneeeeee s 72
Program_Probe INSEITIONoi ittt et e e e e e s bbb e e e e e e e s e anbbeeeaaae s 73
read_active_probe (SmartFusion2, IGLOO2, and RTG4)ccccccuvieeiieeeiiiiiriieeee e s siieenneee s 73
(g=T= o[- Ta T 1{oTo I o] (o o] Xq oo o1 o PSSR 74
read _dEVICE SALUSoiviiiiiiiiieeeeeeeee e 74
(== o [To F w70 To 1= S 75
(== Lo i =] 1 o o S 75
read_flasSh_ MEMOIY ... e e e e e 76
read_Isram (SmartFusion2, IGLOO2, RTGA)uuuiieiiiiiiieieeee e s eitnieeee e e e s e ssniaaer e e e e e s s snnaneeneaee s 77
read_usram (SmartFusion2, IGLOO2, RTG4)cuiiieiiiiiieieeee e iiiieiieee e e e s e ssnieaeeeee e e s s snnnaeeeeae s 78
recover_flaSh_MEIMOIY ... et e e e e 79
remove_from_probe_group (SmartFusion2, IGLOO2, and RTG4)ccooccvvveereeeiiiicniineneeenn, 79
remove_probe _INSErtioN_POINTuuiiiiie i e e e e e e e s rereeeeees 80
sample_analog_ChanNel............ i e e e 80
T VI (o YT o1 (0] oYY L) PSR 82
select_active_probe (SmartFusion2, IGLOO2, and RTG4)ccuvveeeeiiiieiiiieee e siinieenee e e e 82
SEIAES JANE TS EL. . i ———————— 83
serdes_read_register (SmartFusion2, IGLOO2, and RTG4)ccuvveiiiiiiiiieieieeeeciciiiieneee e e 84
serdes_write_register (SmartFusion2, IGLOO2, and RTG4)ccvvveeiiiiiiiieieie e ciieiieeeee e e 84
ST e (=] o TU o T o (o1 o = TP PUUTPPPRRP 85
LSY=T Ao (=1 o 10 Lo N o] oo =V g 41T PSR 86
set_live_probe (SmartFusion2, IGLOO2, anNd RTG4).......ccoiiiuiieiieeeeeieieiieeeee s e ssinieeeee e e 86
ungroup (SmartFusion2, IGLOO2, anNd RTG4)ccuii ittt 87
0T ESY =T A 1YY o (o] o L= 87
write_active_probe (SmartFusion2, IGLOO2, and RTG4)........cccvveeeeieeeieiiiiiieee e eseieeeeaee s 88
write_Isram (SmartFusion2, IGLOO2, RTGA)...cccuii ittt e e 88
write_usram (SmartFusion2, IGLOO2, RTG4)ccoiiiiiiiiiee e estieiee e e e e s s staaee e e e e e s s nnnneneeeee s 89

SmartDebug User Guide Q Micmsemi,

Power Matters.”

Solutions to Common Issues Using SmartDebugccoocooviiiiiiiiio. 91
Embedded Flash Memory (NVM) - Failure when Programming/Verifying........cccccccooecvvveenen.n. 91
Analog System Not Working as EXPECIEAccoui it 91
ADC Not Sampling the CorreCt ValUE............uvuiiieeiiiiiiieee e ee e e e 91
Frequently Asked QUESTIONScooiviiiiiiiiie e 93
How do | unlock the device security SO | can debug?.........ccoooiiiiiiiiiiiiiiiiee e 93
[[0 1V Ao [o T I =Y o Lo = = oo 1 S 93
How do | generate diagnostic reports for my target deviCe?cccvvvveeeeiiicviieeie e, 93
How do | monitor a static or pseudo-static SigNal?oooiiiiii e 94
How do | force a signal to @ NEW VAIUE?uvviiiiie e ee e e e e ennneee e e e 94
How do | count the transitions 0N @ SIGNaAI?covveiiiiiiiiree e 95
How do | monitor or Measure @ CIOCK?o.euiiiiiiiee e 96
How do | perform simple PRBS and loopback teStS?.........cceeeiiiiiiiiiiiieei e 98
How do | read LSRAM 0r USRAM CONTENE? ...coouiiiiiiiiiiie ittt 98
How do | change the content of LSRAM Or USRAM®?oiiiiiiiiiiiiie e 99
How do | read the health check of the SERDES?ccooiiiiiiiiiiiieieee e 101
Where can | find files to compare my contents/Settings?ccccvvievveeeiiiiciiiieeee e 101
What is a UFC file? What is @an EFC fill@?eoiiiiii e 102
Is My FPGA fabric €nabled?oooiiiiiiiee e 102
Embedded Flash Memory (NVM) Frequently Asked Questions............. 103
Is my Embedded Flash Memory (NVM) programmed?cccuueeeeieeinniiiiiieeeee e eeriiieeeeee s 103
How do | display Embedded Flash Memory (NVM) content in the Client partition?.............. 103
How do | know if | have Embedded Flash Memory (NVM) corruption?.........ccccceeveeeeeviinnnnen 103
Why does Embedded Flash Memory (NVM) corruption happen?occcueeeeieeiiiiiiieneeeenn. 103
How do | recover from Embedded Flash Memory corruption?cccceveeeeeviiiiieeeee e 104
What is @ JTAG IR-Capture VAIUE?.........cccceiieeeee ettt e srtee e e e e s s s aee e e e e s s nnnnnnaneeeae s 104
What does the ECCL/ECC2 €ITOF MEANTueeiiiiieiiiiiieieaaaaaaaittieeeaaaesssasnbeseeeaaessaannrseeeaaeaas 104
What happens if invalid firmware is loaded into eNVM in SmartFusion2 devices?............... 104
How can | tell if my FlashROM is programmed?ccccveeveeeeeiiiiiieie e e 104
Can | compare serialization dat@?cooio i 104
Can | tell what security options are programmed in My deviCe?cccccveevvvicvieeeeeeeeiiscennnnn 104
Is my analog System CONfIQUIEA?ccoiiiiiiiieiee et e e e e e e e e 104
How do | interpret data in the Device Status report?eeeeeieeeiiiiiiieie e 105
How do | interpret data in the Flash Memory (NVM) Status Report?ccccccvvvvveeeeeviinnnnen, 109
ProdUCT SUPPOIT e e e e e e e 111

SmartDebug User Guide Q Micmsemi,

Power Matters.”

Welcome to SmartDebug

Introduction to SmartDebug

Use Models

Design debug is a critical phase of FPGA design flow. Microsemi’s SmartDebug tool complements design
simulation by allowing verification and troubleshooting at the hardware level. SmartDebug provides access
to non-volatile memory (eNVM), SRAM, SERDES, and probe capabilities. Microsemi SmartFusion2
System-on-chip (SoC) field programmable gate array (FPGA), IGLOO2 FPGA, and RTG4 FPGA devices
have built-in probe logic that greatly enhance the ability to debug logic elements within the device.
SmartDebug accesses the built-in probe points through the Active Probe and Live Probe features, which
enables designers to check the state of inputs and outputs in real-time without re-layout of the design.

SmartDebug can be run in the following modes:
¢ Integrated mode from the Libero Design Flow
e Standalone mode
¢ Demo mode

Integrated Mode

When run in integrated mode from Libero, SmartDebug can access all design and programming hardware
information. No extra setup step is required. In addition, the Probe Insertion feature is available in Debug
FPGA Array.

To open SmartDebug in the Libero Design Flow window, expand Debug Design and double-click
SmartDebug Design.

Standalone Mode

SmartDebug can be installed separately in the setup containing FlashPro, FlashPro Express, and Job
Manager. This provides a lean installation that includes all the programming and debug tools to be installed
in a lab environment for debug. In this mode, SmartDebug is launched outside of the Libero Design Flow.
When launched in standalone mode, you must to go through SmartDebug project creation and import a
Design Debug Data Container (DDC) file, exported from Libero, to access all debug features in the
supported devices.

Note: In standalone mode, the Probe Insertion feature is not available in FPGA Array Debug, as it requires
incremental routing to connect the user net to the specified 1/0.

Demo Mode

Demo mode allows you to experience SmartDebug features (Active Probe, Live Probe, Memory Blocks,
SERDES) without connecting a board to the system running SmartDebug.

Note: SmartDebug demo mode is for demonstration purposes only, and does not provide the functionality of
integrated mode or standalone mode.

Note: You cannot switch between demo mode and normal mode while SmartDebug is running.

Standalone Mode Use Model Overview

In the main use model for standalone SmartDebug, the DDC file must be generated from Libero and
imported into a SmartDebug project to obtain full access to the device debug features. Alternatively,
SmartDebug can be used without a DDC file with a limited feature set.

SmartDebug User Guide

& Microsemi

Power Matters.”

Supported Families, Programmers, and Operating Systems

Programming and Debug: SmartFusion2, IGLOO2, and RTG4

Programming only: ProAsic3/E, IGLOO, Fusion, and SmartFusion

Programmers: FlashPRO3, FlashPRO4, and FlashPRO5

Operating Systems: Windows XP, Windows 7, Windows 10, and RHEL 6.x

Note: Debug for ProAsic3/E, IGLOO, Fusion, and SmartFusion devices are available via FlashPro. Also

refer to "Inspect Device" in the "Device Debug User Interface" section of the FlashPro User's Guide.

Supported Tools

The following table lists device family support for SmartDebug tools.

SmartDebug Support per Device Family SmartFusion2 | IGLOO2 RTG4 SmartFusion Fusion
Live Probes X X X
Active Probes X X X
Memory Debug X X X
Probe Insertion (available only through Libero flow) X X X
View Flash Memory Content X X X X
Debug SERDES X X X
FPGA Hardware Breakpoint (Needs FHB Auto X X
Instantiation)
Event Counter (Needs FHB Auto Instantiation) X X
Frequency Monitor (Needs FHB Auto Instantiation) X X
FlashROM X X
Analog Block Configuration X X

Note: "X" indicates the tool is supported.

Getting Started with SmartDebug

This topic introduces the basic elements and features of SmartDebug. If you are already familiar with the
user interface, proceed to the Solutions to Common Issues Using SmartDebug or Frequently Asked

Questions sections.

SmartDebug enables you to use JTAG to interrogate and view embedded silicon features and device status

(FlashROM, Security Settings, Embedded Flash Memory (NVM) and Analog System). SmartDebug is

available as a part of the FlashPro programming tool.
See Using SmartDebug and Using SmartDebug with SmartFusion2, IGLOO2, and RTG4 for an overview of

the use flow.

See Using SmartDebug for an overview of the use flow.

You can use the debugger to:

e Get device status and view diagnostics

¢ Use the FlashROM debug GUI to read out and compare content

SmartDebug User Guide C Micmsemi.

Power Matters.”

e Use the Embedded Flash Memory Debug GUI to read out and compare your content with your original
files

e Use the Analog System Debug to read out and compare your analog block configuration with your
original file

Using SmartDebug with SmartFusion and Fusion

Note: SmartDebug is referred to as Device Debug in some older families.
The most common flow for SmartDebug is:

1. Start FlashPro. If necessary, create a new project. You must have a FlashPro programmer connected
to use SmartDebug.

2. Set up your FlashPro Project with or without a PDB file. If you are in single-device mode you will need
a PDB file. You can create a PDB file in both Single Device and Chain mode.

With a PDB, you will get additional information such as FlashROM and Embedded Flash Memory
partitions when debugging the silicon features. Best practice is to use a PDB with a valid-use design to
start a debug session.

3. Select the target device from your chain and click Inspect Device.
4. Click Device Status to get device status and check for issues

5. Examine individual silicon features (FlashROM, Embedded Flash Memory Block and Analog System)
on the device.

Using SmartDebug with SmartFusion2, IGLOO2, and RTG4

The most common flow for SmartDebug is:
1. Create your design. You must have a FlashPro programmer connected to use SmartDebug.

2. Expand Debug Design and double-click Smart Debug Design in the Design Flow window.
SmartDebug opens for your target device.

3. Click View Device Status to view the device status report and check for issues.
4. Examine individual silicon features, such as FPGA debug.

Create Standalone SmartDebug Project

A standalone SmartDebug project can be configured in two ways:
e Import DDC files exported from Libero
e Construct Automatically

From the SmartDebug main window, click Project and choose New Project. The Create SmartDebug
Project dialog box opens.

SmartDebug User Guide O Mi('.‘msemi

Power Matters.”

-@‘ Create SmartDebug Project ﬁ

Mame: sdebugl

Location: (C:fUsers

Construct JTAG chain for the project

Connected programmers: [SZDl‘fQSTlU V” Refresh]

@ ImportDDC File: ide_v/negedgeck/2043_18_1024 35 v/srcs/RAM_Logical_View.ddc |

Design debug data wil be imporied with JTAG chain

) Construct Automatically

) o) [t

Figure 1 - Create SmartDebug Project Dialog Box

Import from DDC File (created from Libero)

When you select the Import from DDC File option in the Create SmartDebug Project dialog box, the Design
Debug Data of the target device and all hardware and JTAG chain information present in the DDC file
exported in Libero are automatically inherited by the SmartDebug project. The programming file information
loaded onto other Microsemi devices in the chain, including ProAsic3/E, SmartFusion, and Fusion devices,
is also transferred to the SmartDebug project.

Debug data is imported from the DDC file (created through Export SmartDebug Data in Libero) into the
debug project, and the devices are configured using data from the DDC file.

Construct Automatically

When you select the Construct Automatically option, a debug project is created with all the devices
connected in the chain for the selected programmer. This is equivalent to Construct Chain Automatically in
FlashPRO.

Configuring a Generic Device

For Microsemi devices having the same JTAG IDCODE (i.e., multiple derivatives of the same Die—for
example, M2S090T, M2S090TS, and so on), the device type must be configured for SmartDebug to enable
relevant features for debug. The device can be configured by loading the programming file, by manually
selecting the device using Configure Device, or by importing DDC files through Programming Connectivity
and Interface. When the device is configured, all debug options are shown.

For debug projects created using Construct Automatically, you can use the following options to debug the
devices:

e Load the programming file — Right-click the device in Programming Connectivity and Interface.
e Import Debug Data from DDC file — Right-click the device in Programming Connectivity and Interface.

10

SmartDebug User Guide C Micmsemi.

Power Matters.”

The appropriate debug features of the targeted devices are enabled after the programming file or DDC file is
imported.

Connected FlashPRO Programmers

The drop-down lists all FlashPro programmers connected to the device. Select the programmer connected
to the chain with the debug device. At least one programmer must be connected to create a standalone
SmartDebug project.

Before a debugging session or after a design change, program the device through Programming
Connectivity and Interface.

See Also

Programming Connectivity and Interface

View Device Status

Export SmartDebug Data (from Libero)

11

SmartDebug User Guide O Mi('.‘msemi

Power Matters.”

SmartDebug User Interface

Standalone SmartDebug User Interface

You can start standalone SmartDebug from the Libero installation folder or from the FlashPRO installation
folder.

Windows:

<Libero Installation folder>/Designer/bin/sdebug.exe
<FlashPRO Installation folder>/bin/sdebug.exe
Linux:

<Libero Installation folder>/ bin/sdebug

<FlashPRO Installation folder>/bin/sdebug

"© SmortDebug el
Project View Tools

N

= ™ 5

SmartDebug Projects

Log & X

i QErms i, Wamings i) Info

Figure 2 - Standalone SmartDebug Main Window
Project Menu
The Project menu allows you do the following:
e Create new SmartDebug projects (Project > New Project)
e Open existing debug projects (Project > Open Project)

12

SmartDebug User Guide C Mfcrosem;[

Power Matters.”

e Execute SmartDebug-specific Tcl scripts (Project > Execute Script)
e Export SmartDebug-specific commands to a script file (Project > Export Script File)
e See a list of recent SmartDebug projects (Project > Recent Projects).

Log Window

SmartDebug displays the Log window by default when it is invoked. To suppress the Log window display,
click the View menu and toggle View Log.

The Log window has four tabs:
Messages — displays standard output messages
Errors — displays error messages
Warnings — displays warning messages
Info — displays general information
Tools Menu

The Tools menu includes Programming Connectivity and Interface and Programmer Settings options, which
are enabled after creating or opening a SmartDebug project.

Programming Connectivity and Interface

To open the Programming Connectivity and Interface dialog box, from the standalone SmartDebug Tools
menu, choose Programming Connectivity and Interface. The Programming Connectivity and Interface
dialog box displays the physical chain from TDI to TDO.

I+l Programming Connectivity and Interface l"‘:' 5] |—em

0 TDO

OP N H

Figure 3 - Programming Connectivity and Interface Dialog Box — Project created using Import from DDC File

All devices in the chain are disabled by default when a standalone SmartDebug project is created using the
Construct Automatically option in the Create SmartDebug Project dialog box.

| I+[Programming Connectivity and Interface oo
&
% mgowors e~
[] o TDO | 01 &3
" i O¢
Q

Figure 4 - Programming Connectivity and Interface window — Project created using Construct Automatically
The Programming Connectivity and Interface dialog box includes the following actions:
e Construct Chain Automatically - Automatically construct the physical chain.

13

SmartDebug User Guide C Mlcrbseml

Power Matters.”

Running Construct Chain Automatically in the Programming Connectivity and Interface removes all
existing debug/programming data included using DDC/programming files. The project is the same as a
new project created using the Construct Chain Automatically option.

e Scan and Check Chain — Scan the physical chain connected to the programmer and check if it
matches the chain constructed in the scan chain block diagram.

e Run Programming Action — Option to program the device with the selected programming procedure.

When two devices are connected in the chain, the programming actions are independent of the device.
For example, if M2S090 and M2GL010 devices are connected in the chain, and the M2S090 device is to
be programmed and t

he M2GL010 device is to be erased, both actions can be done at the same time using the Run
Programming Action option.

e Zoom In — Zoom into the scan chain block diagram.
e Zoom Out — Zoom out of the scan chain block diagram.

Hover Information

The device tooltip displays the following information if you hover your cursor over a device in the scan chain
block diagram:

e Name: User-specified device name. This field indicates the unique name specified by the user in the
Device Name field in Configure Device (right-click Properties).

e Device: Microsemi device name.
e Programming File: Programming file name.

e Programming action: The programming action selected for the device in the chain when a
programming file is loaded.

¢ |R: Device instruction length.

e TCK: Maximum clock frequency in MHz to program a specific device; standalone SmartDebug uses
this information to ensure that the programmer operates at a frequency lower than the slowest device
in the chain.

M25050T (2) @

9 T00 |} TDI <2
m
Mame: [mM25050T (2)
[Device: [ma2sosor |
File: '

i
Programming action: i

[1r: s
[Tck: 1

Device Chain Details
The device within the chain has the following details:
e User-specified device name
e Device name
e Programming file name

14

SmartDebug User Guide C Mlcrbseml

Power Matters.”

e Programming action — Select Enable Device for Programming to enable the device for programming.
Enabled devices are green, and disabled devices are grayed out.

Right-click Properties

The following options are available when you right-click a device in the Programming Connectivity and
Interface dialog box.

o TDD

Configure Device...

v Enable Device for Programming...
Load Programming File...
Select Program Procedure/Actions...
Import Debug Data from DDC File...

Configure Device - Ability to reconfigure the device.
e Family and Die: The device can be explicitly configured from the Family, Die drop-down.
e Device Name: Editable field for providing user-specified name for the device.

Enable Device for Programming - Select to enable the device for programming. Enabled devices are
shown in green, and disabled devices are grayed out.

Load Programming File - Load the programming file for the selected device.

Select Programming Procedure/Actions- Option to select programming action/procedures for the devices
connected in the chain.

e Actions: List of programming actions for your device.

e Procedures: Advanced option; enables you to customize the list of recommended and optional
procedures for the selected action.

Import Debug Data from DDC File - Option to import debug data information from the DDC file.

The DDC file selected for import into device must be created for a compatible device. When the DDC file is
imported successfully, all current device debug data is removed and replaced with debug data from the
imported DDC file.

The JTAG Chain configuration from the imported DDC file is ignored in this option.

If a programming file is already loaded into the device prior to importing debug data from the DDC file, the
programming file content is replaced with the content of the DDC file (if programming file information is
included in the DDC file).

Debug Context Save

Debug context refers to the user selections in debug options such as Debug FPGA Array, Debug SERDES,
and View Flash Memory Content. In standalone SmartDebug, the debug context of the current session is
saved or reset depending on the user actions in Programming Connectivity and Interface.

The debug context of the current session is retained for the following actions in Programming Connectivity
and Interface:

e Enable Device for Programming

e Select Programming Procedure/Actions
e Scan and Check Chain

e Run Programming Action

15

SmartDebug User Guide C Mfcmseml

Power Matters.”

The debug context of the current session is reset for the following actions in Programming Connectivity and
Interface:

e Auto Construct — Clears all the existing debug data. You need to reimport the debug data from DDC
file.

e Import Debug Data from DDC file

e Configure Device — Renaming the device in the chain
e Configure Device — Family/Die change

e Load Programming File

Selecting Devices for Debug

Standalone SmartDebug provides an option to select the devices connected in the JTAG chain for debug.
The device debug context is not saved when another debug device is selected.

€ SmartDebug - E Captures\SmartDebug\5A naimAC_M2GLOS0_MGLDL
Project View Tools
Ty ™
&y M &
Device: |M25M2GLOSO(T [TS[TV) (M2GLOSOTS) + wwm:[assaa (usb53538) -
M25 M 261090 [TV) (M2GLOSOTS
|M25M2GLO10(T S [TS) (M2GLO10TS)

ID code read from device: IFE07ICF

| View Device Status... | I Debug FPGA Array...

| View Flash Memary Content. . I I Debug SERDES...

View Device Status (SmartFusion2, IGLOO2, and RTG4)

Click View Device Status in the standalone SmartDebug main window to display the Device Status Report.
The Device Status Report is a complete summary of IDCode, device certificate, design information,
programming information, digest, and device security information. Use this dialog box to save or print your
information for future reference.

16

SmartDebug User Guide C Mfcrosem;[

Power Matters.”

> Device Status Report »

= |
Device: M2S090T (M25090T) Programmer: S201YPVOZC (S201YPVOZC) Save | &3 Print |

Device Status:
IDCode (read from the device) (HEX): 113071cf

Device Certificate

Family smartFusion2
Die: M25090
Design Information
Design Name: SYS_SERDES
Design checksum (HEX): 53AA
Design Version: 0
Back Level: i]
Operating voltage: 1.2V
Internal Oscillator: 50MHz

Digest Information
Fabric Digest (HEX): 8d5382634b0%94bc52a0667 T15f342dfa
0000f7T8130faBla31dcb45cbbl1cf159

eNVM_0 Digest (HEX): 90d743000bb62aBbacabab52cldbbibe
e3f809034344d1a26624180728507254

Device Security Settings
ARM CortexM3 access to eSRAM module 0 read is protected.
ARM CortexM3 access to eSRAM module O write is protected.
ARM CortexM3 access to eSRAM module 1 read is protected.
ARM CortexM3 access to eSRAM module 1 write is protected.
ARM CortexM3 access to eNVM_D read is protected.
ABRM CortexM3 access to eNVM_0 write is protected.
ARM CortexM3 access to DDR bridge read is protected,
ARM CortexM3 access to DDR bridge write is protected.
Factory test mode access: Allowed.
Power on reset delay: 100ms
System Controller Suspend Mode: Disabled.

Programming Information

Cycle count: 333

VPP Range: HIGH { VPP >= 3.3V)
Temp Range: HOT

*Algorithm Version: 2

* Programmer: FlashPro 5
* Software Version: FlashPro v11.6

* Programming Software: FlashPro
* Programming Interface Protocol: |TAG
* Programming File Type: STAPL

NOTE: * - The above Information is only relevant if the device was pregrammed through JTAG or SPI Slave mode.

l Help : x Close |
Figure 5 - Device Status Report

I[dCode

IDCode read from the device under debug.

Device Certificate
Device certificate displays Family and Die information if device certificate is installed on the device.

If the device certificate is not installed on the device, a message indicating that the device certificate may not
have been installed is shown.

17

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

Design Information
Design Information displays the following:
e Design Name
e Design Checksum
e Design Version
e Back Level (SmartFusion2 and IGLOO2 only)
e Operating Voltage (SmartFusion2 and IGLOO2 only)
e Internal Oscillator (SmartFusion2 and IGLOO2 only)

Digest Information

Digest Information displays Fabric Digest, eNVM_0 Digest and eNVM_1 Digest (for M2S090 and M2S150
devices only) computed from the device during programming. eNVM Digest is shown when eNVM is used in
the design.

Device Security Settings

Note: For RTG4 devices, only Lock Bit information is displayed.

Device Security Settings indicate the following:
¢ Factory test mode access
e Power on reset delay
e System Controller Suspend Mode

In addition, if custom security options are used, Device Security Settings indicate:
e User Lock segment is protected
e User Pass Key 1/2 encrypted programming is enforced for the FPGA Array
e User Pass Key 1/2 encrypted programming is enforced for the eNVM_0 and eNVM_1
e SmartDebug write access to Active Probe and AHB mem space
e SmartDebug read access to Active Probe, Live Probe & AHB mem space
e UJTAG access to fabric

Programming Information
Programming Information displays the following:
e Cycle Count
e VPP Range
e Temp Range
e Algorithm Version
e Programmer
e Software Version
e Programming Software
e Programming Interface Protocol
e Programming File Type

Embedded Flash Memory (NVM) Content Dialog Box
(SmartFusion2 and IGLOOZ2 Only)

The NVM content dialog box is divided into two sections:
¢ View content of Flash Memory pages (as shown in the figure below)

18

SmartDebug User Guide O M’bmsemi.

Power Matters.”

e Check page status and identify if a page is corrupted or if the write count limit has exceeded the 10-
year retention threshold

Choose the eNVM page contents to be viewed by specifying the page range (i.e., start page and the end
page) and click Read from Device to view the values.

You must click Read from Device each time you specify a new page range to update the view.

Specify a page range if you wish to examine a specific set of pages. In the Retrieved Data View, you can
enter an Address value (such as 0010) in the Go to Address field and click the corresponding button to go
directly to that address. Page Status information appears to the right.

Contents of Page Status

e ECCI1 detected and corrected

e ECC2 detected

e Write count of the page

e If write count has exceeded the threshold

o If the page is used as ROM (first page lock)
e Overwrite protect (second page lock)

e Flash Freeze state (deep power down)

@ Flah Memory
& - 7
Select | <FageRange> v 3] Fiead from Devce.
StatPage: [adress fx5t)
Erd Page: = {11 pages, 1408 bynes)
Latest Content Retrieved from Devioe: Mo S 10 et 2008

Retieved Content: from Page 10 to Page 20, 1408 bytes stwrtng fom address 0500

Varw Al Page Ststa

Status for Fage 210

Figure 6 - Flash Memory Dialog Box for a SmartFusion2 Device (SmartDebug)
The page status gets updated when you:
e Click Page Range
e Click a particular cell in the retrieved eNVM content table
e Scroll pages from the keyboard using the Up and Down arrow keys
e Click Go to Address (hex)

The retrieved data table displays the content of the page range selection. If content cannot be read (for
example, pages are read-protected, but security has been erased or access to eNVM private sectors), Read
from Device reports an error.

Click View Detailed Status for a detailed report on the page range you have selected.

For example, if you want to view a report on pages 1-3, set the Start Page to 1, set the End Page to 3, and
click Read from Device. Then click View Detailed Status. The figure below is an example of the data for a
specific page range.

19

SmartDebug User Guide c Mmse'm

Power Matters.”

T

from Page 1 to Page 3, 384 bytes starting from address 0x80 as of Thu Jan 07 14:49:29 2016 [save]| &pint |

Page Status Summary [Page 1to 3]

Total number of pages with ECC2 errors: 0
Total number of pages with write count out of range: 0
FlashMemory Check PASSED for [Page 1to 3]

Flash Memory Page Status [Page 1to 3]
FlashiMemory Page =1:

Recoverable ECC1 error detected: False
Non recoverable data error detected: False

Write counter over threshold: False
Write count: 38 === This value may be incorrect due to OEPB is not set.
Use as ROM: off
Overwrite Protect: Not set
FlashFreeze state: False
FlashMemory Page #2:

Recoverable ECC1 error detected: False
Non recoverable data error detected: False

Wirite counter over threshold: False
Write count: 38 === This value may be incorrect due to OEPB is not set,
Use as ROM: Off
QOverwrite Protect: Mot set
FlashFreeze state: False
FlashMemory Page #3:

Recoverable ECC1 error detected: False
Non recoverable data error detected: False

Write counter over threshold: False

Write count: 38 ===This value may be incorrect due to OEPB is not set,
Use as ROM: off

Overwrite Protect: Mot set

FlashFreeze state: False

Figure 7 - Flash Memory Details Dialog Box (SmartDebug)

20

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

Debugging

Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4)

In the Debug FPGA Array dialog box, you can view your Live Probes, Active Probes, Memory Blocks, and
Insert Probes (Probe Insertion).

The Debug FPGA Array dialog box includes the following four tabs:
e Live Probes
e Active Probes

e Memory Blocks
e Probe Insertion

Hierarchical View

The Hierarchical View lets you view the instance level hierarchy of the design programmed on the device
and select the signals to add to the Live Probes, Active Probes, and Probe Insertion tabs in the Debug
FPGA Array dialog box. Logical and physical Memory Blocks can also be selected.

¢ Instance — Displays the probe points available at the instance level.

e Primitives — Displays the lowest level of probeable points in the hierarchy for the corresponding

component —i.e., leaf cells (hard macros on the device).

You can expand the hierarchy tree to see lower level logic.
Signals with the same name are grouped automatically into a bus that is presented at instance level in the
instance tree.
The probe points can be added by selecting any instance or the leaf level instance in the Hierarchical View.
Adding an instance adds all the probe able points available in the instance to Live Probes, Active Probes,
and Probe Insertion.

21

SmartDebug User Guide

Hierarchical View Netlist View

Filter:

da
B data_out_1[0]
ta_out_1[1]
ta_out_1[2]

»
»
P data_out_1[3]
»
B
»

&858

_out_1[4]
_out_1[5]
_out_1[6]
_out_1[7]
_out_1[8]
_out_1[9]

335

.
3
i

> 1 FIC_2_APB_M_PRDATA
T FIC_2_APE_M_PREADY
¥ FIC_2_APB_M_PSLVERR

Figure 8 - Hierarchical View

& Microsemi

Power Matters.”

22

SmartDebug User Guide Q Micmsemi,

Power Matters.”

Search

In Live Probes, Active Probes, Memory Blocks, and the Probe Insertion Ul, a search option is available in
the Hierarchical View. You can use wildcard characters such as * or ? in the search column for wildcard
matching.

Probe points of leaf level instances resulting from a search pattern can only be added to Live Probes, Active
Probes, and the Probe Insertion Ul. You cannot add instances of search results in the Hierarchical View.

Netlist View

The Netlist View displays a flattened net view of all the probe-able points present in the design, along with
the associated cell type.

23

SmartDebug User Guide c Mfcrose’nl

Power Matters.”

| Herarchical View | Netist View |

Fter: m_!

Net(s): [A]
- Name Type
count_0_g[0]:count_0/g[0]:Q

Imt_ﬂ_q[m:mt_ﬂmllﬂlﬂl

|count_0_g[11):count_0/q[11):Q
:mt_ﬂ_q{ul:mnt‘ﬂfq[u]:q
!mf.ﬂ.ﬂflﬂkml.ﬂhlﬂlﬂ
|M_ﬂ.qtl*ﬂ=mt.ﬂhllﬂ:q
!mt_u_q[ﬁ]:mt_ﬂhllﬂ:q
| count_0_a[16]:count_0/a[161:Q
|-:n-.nt_(:,,q1',1?]:mnt_ujq[1:rj:q
|count_0_q[18):count_0/q[18]:Q
count_0_q[19]:count_0/a[159]:Q
imt_ﬂ_ﬂtl]am!_ﬂh[l]:q
i:ﬂnt_ﬂ_qtzl'-mm_ﬂhmrﬂ
|~:u-.nt_u_-: [3):count_0/q[3]:Q
| count_0_q[4]:count_0/al4]:Q
|count_0_alS}icount_0/alS1:Q
| count_0_q[6):count_0/ql6]:Q

:m.m_n_q [7]:count_0/q[71:Q

lmt_ﬂjt&]mt_ﬂh[ﬂ]rﬂ
|

TIT3I3T 3T I RTINS YITR

;cunt_n_qtﬂl]:mt_ﬂh[al:q

Figure 9 - Netlist View
Search

A search option is available in the Netlist View for Live Probes, Active Probes, and Probe Insertion. You can
use wildcard characters such as * or ? in the search column for wildcard matching.

Live Probes (SmartFusion2, IGLOO2, and RTG4)

Live Probes is a design debug option that uses non-intrusive real time scoping of up to two probe points with
no design changes.

24

SmartDebug User Guide c Micmsemi

Power Matters.”

The Live Probes tab in the Debug FPGA Array dialog box displays a table with the probe names and pin
types.

Note: SmartFusion2 and IGLOO2 support two probe channels, and RTG4 supports one probe channel.

SmartFusion2 and IGLOO2

Two probe channels (ChannelA and ChannelB) are available. When a probe name is selected, it can be
assigned to either ChannelA or ChannelB.

You can assign a probe to a channel by doing either of the following:
¢ Right-click a probe in the table and choose Assign to Channel A or Assign to Channel B.

e Click the Assign to Channel A or Assign to Channel B button to assign the probe selected in the
table to the channel. The buttons are located below the table.

When the assignment is complete, the probe name appears to the right of the button for that channel, and
SmartDebug configures the ChannelA and ChannelB I/Os to monitor the desired probe points. Because
there are only two channels, a maximum of two internal signals can be probed simultaneously.

Click the Unassign Channels button to clear the live probe names to the right of the channel buttons and
discontinue the live probe function during debug.

Note: At least one channel must be set; if you want to use both probes, they must be set at the same time.
| Debug FPGA Array: : e 5 o

&

" Live/Active Probes Selection & X

FPGA Array debug data

ol View | Netlist View | 4] ¥ | Live Probes | Active Probes Memory Blocks
Filter: search | | oeete || pelewwsn |
2 —
Net(s): Add

:Inst_CLKO_Top/Inst_CLKO_B2/Inst_CLKO_B3/Inst_CLKO_B4/Inst_CLKO_B11/Inst_CLKD_|

Assign to Channel A
Assign to Channel B

:Inst_CLKD_Top,/Inst_CLK(
:Inst_CLKO_Top/Inst_CLK(
:Inst_CLKO_Top/Inst_CLK(
:Inst_CLKO_Top,/Inst_CLK(4 m 3
iInst_CLKO_Top/Inst_CLKC | Assign to Channel A | =>

:Inst_CLKO_Top/Inst_CLK(. :

| Assign to Channel 8 | ->
:Inst_CLKO_Top/Inst_CLK(-

= Unassign Channels
4 1 3 e T

{ Help | Close]

Figure 10 - Live Probes Tab (SmartFusion2 and IGLOO2) in SmartDebug FPGA Array Dialog Box

RTG4

One probe channel (Probe Read Data Pin) is available for RTG4 for debug. When a probe name is selected,
it can be assigned to the Probe Channel (Probe Read Data Pin).

You can assign a probe to a channel by doing either of the following:
e Right-click a probe in the table and choose Assign to Probe Read Data Pin.

e Click the Assign to Probe Read Data Pin button to assign the probe selected in the table to the
channel. The button is located below the table.

Click the Unassign probe read data pin button to clear the live probe name to the right of the channel
button and discontinue the live probe function during debug.

The Active Probes READ/WRITE overwrites the settings of Live Probe channels (if any).

25

SmartDebug User Guide C Mfcrosem;[

Power Matters.
- Bl
] Debug FPGA Array Lol =0
Live /Active Probes Selection 8 x FPGA Array debug data
Hierarchical View Netlist View Live Probes Active Probes Memory Blocks
Filter: Search ’ Delete] ’ Delete Al
Instance(s): Name Type
AU LED_ctrl_0/pb1_reqL:LED_ctrl_0/pb1 _regl:Q
4 i LED _ctrl 0 LED_ctrl_0/pb1_reg2:LED_ctrl_0/pb1_reg2:Q Assign to probe read data pin
4 I Primitives
I 19 counter LED_ctrl_0/pb2_req1:LED_ctrl_0/pb2_reg1:Q DFF
1 pbi_regl
1 pbi_reg2 LED_ctrl_0/pb2_reg2:LED_ctrl_0/pb2_reg2:Q DFF
B pb2_regl
1 pb2_reg2
& 1 rot Ift
> 1 rot_rgt

Assign to probe read data pin | -3
Unassign probe read data pin

Figure 11 - Live Probes Tab (RTG4) in SmartDebug FPGA Array Dialog Box

Live Probes in Demo Mode
You can assign and unassign Live Probes ChannelA and ChannelB. See the following example figure.

W7 Debug FPGA Array - o x

FRA Array debug dats

UvaProbes | ActveProbes | Memeey Bocks | Probe Insertien

Tate Dwate A1
Hama | Type |
s CORECONFIGR G/I1T. DOME_2-wercen s, 0 CORICONFIGS 3 11IT_DONE_52:Q e
serdes_sb O/ CORECONFIGP_O/SDIF_RELEASED_qlmardes_sb_O/CORECONFIGE_O/50IF_RELEASED aliQ OFF

‘serdes_s_Ofserdes_sh_HPMS_TMP 3 FIC_I_APB_MASTER_PSLVERRiserdes_sh_§\CORECONFIGR_OFIC_2_APB_M_PSLVERRIQ

serties_sis_0_SDIFG_INIT_ADE_PENABLE:serches_sb. 0 CORECONFIGP_0/SOIF)_PENABLE!G oFF

Masign te Chareai A | -3 serdes_sh, /CORECONFIGR_SYINIT_DONE a2 isarden_sb_ & CORECONFIGR_S/INIT_DOWE 52:G

=3 send_sh_Bsaedes_sh HPUS_TMP 6 FIC_2 AP MASTER, PSIVERRissrdes_sh O/CORECONFIGR O/FIC_2_APE_M_PSIVERRIQ

Unasign Crarres

* SMARTDEBUG IS RUNNING IN DEMO MODE *

Active Probes (SmartFusion2, IGLOO2, and RTG4)

Active Probes is a design debug option to read and write to one or many probe points in the design through
JTAG.

In the left pane of the Active Probes tab, all available Probe Points are listed in instance level hierarchy in
the Hierarchical View. All Probe Names are listed with the Name and Type (which is the physical location of
the flip-flop) in the Netlist View.

Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them to the
Active Probes Ul. You can also add the selected probe points by clicking the Add button. The probes list
can be filtered with the Filter box.

26

SmartDebug User Guide

B Debug FPGA Asray

Fir [sewen |

Netisk [—

| s -]
+ B DOUT _c[7:0] 3
+ Fabri,_Distaug_Dicount_p_sourAf7:0] I
+ Fabric_Dabug Ofosunt 0 souB{740)

Fabaric,_Deebusg_ @ifcount_chk_Ofon_chifT.0]

Fabric_Debug Qicount_chi_QfmymaFisbric_Debug Qo _chic Qs
SERDES Debug 0N _5400-SERDES Debug 0/50_DEMO_0_CORER
SERDRS Db OM_S403SERDES Debug_0/S0_DEMG__CORER
SERDES Debug ON_SA0%SERDES Debug /5D DEMO_0_CORER
SERDES_Debug_0/SD_DESO_1.CORECONFISS 0. INIT _DOME_g1=¢
SERDES Debug 050 _DEMO_0.CORECONFIGR _0.IMIT_DOMNE _q2:t

:
!
!
|
:
;

SERDES Db _0/5D_DEMO_0.CORECONFIGR 0,50 RELEASED,
SEALES Debes 050 _CEMO_0.CORECCHFIGR 0. poel:SERDES, Del

+ SERDES_Debug 0/S0_PEMO._0.CORECONFIGR 0,30 _reset_reg(!

+ SERDES Debug 00 _DEMO_0.CORSOCNFICH 0. smate|1:0]
SERDES Debug 050 _DEWG_0.CORECOHFIGR 0 CONFIG L DONE
SERDES Debug 050 _DEMO_0.CORECONFIGR 0 CONFIGI DONE _ |
LFOREE Pabern BRSPS () FODECTRERD f GOET SELET BT |

& Microsemi

Power Matters.”

=l H
FPGA Array debug dats |
'-"'ﬂ‘PE: dctveProbes | MemoryBocis | Prabe serton |
[#] =+ # Save, J [Load] Delete Delese al
[ame Type [Read Ve Finite Value
SERDES Debug {1 M5 AEADY g CFF 1 =]
SERDES. Debug 0.k n_ck_hames] CFF 1 |
SERDES Debug 0. Eset_ n reosciQ DFE 1 =
* [Paboc Debag Ojcount 0_couth[7:c] | DFP | mve7 =
Febric_Debug f1coant_B_couthi[?:0] OFF hi4 h
Fabric_Debug e k_Ofon, dk 7 DFF |hed e
| AesdAcevebrobes | [faveAcvelrobesData.,| Ve Ackee frobes
| Goee |

Figure 12 - Active Probes Tab in SmartDebug FPGA Array Dialog Box

When you have selected the desired probe, points appear in the Active Probe Data chart and you can read
and write multiple probes (as shown in the figure below).

You can use the following options in the Write Value column to modify the probe signal added to the Ul:

e Drop-down menu with values ‘0’ and ‘1’ for individual probe signals
e Editable field to enter data in hex or binary for a probe group or a bus

FPGA Array debug data
Live Probes | Active Probes | Memory Blocks I Probe Insertion |
E] CIREINES ’ Save...] ’ Load...] | Delete || Deleteal
Mame b Type Read Value Write Value
SERDES Debug 0..MS_READY int:Q DFF i |
SERDES Debug 0.t n_dk_base:Q DFF i -
SERDES_Debug_0..eset_n_rcosciQ DFF 1 1
[» |Fabric_Debug_0/fcount_0_coutA[7:0] DFF ghEF gh
[» | Fabric_Debug_0/fcount_0_coutB[7:0] DFF g'hB4 gh
[» |Fabric_Debug_0/c.. k_0fdn_chk[7:0] DFF g'hag gh
Read Active Probes] [Sa'u'e Active Probes' Dam...] | Write Active Probes

Figure 13 - Active Probes Tab - Write Value Column Options

27

SmartDebug User Guide O M’bmsemi.

Power Matters.”

Active Probes in Demo Mode

In demo mode, a temporary probe data file with details of current and previous values of probes added in
the active probes tab is created in the designer folder. The write values of probes are updated to this file,
and the GUI is updated with values from this file when you click Write Active Probes. Data is read from this
file when you click Read Active Probes. If there is no existing data for a probe in the file, the read value
displays all 0s. The value is updated based on your changes.

See the following example figure.

B Debug FPGA Array - o x
w
Livwlhctios Probes Swection & X PO Array ek
| -
Marsrchics Ve | Masiat Vi Live Probes Actve Probes | MemceyBiocks | Probe Inseetion
s Search I | - 1] + Save... Load_ Duiate A1
e Type Fead Value Write Value
Ensancals): Add +1 | sarcden_sb._fsard TER_PROATA[31:0} DFF 27h33 37h23
= I serde_ib 0 = | sarctea_sk_0/COR.[INIT_DOME_a2:Q CFF 0 |
= 1 CORECONFIGR O =
= I Primires
% W FIC_2_APE_M_PRDATA
B FIC_1_APB_M_PREADY
1) FIC 2 APE_M_PSIVERR
T INIT_DONE_gt
- INIT_DONE o
B SDIFQ_PEHARLE
1) SDIF_RELEASED at
B SDIF_RELEASED_q? e
1 control_reg_1
B padde
1 1
::a-:n | R Active Probay Savw Active Brobes’ Data... J
* SMARTDEBUG IS RUNNING IN DEMO MODE *
Help] (==

Probe Grouping (Active Probes Only)

During the debug cycle of the design, designers often want to examine the different signals. In large
designs, there can be many signals to manage. The Probe Grouping feature assists in comprehending
multiple signals as a single entity. This feature is applicable to Active Probes only. Probe nets with the same
name are automatically grouped in a bus when they are added to the Active Probes tab. Custom probe
groups can also be created by manually selecting probe nets of a different name and adding them into the
group.

The Active Probes tab provides the following options for probe points that are added from the Hierarchical
View/Netlist View:

e Display bus name. An automatically generated bus name cannot be modified. Only custom bus names
can be modified.

e Expand/collapse bus or probe group

e Move Up/Down the signal, bus, or probe group

e Save (Active Probes list)

e Load (already saved Active Probes list)

e Delete (applicable to a single probe point added to the Active Probes tab

e Delete All (deletes all probe points added to the Active Probes tab)

¢ In addition, the context (right-click) menu provides the following operations:
e Create Group, Add/Move signals to Group, Remove signals from Group,
e Ungroup
e Reverse bit order, Change Radix for a bus or probe group
e Read, Write, or Delete the signal or bus or probe group

28

SmartDebug User Guide

FPGA Array debug data

Live Probes | Active Probes | Memary Blocks I Praobe Insertion |

& Microsemi

+_ E [E ’ Save... l ’ Load... l Delete
Mame e Type Read Value Write Value

SERDES_Debug_0..MS_READY_int:Q) DFF 1 1 I |
SERDES_Debug_0...t_n_clk_base:Q DFF 1 o 3
SERDES Debug_0..eset n_rcosciQ) DFF 1 =1

Fabric_Debug_0/c.. k_0fdn_chk[7:0] DFF 8'hBE gh
Fabric_Debug_0...0/dn_chk[7]:Q DFF i =1
Fabric_Debug_0...0/dn_chk[5]:Q DFF 0 3
Fabric_Debug_0...0/dn_chk[5]:Q DFF 1 =1
Fabric_Debug_0...0fcn_chk[4]:Q DFF 1 I |
Fabric_Debug_0...0/dn_chk[3]:Q DFF 1 =1
Fabric_Debug_0...0fcn_chk[2]:Q DFF 1 =1
Fabric_Debug_0...0/dn_chk[1]:Q DFF 1 =]
Fabric_Debug_0...0/dn_chk[0]:Q DFF] 1

4 |group1[1:0] 2'h2 Zh
Fabric_Debug_0...0fdn_chk[1]:Q DFF i 1
Fabric_Debug_0...0/dn_chk[0]:Q OFF 0 ~]

4 |group2[1:0] 2h3 2h
Fabric_Debug_0...0/cin_chk[5]:Q DFF i =1
Fabric_Debug_0...0/dn_chk[4]:Q DFF 1 =1

Read Active Probes l ’Save Active Probes' Data..] Write Active Probes

e Green entries in the “Write Value” column indicate that the operation was successful.

Figure 14 - Active Probes Tab

Power Matters.”

¢ Blue entries in the “Read Value” column indicate values that have changed since the last read.

Context Menu of Probe Points Added to the Active Probes Ul
When you right-click a signal or bus, you will see the following menu options:
For individual signals that are not part of a probe group or bus:

Read

Write

Delete

Poll

Create Group
Add to Group
Move to Group

29

SmartDebug User Guide C Mmsernl

Power Matters.”

SERDES sh 0 _SDIF0 INITADE D
Read

Delete

o

b WD TTE SV CED

&

DEC_ch [JCORECONFIGP_0/pwrite:Q

Poll...
Create Group...
Add to Group...

Move to Group...

For individual signals in a probe group:

e Read
e Delete
e Poll

e Create Group

e Add to Group

e Move to Group

¢ Remove from Group

4 | group[4:0]

count_0_q[7]:count_0/g[7]:Q

count_0_q[6]:count_0/fg[6]:Q Read

count_0_q[5]:count_0/fq[5]:Q Delete

count_0_q[4]:count_0/q[4]:Q

SYS_SERDES_sh_0/CORECONFIGP_0/soft_reset_reg[12.._SERDES_ Sk reg[17]:0
4 |5YS_SERDES_sh_0/CORECONFIGP_0fsoft reset reg[14:8,6:2,0] sl

5YS_SERDES_sb_0/CORECONFIGP_0/soft_reset reg[14... SERDES._ Add to Group... reg14]:0

5Y5_SERDES_sb_0/CORECONFIGP_O/soft_reset_reg[13..._SERDES_ Move to Group... reg[13]:Q

SYS_SERDES_sb_0/CORECONFIGP_0/soft_reset_reg[12.._SERDES_ Remuove from Group req[12]:Q

S5YS_SERDES_sb_0/CORECONFIGP_O/soft_reset reg[11..._SERDES_sb_0JCORECONFIGP_0/soft_reset_reg[11]:0Q

For individual signals in a bus:

e Read
e Delete
e Poll

e Create Group
e Add to Group

30

SmartDebug User Guide

& Microsemi

Power Matters.”

4 | count_0_g[19:0]

For a bus:

Delete
Reverse

count_0_g[19]:count_0/g[19]:Q

count_0_g[18] :count_0/q[18]:C
count_0_g[17]:count_0/g[17]:Q

count_0_g[16]:count_0/q[18]:Q

count_0_q[15]:count_0/g[15]:Q

count_0_g[14]:count_0/g[14]:Q

count_0_g[13]:count_0/q[13]:Q

count_0_g[12]:count_0/g[12]:Q

count_0_g[11]:count_0/q[11]:Q

Read
Delete

Poll...
Create Group...

Add to Group...

count_0_g[10]:count_0/g[10]:Q

Bit Order

Change Radix to Binary

Poll

Create Group

R ———m—"—"

count_0_g[19]:count_0jg[19]:Q

count_0_qg[18]:count_0/g[18]:Q

count_0_g[17]:count_0jg[17]:Q

count_0_qg[16]:count_0/g[16]:Q

count_0_g[15]:count_0jg[15]:Q

count_0_q[14]:count_0/g[14]:Q

count_0_g[13]:count_0jg[13]:Q

Delete

Reverse Bit Order
Change Radix to Binary

Poll...
Create Group...

count_0_q[12]:count_0/g[12]:Q

count_0_g[11]:count_0jg[11]:Q

For a probe group:

Delete

Reverse Bit Order

Change Radix to Binary

Poll

Create Group
Ungroup

31

SmartDebug User Guide C Micmsemi

Power Matters.”

el aroup2[4:0]
count_0_g[2]:count_0/q[2]:Q Delete
count_0_g[1]:count_0/g[1]:Q
count_0_q[0]:count_0/q[0]:Q

Reverse Bit Order

Change Radix to Binary -

count_0_g[&]icount_0/q[6]:Q
count_0_q[5]:count_0/q[5]:Q Poll...

4 |SYS SERDES sh 0/CoreAHBLite_0/ma Create Group... [15:7,0
SYS_SERDES_sb_0/CoreAHBLite_C Ungroup 16/mas

5YS_SERDES_sh_0/CoreAHEBLite (st 1o masters It Uy ma e 15/ mas
SYS_SERDES_sb_0/CoreAHBLite_0/matringx 16/masters. ite_0/matringyx 16/mas

Differences Between a Bus and a Probe Group

A bus is created automatically by grouping selected probe nets with the same name into a bus. A bus
cannot be ungrouped.

A Probe Group is a custom group created by adding a group of signals in the Active Probes tab into the
group. The members of a Probe Group are not associated by their names. A Probe Group can be
ungrouped.

In addition, certain operations are also restricted to the member of a bus, whereas they are allowed in a
probe group.

The following operations are not allowed in a bus:
* Move to Group: Moving a signal to a probe group
*« Remove from Group: Removing a signal from a probe group

Memory Blocks (SmartFusion2, IGLOO2, and RTG4)

The Memory Blocks tab in the Debug FPGA Array dialog box shows the hierarchical view of all memory
blocks in the design. The depth and width of blocks shown in the logical view are determined by the user in
SmartDesign, RTL, or IP cores using memory blocks.

Notes:
¢ RAM is not accessible to the user when SmartDebug is accessing RAM blocks.
e RAM is not accessible to the user during a read or write operation.

e During a single location write, the RAM block is not accessible. If multiple locations are written,
the RAM block is accessed and released for each write.

e When each write is completed, access returns to the user, so the access time is a single write
operation time.

The example figure that follows shows the hierarchical view of the Memory Blocks tab. You can view logical

blocks and physical blocks. Logical blocks are shown with an L (E), and physical blocks are shown with
aP (ﬂ).

32

SmartDebug User Guide

&/ F_11 F1 U2
B F_zFiU2
> B F_13.F1 U2
& F_14F1L 2
B F_15F1 U2
o F_16_Fi_u2

B %X oA Aray debug data

'_ Search | Live Probes | .u:l'\n:aobﬂ: blerrry Blode myw
"
Suect | Usr Deesign Memary Biack:
Data Wit
£ Port Lised:

& Microsemi

Power Matters.”

Figure 15 - Memory Blocks Tab - Hierarchical View

You can only select one block at a time. You can select and add blocks in the following ways:
e Right-click the name of a memory block and click Add as shown in the following figure.

FPGA Array debug data

4 Fabric_Logic_0
«Bmw

Memory Blocks Selection & x
Filter: | Search
Memory Blocks: | select

Instance Tree =

B F_10_F1 U2

> W F_11 F1 U2

> 3k F_12_F1 U2
> Bk F_13 F1 U2

> M F_14 F1 U2

Live Probes I Active Probes Memory Blocks Probe Insertion

User Design Memory Block:
Data Width:
Port Used:

Read Block

e Click on a name in the list and then click Select .

e Select a name, drag it to the right, and drop it into the Memory Blocks tab.

e Enter a memory block name in the Filter box and click Search or press Enter . Wildcard search is

su

pported.

Note: Only memory blocks with an L or P icon can be selected in the hierarchical view.

Memory Block Fields

The following memory block fields appear in the Memory Blocks tab.

User Design Memory Block

The selected block name appears on the right side. If the block selected is logical, the name from top of the
block is shown.

33

SmartDebug User Guide c Mfcrose’nl

Power Matters.”

Data Width

If a block is logical, the width from each physical block is retrieved from each physical block, consolidated,

and displayed. If the block is physical, the width is 9-bits, and the depth is 128 for u>SRAM blocks and 2048
for LSRAM blocks.

Port Used

This field is displayed only in the logical block view. Because configurators can have asymmetric ports,
memory location can have different widths. The port shown can either be Port A or Port B. For TPSRAM,

where both ports are used for reading, Port A is used. This field is hidden for physical blocks, as the values
shown will be irrespective of read ports.

The following figure shows the Memory Blocks tab fields for a logical block view.

FPGA Array debug data
Fiter: | sesen | [iwerrobes | AciveProbes | MemeeyBods | Probe inserbon |
Memeery Elodks | Stect | User DesgnMemory Blode Febrc_Logic_0/U3F_0 PO 101

: Data Width: 1B4it
| Instance Tree k= Poet Used: [Parta -
4 I Fabric_Logk 0 > :
+ & u3
< & FOF UL

4 B ramtmg_ramimg 0_0
2 I Prievtives
B DET_RAMGAE P
A & F_0_F1u2
4 BB ramimp_ramimp 0_0
« B Primvtives
B ST RAMGA1E_IP
4 B F_ILFLZ
@ B ramtmp_ramimp 0_0
- Primitives
B DT RAMGALE P i y
« fFFzF1 2 Rosaed Block. | Sarve Block Data. Write: Block
B ramtmp_ramimp_0_0)
a_ B Driectione.

Figure 16 - Memory Blocks Tab Fields for Logical Block View
The following figure shows the Memory Blocks tab fields for a physical block view.

Mesory Blodks Selection & x FRGA Arrary debug data

Fiter: [sean | [Lverrobes | Aciverrobes | MemoeySods | Probe inserton |

Remory Eloda: Lo Stect] User Diesign Memory Blod: Fsbric_Logic_0/US/F_0) IR0_LU ramitmp_ramtmg_0_0/INST,_RAMEH18_[F

Data Width: Pt
Ingtance Tree = r
4 i Fabric_Logic 0
a W
a & FOFOU

4 F ramimg_ramimg_0_0
@ B Primitives
B DET_RaMeaxin P
4 B F_i F1u2
4 B ramimp_ramemp_0_0
+ B Privives
B PET_RAMEAIE_IP
4 BFFLUZ
4 B ramtmp_ramimp 0_0
B Primitives

B ST RAMSG 1P : e
4 4 F_12 F1u2 ResdBlock [|Save Block Duta Write Block
@ B ramtmp_ramimp 0_0

AW Drieitone

Figure 17 - Memory Blocks Tab Fields for Physical Block View

Read Block

Memory blocks can be read once they are selected. If the block name appears on the right-hand side, the
Read Block button is enabled. Click Read Block to read the memory block.

34

SmartDebug User Guide c Mfcrose’nl

Power Matters.”

Logical Block Read

A logical block shows three fields. User Design Memory Block and Data Width are read only fields, and the
Port Used field has options. If the design uses both ports, Port A and Port B are shown under options. If only
one port is used, only that port is shown.

Memory Blodks Sekecton B X pnca Amay debug data
Fiter: | sewer | [iwerrobes | ActvePrbes | MemorySloos | Probe knserton |
—
Memeey Elocks: L wehect | User Design Memory Block: Fasbne_Logic O/U3F _0_FO_L
; Data Width: 19t
Lo = Poctused: [perza -]
a I Fabric_Loge 0 3
+ & .
+ B F0FOUL Sl il Bl Bl ®ionle ol Pl Wil 0o il Wil Gl Ol BB |
« B w00 0000 DOAB3 DES0S DUOCS 14500 00010 0031 12026 DOOAD LNGD 04000 0114 02000 11080 2000 I DAL
T Fazm-mw-]’ 0010 0270 Q4451 04001 0800 05000 12600 DJ12D 003 OJBY G420 O4UIS ICADO DODS2 DOLOS DOCZ2 100S |
10 |
A o e D020 L0400 DOD10 10000 14044 ICOMD DBIOE 39425 ODFI0 I0CI4 0004 04001 50000 00100 D0DAZ 20100 09002|
=, |
P Een Fnzm—”"‘“‘“w” 003 0OOIE 00000 2053 0DOAA DOIED 24100 0283 0070 KON 04000 DDOGO 00200 20004 22400 04004 0A0%0)|
4 B ramimp_ramime_0_0
2 I Primitives
B DNST RAMG4 9 IP r L " -
4 | F_2F1L2 | ResdBodk | |SaveBlodDath...| Vrite Bock
@ B ramtmp_ramimp_0_0
a_ B Dreition A
| [ree] Cose |

Figure 18 - Logical Block Read

The data shown is in Hexadecimal format. In the example figure above, data width is 18. Because each
hexadecimal character has 4 bits of information, you can see 5 characters corresponding to 18 bits. Each
row has 16 locations (shown in the column headers) which are numbered in hexadecimal from 0 to F.

Note: For all logical blocks that cannot be inferred from physical blocks, the corresponding icon does not
contain a letter.

Physical Block Read

When a Physical block is selected, only the User Design Memory Block and Data Width fields are shown.

g i T T
& | Debug FPGA = .
Memory Blocks Selecton & X FEGA Arrary debug data
i [sewch | [iveprobes | Acivebrobes | MemceyBods | Probeincertion |
Memsry Hlocks oo mbact .. | User Design Memory Blod: Fabric_Logic_0/U3{F_0_PO_Uramtmp:_yamtmp_0_0/INST,_Raméax1s P
: : Data Width: it
| Instance Tree | :

4 B Fabrc_Logk 0 | O 0ol i i B ks Tl B et b o Bl Gl D B)

a ik I
4 B F.O0FUL 0000 (083 005 003 044 06 048 100 0AZ O10 000 81 00U 02 (B0 04D 000
R - 0 7
‘:m_o_ 0030 080 090 000 Q20 014 101 000 Q10 O30 023 040 100 020 OE1 Q20 050 =
B peT_pansaas P
4 WFWFLL 0020 100 013 051 02 001 020 000 O} 00 028 00 192 120 (00 000 000
a I& rambmp_ramtmp_0_0
o B Pradices O30 080 000 020 002 0I5 020 00O OE4 OS2 000 106 000 022 (06 052 080
B DT RAMSAIS
BN R i 0040 000 082 010 OO0 000 0G0 044 DAD M) UEO KE 040 0I5 ICA 190 06C
a8 0.0
e i 00%0 013 086 004 OD) 001 020 000 MO 100 000 042 000 100 100 002 0% .|
B DST_RAMS4x 5P . 1 n
2 Wr_zFL Readfock | [save BockData...| Vit Bock
4 B ramtmp_ramimp_0_0
a B Driticas. b
—— S
| Hen Cose |
I

Figure 19 - Physical Block Read

Write Block

Logical Block write

A memory block write can be done on each location individually. A logical block has each location of width
that is displayed. The written format is hexadecimal numbers from 0 to F. Width is shown in bits, and values

35

SmartDebug User Guide

& Microsemi

Power Matters.”

are shown in hexadecimal format. If an entered value exceeds the maximum value, SmartDebug displays a

popup message showing the range of allowed values.

FRGA Array debug data

User Design Memory Block: Fsbric_Lege 0/U3F_12 F1 U2
Datn Width: 1g-bit

Port Lised: [portas -]

- & F oo
o F_to_F1 U2
&/ F_ii_Fi_u2
E|rurfm
4 B ramtmp_ramimg 0_0

[

&/ F_15 Fiua
» & F_16_F1.U2
- @ F_I7F1 U2
= 4k F_1a_F1 U2
» MEF 3 F1LiD

4 |3 o 1 2 3 4 5 L] 7 B

¥ A

D000 ODOGI SFFFF 0OE0Q OO Q1300 00814 00004 00304 00200 0OE00 NO0GA 100U 00060 00050 00300 WWO'
0ON0 OOO00 20410 20002 02101 OH080 08018 mmmmmm;mmmwmmmmé
0020 000C COO00 DOODD DOOE4 OO0S0 02403 0000L 0I0S0 0000 00000 0000 00005 02000 0INIT 00COL D454

0030 02400 10001 00001 04000 00400 00002 01201 00004 00020 01CO0 02040 10008 07242 18102 24041 QZI‘H‘H

B Ciota Dot Bt Finl

Figure 20 - Logical Block Write
Physical Block Write

Physical blocks have a fixed width of 9 bits. The maximum value that can be written in hexadecimal format is
1FF. If an entered value exceeds the limit, SmartDebug displays a popup message showing the range of

values that can be entered.

Memory Blodks Sebsction & x FRGA Arrary debug data
e | [iwepubes |
Memaory Biocs:
Dt Widlthe it
| Instance Tree | =
4 I Fsbnc Loge 0 L D T N WY, T PO .
+ 3 u2 i r
4 B FOFLUL 5 D000 123 [1FF| 032 0B4 117 1C2 007
a 5B I
a rwmj_ﬂ 0010 014 023 180 037 114 028 1
B NET_RAMICIA
- WEwFLU i WX 024 159 I5C 053 110 168 0D4
» & F_1 F1luz
£ r 1o F1L 2 0030 OF 058 058 02 10C 1CE 025
- & F_13 F1 U2
iy _.‘Ft‘uz 004 040 1A7 052 100 OMA FE 145
& F_15 F1 U2
o F'-niﬁz 0080 OOF IBA OIC 040 IFS 044 168
» & F_?F1U2
» 4 F_ F1U2
= 2 E_19_F1 U2
» Sk F 3 F1ID ke
= —
[hep

7
[2=:]

003

1

=

oaF

08

User Desgn Memory Blode Fsbric_Loge 0/U2F_D_P0_W 1 ramtmp:_ramimp 0 0/INST _RAM KIS B

B 9
044 031

o0A 017

150 042

155 012

e 0

o 117

135 037

o1

003 Ok4 088 .|

Figure 21 - Physical Block Write

Unsupported Memory Blocks

If RTL is used to configure memory blocks, it is recommended that you follow RAM block inference
guidelines provided by Microsemi. See Inferring Microsemi SmartFusion2 RAM Blocks for more information.

SmartDebug may or may not be able to support logical view for memory blocks that are inferred using RTL

coding not specified in the above document.

Memory Blocks in Demo Mode

A temporary memory data file is created in the designer folder for each type of RAM selected. All memory
data of all instances of USRAM, LSRAM, and other RAM types is written to their respective data files. The
default value of all memory locations is shown as 0s, and is updated based on your changes.

36

http://www.microsemi.com/document-portal/doc_view/129966-inferring-microsemi-smartfusion2-ram-blocks-app-note

SmartDebug User Guide C Mlcrbse!m

Power Matters.”

Both physical block view and logical block view are supported. See the following example figure.

BT Debug FPGA Aray - o x

L

Mamary Bcka Swecton 3] e

Fawr Saarch Liva Proias | Aetvabrebes MemorpBiocks | Peske tesesen |

Mamcey Bocks: et Usie Dasign Mammory Block: DESHAM 3
ata et bt

[———] Port st = -

= W o

AT DA o (0 [T (53 P T [S T[] (] O L
con | 90323 | G000 | DOOO0 | GODOD | G0ODG | OODNO | OGOD | SGBOO | 0000 | (X000 | D0000 | G0GOO | GOGON | OOODO | oGO0 | G00M0
cean | 0000 | 0000 | 000D | CODOD | 000D | ODOOD | 0OGOD | SODCO | 0DOGD | (OO0 | D000 | 0DOOO | OOOON | OOODD | GDOOD | 000OO
Gdh | 0000 | 0000 00000 | 0000 | 00000 | OOOO0 0000 | OOO00 0000 | 20000 | OOOOO | DODDO 2000C | 0OOO%
[| s0m0 | oo | oot | aoo | oo | oo | soon | oo | coom | o | avon | o0 | oo | oo | aoo | oo
[S U D ORI R U U O P vt i oy pu— o
;mmmmmmmmmmmmmmwm
o | 52008 | a0 | oo | scom | 6000 | oo | oot | ouu | 000 | 10000 | a0 | 4o | 0 | o | so0o | o
oo | 9600 | ODOOO | DOOOD | 0OOOD | G000 | OOOGD | 0OOOD | GONCO | O0OG) | (OO0 | DOG00 | OOOD | OGO | OOODD | GAOOD | 000N
coso | ocooo | ooooo | DoD0 | Gooop | 0000 | 0OCOD | 000D | SSCG | 0D0OO | GOOCO | D000 | GOCDD | OOGOY | 000G | 000D | 0000D
|como | 50000 | oouon | ooy | s | seece | oo | 00 | sooee | Gueen | ooon0 | e | aoooe | e | 0009 | 30 | 40
oomn | 4es0e | oo | cooon | eeso | 40090 | 0oo% | cooon | ooceo | o00on | oneun | cosee | 45500 | oomo | ecen | soee | oo
como | sosse | oooon | oooon | e | suse | ool | o600 | SeSSe | GOGOD | 00000 | S | GOOSD | NN | 00069 | S6E | 400D
* SMARTDEBUG IS RUNNING IN DEMO MODE *

| Coi |

Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4

Introduction

Probe insertion is a post-layout debug process that enables internal nets in the FPGA design to be routed to
unused I/Os. Nets are selected and assigned to probes using the Probe Insertion window in SmartDebug.
The rerouted design can then be programmed into the FPGA, where an external logic analyzer or
oscilloscope can be used to view the activity of the probed signal.

Note: This feature is not available in standalone mode because of the need to run incremental routing.

37

SmartDebug User Guide C Mfcrosem;[

Power Matters.
—_—
Pra-Synthesis
Simulation
Design Implementation ~ Synthesis Pest Syrilhesis
' Simulation
—_—
Insert probes into design I
e P —<Bio [l Place & Route
Signal r
Rg.:te — Jz[] Incrementally
‘/-'i' """ b routed net for
Routing may chiange P
after incremental
route
—
Analyze Probed Signals
- — o o crosen®

Figure 22 - Probe Insertion in the Design Process

The Probe Insertion debug feature is complementary to Live Probes and Active Probes. Live Probes and
Active Probes use a special dedicated probe circuitry.

Probe Insertion
1. Double-click SmartDebug Design in the Design Flow window to open the SmartDebug main window.
Note: FlashPro Programmer must be connected for SmartDebug.
2. Select Debug FPGA Array and then select the Probe Insertion tab.

1 Debug FPGA Array o|B| B

Probe Insertion Data Sehection X FPGA Array debug data

Hierarchical View | Nethst View. | [tiveProbes | ActveProbes | MemoryBiocks | Probe Insertion |

|anD2_0 v AND2_OMI0:Y

Insert probe(s) and program the device \I\

) Co=1)

Figure 23 - Probe Insertion Tab

In the left pane of the Probe Insertion tab, all available Probe Points are listed in instance level
hierarchy in the Hierarchical View. All Probe Names are shown with the Name and Type in the Netlist
View.

3. Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them
to the Active Probes Ul. You can also add the selected probe points by clicking the Add button. The
probes list can be filtered with the Filter box.

38

SmartDebug User Guide O M’bmsemi.

4.

] Debug FPGA Array =

Power Matters.”

Each entry has a Net and Driver name which identifies that probe point.

The selected net(s) appear in the Probes table in the Probe Insertion tab, as shown in the figure
below. SmartDebug automatically generates the Port Name for the probe. You can change the Port
Name from the default if desired.

Assign a package pin to the probe using the drop-down list in the Package Pin column. You can assign
the probe to any unused package pin (spare 1/O).
=)

@

Fter:

Prabe Insertion Data Selection B X FrGA Array debug data

Hesarchical View | Nefist View Live Probes | Active Probes | Memory Blocks | Probe Insertion

Instance(s): [add

Instance Tree Z
B Prinitives aelt] count_Ofa[11:Q |6 * | Test2
| AND2 0 | -
B 0 tuf o[count_0fal31:Q |36 ~ | Probe_Insert2
| Feoc o e J
B MUx_SEL
= vz o
I Reset
& Stop
& UIAG_0
T User_QK
4 I count_0
4 I Primitives

| Search " | Deletesd
et Driver Package Fin Port Mams

q_c[o] count_0/q[0]:Q ?H5 * | Probe_tnsertd

B q
B qRNO
]
B q_ay
B qs

Irsert probe(s) and program the device | Run

Probe Deletion

Figure 24 - Debug FPGA Array > Probe Insertion > Add Probe
Click Run.

This triggers Place and Route in incremental mode, and the selected probe nets are routed to the
selected package pin. After incremental Place and Route, Libero automatically reprograms the device
with the added probes.

The log window shows the status of the Probe Insertion run.

To delete a probe, select the probe and click Delete. To delete all probes, click Delete All.

Note: Deleting probes from the probes list without clicking Run does not automatically remove the probes
from the design.

Reverting to the Original Design
To revert to the original design after you have finished debugging:

1.
2.
3.

In SmartDebug, click Delete All to delete all probes.
Click Run.

Wait until the action has completed by monitoring the activity indicator (spinning blue circle). Action is
completed when the activity indicator disappears.

Close SmartDebug.

39

SmartDebug User Guide

Pseudo Static Signal Polling

& Microsemi

Power Matters.”

With Active Probes you can check the current state of any probe in the design. However, in most cases, you
will not able to time the active probe read to capture its intended value. For these cases, you can use
Pseudo Static Signal Polling, in which the SmartDebug software polls the signal at intervals of one second to
check if the probe has the intended value. This feature is useful in probing signals which reach the intended

state and stay in that state.

From the Active Probes tab in the Debug FPGA Array dialog box, right-click a signal, bus, or group and

choose Poll.... See the example figure that follows.

i Debug FPGA Amray

™

LiveActive Probes Selecton 8 X

FPGA Array dbusy data

Ferarchical View | Netist View UiveProbes | ActveProbes | MamoryBlocks | Probe Insertin

Fiter: 1.:..';'

T ==

Save... Dedate

Instance(s):

[Read Value it Value

Desate AL

[l) el

Sheft_Reg_0fshft_reg[13:0] 19h0001

D_FF_0fa_0:D_FF_Dja:Q

4 I D_FF O
a IR Primitves
® q
4 1B shift Reg 0
o I Primitves
4 B shit reg
W shft_regli])
W shft_regl1]
W shft_reg(2)
B shit_reg[3]
B shit_regl4)
W shft_reg[s)
W shit_reg[s)
B shit_reg(7]
il i

Read

Delete

Poll..,
Create Group...

Read Active Probes Save Active Probes’ Data. ..

1¥h

Figure 25 - Debug FPGA Array Dialog Box - Poll Option
The Pseudo-static signal polling dialog box opens.

Scalar Signal Polling

Polling Setup
To poll scalar signals, select Poll for 0 or Poll for 1.

The selected signal is polled once per second. It should be used for pseudo-static signals that do not

change frequently. The elapsed time is shown next to Time Elapsed in seconds.
To begin polling, click Start Polling. See the following example figure.

5| Pseudo-static signal polling

ECA===)

Signal : D_FF_0/q_0:D_FF_0/q:Q
Polling Setup

@ Poll for 0 Poll for 1

For more information about pseudo-static signal polling, dick the Help button.
Time Elapsed in seconds: 0

e

o

Mote: The selected signal is polled once per second. It should be used for pseudo-static signals that do not change frequently.

Figure 26 - Pseudo-static signal polling Dialog Box (Scalar Signal Polling) - Start Polling
To end polling, click Stop Polling. See the following example figure.

40

SmartDebug User Guide C Mfcmseml

Power Matters.”

B Pseudo-static signal palling [m

Signal: D_FF_0jq_0:D_FF_0/q:Q |
Polling Setup

@) Poll for O Pol

Mote: The selected signal is polled once per second. It should be used for pseudo-static signals that do not change frequently.
For more information about pseudo-static signal polling, dick the Help button.

Time Elapsed in seconds: 0

[Gose]

Figure 27 - Pseudo-static signal polling Dialog Box (Scalar Signal Polling) - Stop Polling
Note: You cannot change the poll value or close the polling dialog box while polling is in progress.

The elapsed time is updated in seconds until the polled value is found. When the polled value is found, User
value matched is displayed in green in the dialog box. See the following example figure.

5 Pseudo-static signal polling lM
Signal : D_FF_0/q_0:D_FF_0/a:Q |
Poling Setup
@ Poll for 0 Pol for 1

Mote: The selected signal is polled once per second. It should be used for pseudo-static signals that do not change frequently.
For more information about pseudo-static signal polling, dick the Help button,

Time Elapsed in seconds: 1

User Value matched

| ——

Figure 28 - Pseudo-static signal polling Dialog Box (Scalar Signal Polling) - User Value matched

Vector Signal Polling

To poll vector signals, enter a value in the text box. The entered value is checked and validated. If an invalid
value is entered, start polling is disabled, and an example displays showing the required format. See the
following example figures.

41

SmartDebug User Guide

& Microsemi

Power Matters.”

| Pseudo-static signal polling lijﬂ

Signal : Shift_Req_0/shft_req
Polling Setup
Poll for 19h0

Note: The selected signal is polled once per second. It should be used for pseudo-static signals that do not change frequently.
For more information about pseudo-static signal polling, didk the Help button.
Time Elapsed in seconds: 0

—————

Start Polling Stop Polling

|.Start Poling |

[o | [Licose]

Figure 29 - Pseudo-static signal polling Dialog Box (Vector Signal Polling)
| Pseudo-static signal polling lijﬂw
Signal : Shift_Reg_0/shft_reg
Polling Setup
Pall for 14h
Enter a valid hex value. Eg: 19h0

-

Note: The selected signal is polled once per second. It should be used for pseudo-static signals that do not change frequently.
For more information about pseudo-static signal polling, didk the Help button.
Time Elapsed in seconds: 0

[e |

Figure 30 - Pseudo-static signal polling Dialog Box (Vector Signal Polling) -- After Validation
When you enter a valid value and click Start Polling is clicked, polling begins.
To end polling, click Stop Polling.

Note: You cannot change the poll value or close the polling dialog box while polling is in progress.

The elapsed time is updated in seconds until the polled value is found. When the polled value is found, User

value matched is displayed in green in the dialog box.

Debug SERDES (SmartFusion2, IGLOO2, and RTG4)

You can examine and debug the SERDES blocks in your design in the Debug SERDES dialog box (shown

in the figure below).

To Debug SERDES, expand SmartDebug in the Design Flow window and double-click Debug SERDES.

42

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

Debug SERDES Configuration is explained below. See the PRBS Test and Loopback Test topics for
information specific to those procedures.

SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select
from the list of SERDES blocks in your design.

Debug SERDES - Configuration

Configuration Report

The Configuration Report output depends on the options you select in your PRBS Test and Loopback Tests.
The default report lists the following for each Lane in your SERDES block:

Lane mode - Indicates the programmed mode on a SERDES lane as defined by the SERDES system
register.

PMA Ready - Indicates whether PMA has completed its internal calibration sequence for the specific lane
and whether the PMA is operational. See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User
Guide on the Microsemi website for details.

TxPIl status - Indicates the loss-of-lock status for the TXPLL is asserted and remains asserted until the PLL
reacquires lock.

RxPLL status - Indicates the CDR PLL frequency is not grossly out of range of with incoming data stream.

Click Refresh Report to update the contents of your SERDES Configuration Report. Changes to the
specified SERDES register programming can be read back to the report.

SERDES Register Read or Write

Script - Runs Read/Write commands to access the SERDES control/status register map using a script.
Enter the full pathname for the script location or click the browse button to navigate to your script file. Click
Execute to run the script.

43

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

SmartDebug User Guide

& Microsemi

Power Matters.”

r v
€ Debug SERDES 7| =
SERDES Block: [SERDESIF 0 = |
@ Lane 0 Lane 1 Lane 2 Lane 3
SERDES Lanes: - - 9 r -
Lane 0 Reset| |Lane 1Reset | -La'leZResEt_: iLeneBReset}
'Debug SERDES ' Configuration Report:
Configuration +| [Refresh Regart]
4 Tests Serdes Block SERDESIF 0 : B —
FRES ot La:e . rmod EPCS (custom)
ane e 3 ous
Loopback Test PMA Ready : Troe
TxFLL status : Lodked
RyPLL status Locked
Lane 1:
Lane mode : EPCS (custom)
PMA Ready : True
TxPLL status : Lodked 4
RxPLL status : Locked 1
Lane 2 :
Lane mode : EPCS (custom)
PMA Ready : True
TxPLL status : Lodked
RyPLL status Locked
lane 3:
Lane mode : EPCS (custom)
PMA Ready : True
TxPLL status : Locked
RaPLL status Locked
SERDES Register Read or Write:
Saipt: [_l Execute _.
_ hHep | | Close |

Figure 31 - Debug SERDES - Configuration
Note: The PCle and XAUI protocols only support PRBS7. The EPCS protocol supports PRBS7/11/23/31.

Debug SERDES — Loopback Test

Loopback data stream patterns are generated and checked by the internal SERDES block. These are used
to self-test signal integrity of the device. You can switch the device through predefined tests.

See the PRBS Test topic for more information about the PRBS test options.

SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select
from the list of SERDES blocks in your design.

SERDES Lanes

Select the Lane and Lane Status on which to run the Loopback test. Lane mode indicates the programmed

mode on a SERDES lane as defined by the SERDES system register.

Test Type

PCS Far End PMA RX to TX Loopback- This loopback brings data into the device and deserializes and
serializes the data before sending it off-chip. This loopback requires OPPM clock variation between the TX
and RX SERDES clocks.

See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User's Guide on the Microsemi website for

details.

Near End Loopback (On Die) - To enable, select the Near End Loopback (On Die) option and click Start.
Click Stop to disable. Using this option allows you to send and receive user data without sending traffic off-
chip. You can test design functionality without introducing other issues on the PCB.

44

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

SmartDebug User Guide C Micmsemi

Power Matters.”

See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User's Guide on the Microsemi website for

details.
. -
© Debug SERDES L2 |
SERDES Block: | SERDESIF 0
& Lane D Lane 1 Lane 2 Lane 3
SERDES Lanes:
Lane O Reset| [Lane 1Reset| [Lane 2Reset| [Lane 3Reset]
[Debug seroes Lane 0 status: RPLL THPLL
Configuration Test Type:
4 Tests :
PRES Test @ PCS Far End PMA Rx to Tx Loopback
Loopback Test MNear End Serial Loopback (On Die)

Start

[e] [co]

Figure 32 - Debug SERDES - Loopback Test

Running Loopback Tests in Demo Mode

You can run Loopback tests in demo mode. The SERDES demo mode is provided to demonstrate the GUI

features of SERDES. All channels are enabled. Properly working channels and channels with connectivity
issues are shown so you can see the available GUI options. See the following example figure.

45

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

SmartDebug User Guide

& Microsemi

Power Matters.”

€ Debug SERDES ¥ ®
SERNES Modk f i
¥ Larm " Lane 1 ™ Lane 2 Lare 3
SEADES Lanes: ; 7 | 3 I L =]
Cean FRIvE Lone O status: RaPLL [T |
Configuration
=1 Tests
PRES Test Tesit Type:
Loopback Test = @
e
e [0 [T
L &L (1 | | |
=3 oy tart
¥ ; smp |
L |
: B
g el 4
3 L] | %
&
* SMARTDEBUG IS RUNNING IN DEMO MODE *
Chome

[v |

Debug SERDES — PRBS Test

PRBS data stream patterns are generated and checked by the internal SERDES block. These are used to
self-test signal integrity of the device. You can switch the device through several predefined patterns.

View Loopback Test settings in the Debug SERDES - Loopback Test topic.

SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select
from the list of SERDES blocks in your design.

SERDES Lanes

Check the box or boxes to select the lane(s) on which to run the PRBS test. Then select the Lane Status,
test type, and pattern for each lane you have selected. Lane mode indicates the programmed mode on a
SERDES lane as defined by the SERDES system register. See the examples below.

46

SmartDebug User Guide

& Microsemi

Power Matters.-
© Debug SERDES i =
smces s
SERDESLanes: (] Lane 0 7] Lane 1 [7] Lane 2 [7] Lane 3 [Reset Selected Lanes)|

N
Debug SERDES S —— — >
Configuration Lane0Stats: [New EndSeralloopback (Ondie) = [FREST v | RS TS lockledate
4 Tests
l Effslest Lane Number Cumulathve Eror Count Daita Rate Bt Error Rate Reset Ermor Count
Loopback Test
f Lane 0] Ghos MA i

Stop
[] [ome]
Figure 33 - SERDES Lanes - Single Lane Selected
£ Debug SERDES | et)
R—
SERDES Lanes: (] Lane 0 (] Lane 1 [Lane 2 [Lane 3 [Reset Selected Lanes)
N
SERDES e e - -
Mfmhgumim Lanc0Stabs: [New End SeralLoopback (OnDe) _~ | [PREST v | RoflL LS leckiedat
‘T“t;mm Lane 15tats: |Neas End Serial Loogback (One) _ ~ | [PREST v | Rt TEW® lodktodata
I Loopback Test Lane 25tatus: Moeas End Serial Logpback (On-Die) | [PREST * | L) TPl Lock to dsts
|
Lane Number Cumulstive Error Count Data Rate Bt Ervor Rate Resel Ermor Count
Lane 0 0 Ghos NA B
Lane 1] Ghps NA B
Lane 2 0 s HA B
Step
(o] o=]

Figure 34 - SERDES Lanes - Multiple Lanes Selected

47

SmartDebug User Guide

Test Type

Pattern

& Microsemi

Power Matters.”

Near End Serial Loopback (On-Die) enables a self-test of the device. The serial data stream is sent
internally from the SERDES TX output and folded back onto the SERDES RX input.

Serial Data (Off-Die) is the normal system operation where the data stream is sent off chip from the TX

output and must be connected to the RX input via a cable or other type of electrical interconnection.

If more than one SERDES Lane has been selected, the test type can be selected per lane. In the following

example, Near End Serial Loopback (On-Die) has been selected for Lane 0 and Lane 3, and Serial Data

(Off-Die) has been selected for Lane 1 and Lane 2.

€ Debug SERDES 7 e
SERDES Block:
SERDES Lanes: |V Lane 0[] Lane 1 /| Lane 2 || Lane 3 Reset
|
Debig SERDES
Lane 0 Status: RPLL DLl Lodk to data
Configuration e L ® “ ®
Tests Lane 1 Status: RaPLL@ AL loktodats @
PRES Test
Leopback Test Lane 2 Status: RALG DALE lokbdba @
Lane 3 Stans: RxPLL DL Lodktodata
Lane Mumber Cumulathe Error Count Dats Rate Bt Error Rate Resut Erroe Count |
Lane 0 a Ghps MA
Lane 1 [Ghps MA
| Lane 2 0 Ghpz MA
Lane 3 o Ghps MA
Stop
|
[ree | Clase

Figure 35 - Test Type Example

The SERDESIF includes an embedded test pattern generator and checker used to perform serial
diagnostics on the serial channel, as shown in the table below. If more than one lane is selected, the PRBS

pattern can be selected per lane.

Pattern Type
PRBS7 Pseudo-Random data stream of 27 polynomial sequences
PRBS11 Pseudo-Random data stream of 2211 polynomial sequences
PRBS23 Pseudo-Random data stream of 2223 polynomial sequences
PRBS31 Pseudo-Random data stream of 2231 polynomial sequences

48

SmartDebug User Guide O Mi('.‘msemi

Power Matters.”

Cumulative Error Count

Lists the number of cumulative errors after running your PRBS test. To reset the error count to zero, select
the lane(s) and click Reset. By default, Cumulative Error Count = 0, the Data Rate text box is blank, and Bit
Error Rate = NA.

€ Debug SERDES . T
SERDES Blod:
SERDES Lanes: [Lane 0 [Lane 1 [J] Lane 2 [] Lane 3 | Rese
|
Diebug SERDES
Configuration Lane 0 Stabus: st e . bl B b | RafLLi@ TaPLLg Loktodats @
4 Tt Lane | Status: sta (CFF-Dus - | |pREsa RxPLL@ ToFLL @ Lotk o dats
FRES Test
Leopback Test Lane I Stabas: b ta, (OO = | |PRES2 = | RaPLL@ TxPLLIB Lk bodats @
(l
Lane 3 Stabus: e i | |PR * | RaPLL@ TaPil @ Lok odats @
Lare Mumber Cumulstive Brror Count Data Rabe Bt Brror Rsbe: | Reset Error Count |
Larst 0] Ghgs 200810
Lare 1] Ghos LOOe-10
I Lo 2 0 Ghos 66711
Lare 3 U] Ghes 5.00e-11
Slop
(. Cone

Figure 36 - Debug SERDES - PRBS Test
Note: If the design uses SERDES PCle, PRBS7 is the only available option for PRBS tests.

Bit Error Rate

The Bit Error Rate is displayed per lane. If you did not specify a Data Rate, the Bit Error Rate displays the
default NA. When the PRBS test is started, the Cumulative Error Count and Bit Error Rate are updated
every second. You can select specific lanes and click Reset Error Count to clear the Cumulative Error
Count and Bit Error Rate fields of the selected lanes.

In the example below, the Bit Error Rate is displayed for all lanes.

49

SmartDebug User Guide O Mmsernl

Power Matters.”

@ Debug SERDES i - = S e =)

SERDES Block: | SERDESTF 0 -
SERDES Lanes: [V Lane @ [F] Lane 1 [¥] Lane 2 [¥] Lane 3 Reset Selectad Lanes
i
3 r = - : S
Canfiguration Lane O Stakas: | Mear End Serial Loopback (On-Die) = 5 = RaPll TS Lok todats @
ety Lane 1Stahm: | Serial Data (OFf-Due) » | |pRES11 v AP TPLLE Lodchodats i
PRES Test
Leopback Test lang ZStbas: | Serial Data (Off-Dar) v|[PEszs < |RaPL@ TR lekiodi @
Lane 3 Stabs: Mesr Bnd Serial Loopback (On-De) = | |PRES31 = | RaPLLi) TaPLL Lok todats @
Lares bumber Cumuistiee Brror Count Data Rate it Brror Rate: | ResetError Count
Lane 0 o 1 Ghos 2.00e-10 B
Lare 1 o F] Ghos L00e-10
Lare 3 o 3 Ghos 6.67e-11
Lerm 3 o 4 Ghos S.00e-11 "
Start
(oo |

Cree]

Figure 37 - Bit Error Rate Example - All Lanes
In the example below, Lane 1 and Lane 2 are selected and Reset Error Count is clicked.

& Debug SERDES O 10 o] |
SERDES Bock: |SERDESIF 0 ~
SERDES Lanes: [F] Lane 0 [F] Lane 1 [7] Lane 2 (7] Lane 3 [Reset Selectad Lanes
[
R [2 i 1 PRES? T data
Configuration Lane O Statuss | Mear End Serisl Loopback (On-Die) RePLLE@ L Lock to []
4 Tests Lane 15tatus: | Senial Data (OFF-Die) = | PRES1L ¢ |RPU@ TRU@® lokbdits @
' PRES Test
Loopback Test Lane 2 Status: Serial Data (OFf-Die) = | [PRESZI * | RxPLLE AL Lodktodata
Lane 35tatus: | Mear End Serial Loopback (OnDwe) = | [PRESI1 ~ | RePUL@ DPLE@ lokidata @
Lane Number Cumulative Error Count Data Rate Bt Error Rate Reset Erree Count
Lane 0 [1 Ghps 182s-11 B
Lane 1 0 2 Ghps MA 7]
Lane 2 [3 Ghps MA i}
Lane 3 0] Ghps 4.55e-12 i
Start
[sw |

Figure 38 - Reset Error Count Example

50

SmartDebug User Guide C Mi('.‘msemi

Power Matters.”

Running PRBS Tests in Demo Mode

You can run Multi Lane PRBS tests in demo mode. The SERDES demo mode is provided to demonstrate
the GUI features of SERDES. All channels are enabled. Properly working channels and channels with
connectivity issues are shown so you can see the available GUI options. See the following example figure.

€ Debug SERDES H b4
SERDES Block: [sernesir o <)
SERDES Larws: | ' 1 ez 3 Reset T | |
Debug SERDES
Canfiguration Lane 0 Status: | =] s =] moue TG ktodss @ |
€ hﬂ;RBs Tests Lare 1 Status: | =l [=] roum LS lock todsta]
Loopback Test Larw 2 Status: |] [=] rowigp LT) Lok @ |
Lare D Status: | | [=] moug THLG lecktodsts @ |
Lane Number Cumulstive Error Count Data Rate B2 Ervor Rate Reset Error Count ||
Lane 0 o T obee 16%em o |
Lana 1 NA r‘ Ghes HA r |
Lane 2 NA i.. Ghps A I |
Lana 3 o = cbes sswn r | I
= |

* SMARTDEBUG IS RUNNING IN DEMO MODE *

[we | o

Notes:
The formula for calculating the BER is as follows:
BER = (#bit errors+1)/#bits sent
#bits sent = Elapsed time/bit period
When clicked on Start:
e The BER is updated every second for the entered data rate and errors observed.
e If no data rate is entered by the user, the BER is set to the default NA.
When clicked on Stop:
e The BER resets to default.
When clicked on Reset:
e The BER resets to default.
e If notestis in progress, the BER remains in the default value.
e Ifthe PRBS test is in progress, the BER calculation restarts.

Debug SERDES — PHY Reset

SERDES PMA registers (for example, TX_AMP_RATIO) modified using a TCL script from the Configuration
tab require a soft reset for the new values to be updated. Lane Reset for individual lanes achieves this
functionality. Depending on the SERDES lanes used in the design, the corresponding Lane Reset buttons
are enabled.

Lane Reset Behavior for SERDES Protocols Used in the Design

e EPCS: Reset is independent for individual lanes. Reset to Lane X (where X = 0,1,2,3) resets the Xth
lane.

51

SmartDebug User Guide O Mi('.‘msemi

Power Matters.”

e PCle: Reset to Lane X (where X =0,1,2,3) resets all lanes present in the PCle link and PCle controller.

For more information about soft reset, refer to the SmartFusion2 and IGLOO2 High Speed Serial Interfaces
User Guide.

Inspect Device Dialog Box (SmartFusion, Fusion, and ProASIC3

Only)

Inspect Device is available as a part of the FlashPro programming tool. Refer to Using SmartDebug for
information about how to configure FlashPro to access this feature.

In the Inspect Device dialog box, you can access all device features, such as the FlashROM, Embedded
Flash Memory (NVM), and Analog Block. If you have multiple devices and programmers connected, choose
your target device/programmer from the drop-down menu, and use the ID code to verify that you are
inspecting the correct device.

View Device Status - Displays the Device Status Report. The Device Status Report is a summary of your
device state, analog block test values, user information, factory data, and security information. You can save
or print your information for future reference.

View Analog Block Configuration - Opens the Analog Block Configuration dialog box. You can view the
channel configuration for your analog block and compare the channel configuration with any other analog
block file.

View Flash Memory Content - Opens the Flash Memory dialog box. You can view the details for each flash
memory block in your device.

View FlashROM Content - Opens the FlashROM data dialog box. You can view a list of the physical blocks
in your FlashROM and the client partitions in FlashROM configuration files.

1 Inspect Device @@

“ Programmer: |S1538 (usbh51538) A

(=0 ACF 200M3F (AZF200M3F)

1D code read from device: SAL31CF

Iu‘isw Device Status I Iﬁisw Analog Block Cmfigura:innl [\.-'im Flash Memory Conbent l Imw FlashROM Cnntsnt]

Figure 39 - Inspect Device Dialog Box

Device Status Report (SmartFusion and Fusion Only)

This dialog box displays the Device Information report. The Device Information report is a complete
summary of your device state, analog block test values, user information, factory serial number, and security
information. Use this dialog box to save or print your information for future reference.

52

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011

SmartDebug User Guide

& Microsemi

Power Matters.”

\ Device Status Report

Device: AFS600 (AFS600) Programmer: 10868 (usb10868) | Hseve || &P |
Device Status:
IDCode (HEX): 233261cf
User Information:
URCW data (HEX): 2308004 1020408102045 A8 766803481
Programming Method: POE
Progr ammer : FlashPro3
Programmer Software: FlashPro v8.6
Dresagn Marme: top
Design Check. Sum: 2308
Algorithem Version: 19
Array Prog. Cyde Count: 1
Device State:
IRCapture Regester (HEX): 55
FPGA Array Stabus: Programmed and enabled
Analog Block:
OABTR Regester (HEX): 1dbe3bb
3.3V (vdd33): PASS
1.5V (wdd15): PASS
Bandgap: PASS
=33V (vddn33): PASS
ADC Refersnce: PASS
FPGA_Good: PASS
Status: Analog Block is operational
Factory Data:
Factory Serial Number (HEX): B0e0a0486060
Security:
Device has no security enforced.
o]

Figure 40 - Device Status Report

Embedded Flash Memory (NVM) Content Dialog Box
(SmartFusion and Fusion Only)

You can do the following in the NVM content dialog box:

View content of Flash Memory pages (as shown in the figure below)

Compare device content with original design content (requires a PDB that contains your EFC data)
[]

Check page status and identify if a page is corrupted or if the write count limit has exceeded the 10-
year retention threshold

Fusion Devices: Choose your block from the From block drop-down list This action populates the Select
drop-down list with the names of the clients in the selected block that is configured in the Flash Memory
System Builder.

SmartFusion Devices: Block selection is unused and unavailable.

53

SmartDebug User Guide

& Microsemi

Power Matters.”

Choose a client name from the Select drop-down list and click Read from Device to view the values. You
can also view a specific page range by selecting the <Page Range> option in the Select drop-down list and
then specifying the start page and the end page.

You must click Read from Device each time you specify a new page range to update the view.

If you do not have your original design programming database (PDB) file, you can examine and retrieve a
range of pages. Specify a page range if you wish to examine a specific set of pages. Page Status
information appears to the right.

Y Flash Memory ['F EI

Retrieve Flash Memory Content from Device:
From blod ST FIVM O of

Select ACTEL_PPE_MERGE_CONFIG (p) »
Start address:

Chent size:

2] Read from Device *

(pape 2044)
bytes (1 page)

Latest Content Retrieved from Device: Man Jun 06 16:0601 2011

Retrioved Content: Chent "ACTEL_PPE_MERGE_COMNFIG™, 48 bytes starting from address 0 IFEDD

View Detaded Status| [Compare Clent Content |

GO to Address (hex)

Page Number | Address

Conkent

o | 1+ J2]af4)ls]e]7r]e]osfalel]c

Joleljr

(e]

2044 JFEOQ| 00 03 00 00 10 00 10 10 00 o3 10 02 o3 o 10 20
2044 FEL0| 01 o3 40 00 10 L] 10 o o m o o 49 ™ 10 20
2044 IFE20] 11 1] 18 ol ol o3 0 18 10 00 10 00 00 o3 20 10
Z0H4 JFEI0| 00 00 o0 00 00 00 00 00 00 00 00 00 00 00 00 00
2044 JFE40| 0D 1] 00 L1 1] (o 1] 11] 00 L11] 1] (1 1] 1 1] o 1] 1 1] {11] o 1] 1 1]
2044 SFESD| 00 o0 o0 00 00 (1] 00 (v 1] 00 00 00 00 00 (1] 00 00
2044 FEGD| 00 00 00 00 00 00 00 w0 00 00 w00 00 00 00 00
2044 JFETO| 0D i1 00 00 00 L1 1] o0 L11] 1] 00 L11] o 1] 1 1] [11] o 1] 1 1]

|T

Figure 41 - Flash Memory Content Dialog Box for a SmartFusion Device (SmartDebug)

Embedded Flash Memory: Browse Retrieved Data (SmartFusion

and Fusion Only)

The retrieved data table displays the content of the selected client or the page range selection. Corrupted
page content is displayed in red. Read-only page content, corresponding to clients defined with the Prevent
read option in Flash Memory System Builder, is displayed with a gray background. If content cannot be read
(for example, pages are read-protected, but security has been erased), the content is displayed as XX. The
mouse tooltip summarizes abnormal content status (as shown in the figure below).

The corresponding page number and address (relative to the current block) are displayed in the left column.
The client size specified in the Flash Memory System Builder is shown at the top of the content table.

In the Retrieved Data View, you can enter an Address value (such as 0010) in the Go to Address field and
click the corresponding button to go directly to that address.

Click View Detailed Status for a detailed report on the page range you have selected.

54

SmartDebug User Guide C Micmsemi

Power Matters.”

For example, if you want to view a report on pages 1-3, set the Start Page to 1, set the End Page to 3, and
click Read from Device. Then click View Detailed Status The figure below is an example of the data for a

specific page range.

'l Flash Memory Details

In EBlock 1, from Page 1 to Page 3, 354 bytes starting from address 0x80 as of Wed Jan 20 15:40:57 2010 [H Save] ’ & Print]

Flash Memory Content [Page 1 ko3]
FlashMemory Page #1:
Skatus Regisker{HEX): 000SF000
Skatus ECCZ check: Pass
Data ECC2 Check: Pass
Write Count: Pass (2288 writes)
FlashMemory Page #2:
Skatus Register{HEX): 000SF000
Skatus ECCZ check: Pass
Data ECCZ Check: Pass
WWrite Count: Pass (2288 writes)
FlashMemory Page #3:
Skatus Register{HEX): 000SF000
Skatus ECCZ check: Pass
Data ECCZ Check: Pass
Write Count; Pass (2258 writes)
Total number of pages with status ECCZ errars: 0
Total number of pages with data ECCZ errors: O
Tatal number of pages with write count auk of range: 0
FlashMemory Check PASSED For [Page 1to 3] —

Figure 42 - Flash Memory Details Dialog Box (SmartDebug)

55

SmartDebug User Guide

t Flash Memary E| El

Retrieve Flash Memory Content from Device:
From block. |3 - newCore.sfc |

som [romraons

Start Page: |0 {address MuD0000)
End Page: |3 {4 pages, 512 bytes)
Latest Content Retrieved from Device: Wed Jun 20 103317 2010

Retrieved Content: InBlock 3, from Page O bo Page 3, 512 bytes starting From address 0n0

View Detalled Stabus

Content

Aol e o L1 lz2]s]+]sls]lzle]ls]alelclo]e]ce
00

>

o0 00 00 00 00

Corrupted; Resd Prokected;

|

i 8 E|B 8 B 82 B8 B B 8

ocloleo]lo

o | o

8 E|8 E 8 8 E B B B
B E|g E 2 8 E B E B
BEB|8 B/ 8 B8 B 8B[EI8
8 E|8 E 8 8B E B B B
88|88 8 8 B 8[E&E&

8 B|8 B 8 B B
g B|l2 8 8 B 8

I 8 B8 E 8B &8 EB 8 E B
I'8 B8 E 88 8 8 B B
I B8 E|B8 &8 B &8 B B B
i 2 E|8 8 2 88 8 B B
i 8 E|]8 8 E B BE B E B
i 8 E|8 8 B B8 B

I B2 B8 B8 8 8 8

{1 8 B|8 8 8 8 B

£

:
i
i
§
i
§
i
§

E

Figure 43 - Flash Memory Browse Retrieved Data

& Microsemi

Power Matters.”

Embedded Flash Memory: Compare Memory Client (SmartFusion
and Fusion Only)

After you retrieve the data from the device, the Compare Client Content button lets you compare the content
of the selected client from the device with the original programming database (PDB) file. The differences are

shown in the Compare Memory Client dialog box (as shown in the figure below).
Note: This option is not available when you select to retrieve the data based on a page range.

56

SmartDebug User Guide C Micmsemi

Power Matters.”

Y Compare Memory Client

In Block 0, Client "DSBbIt", 256 bytes starting from address 0x0 as of Sun Jan 17 12:12:06 2010 | | save || &print |

Flash Memory Client Compare [DS8bit - Block 0] |

Difference at byte 0.
Byte Design |Device
il DueFiy D0

Difference at bytes 2 to 4.
Byte |Design |Device
2 038 |Owd0
3 OehE | 000
4 OxB8 | Ow0D

Difference at bytes & to 255,
Byte Design Device
& OeFF Oe0e0)
7 OcCD (000
& Al | Ow00
9 Oefd, | O
10 Oocffy | OeeD)
i1 DR | O
12 rreta [renn |

Figure 44 - Compare Memory Client Dialog Box

FlashROM Content Dialog Box (Fusion and SmartFusion Only)

In the FlashROM Content dialog box, you can view the physical blocks in your FlashROM and the client
partitions specified in the original design content (requires a PDB that contains your UFC data). If the
project’'s PDB does not contain UFC data, only the physical blocks are displayed.

Scroll through the table to view the Words and Pages for your physical blocks.

The Client Partitions section lists the names and configuration details of the clients set up in the FlashROM
Builder. It automatically finds all mismatched client regions. To view the differences between a client and the
device content, select a region row in the Client Partitions table. This action highlights the corresponding
device content in the Physical Blocks table. The mismatch details are displayed below the Client Partitions
table.

To copy the content of the Physical Blocks table to clipboard, select one or more cells in the table and type
Ctrl+C.

57

SmartDebug User Guide

Y FlashROM

Phesical Blocks

& Microsemi

\Wards

15| 14|23 1z|1a|w|a|s| 7]e|s|+z]z2]|1]an

7FF |78 |0 FC 7B P& F8 78 77 |F6 F5 |74 F3 |72 |71 |FO

622 |22 |22 22 22 22 |22 22 22 |22 22 22 22 |22 |22 |22

5/5F DE DD 5 DE 54 |59 DS D7 |56 55 D4 53 D2z DL |50

Pages 4 IENNISIIEGIEEIEE 0 0 48 D EF 0a BC DE FO 4B (D
%/3F BE BD 3C BB 34 |39 B3 BF |35 35 B4 33 B2 Bl |30

/00 00 |00 00 o0 00 00 OF BB |FA FA FA4 FA |FA |FA BB

100 (oo o0 o0 00 (00 o0 |00 00 |00 |00 00 00 |00 |00 |00

oot |23 45 &7 (89 Ol 23 |45 &7 89 AA AB BB CC |CD DD

Client Partitions

FlashRiOM configuration file; D:\tempifromz!from_File_care\from_File_core.ufc

Found 2 client reqgions that do nok match with device content.,

Reaqion Mame Reqgion Type
Region_3_11 Read From file 3
Region_4_11 Skatic 4
Reqgion_5_11 Aubo Inc 5

Page

11

11

11

Stark Ward

Size (words)
5
5 &
1 &

From device:

From config File:

Content dekails for selected region

ARCDEFOARC
aoooooooon

& Mismatch between configuration file content and device content.

Shown as: HEXADECIMAL

Cloze

Figure 45 - FlashROM Content Dialog Box

Power Matters.”

Analog Block Configuration Dialog Box (SmartFusion and Fusion

Only)

In the Analog Block Configuration dialog box, you can:

e View the channel configuration on your analog system and identify if/fhow the channels are configured.

e Compare with the design configuration from the Analog System Builder for Fusion and SmartDesign
MSS Configurator for SmartFusion.

The values displayed for each channel vary depending on the device family and channel you select; the
Channel configuration register read from the ACM is shown for each analog channel. Individual, decoded bit
fields of the register are listed immediately beneath (as described in the Fusion and SmartFusion
handbook). The dialog box may display the following values:

Fusion Device:

58

SmartDebug User Guide

Analog MUX select

Internal chip T monitor

Scaling factor control

Current monitor switch

Current monitor drive control

Direct analog input switch

Pad polarity - G, T, V, C pad polarity, positive or negative
Select low/high drive

Prescaler op amp mode

SmartFusion Device:

Gain select

Channel state

Direct Input state

Current Monitor state
Current monitor strobe state
Comparator state
Hysteresis select

Analog MUX select

DAC input select
Temperature monitor state
Temperature monitor strobe state
Vref switch state

& Microsemi

Power Matters.”

To use the compare feature, select the Compare with checkbox. If the loaded PDB file contains Analog

Block configuration information, the comparison appears automatically.

To use a specific Project File, click Browse and navigate to the Analog System Builder directory for Fusion
or SmartDesign for SmartFusion. In a typical IDE project, this directory is located at:

Fusion - <project_root>/smartgen/<analog_block_core_name>

SmartFusion - <project root>/component/work/<SmartDesign project>/MSS_ACE_0

After specifying the compare directory, the differences (if any) are indicated in red on a channel by channel
basis, as shown in the figure below.

59

SmartDebug User Guide

1 Analog Block Configuration

Channel configuration

Faund 32 mismatched channels
' Channel Byte |
ACD N
AGO 000 A
ATD OBl A
AVL Ox92
AC1 Ox10
AG1 Oxi00 L
AT1 0x80 |4\
AN 0wz &
AC? 0x10 o)

Compare with: as15

Channel A0
Device Content

Byte]|
Analog MUX select Prescaler
Scaling Factor control 0.3125 (8v)
Current monitor switch — OfF
Direct analog input switch Off
¥-pad polarity Pasitive
Prescaler op amp mode Operational

& Microsemi

File Content
038

Direct input
0.15625 (16Y)
iy

on

Pasitive
Powerdown

Figure 46 - Analog Block Configuration Dialog Box for a Fusion Device (Differences in Red)

Power Matters.”

60

SmartDebug User Guide

& Microsemi

Power Matters.”

SmartDebug Tcl Commands

SmartDebug Tcl Support (SmartFusion2, IGLOO2, and RTGA4)

The following table lists the Tcl commands related to SmartDebug for SmartFusion2, IGLOO2, and RTG4.

Click the command to view more information.

Table 1 - SmartDebug Tcl Commands

Command Action
DDR/MDDR
ddr_read Reads the value of specified configuration registers pertaining to the
DDR memory controller (MDDR/FDDR)
ddr_write Writes the value of specified configuration registers pertaining to the

DDR memory controller (MDDR/FDDR)

Probe

add probe _insertion point

Adds probe points to be connected to user-specified 1/0s for probe
insertion flow.

add _to probe group

Adds the specified probe points to the specified probe group

create probe group

Creates a new probe group.

delete active probe

Deletes either all or the selected active probes.

load active probe_list

Loads the list of probes from the file.

move_to_probe_group

Moves the specified probe points to the specified probe group.

program_probe_insertion

Runs the probe insertion flow on the selected nets.

remove probe insertion point

Deletes an added probe from the probe insertion UI.

set_live_probe

Set Live probe channels A and/or B to the specified probe point (or
points).

select_active probe

Manages the current selection of active probe points to be used by
active probe READ operations.

read_active probe

Reads active probe values from the device.

remove_from_probe_group

Move out the specified probe points from the group.

save_active probe list

Saves the list of active probes to a file.

select_active probe

Manages the current selection of active probe points to be used by
active probe READ operations.

ungroup

Disassociates the probes as group.

61

SmartDebug User Guide

& Microsemi

Power Matters.”

Command

Action

DDR/MDDR

unset_live_probe

Discontinues the debug function and clears live probe channels.

write _active probe

Sets the target probe point on the device to the specified value.

LSRAM
read_lIsram Reads a specified block of large SRAM from the device.
write_lsram Writes a seven hit word into the specified large SRAM location.
uSRAM
read usram Reads a uSRAM block from the device.
write_usram Writes a seven bit word into the specified uUSRAM location.

SERDES

loopback_test

Starts and stops the loopback tests.

serdes lane reset

In EPCS mode, this command resets the lane. In PCI mode, this
command resets the lane, all other lanes in the link, and the
corresponding PCle controller.

serdes read_regqister

Reads the SERDES register value and displays the result in the log
window/console.

serdes write reqister

Writes the value to the SERDES register.

Additional Commands

get _programmer _info

Lists the IDs of all FlashPRO programmers connected to the machine.

Device Debug / SmartDebug Tcl Commands (SmartFusion,

IGLOO, ProASIC3, and Fusion Only)

Note: Tcl commands in this section may not be supported by all device families listed above. See the

individual commands for specific device support.

The following table lists the Tcl commands related to Device Debug / SmartDebug for SmartFusion and

Fusion). Click the command to view more information.

62

SmartDebug User Guide

Table 2 - Device Debug / SmartDebug Tcl Commands

& Microsemi

Power Matters.”

Command Action Type
check_flash_memory Performs diagnostics of the page status and data Embedded
information. Flash Memory
(NVM)
compare_analog_config Compares the content of the analog block configurations | Analog Block
in your design against the actual values in the device.
compare_flashrom_client Compares the content of the FlashROM configurations in | FlashROM
your design against the actual values in the selected
device.
compare_memory_client Compares the memory client in a specific device and Embedded
block. Flash Memory
(NVM)
read_analog_block config | Reads each channel configuration on your analog system, | Analog Block
enabling you to identify iffhow each channel is configured.
read_device_status Displays a summary of the selected device.
read_flashrom Reads the content of the FlashROM from the selected FlashROM
device.
read flash_memory Reads information from the NVM modules (page status Embedded
and page data). Flash Memory
(NVM)
read _id_code Reads IDCode from the device without masking any
IDCode fields.
recover_flash_memory Removes ECC2 errors due to memory corruption by Embedded
reprogramming specified flash memory (NVM) pages and | Flash Memory
initializing all pages to zeros. (NVM)
sample_analog_channel Samples analog channel; enables you to debug ADC
conversion of the preconfigured analog channel (you must
provide ADC conversion parameters).
set_debug_device Identifies the device you intend to debug.
set_debug_programmer Identifies the programmer you want to use for debugging
(if you have more than one).

63

SmartDebug User Guide Q/ Micmsemi.

Power Matters.”

add_probe_insertion_point
This Tcl command adds probe points to be connected to user-specified 1/Os for probe insertion flow.

add_probe_insertion_point —net net_name -driver driver -pin package_pin_name -port port name

Arguments
-net net_name

Name of the net used for probe insertion.

-driver driver

Driver of the net.

-pin package_pin_name

Package pin name (i.e. /0 to which the net will be routed during probe insertion).
-port port_name

User-specified name for the probe insertion point.

Supported Families
SmartFusion2, IGLOO2, RTG4

Example

add_probe_insertion_point -net {count_out_c[0]} -driver {Counter_8bit_0O_count_out[0]:Q} -
pin {H5} -port {Probe_lInsert0O}

add_to_probe_group smarrusion2, 16L002, and RTG4)
Tcl command; adds the specified probe points to the specified probe group.

add_to_probe_group -name probe_name -group group_name

Arguments
-name probe_name
Specifies one or more probes to add.
—-group group_name
Specifies name of the probe group.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
add_to_probe_group -name out[5]:out[5]:Q \
-name grpl.out[3]:out[3]:Q \
-name out.out[1].out[1]:Q \
-group my_new_grp

64

SmartDebug User Guide Q Micmsemi,

Power Matters.”

check_flash_memory

The command performs diagnostics of the page status and data information as follows:

e Page Status — includes ECC2 check of the page status information, write count
e Page Data - ECC2 check

check_flash_memory

[-name {device_name}]

[-block {integer_value}]
[-client {client_name}]
[-startpage {integer_value}]
[-endpage {integer_value}]
[-access {all | status | data}]
[-show {summary | pages}]
[-file {filename}]

Arguments

At a minimum you must specify -client <name> OR

-startpage <page_number> -endpage <page_number> -block <number>

-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-block {integer_value}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Specifies
location of block for memory check.

-client {client_name}

Name of client for memory check.

-startpage {integer_value}

Startpage for page range; value must be an integer. You must specify a —endpage and —block along with
this argument.

-endpage {integer_value}

Endpage for page range; value must be an integer. You must specify a —startpage and -block along with
this argument.

-access {all | status | data}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Specifies what
NVM information to check: page status, data or both.

Value Description

Shows the number of pages with corruption status, data corruption and
out-of-range write count (default)

status | Shows the number of pages with corruption status and the number of

pages with out-of-range write count

data | Shows only the number of pages with data corruption

-show {summary | pages}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Specifies
output level, as explained in the table below.

Value Description

65

SmartDebug User Guide Q Micmsemi,

Power Matters.”

Value Description
summary Displays the summary for all checked pages (default)
pages Displays the check results for each checked page

-file {filename}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Name of output
file for memory check.

Supported Families

Exceptions

Example

SmartFusion, Fusion

None

The following command checks the page status for block 0 from starpage 0 to endpage 2:
check_flash_memory -startpage 0 -endpage 2 -block 0
The following command checks the memory status for the client 'DS8bit' and saves it to the file
‘checkFlashMemory.log":
check_flash_memory -client {DS8bit} -file {checkFlashMemory.log}

compare_analog_config

Compares the content of the analog block configurations in your design against the actual values in the
device. In a typical SoC project, this directory is located at
<project_root>/smartgen/<analog_block_core_name>.

compare_analog_config
[-name *device_name'™] -mem_file_dir "mem_file_directory"
[-file "filename™]

Arguments

-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-mem_Ffile_dir {mem_file_directory}

Location of memory file.

-file {filename}

Output filename.

Supported Families

Exceptions

Fusion

None

66

SmartDebug User Guide Q Micmsemi,

Power Matters.”

Example
The following command reads the analog block configuration in the directory F:/tmp/Analog_Block and
saves the data in the logfile compare_analogReport.log:

compare_analog_config -mem_Ffile_dir {F:/tmp/Analog_Block} -Ffile
{compare_analogReport.log}

The following command reads the analog block configuration information in the device '"AFS600' in the
directory F:/tmp/Analog_Block and saves the data in the log file compare_analogReport.log:

compare_analog_config —name {AFS600} -mem_file_dir {F:/tmp/Analog_Block} -file
{compare_analogReport. log}

Note: If an absolute path is not entered, the log file is saved in the directory in which the Tcl script was
executed in SmartDebug.

compare_flashrom_client

Compares the content of the FlashROM configurations in your design against the actual values in the
selected device.

compare_flashrom_client [-name {device _name}] [-File {filename}]

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-file {filename}
Optional file name for FlashROM compare log.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following command saves the FlashROM data to the file ‘FlashRomCompReport.log'":
compare_flashrom_client -file {FlashRomCompReport.log}

The following command compares the data in the device 'A3P250' and saves the data in the logdfile
'FlashRomCompReport.log":

compare_flashrom_client —name {A3P250} -file {FlashRomCompReport.log}

Note: If an absolute path is not entered, the log file is saved in the directory in which the Tcl script was
executed in SmartDebug.

compare_memory_client

Compares the memory client in a specific device and block.

compare_memory_client [-name {device_name}] [-block integer_value] -client {client_name} [-
file {filename}]

Arguments
-name { device_name}

67

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-block {integer_value}
(Optional argument; you must set -client.) Specifies location of block for memory compare.
-client {client_name}

Name of client for memory compare.
-file {filename}
Optional file name.

Supported Families
SmartFusion and Fusion

Exceptions
None

Example

The following command compares the memory in the client 'DS32' on the device 'AFS600'.
compare_memory_client -client DS32 -name AFS600

The following command compares the data at block 'O’ to the client 'DS8bit'":
compare_memory_client -block 0 -client {DS8bit}

The following command compares the memory in the device 'AFS600' at block '0' to the memory client
'DS8hit":
compare_memory_client —name {AFS600} -block O -client {DS8bit}

The following command compares the memory at block '1' to the memory client ‘DS8bit' and saves the
information in a log file to F:/tmp/NVMCompReport.log:

compare_memory_client -block 1 -client {DS8bit} -file {F:/tmp/NVMCompReport.log}

create_probe group (SmartFusion2, IGLOO2, and RTG4)

Tcl command; creates a new probe group.

create_probe_group -name group_name

Arguments
-name group_name
Specifies the name of the new probe group.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
create_probe_group -name my_new_grp

delete active probe

Tcl command; deletes either all or the selected active probes.
Note: You cannot delete an individual probe from the Probe Bus.

delete_active_probe -all | -name probe_name

68

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

Arguments
-all
Deletes all active probe names.
-name probe_name
Deletes the selected probe names.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
delete -all <- deletes all active probe names
delete -name out[5]:out[5]:Q \
-name my_grpl.out[1l]:out[1]:Q #deletes the selected probe names
delete -name my_grpl \
-name my_bus #deletes the group, bus and their members.

export_smart_debug data (SmartFusion2, IGLOOZ2, and RTGA4)

Tcl command; exports debug data for the SmartDebug application.

export_smart_debug_data [device_components] [bitstream_components] [-file_name {file} [-
export_dir {dir}]

The command corresponds to the Export SmartDebug Data tool in Libero. The command creates a file with
the extension “ddc” that contains data based on selected options. This file is used by SmartDebug to create
a new SmartDebug project, or it can be imported into a device in SmartDebug.

¢ If you not specify any design components, all components available in the design will be included by
default.

e The generate_bitstream parameter is required if you want to generate bitstream file and include it in
the exported file.

e You must specify the bitstream components you want to include in the generated bitstream file or
all available components will be included.

e If you choose to include bitstream, and the design has custom security, the custom security
bitstream component must be included.

Arguments

device_components
The following device components can be selected. Specify "1" to include the component, and "0" if you do
not want to include the component.
-probes <1]0>
-package_pins <1]0>
-memory_blocks <1]0>
-envm_data <1]0>
-security _data <1]0>
-chain <1]0>
-programmer_settings <1]0>
-io_states <1]0>

bitstream_components
The following bitstream components can be selected. Specify "1" to include the component, and "0" if you
do not want to include the component.
-generate_bitstream <1]0>
-bitstream_security <1]0>

69

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

-bitstream_fabric <1]0>
-bitstream_envm <1]0>
-file_name file
Name of exported file with extension “ddc”.
-export_dir dir

Location where DDC file will be exported. If omitted, design export folder will be used.

Supported Families

Example

SmartFusion2, IGLOO2, and RTG4

The following example shows the export_smart_debug_data command with all parameters:

export_smart_debug_data \
-file_name {sd1} \
-export_dir {d:\sd_prj\test3T\designer\sdl\export} \
-probes 1 \

-package_pins 0 \
-memory_blocks 1 \
-envm_data 0 \

-security _data 1 \

-chain 1 \
-programmer_settings 1 \
-ios_states 1 \
-generate_bitstream 0 \
-bitstream _security 0 \
-bitstream_fabric 0 \
-bitstream_envm 0

The following example shows the command with no parameters:
export_smart_debug_data

get_programmer_info

This Tcl command lists the IDs of all FlashPRO programmers connected to the machine.

get_programmer_info

This command takes no arguments.

Supported Families

Example

SmartFusion2, IGLOO2, RTG4

set a [get_programmer_info]

load_active_probe _list

Tcl command; loads the list of probes from the file.

load_active_probe_list —File file_path

Arguments

-file file_path

70

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

The input file location.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
load_active_probe_list -file “./my_probes.txt”

loopback_test (SmartFusion2, IGLOO2, RTG4)

Tcl command; used to start and stop the loopback tests.

loopback _test [-deviceName device_name] -start -serdes num -lane num -type LoopbackType
loopback test [-deviceName device_name] -stop -serdes num -lane num

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see the
SmartDebug User's Guide for details).

-start

Starts the loopback test.
-stop

Stops the loopback test.
-serdes num

Serdes block number. Must be between 0 and 4 and varies between dies.

-lane num

Serdes lane number. Must be between 0 and 4

-type LoopbackType

Specifies the loopback test type. Must be meso (PCS Far End PMA RX to TX Loopback)

Supported Families
SmartFusion2, IGLOO2, RTG4

Example
loopback_test —start —serdes 1 -lane 1 -type meso
loopback_test —start —serdes 0 -lane 0 -type plesio
loopback_test —start —serdes 1 -lane 2 -type parallel
loopback_test —stop —serdes 1 -lane 2

move_to_probe_group (smarrusionz, 16L002, and RTG4)

Tcl command; moves the specified probe points to the specified probe group.
Note: Probe points related to a bus cannot be moved to another group.

move_to_probe_group -name probe_name -group group_name

Arguments
-name probe_name
Specifies one or more probes to move.

71

SmartDebug User Guide

-group group_name
Specifies name of the probe group.

Supported Families

Example

SmartFusion2, IGLOO2, and RTG4

move_to_probe_group -name out[5]:out[5]:Q \

-name grpl.out[3]:out[3]:Q \
-group my_grp2

prbs_test (SmartFusion2, IGLOO2, RTG4)

& Microsemi

Power Matters.”

Tcl command; used in PRBS test to start, stop, reset the error counter and read the error counter value.

prbs_test [-deviceName device_name] -start -serdes num -lane num [-near] -pattern PatternType

prbs_test [-deviceName device_name] -stop -serdes num -lane num

prbs_test [-deviceName device_name] -reset_counter -serdes num -lane num

prbs_test [-deviceName device_name] -read_counter -serdes num -lane num

Arguments

-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see the

SmartDebug User's Guide for details).

-start

Starts the prbs test.

-stop

Stops the prbs test.

-reset_counter

Resets the prbs error count value to 0.
-read_counter

Reads and prints the error count value.
-serdes num

Serdes block nhumber. Must be between 0 and 4 and varies between dies.
-lane num

Serdes lane number. Must be between 0 and 4.
-near

Corresponds to near-end (on-die) option for prbs test. Not specifying implies off-die.

-pattern PatternType
The pattern sequence to use for PRBS test. It can be one of the following:
prbs7, prbs11, prbs23, or prbs31

Supported Families

Example

SmartFusion2, IGLOO2, RTG4

prbs_test -start -serdes 1 -lane 0 -near -pattern prbsll
prbs_test -start -serdes 2 -lane 2 -pattern custom -value all_zeros
prbs_test -start -serdes 0 -lane 1 -near -pattern user -value 0x0123456789ABCDEF0123

72

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

program_probe_insertion

This Tcl command runs the probe insertion flow on the selected nets.

program_probe_insertion

Supported Families
SmartFusion2, IGLOO2, RTG4

read_active_probe (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; reads active probe values from the device. The target probe points are selected by the
select active_probe command.

read_active_probe [-deviceName device_name] [-name probe_name] [-group_name bus_name|group_name] [-
value_type blh][-File file_path]

Arguments
-deviceName device_name
Parameter is optional if only one device is available in the current configuration.
-name probe_name

Instead of all probes, read only the probes specified. The probe name should be prefixed with bus or
group name if the probe is in the bus or group.

-group_name bus_name | group_name

Instead of all probes, reads only the specified buses or groups specified here.

-value_type b | h

Optional parameter, used when the read value is stored into a variable as a string.

b = binary

h = hex

-file file_path

Optional. If specified, redirects output with probe point values read from the device to the specified file.

Note: When the user tries to read at least one signal from the bus/group, the complete bus or group is read.
The user is presented with the latest value for all the signals in the bus/group.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
read_active_probe -group_name {busl}
read_active_probe -group_name {groupl}
To save into variable:
set a [read_active_probe -group_name {bus_name} -value_type h] #save read data in hex
string
If read values are stored into a variable without specifying value_type parameter, it saves values as a binary
string by default.
Example
set a [read_active_probe] #sets variable a as binary string of read values after read_active_probe
command.

73

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

read_analog_block config

Reads each channel configuration on your analog system, enabling you to identify iffhow each channel is
configured.

read_analog_block config [-name {device_name}] [-File {filename}]

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-file {filename}
(Optional) Identifies the name of the file to which read results will be saved.

Supported Families
Fusion

Exceptions
None

Example

The following command reads the analog block configuration information in the device '"AFS600'":
read_analog_block_config —name {AFS600}

read_device_status

Displays the Device Information report; the Device Information report is a complete summary of your device
state, analog block test values, user information, factory serial number and security information..

read_device_status [-name {device_name}] [-File {Ffilename}]

Arguments
-name device_name

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-file {filename}
(Optional) Identifies the name of the file to which read results will be saved.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example

The following reads device info from the 'AFS600' device.
read_device_status -name AFS600

74

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

read_id_code

The command reads IDCode from the device without masking any IDCode fields. This is the raw IDcode
from the silicon.

Note: Being able to read the IDCode is an indication that the JTAG interface is working correctly.

read_id_code [-name {device_name}]

Arguments
-name device_name

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example

The following command reads the IDCODE from the device 'AFS600':
read_id_code —name {AFS600}

read_flashrom

Reads the content of the FlashROM from the selected device.

read_flashrom [-name {device_name}] [-mapping {logical | physical}] [-file {filename}]

Arguments
-name device_name

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-mapping {logical | physical}
(Optional) Specifies how the data read from the UFROM is mapped. Values are explained in the table

below.
Value Description
logical Logical mapping (default)
physical Physical mapping

-file {filename}
(Optional) Identifies the name of the file to which read results will be saved.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

75

SmartDebug User Guide Q Micmsemi,

Exceptions

Example

Power Matters.”

None

The following reads the FROM content on the device 'AFS600' and sets to physical mapping:
read_flashrom -name {AFS600} -mapping {physical}

read_flash_memory

The command reads information from the NVM modules. There are two types of information that can be
read:

e Page Status — includes ECC2 status, write count, access protection
e Page Data

read_flash_memory

[-name {device_name}]

[-block {integer_value}]
[-client {client_name}]
[-startpage {integer_value}]
[-endpage {integer_value}]
[-access {all | status | data}]
[-File {filename}]

At a minimum you must specify -client <name> OR

-startpage <page_number> -endpage <page_number> -block <number>

Arguments
-name {device_name}
Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-block {integer_value}
(Optional argument; you must set -client or —startpage and —endpage before use.) Specifies location of
block for memory read.
-client {client_name}
Name of client for memory read.
-startpage {integer_value}
Startpage for page range; value must be an integer. You must specify a —endpage and -block along with
this argument.
-endpage {integer_value}
Endpage for page range; value must be an integer. You must specify a —startpage and -block along with
this argument.
-access {all | status | data}
(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Specifies what
eNVM information to check: page status, data or both.
Value Description

Shows the number of pages with corruption status, data corruption and
out-of-range write count (default)

status | Shows the number of pages with corruption status and the number of

pages with out-of-range write count

76

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

Value Description

data | Shows only the number of pages with data corruption

-file {filename}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Name of output
file for memory read.

Supported Families
SmartFusion, Fusion

Exceptions
None

Example

The following command reads the flash memory for the client ‘DS8bit' and reports the data in a logfile
‘readFlashMemoryReport.log'":

read_flash_memory -client {DS8bit} -file {readFlashMemoryReport.log}
read_flash_memory —startpage O —endpage 2 —block 0 —access {data}

read_Isram (SmartFusion2, IGLOO2, RTGA4)

Tcl command; reads a specified block of large SRAM from the device.

Physical block

read_Isram [-deviceName device_name] -name block_name [—FileName file_name]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).
-name block_name

Specifies the name for the target block.
-fileName file_name

Optional; specifies the output file name for the data read from the device.
Exceptions
e Array must be programmed and active

e Security locks may disable this function

Example

Reads the SRAM Block sram_block1 from the sf2 device and writes it to the file sram_block_output.
read_Isram [-deviceName sf2] —name sram_blockl [-file sram _block_output]

Logical block

read_Isram -logicalBlockName block_name -port port_name [—FileName filename]

77

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

Arguments
-logicalBlockName block_name

Specifies the name for the user defined memory block.
-port port_name

Specifies the port for the memory block selected. Can be either Port A or Port B.
-Ffile filename

Optional; specifies the output file name for the data read from the device.

Example
read_Isram -logicalBlockName {Fabric_Logic_0/U2/F_0_FO U1} -port {Port A}

read_usram (SmartFusion2, IGLOO2, RTG4)

Tcl command; reads a uSRAM block from the device.

Physical block

read_usram [-deviceName device_name] —name block_name [—FileName file_name]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-name block_name

Specifies the name for the target block.
-fileName file_name

Optional; specifies the output file name for the data read from the device.

Exceptions

e Array must be programmed and active
e Security locks may disable this function

Example

Reads the uSRAM Block usram_block?2 from the sf2 device and writes it to the file sram_block_output.
read_usram [-deviceName sf2] —name usram_block2 [—fileName sram_block_output]

Logical block

read_usram -logicalBlockName block_name -port port_name [—File filename]

Arguments
-logicalBlockName block_name

Specifies the name for the user defined memory block.
-port port_name

Specifies the port for the memory block selected. Can be either Port A or Port B.
-Ffile filename

Optional; specifies the output file name for the data read from the device.

Example
read_usram -logicalBlockName {Fabric_Logic_0/U3/F_0_FO U1} -port {Port A}

78

SmartDebug User Guide Q Micmsemi,

Power Matters.”

recover_flash_memory

The command removes ECC2 errors due to memory corruption by reprogramming specified flash memory
(NVM) pages and initializing all pages to zeros. The recovery affects data blocks and auxiliary blocks.

The write counters of the corrupted pages might not be accurate due to corruption. The recovery operation
will not change state of the page write counters.

Use the check_flash_memory command to detect flash memory errors.

recover_flash_memory

[-name {device_name}]
[-block {integer_value}]
[-client {client_name}]
[-startpage {integer_value}]
[-endpage {integer_value}]

Arguments

At a minimum you must specify -client <name> OR

-startpage <page_number> -endpage <page_number> -block <number>

-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-block {integer_value}

(Optional argument; you must set -client or —startpage and —endpage before use.) Specifies location of
block for memory recovery.

-client {client_name}

Name of client for memory recovery.

-startpage {integer_value}

Startpage for page range; value must be an integer.You must specify a —endpage and -block along with
this argument.

-endpage {integer_value}

Endpage for page range; value must be an integer. You must specify a —startpage and -block along with
this argument.

Supported Families

Exceptions

Example

SmartFusion, Fusion

None

The following command recovers flash memory data in the client ‘DS8bit":

recover_flash_memory -client {DS8bit}

The following command recovers flash memory from block 0, startpage 0, and endpage 3:

recover_flash_memory -block O -startpage O -endpage 3

remove_from_probe group (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; removes the specified probe points from the group. That is, the removed probe points won't
be associated with any probe group.

Note: Probes cannot be removed from the bus.

79

SmartDebug User Guide Q Micmsemi,

Power Matters.”

remove_from_probe_group -name probe_name

Arguments

-name probe_name
Specifies one or more probe points to remove from the probe group.

Supported Families

Example

SmartFusion2, IGLOO2, and RTG4

The following command removes two probes from my_grp2.
Move_out_of probe_group -name my_grp2.out[3]:out[3]:Q \
-name my_grp2.out[3]:out[3]:Q

remove_probe_insertion_point

This Tcl command deletes an added probe from the probe insertion Ul.

remove_probe_insertion_point —net net_name -driver driver

Arguments

-net net_name

Name of the existing net which is added using the add_probe_insertion_point command.
-driver driver

Driver of the net.

Supported Families

Example

SmartFusion2, IGLOO2, RTG4

remove_probe_insertion_point -net {count_out_c[0]} -driver
{Counter_8bit_0_count_out[0]:Q}

sample_analog_channel

Performs analog-to-digital conversion of a selected analog channel. This command is used when debugging
the Analog Subsystem and is performed on the pre-configured analog channel with user-supplied ADC
conversion parameters. The command also performs digital filtering using a single-pole low-pass filter if you
opt to use it.

sample_analog_channel [(-name {name})*]
[-resolution {8 | 10 | 12}]

[-clock periods {int_value}]
[-clock_divider {int_value}]
[-num_samples { int_value}]
[-filtering_factor {real_value}]
[-initial_value {int_value}]
[-show_details {yes | no}]l

[-File {filename}]

80

SmartDebug User Guide Q Micmsemi,

Arguments

Power Matters.”

-name { name}

Specifies the analog channel to be sampled. Channel name is a combination of the channel type followed
by the channel index. Valid channel names are listed in the table below.

Family Valid Channel Name

Fusion AV<n>, AT<n>, AC<n>

SmartFusion AV<n>, AT<n>, AC<n>, ADC<n>

The maximum number of channels depends on particular device type; refer to the Analog Block
specification in the device handbook.

-resolution {8 | 10 | 12}

ADC conversion resolution. Specifies bit size of the conversion results. Selection of certain resolutions
may affect timing parameter valid ranges. See your device handbook for details.

-clock_periods {int_value }

Parameter specifying sampling time: Sampling_time = clock_periods * adc_clock_period.
-clock_divider {int_value }

Specifies clock prescaling factor.

-num_samples { int_value }

Optional argument that specifies the number of samples to be performed by the ADC. Default number of
samples is 1. Selecting multiple vs single sample will change appearance of the generated report. For the

single sample a single result is shown and if “show_details” is set to “yes” then detailed status of the ADC
register is also shown.

If multiple samples are requested then the results are printed in a table. If the digital filtering is enabled the
table also includes filtered results.

-filtering_factor {real_value}

Optional argument that specifies the filtering factor if multiple samples requested. The default value of 1.0
disables digital filtering.

—-initial_value {int_value}

Optional argument that specifies the initial value for the digital averaging filter. The value is specified in

ADC register counts. Default value is set to 0. Specifying this parameter improves filtering process during
initial samples.

-show_details {yes | no}
Optional argument that specifies the level of the report output. Detailed output includes initial user-

supplied conversion parameters. For the single-sampling case final output also includes detailed content
of ADC register after sampling.

-file {filename}
Optional argument. Specifies name of output file for conversion results.

Supported Families

Exceptions

Example

SmartFusion and Fusion

None

The following example performs single sample analog-to-digital conversion for channel AVO:
sample_analog_channel —channel AVO —resolution 8 —clock_periods 4 —clock_divider 4

Example with multiple sampling and digital signal filtering for AVO:

81

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

sample_analog_channel —channel AVO —resolution 10 —clock_periods 4 —clock _divider 4 —
num_samples 10 —Ffiltering_factor 2.5

save active probe list

Tcl command; saves the list of active probes to a file.

save_active_probe list -file file_path

Arguments
-file file_path
The output file location.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
save_active_probe_list -file “_./my_probes.txt”

select_active probe (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; manages the current selection of active probe points to be used by active probe READ
operations. This command extends or replaces your current selection with the probe points found using the
search pattern.

select_active_probe [-deviceName device name] [—-name probe_name_pattern] [-reset true|false]

Arguments
-deviceName device_name
Parameter is optional if only one device is available in the current configuration..
-name probe_name_pattern

Specifies the name of the probe. Optionally, search pattern string can specify one or multiple probe
points. The pattern search characters “*” and “?” also can be specified to filter out the probe names.

-reset true | false

Optional parameter; resets all previously selected probe points. If name is not specified, empties out
current selection.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example

The following command selects three probes. In the below example, “grpl” is a group and “out” is a bus..
Select_active_probe -name out[5]:out[5]:Q
Select_active_probe -name out.out[1]:out[1]:Q \

-name out.out[3]:out[3]:Q \

-name out.out[5]:out[5]:Q

82

SmartDebug User Guide

serdes_lane_reset

Tcl command. In EPCS mode, this command resets the lane. In PCI mode, this command resets the lane,
all other lanes in the link, and the corresponding PCle controller. The result is shown in the log

window/console.

serdes_lane_reset —serdes num -lane num

Arguments

-serdes num

& Microsemi

Power Matters.”

The SERDES block number. It must be between 0 and varies between dies. It must be one of the

SERDES blocks used in the design.
lane num

The SERDES lane number. It must be between 0 and 3. It must be one of the lanes enabled for the block

in the design.

Supported Families

Example

Errors

SmartFusion2, IGLOO2, and RTG4

serdes_lane_reset -serdes 0 -lane 0

In EPCS mode, resets Lane 0, for block 0. In PCI mode, resets Lane 0 for block 0, all other lanes in the

same link for block 0
serdes_lane_reset -serdes 5 -lane 3

The following errors result in the failure of the Tcl command and the corresponding message on the smart

debug log window:

When the “-serdes” parameter is not specified:
Error: Required parameter "serdes® is missing.
Error: Failure when executing Tcl script. [Line
Error: The Execute Script command failed.

When the “-lane” parameter is not specified:
Error: Required parameter "lane® is missing.
Error: Failure when executing Tcl script. [Line
Error: The Execute Script command failed.

When “block number” is not specified
Error: Parameter "serdes” has illegal value.
Error: Failure when executing Tcl script. [Line
Error: The Execute Script command failed.

When “lane number” is not specified:
Error: Required parameter "lane® is missing.
Error: Failure when executing Tcl script. [Line
Error: The Execute Script command failed.

When “block number” is invalid:
Error: Phy Reset: Serdes block number should be
Error: The command "serdes_lane_reset" failed.
Error: Failure when executing Tcl script. [Line
Error: The Execute Script command failed.

26:

26:

26:

26:

Error

Error

Error

Error

command

command

command

command

serdes_lane_reset]

serdes_lane_reset]

serdes_lane_reset]

serdes_lane_reset]

one of the following: O

26]

Note: Only the SERDES blocks used the design will be mentioned in the above list.

83

SmartDebug User Guide O M’bmsemi.

Power Matters.”

When “lane number” is invalid:
Error: Phy Reset: Serdes lane number should be between 0 and 3.
Error: The command "serdes_lane_reset” failed.
Error: Failure when executing Tcl script. [Line 26]
Error: The Execute Script command failed.
For all the above scenarios, the following message appears:

€ SERDES Debug 2

Error running script: 0:/SAR_analysis/ 73276/ lane_testing.tcl

serdes _read_register (SmartFusion2, IGLOO2, and RTG4)

Tcl command; reads the SERDES register value and displays the result in the log window/console.

serdes_read_register —serdes num [-lane num] -name REGISTER_NAME

Arguments
-serdes num

SERDES block number. Must be between 0 and and varies between dies.
-lane num

SERDES lane number. Must be between 0 and 3.
The lane number must be specified when the lane register is used. Otherwise, the command will fail.

When the lane number is specified along with the SYSTEM or PCle register, the command will fail with an
error message, as the lane is not applicable to them.

-name REGISTER_NAME
Name of the SERDES register.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
serdes_read_register -serdes 0 -name SYSTEM_SER_PLL_CONFIG_HIGH
serdes_read_register -serdes 0 -lane 0 -name CRO

serdes write reqister
UG0567: RTG4 High-Speed Serial Interfaces User Guide (includes all SERDES register names)
UG0447: SmartFusion2 and IGLOO2 FPGA High-Speed Serial Interfaces User Guide

serdes_write_register (SmartFusion2, IGLOO2, and RTG4)

Tcl command; writes the value to the SERDES register. Displays the result in the log window/console.

serdes_write_register -serdes num [-lane num] -name REGISTER_NAME —value 0x1234

84

http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4#documents
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011

SmartDebug User Guide C Micmsemi.

Power Matters.”

Arguments
-serdes num

SERDES block number. Must be between 0 and 5 and varies between dies.
-lane num

SERDES lane number. Must be between 0 and 3.
The lane number should be specified when the lane register is used. Otherwise, the command will fail.

When the lane number is specified along with the SYSTEM or PCle register, the command will fail with an
error message, as the lane is not applicable to them.

-name REGISTER_NAME
Name of the SERDES register.
-value

Specify the value in hexadecimal format.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
serdes_write_register -serdes 0 -name SYSTEM_SER_PLL_CONFIG_HIGH -value 0x5533

See Also

serdes_read_register.htm

UGO0567: RTG4 High-Speed Serial Interfaces User Guide (includes all SERDES register names)
UG0447: SmartFusion2 and IGLOO2 FPGA High-Speed Serial Interfaces User Guide

set _debug_device

Identifies the device you intend to debug.

set_debug_device -name {device_name}

Arguments
name {device_name}
Device name. The device name is not required if there is only one device in the current configuration.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example

The following example identifies the device 'A3P250' for debugging:
set_debug_device —name {A3P250}

85

http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4#documents
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

set _debug_programmer

Identifies the programmer you want to use for debugging (if you have more than one). The name of the
programmer is the serial number on the bar code label on the FlashPro programmer.

set_debug_programmer -name {programmer_name}

Arguments
-name {programmer_name}
Programmer name is the serial number on the bar code label of the FlashPro programmer.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example

The following example selects the programmer 10841
set_debug_programmer -name {10841}

set_live_probe (SmartFusion2, IGLOOZ2, and RTGA4)

Tcl command; set_live_probe channels A and/or B to the specified probe point(s). At least one probe point
must be specified. Only exact probe name is allowed (i.e. no search pattern that may return multiple points).

set_live_probe [-deviceName device_name] [—probeA probe_name] [—probeB probe name]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug.
-probeA probe_ name

Specifies target probe point for the probe channel A.
-probeB probe_ name
Specifies target probe point for the probe channel B.

Supported Families
SmartFusion2, IGLOO2, RTG4

Exceptions

e The array must be programmed and active

e Active probe read or write operation will affect current settings of Live probe since they use same
probe circuitry inside the device

e Setting only one Live probe channel affects the other one, so if both channels need to be set, they
must be set from the same call to set_live_probe

e Security locks may disable this function

¢ In order to be available for Live probe, ProbeA and ProbeB 1/O's must be reserved for Live probe
respectively

86

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

Example

Sets the Live probe channel A to the probe point A12 on device sf2.
set_live_probe [-deviceName sf2] [-probeA A12]

Ungroup (SmartFusion2, IGLOO2, and RTG4)

Tcl command; disassociates the probes as a group.

NNgroup -name group_name

Arguments
-name group_name
Name of the group.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
ungroup —hame my_grp4

unset_live_ probe

Tcl command; discontinues the debug function and clears both live probe channels (Channel A and Channel
B). An all zeros value is shown for both channels in the oscilloscope.

Note: For RTG4, only one probe channel (Probe Read Data Pin) is available.

unset_live _probe [-deviceName device_name]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see the
SmartDebug User's Guide for details).

Supported Families
SmartFusion2, IGLOO2, and RTG4

Exceptions
e The array must be programmed and active.
e Active probe read or write operation affects current of Live Probe settings, because they use the same
probe circuitry inside the device.
e Security locks may disable this function.
Example

The following example unsets both live probe channels (Channel A and Channel B) from the device sf2.
unset_live_probes [-deviceName sf2]

87

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

write _active _probe (smarrusion2, 16L002, and RTG4)

Tcl command; sets the target probe point on the device to the specified value. The target probe point name
must be specified.

write_active_probe [-deviceName device_name] —name probe_name -value true|false
—-group_name group_bus_name -group_value “hex-value” | “binary-value”

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration.
-name probe_name

Specifies the name for the target probe point. Cannot be a search pattern.
-value true | false hex-value | binary-value

Specifies values to be written.

True = High

False = Low

—group_name group_bus_name

Specify the group or bus name to write to complete group or bus.
-group_value "hex-value” | “binary-value”

Specify the value for the complete group or bus.

Hex-value format : “ <size>’h<value>”

Binary-value format: “ <size>’b<value>”
ry

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
write_active_probe —name out[5]:out[5]:Q —value true <-- write to a single probe
write_active_probe -name grpl.out[3]:out[3]:Q -value low <-- write to a probe in the group
write_active_probe -group_name grpl —group_value “8~hF0” <-- write the value to complete group
write_active_probe —group_name out —group_value “87b11110000” \

-name out[2]:out[2]:Q —value true <-- write multiple probes at the same time.

write _Isram (SmartFusion2, IGLOO2, RTGA4)

Tcl command; writes a seven bit word into the specified large SRAM location.

Physical block

write_lIsram [-deviceName device_name] —name block name] —offset offset value —value value

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-name block_name
Specifies the name for the target block.

-offset offset_value

88

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

Offset (address) of the target word within the memory block.
-value value

Nine-bit value to be written to the target location.

Exceptions
e Array must be programmed and active
e The maximum value that can be written is OX1FF
e Security locks may disable this function

Example

Writes a value of Ox1A to the device sf2 in the block sram_block1 with an offset of 16.
write_Isram [-deviceName sf2] —name sram_blockl -offset 16 -value Ox1A

Logical block

write_lIsram -logicalBlockName block_name -port port_name -offset offset value -logicalValue
hexadecimal_value

Arguments
-logicalBlockName block_name

Specifies the name for the user defined memory block.
-port port_name

Specifies the port for the memory block selected. Can be either Port A or Port B.
-offset offset_value

Offset (address) of the target word within the memory block.
-logicalValue hexadecimal_value

Specifies the hexadecimal value to be written to the memory block. Size of the value is equal to the width
of the output port selected.

Example

write_Isram -logicalBlockName {Fabric_Logic_0/U2/F_0O_FO_Ul} -port {Port A} -offset 1 -
logicalVvalue {OOFFF}

write_usram (SmartFusion2, IGLOO2, RTGA4)

Tcl command; writes a seven bit word into the specified uUSRAM location.

Physical block

write_usram [-deviceName device_name] —name block name] —offset offset value —value value

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-name block_name

Specifies the name for the target block.
-offset offset_value

Offset (address) of the target word within the memory block.
-value value

Nine-bit value to be written.

89

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

Exceptions

e Array must be programmed and active
e The maximum value that can be written is Ox1FF
e Security locks may disable this function

Example

Writes a value of Ox1A to the device sf2 in the block usram_block2 with an offset of 16.
write_usram [-deviceName sf2] —name usram_block2 -offset 16 -value Ox1A

Logical block

write_usram -logicalBlockName block_name -port port_name -offset offset value -logicalValue
hexadecimal_value

Arguments
-logicalBlockName block_name
Specifies the name for the user defined memory block.
-port port_name
Specifies the port for the memory block selected. Can be either Port A or Port B.
-offset offset_value
Offset (address) of the target word within the memory block.
-logicalValue hexadecimal_value

Specifies the hexadecimal value to be written to the memory block. Size of the value is equal to the width
of the output port selected.

Example

write_usram -logicalBlockName {Fabric_Logic_0/U3/F_0O_FO0_Ul} -port {Port A} -offset 1 -
logicalVvalue {OOFFF}

90

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

Solutions to Common Issues Using
SmartDebug

Embedded Flash Memory (NVM) - Failure when
Programming/Verifying
If the Embedded Flash Memory failed verification when executing the PROGRAM_NVM, VERIFY_NVM or

PROGRAM_NVM_ACTIVE_ARRAY action, the failing page may be corrupted. To confirm and address this
issue:

1. Inthe Inspect Device window click View Flash Memory Content.

2. Select the Flash Memory block and client (or page range) to retrieve from the device.
3. Click Read from Device; the retrieved data appears in the lower part of the window.
4. Click View Detailed Status to check the NVM Status.

Note: You can use the check_flash_memory and read_flash_memory Tcl commands to perform
diagnostics similar to the commands outlined above.

5. Ifthe NVM is corrupted you must reset the affected NVM pages.
To reset the corrupted NVM pages, either re-program the pages with your original data or ‘zero-out’
the pages by using the Tcl command recover_flash_memory.

If the Embedded Flash Memory failed verification when executing a VERIFY_NVM or
VERIFY_NVM_ACTIVE_ARRAY action, the failure may be due to the change of content in your design. To
confirm this, repeat steps 1-3 above.

Note: NVM corruption is still possible when writing from user design. Check NVM status for confirmation.

Analog System Not Working as Expected

If the Analog System is not working correctly, it may be due the following:
1. System supply issue. To troubleshoot:

e Physically verify that all the supplies are properly connected to the device and they are at the proper
level. Then confirm by running the Device Status.

e Physically verify that the relevant channels are correctly connected to the device.
2. Analog system is not properly configured. You can confirm this by examining the Analog System.

ADC Not Sampling the Correct Value

If the ADC is sampling all zero values then the wrong analog pin may be connected to the system, or the
analog pin is disconnected. If that is not the case and the ADC is not sampling the correct value, it may be
due to the following:
1. System supply issues - Run the device status to confirm.
2. Analog system is not configured at all - To confirm, read out the ACM configuration and verify if the
ACM content is all zero.

3. Analog system is not configured correctly - To confirm, read out the ACM configuration and verify that
the configuration is as expected .

Once analog block configuration has been confirmed, you can use the sample_analog_channel Tcl
command for debug sampling of the analog channel with user-supplied sampling parameters.

91

SmartDebug User Guide C Micmsemi.

Power Matters.”

If you have access to your Analog System Builder settings project (<Libero IDE
project>/Smartgen/AnalogBlock), you may use the compare function provided by the tool.

92

SmartDebug User Guide Q Mlbmsemi.

Power Matters.”

Freqguently Asked Questions

How do |

How do |

How do |

unlock the device security so | can debug?

You must provide the PDB file with a User Pass Key in order to unlock the device and continue debugging.

If you do not have a PDB with User Pass Key, you can create a PDB file in FlashPro (if you know the Pass
Key value).

export a report?

You can export three reports from the SmartDebug GUI: Device Status, Client Detailed Status from the
NVM, or the Compare Client Content report from the NVM. Each of those reports can be saved and printed.
If using a Tcl command, you can use the —File <filename> option for the following commands:
read_flash_memory

check flash_memory

compare_memory_client

read_device status

read_flashrom

read_analog block config

sample_analog_channel

compare_flashrom _client

compare_analog_config

For example, you can use the following command to export the content of the client 'datastorel’ in NVM
block 0 to the report file datastorel_content.txt:

read_flash_memory —client “datastorel” —file {C:\temp\datastorel content.txt}

For more information about Tcl commands supported by SmartDebug, see SmartDebug Tcl Commands.

generate diagnostic reports for my target device?

A set of diagnostic reports can be generated for your target device depending on which silicon feature you
are debugging. A set of Tcl commands are available to export those reports. The following is a summary of
those Tcl commands based on the silicon features.
When using the —file parameter, ensure that you use a different file name for each command so you do not
overwrite the report content. If you do not specify the —file option in the Tcl, the output results will be directed
to the FlashPro log window.
For the overall device:

read_device_status

read_id_code

For FlashROM:
compare_flashrom_client
read_flashrom

For Embedded Flash Memory (NVM):
compare_memory client
check flash_memory
read_flash_memory

For Analog Block:
read_analog block config
compare_analog_config

93

SmartDebug User Guide

& Microsemi

Power Matters.”
sample_analog_channel
To execute the Tcl command, from the File menu choose Run Script.
How do | monitor a static or pseudo-static signal?
To monitor a static or pseudo-static signal:
1. Add the signal to the Active Probes tab.
2. Select the signal in the Active Probes tab, right-click, and choose Poll....
5| Debug FPGA Array =@
=
Live Active Probes Selection g x FPGA Array debug data
Hierarchical View “ﬁghil\ryj : | Live Probes | Active Probes |mym | Probe Insertion |
Filter: [#) (= [+ [¥][swe. || woad. |[ocekte |[peeem
s me 1y [Read Value [Write Value
i Shift_Reg_0/shft_reg[13:0] = DFF 14h0001 :14:
4 T DFFO g D 0fq_0:D_FF_0/a:Q D 0 od
s - J Read
4 & shift Reg_0 Delete
4 W Primitives
- B ;ﬁﬂ T Poll...
» m}:m Create Group...
B chft_reg(2]
B shit_reg(3)
B shft reg(4]
| B shit_reg(s)
B shit_regls]
B shit_regl7] [Read Active Probes J Save Active Probes' Data...| | Write Active Probes
B ehftreqls] = E—
[e |
L= -

3. Inthe Pseudo-static Signal Polling dialog box, choose a value in Polling Setup and click Start Polling.

(7 -
i Pseudo-static signal polling

EER===)

Signal : D_FF_0/q_0:D_FF_0/q:Q
Polling Setup
@ Poll for 0 @ Poll for 1

For more information about pseudo-static signal polling, dick the Help button.
Time Elapsed in seconds: 0

Start Polling | | Stop Polling

Mote: The selected signal is polled once per second. It should be used for pseudo-static signals that do not change frequently.

How do | force a signal to a new value?

To force a signal to a new value:

1. Inthe SmartDebug window, click Debug FPGA Array.
2. Click the Active Probes tab.

3. Select the signal from the selection panel and add it to Active Probes tab.

94

SmartDebug User Guide O Mmsernl

Power Matters.”
~
B e
Live/Actve Probes Selection B puray detng dotn

[Herarchial View | Netist view | [LiveProbes | ActiveProbes | MemoryBlods | Probe Insertion |

Filter: +| (=[] + Save... Delate Delete All

Net(s): [Name Fvpe Vaiue ite Valoe

Name Type o
» B_DOUT_1_cl6:0] RAME4X13
b BN
b 1 [

DFNL 0_Q:DFNI_0:Q
DFN1_1_Z:DFN1_1:Q DFF

DR DR A O RUCT R RO T ST T
» URAM_0\/sd_URAM_O_URAM_ROCO/B_ADDR net[s:0] RAMG4x 18
P ecount_6_0_q[5:0] DFF
b count_6_2_0_q[7:0] DFF
 eount_7_0_al6:0] DFF
b count_7_2_0_q[8:0] DFF =

' n | Read Active Probes | [Save Active Probes'Data...| | Write Active Probes

‘B FPGAHardware BreakPoint
L — —

1. Click Read Active Probe to read the value.
2. In the Write Value column, enter the value to write to the signal and then click Write Active Probes.

1 Debug FPGA Amay ' = (=)]
&

Live /Active Probes Selection & x

FPGA Array debug data

Hierarchical View | Netiist View Live Probes | Active Probes | Memory Blods | Probe Insertion |
I
e) =)0+ e | Comen]
Phet(s): add [Name Type Value rite Value
(pm) |oAu1 0 g:DFNL 0:0 DFF | 1 0 x

Name S [B_DouT <{5:0) RaMeax1s |ehoe 6'h9

Type
b B_DOUT_1_c[6:0] RAMG4 18
b B_DOUT_2_e[7:0] RAME4x18
b B_DOUT_c[5:0) RAMG4x18
DFN1_0_Q:DFN1_0:Q OFF
DFN1_1_Z:DFN1_L:Q OFF
URAM_0\/sd_URAM_0_URAM_ROCO/A_ADDR _net[3:0] RAME4x18
URAM_D\/sd_URAM_0_URAM_ROCO/B_ADOR _net[9:0] RAMG4x13
count_6_0_q[5:0] DFF
count_6_2_0_q[7:0] LR
count_7_0_q[6:0] DFF
b count_7_2_0_q[8:0] DFF

- I

4 1t] v

[rmintere..] (Enrasmmeon

How do | count the transitions on a signal?

If FHB IP is auto-instantiated in the design, you can use the Event Counter in the Live Probes tab to count
the transitions on a signal.

To count the transitions on a signal:
1. Assign the desired signal to Live Probe Channel A.
2. Click the Event Counter tab and check the Activate Event Counter checkbox.

95

SmartDebug User Guide

1] Debug FPGA Array

ﬂ

& Microsemi

Power Matters.”

Instance(e):

I Wk Primitives
b I URAM_O\ E
b 3B URAM_1} H
& URAM_2\
b URAM_3\
b B count 6 O\ x

Event Counter, quency Monitor

Activate Event Counter @ Reset
Edge Selected: Rising
T
Total Events: 593355545
Signal : A_DOUT_0_c[8):URAM_3\fsd_URAM_3_URAM

Event Counter | Frequency Monitor | User Clock Frequendes

i 1)

FPGA Array debug data

Live Probes | Active Frobes | Memory Blocks | Probe Inseron |

Delete Delete Al
Name Type
A_DOUT_0_c[8):URAM_3\isd_URAM_3_URAM_ROC4/INST_RAMG4x18_IP:A_DOUT[0) | ramsaxia
A_DOUT_0_c[7]:URAM_3\/sd_URAM_3_URAM_ROC3/INST_RAMG4x18_IP:A_ DOUT[T] RAMG4x18
A_DOUT_0_c[6]:URAM_3\/sd_URAM_3_URAM_ROC3/INST_RAMG4x18_IP:A_DOUT[0] RAMG4x 18
A_DOUT_0_c[S]:URAM_3\fed_URAM_3 URAM_ROCZ/INST RAMG4x18_IP:A_DOUT[1] RAMB4x 18
A_DOUT_0_c[4]:URAM_3V/sd URAM_3 URAM_ROC2/INST RAM64x18_IP:A DOUT[0] | RAMG4x18
A_DOUT_0_c[3):URAM_3\isd_URAM_3_URAM_ROC1/INST_RAME4x18_IP:A_DOUT[1] RAMG4x18
A_DOUT_0_c[2]:URAM_3\fsd_URAM_3_URAM_ROC1/INST_RAMG4x18_IP:A_DOUT[0] RAMG4x 18
A_DOUT_0_c[1]:URAM_3Y/sd_URAM_3_URAM_ROCO/INST_RAM64x18_IP:A_DOUT[1] | RAM64x18
A_DOUT_0_c[0]:URAM_3\/sd_URAM_3_URAM_ROCO/INST_RAME4x1S_IP:A_DOUTI0] RAMG4x18
<] 3

Assign to Channel A
Assion to ChannelB | ->

Unassign Channels

-» A_DOUT_0_c[8]:URAM_3V/sd_URAM_3_URAM_ROC4/INST_RAMG4X 18_IP

See Also
Event Counter

How do | monitor or measure a clock?

You can monitor a clock signal from the Live Probe tab when the design is synthesized and compiled with

FHB Auto Instantiation turned on in Project Settings dialog box (Enhanced Constraint Flow).
In the Live Probe tab, SmartDebug allows you to:

1.

Measure all the FABCCC GL clocks by clicking the User Clock Frequencies tab, as shown in the

figure below.

96

SmartDebug User Guide

& Microsemi

Power Matters.”

rﬂ Debug FPGA Array

L

E=nnc]

®

Live[Active Probes Selection

| Herarchical View | Netist View

& X

Filter:

Instance(s):

3% Primitives
b 1 URAM_O\
& URAM_1\
> 8 URAM_2\
b I URAM_3\

| TF count 6 O\

K] _N'.'.H E

User Clocks
1 FCCC_0_GLD
{l 2 FCCC O GL
3 FCCC O 6L2

4 FCCC 0 GL3

Frequency (MHz)

~H5

FPGA Array debug data

Live Probes | Active Probes | MemoryBiocks | Probe Inserton |

Name
A_DOUT_0_c[8]:URAM_3\fsd_URAM_3_URAM_ROC4/INST_RAMG-x18_IP:A_DOUT(0]
A_DOUT_0_c[7):URAM_3\fsd_URAM_3_URAM_ROC3/INST_RAMG-x18_IP:A_DOUT(1]
A_DOUT_0_c[6]:URAM_3\/sd_URAM_3_URAM_ROC3/INST_RAME-4x 18_IP:A_DOUT[0]
A_DOUT_0_c[S]:URAM_3\/sd_URAM_3_URAM_ROC2/INST_RAMGx18_IP:A_DOUT[1]
A_DOUT_0_c[4]:URAM_3\/sd_URAM_3_URAM_ROC2/INST_RAMG-x18_IP:A_DOUT(0]
A_DOUT_0_¢[3]:URAM_3\/sd_URAM_3_URAM_ROC 1/INST_RAME4x 18_IP:A_DOLT[1]
A_DOUT_0_¢[2]:URAM_3\/sd_URAM_3_URAM_ROC 1/INST_RAM6-4x 18_IP:A_DOLT[0]
A_DOUT_0_c[1]:URAM_3\fsd_URAM_3_URAM_ROCO/INST_RAME-x18_IP:A_DOUT[1]
A_DOUT_0_c[0]:URAM_3\fsd_URAM_3_URAM_ROCO/INST_RAMG<x18_IP:A_DOLT(0]

4 n

Type

RAMESX 18

RAMESX 18

RAMES 18

RAM&4x 18

RAMESX 18

RAMESN 18

RAMS4x 18

RAME4X 18

RAMESX 18

b

Assign to Channel A | -3 A_DOUT_0_c[8]:URAM_3\/sd_URAM_3_URAM_ROC4/INST_RAM64x 18_[P

2. Monitor frequencies of any probe points by:
e Assigning the desired signal to Live Probe Channel A.

e Selecting the Frequency Monitor tab as shown in the following figure and checking the Activate
Frequency Meter checkbox.

97

SmartDebug User Guide

.
1 B Debug FPGA Aray

& Microsemi

Power Matters.”

==

®

Livefactive Probes Selection 8 x

Hierarchical View iNeEﬁst\ﬁew

Hll - _Event Counter/Frequency Monitor |

Activate Frequency Meter @
Monitor time (s):

Frequency (MHz): 0
Signal : A_DOUT_0_c[8]:URAM_3\jsd_URAM_3_URAM_ROCSH/INST_RAI

FPGA Array debug data

| LveProbes [Active Probes

= [Eog ey el |
| EventCounter | Frequency Monitor | User Clock Frequencies

T

Memory Blocks | Probe Insertion |

Delete

MName Type

How do | perform simple PRBS and loopback tests?

You can perform PRBS and loopback tests using the Debug SERDES option in SmartDebug.

To perform a PRBS test, in the Debug SERDES dialog box, select PRBS Test to run a PRBS test on-die or
off-die For more information, see "Debug SERDES — PRBS Test" on page 46.

To perform a PRBS test, in the Debug SERDES dialog box, select PRBS Test to run a PRBS test on-die or

off-die. For more information, see "Debug SERDES — PRBS Test" on page 46.

To perform a loopback test, in the Debug SERDES dialog box, select Loopback Test to run a near end
serial loopback /far end PMA Rx to Tx loopback test. For more information, see "Debug SERDES —

Loopback Test" on page 44.

How do |

To read RAM content:

read LSRAM or USRAM content?

1. Inthe Debug FPGA Array dialog box, click the Memory Blocks tab.
2. Select the memory block to be read from the selection panel on the left of the window.

98

SmartDebug User Guide C Mlcrbseml

Power Matters.”

(= Debug FPGA Ama

=

Memory Blocks Selection FPGA Array debug data

Memory Blocks:

8 x
Filter: | Search LiveProbes | ActveProbes | MemoryBlocks | Probe Insertion
| Select

User Design Memory Blodk:
Data Width:
Instance Tree | Port Used:
4 T Fabric_Logic_0 |
4 f u2

mn

B/ F_10_F1 U2
> 3 F_11 F1 U2
> 3k F_12_F1 U2
» B F_13 F1 U2
» M F_14 F1 U2
> M F_15F1 U2
> ik F_16_F1 U2
> B F_17_F1 U2
» W F_18 F1 U2 Read Block
> W F_19_F1 U2
> 3k F_1_F1_U2 ~|

Save Block Data... Write Block

An "L" in the icon next to the block name indicates that it is a logical block, and a "P" in the icon indicates
that it is a physical block. A logical block displays three fields in the Memory Blocks tab: User Design
Memory Blocks, Data Width, and Port Used. A physical block displays two fields in the Memory Blocks tab:
User Design Memory Block and Data Width.

3. Add the block in one of the following ways:

e Click Select.

e Right-click and choose Add.

e Drag the block to the Memory Blocks tab.
4. Click Read Block to read the content of the block.

73] Debug FPGA Array
flemory Blodks Selection B X Fpga Aray debug data
Filter: Search [Live Probes I Active Probes '1 Memory Blodks | _Probe Insertion |
Lreferie 5“‘: User Design Memory Block: Fabric_Logic_0/U3/F_0_Fo_U1
Data Width: 18-bit
| Snetance Ree = Port Used: PortA -
| 4 T Fabric_Logic_0 .
| 4 | u3
| ameorowm T T T I
| “ B ;“::_D.'?“WJWU 0000 0DAS3 08805 09008 14500 00010 00381 12028 00040 12080 04000 20214 02000 11080 20040 1C220 0A020
4 imitives
| T F?UZWJ""M“’“S-P 0010 02700 04451 04001 03000 05000 32500 00120 00000 0O0S0 00420 04019 ICB00 00052 00106 0OC22 10058
| 4 ? ;":‘Fiﬂv'“:‘ﬂf"ﬁ 0020 10400 00010 10000 14044 1C040 OB10E 39425 OD990 10C14 00004 04001 10000 00100 00042 20100 03002
-
| AaWF1nL Fiﬂuzm—msqu—m 0030 00018 00OO0 20808 0008A O01EQ 28100 02883 00770 10020 04000 00000 00200 20004 22400 04006 0AOS0
4 B ramtmp_ramimp_0_0
| 4 BT Primitives
| B INST_RAMG4x13_IP -
| « |F_12F1U2 SaveBlockData...| | Write Slock
4 B ramtmp_ramtmp_0_0
L 4L Drimitives =
See Also

"Memory Blocks (SmartFusion2, IGLOO2, RTG4)" on page 32"Memory Blocks (SmartFusion2, IGLOO2,
RTG4)" on page 32

How do | change the content of LSRAM or USRAM?

To change the content of LSRAM or USRAM:

99

SmartDebug User Guide C Mfcrosem;[

Power Matters.”

1. Inthe SmartDebug window, click Debug FPGA Array.
Click the Memory Blocks tab.
3. Select the memory block from the selection panel on the left of the window.

=

Memory Blocks Selection

FPGA Array debug data

Filter:

| Live Probes I Active Probes Memory Blocks Probe Insertion

Memory Blocks: User Design Memory Block:

Data Width:
Port Used:

Instance Tree
4 T Fabric_Logic_0
« B uw
4@EFoFOUL
4 Bt ramtn Ad

& F_10_F1 U2
> W F_11 F1 U2
> 3k F_12_F1 U2
> Bk F_13 F1 U2
> B F_14F1 U2
> M F_15F1 U2
> M F_16_F1_U2
> B F_17 F1 U2
» W F_18 F1 U2 Read Block Save Block Data.. Wirite Block
> W F_19 F1 U2
> Mk F_1 F1 U2 -

An "L" in the icon next to the block name indicates that it is a logical block, and a "P" in the icon indicates
that it is a physical block. A logical block displays three fields in the Memory Blocks tab: User Design
Memory Blocks, Data Width, and Port Used. A physical block displays two fields in the Memory Blocks tab:
User Design Memory Block and Data Width.
4. Add the memory block in one of the following ways:
e Click Select.
e Right-click and choose Add.
e Drag the block to the Memory Blocks tab.
5. Click Read Block. The memory content matrix is displayed.
6. Select the memory cell value that you want to change and update the value.
7. Click Write Block to write to the device.

|
Memory Blocks Selection B X rpGA Amray debug data
Fiter: Search | [Live Probes | Active Prodes | Memory Biocks | Probe Insertion |
Memary Blocks: [select | User Design Memory Block: Fabric_Logic_OAJ3F_12_F1_U2
. Data Width: 18-bit
rsarce e | portue
4 B Fabric_Logic_0
> u2 |=
« Bus 0 b fed B b oSl B T BB oA | B B DB F
g :-?{g;“&z o 0000 00083 FFFF 00102 DDOSS 01200 00824 00004 00304 00200 OOEDD 0006A 20001 00060 00050 00300 00000
K g i—:;{tﬂi 0010 00000 20410 20002 02101 00080 08016 020CO 0C200 OODAD 00002 08000 10020 05004 00018 20008 08300
4 ? ;"‘"’"_’—_’P’"W—“—" 0020 0020C 00000 000D 00084 00030 02408 DOOOL 02080 20000 00000 20000 00005 02000 02012 0DCOL 00454
Primitives
=t FI’LZW—MMB—'P 0030 02400 10001 00001 04000 00400 00002 01201 00004 00020 01CO0 02040 10008 07242 18102 24041 02044
B F_14FILU2
| F_15 F1U2
8 F_16_F1 U2 e " 1
| F7FLu2 ReadBlock | [save BlockData..| | writeBlodk |
B/ F_18 F1 U2
o Mt E @ EILD ik

100

SmartDebug User Guide O Mi('.‘msemi

Power Matters.”

See Also

"Memory Blocks (SmartFusion2, IGLOO2, RTG4)" on page 32"Memory Blocks (SmartFusion2, IGLOO2,
RTG4)" on page 32

How do | read the health check of the SERDES?

You can read the SERDES health check using the following Debug SERDES options:

1. Review the Configuration Report, which returns PMA Ready, TxPLL status, and RxPLL status. For
SERDES to function correctly, PMA ready should be true, and TxPLL and RxPLL status should be
locked. The Configuration Report can be found in the Debug SERDES dialog box under Configuration.
See Debug SERDES (SmartFusion2, IGLOO2, and RTG4).

© Debug SERDES — LB o]

SERDES Block: |SERDESIF 0 ~

@ Lane 0 Lane L Lane 2 Lane 3

SERDES Lanes: —
[Lane 0Reset | Lane 1 Reset ||Lane 2Reset || Lane 3Reset
Debug SERDES Configuration Report:
Configuration Serdes Bock SERDESIF 01 +| [t Rapart
2 Tests Lane 0
Lane mode : EPCS (custom)
PRESTast PMA Ready A ¢
Loopback Test TaPLL status : Locked
RPLLstanS: Loded
Lane 1:
Lane mode : EPCS (custom)
PHA Ready Troe
THPLL stats Locked
Rofilstatus: Locked
Lane 2:
Lane mode : EPCS (ustom) ¢
PIA Ready : True
T stats: Locked
RePiLstatus: Locked
Lane 3:
Lane made : EPCS (ustom) ¢
PMA Ready Troe
TaPLL status Locked
RaPLL status : Lodked

SERDES Regester Read or Write:

Saript: Exeaute

2. Runthe PRBS Test, which is a Near End Serial Loopback tests on selected lanes. This should result
in 0 errors in the Cumulative Error Count column. See "Debug SERDES — PRBS Test" on page 46.

Where can | find files to compare my contents/settings?

FlashROM

You can compare the FlashROM content in the device with the data in the PDB file. You can find the PDB in
the <Libero IDE project>/Designer/Impl directory.

Embedded Flash Memory (NVM)

You can compare the Embedded Flash Memory content in the device with the data in the PDB file. You can
find the PDB in the <Libero IDE project>/Designer/Impl directory.

Analog System

You can compare the Analog System configuration in the device with the data in the loaded PDB file or in
the Analog System folder. Go to:

e Fusion devices - <Libero IDE project>/Smartgen/AnalogBlock
e SmartFusion devices - <Libero IDE Project>/component/<SmartDesign Project>/MSS_ACE_0
The tool automatically identifies the necessary files in the selected folder for comparison.

101

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

What is a UFC file? What is an EFC file?

UFC is the User FlashROM Configuration file, generated by the FlashROM configurator; it contains the
partition information set by the user. It also contains the user-selected data for region types with static data.

However, for AUTO_INC and READ_FROM_FILE, regions the UFC file contains only:
e Start value, end value, and step size for AUTO_INC regions, and
e File directory for READ_FROM_FILE regions

EFC is the Embedded Flash Configuration file, generated by the Flash Memory Builder in the Project
Manager Catalog; it contains the partition information and data set by the user.

Both UFC and EFC information is embedded in the PDB when you generate the PDB file.

Is my FPGA fabric enabled?

When your FPGA fabric is programmed, you will see the following statement under Device State in the
Device Status report:

FPGA Array Status: Programmed and Enabled
If the FPGA fabric is not programmed, the Device State shows:
FPGA Array Status: Not Enabled

102

SmartDebug User Guide C Micmsemi.

Power Matters.”

Embedded Flash Memory (NVM) Frequently
Asked Questions

Is my Embedded Flash Memory (NVM) programmed?

To figure out if your NVM is programmed, read out and view the NVM content or perform verification with the
PDB file.
To examine the NVM content, see the FlashROM Memory Content Dialog Box.

To verify the NVM with the PDB select the VERIFY or VERIFY _NVM action in FlashPro.

How do | display Embedded Flash Memory (NVM) content in the
Client partition?

You must load your PDB into your FlashPro project in order to view the Embedded Flash Memory content in
the Client partition. To view NVM content in the client partition:

1.

o g wDn

Load your PDB into your FlashPro project.
Click Inspect Device.

Click View Flash Memory Content.
Choose a block from the drop-down menu.
Select a client.

Click Read from Device. The Embedded Flash Memory content from the device appears in the Flash
Memory dialog box.

See the Flash Memory Dialog Box topic for more description on viewing the NVM content.

How do | know if I have Embedded Flash Memory (NVM)

corruption?

When Embedded Flash Memory is corrupted, checking Embedded Flash Memory may return with any or all
of the following page status:

ECC1/ECC2 failure

Page write count exceeds the 10-year retention threshold
Page write count is invalid

Page protection is set illegally (set when it should not be)

See the How do | interpret data in the Flash Memory (NVM) Status Report? topic for details.

If your Embedded Flash Memory is corrupted, you can recover by reprogramming with original design data.
Alternatively, you can ‘zero-out’ the pages by using the Tcl command recover_flash_memory.

Why does Embedded Flash Memory (NVM) corruption happen?

Embedded Flash Memory corruption occurs when Embedded Flash Memory programming is interrupted due

to:

Supply brownout; monitor power supplies for brownout conditions. For SmartFusion monitor the
VCC_ENVM/VCC_ROSC voltage levels; for Fusion, monitor VCC_NVM/VCC_OSC.

Reset signal is not properly tied off in your design. Check the Embedded Memory reset signal.

103

SmartDebug User Guide Q Mlbmsemi.

Power Matters.”

How do | recover from Embedded Flash Memory corruption?

Reprogram with original design data or ‘zero-out’ the pages by using the Tcl command
recover_flash_memory.

What is a JTAG IR-Capture value?

JTAG IR-Capture value contains private and public device status values. The public status value in the value
read is ISC_DONE, which indicates if the FPGA Array is programmed and enabled.

The ISC_DONE signal is implemented as part of IEEE 1532 specification.

What does the ECC1/ECC2 error mean?

ECC is the Error Correction Code embedded in each Flash Memory page.
ECC1 - One bit error and correctable.
ECC2 — Two or more errors found, and not correctable.

What happens if invalid firmware is loaded into eNVM in
SmartFusion2 devices?

When invalid firmware is loaded into eNVM in SmartFusion2 devices, Cortex-M3 will not be able to boot and
issues reset to MSS continuously. eNVM content using View Flash Memory content will read zeroes in
SmartDebug.

How can | tell if my FlashROM is programmed?

To verify that your FlashROM is programmed, read out and view the FlashROM content or perform
verification with the PDB file by selecting the VERIFY or VERIFY FROM action in FlashPro.

Can | compare serialization data?
To compare the serialization data, you can read out the FlashROM content and visually check data in the
serialization region. Note that a serialization region can be an AUTO_INC or READ_FROM_FILE region.

For serialization data in the AUTO_INC region, check to make sure that the data is within the specified
range for that region.

For READ_FROM_FILE region, you can search for a match in the source data file.

Can | tell what security options are programmed in my device?

To determine the programmed security settings, run the Device Status option from the Inspect Device dialog
and examine the Security Section in the report.

This section lists the security status of the FlashROM, FPGA Array and Flash Memory blocks.

Is my analog system configured?

To determine if the analog block is configured, run the Device Status option from the Inspect Device dialog
and examine the Analog Block Section in the report. For example, the excerpt from the Device Status report
below shows that the analog block status is operational:

Analog Block:
OABTR Register (HEX): 0dbe37b
3.3V (vdd33): PASS

104

SmartDebug User Guide Q/ Micmsemi,

How do |

Power Matters.”

1.5V (vdd15): PASS

Bandgap: PASS

-3.3V (vddn33): PASS

ADC Reference: PASS

FPGA_Good: PASS

Status: Analog Block is operational
If you read out an all zero value when examining the Analog System Configuration, it is possible that the
Analog System is not configured.
You need to compare your analog system configuration with the design configuration from the Analog
System Builder.

The -3.3V (vddn33) voltage is optional.

interpret data in the Device Status report?

The Device Status Report generated from the FlashPro SmartDebug Feature contains the following
sections:

e IDCode (see below)

e User Information

e Device State

e Analog Block (SmartFusion and Fusion only)
e Factory Data

e Security Settings

Device Status Report: IDCode

The IDCode section shows the raw IDCode read from the device. For example, in the Device Status report
for an AFS600 device, you will find the following statement:

IDCode (HEX): 233261cf
The IDCode is compliant to IEEE 1149.1. The following table lists the IDCode bit assignments:
Table 3 - IDCode Bit Assignments

Bit Field (little Example Bit Value for Description
endian) AFS600 (HEX)
Bit [31-28] (4 bits) | 2 Silicon Revision
Bit [27-12] (16 3326 Device ID
bits)
Bit [11-0] (12 bits) | 1cf IEEE 1149.1 Manufacturer ID for
Microsemi

Device Status Report: User Info

The User Information section reports the information read from the User ROW (UROW) of IGLOO,
ProASIC3, SmartFusion and Fusion devices. The User Row includes user design information as well as
troubleshooting information, including:

e Design name (10 characters max)

e Design check sum (16-bit CRC)

e Last programming setup used to program/erase any of the silicon features.
e FPGA Array / Fabric programming cycle count

105

SmartDebug User Guide Q Micmsemi,

Power Matters.”

For example:

User Information:

UROW data (HEX): 603a04e0alc2860e59384af926fe389f
Programming Method: STAPL

Programmer: FlashPro3

Programmer Software: FlashPro vX.X

Design Name: ABCBASICTO

Design Check Sum: 603A

Algorithm Version: 19

Array Prog. Cycle Count: 19

Table 4 - Device Status Report User Info Description

Category Field Description

User Row Data (Example) Raw data from User Row
UROW data (HEX): (UROW)
603a04e0a1c2860e59384af926fe389f

Programming (Example) Known programming setup

Troubleshooting | Programming Method: STAPL used. This includes:

Info Programmer: FlashPro3 Programming method/file,
Programmer Software: FlashPro v8.6 | programmer and software.
Algorithm Version: 19 It also includes

programming Algorithm
version used.

Design Info (Example) Design name (limited to 10
Design Name: ABCASICTO characters) and check
Design Check Sum: 603A sum.

Design check sumis a 16-
bit CRC calculated from
the fabric (FPGA Array)
datastream generated for
programming. If encrypted
datastream is generated
selected, the encrypted
datastream is used for
calculating the check sum.

Device Status Report: Device State
The device state section contains:.
e |IR-Capture register value, and
e The FPGA status
The IR-Capture is the value captured by the IEEE1149.1 instruction register when going through the IR-

Capture state of the IEEE 1149.1 state machine. It contains information reflecting some of the states of the
devices that is useful for troubleshooting.

One of the bits in the value captured is the ISC_DONE value, specified by IEEE 1532 standard. When the
value is ‘1’ it means that the FPGA array/fabric is programmed and enabled. This is available for IGLOO,
ProASIC3, SmartFusion and Fusion devices.

For example:

Device State:

IRCapture Register (HEX): 55

106

SmartDebug User Guide

FPGA Array Status: Programmed and enabled

For a blank device:
Device State:

IRCapture Register (HEX): 51
FPGA Array Status: Not enabled

Device Status Report: Analog Block

& Microsemi

Power Matters.”

The Analog block of the SmartFusion and Fusion devices monitors some of the key power supplies needed
by the device to function. These power supply status is captured in the OABTR test register in the Analog

block.

For example, if you run Device Status when the Fabric and Analog configuration is programmed and
powered up successfully the report indicates:

Analog Block:

OABTR Register (HEX): 0dbe3bb

3.3V (vdd33): PASS
1.5V (vdd15): PASS
Bandgap: PASS

-3.3V (vddn33): PASS
ADC Reference: PASS
FPGA_Good: PASS

Status: Analog Block is operational

Table 5 - Device Status Report - Analog Block Description

Analog Block Status

Description

OABTR Register

RAW data captured from the device

3.3V (vdd33)

Vcc33a supply status

1.5V (vdd15)

Vcenvm supply status

Bandgap

Internal bandgap supply status

ADC Reference

ADC reference voltage status

-3.3V (vddn33)

Vddn33 supply status (optional voltage)

FPGA Good

FPGA array or Fabric status

If the Fusion device is erased, the report indicates:

Analog Block:

OABTR Register (HEX): 188e3ba

3.3V (vdd33): PASS
1.5V (vdd15): PASS
Bandgap: PASS

-3.3V (vddn33): FAIL
ADC Reference: FAIL
FPGA_Good: FAIL

Status: Analog Block is non-operational
Analog Block is not programmed

107

SmartDebug User Guide

& Microsemi

Device Status Report: Factory Data
The Factory Data section lists the Factory Serial Number (FSN).

Each of the IGLOO, ProASIC3, SmartFusion and Fusion devices has a unique 48-bit FSN.

Device Status Report: Security

The security section shows the security options for the FPGA Array, FlashROM and Flash Memory (NVM)
block that you programmed into the device.

For example, using a Fusion AFS600 device:

Security:

Security Register (HEX): 0000000088c01b

FlashROM

Write/Erase protection: Off
Read protection: Off

Encrypted programming: Off

FPGA Array

Write/Erase protection: Off
Verify protection: Off
Encrypted programming: OFF
FlashMemory Block O

Write protection: On
Read protection: On

Encrypted programming: OFf
FlashMemory Block 1
Write protection: On
Read protection: On

Encrypted programming: OFF

Table 6 - Device Status Report - Security Description

Security
Status Info

Description

Security
Register (HEX)

Raw data captured from the device's security status register

Write/Erase
Protection

Write protection is applicable to FlashROM, FPGA Array (Fabric)and
Flash Memory (NVM) blocks. When On, the Silicon feature is
write/erase protected by user passkey.

Read
Protection

Read protection is applicable to FlashROM and Flash Memory (NVM)
blocks. When On, the Silicon feature is read protected by user
passkey.

Verify
Protection

Verify Protection is only applicable to FPGA Array (Fabric) only. When
On, the FPGA Array require user passkey for verification.

Reading back from the FPGA Array (Fabric) is not supported.

Verification is accomplished by sending in the expected data for
verification.

Encrypted
Programming

Encrypted Programming is supported for FlashROM, FPGA Array
(Fabric) and Flash Memory (NVM) blocks. When On, the silicon
feature is enable for encrypted programmed. This allows field design
update with encrypted datastream so the user design is protected.

Power Matters.”

108

SmartDebug User Guide Q Micmsemi,

Power Matters.”

Encrypted Programming

To allow encrypted programming of the features, the target feature cannot be Write/Erase protected by user
passkey.

The security settings of each silicon feature when they are enabled for encrypted programming are listed
below.

FPGA Array (Fabric)

Write/Erase protection: Off

Verify protection: Off

Encrypted programming: On
Set automatically by Designer or FlashPro when you select to enable encrypted programming of the FPGA
Array (Fabric). This setting allows the FPGA Array (Fabric) to be programmed and verified with an encrypted
datastream.

FlashROM

Write/Erase protection: Off

Read protection: On

Encrypted programming: On
Set automatically by Designer or FlashPro when you select to enable encrypted programming of the
FlashROM. This setting allows the FlashROM to be programmed and verified with an encrypted datastream.
FlashROM always allows verification. If encrypted programming is set, verification has to be performed with
encrypted datastream.
Designer and FlashPro automatically set the FlashROM to be read protected by user passkey when
encrypted programming is enabled. This protects the content from being read out of the JTAG port after
encrypted programming.

Flash Memory (NVM) Block

How do |

Write/Erase protection: OFff

Read protection: On

Encrypted programming: On
The above setting is set automatically set by Designer or FlashPro when you select to enable encrypted
programming of the Flash Memory (NVM) block. This setting allows the Flash Memory (NVM) block to be
programmed with an encrypted datastream.
The Flash Memory (NVM) block does not support verification with encrypted datastream.
Designer and FlashPro automatically set the Flash Memory (NVM) block to be read protected by user
passkey when encrypted programming is enabled. This protects the content from being read out of the
JTAG port after encrypted programming.

interpret data in the Flash Memory (NVM) Status Report?

The Embedded Flash Memory (NVM) Status Report generated from the FlashPro SmartDebug feature
consists of the page status of each NVM page. For example:

Flash Memory Content [Page 34 to 34]

FlashMemory Page #34:

Status Register(HEX): 00090000

Status ECC2 check: Pass

Data ECC2 Check: Pass

Write Count: Pass (2304 writes)

Total number of pages with status ECC2 errors: 0

Total number of pages with data ECC2 errors: O

109

SmartDebug User Guide

& Microsemi

Power Matters.”

Total number of pages with write count out of range: O
FlashMemory Check PASSED for [Page 34 to 34]

The "check_flash_memory® command succeeded.

The Execute Script command succeeded.

Table 7 - Embedded Flash Memory Status Report Description

Flash
Memory
Status Info

Description

Status
Register
(HEX)

Raw page status register captured from device

Status
ECC2
Check

Check for ECC2 issue in the page status

Data ECC2
Check

Check for ECC2 issue in the page data

Write Count

Check if the page-write count is within the expected range.
The expected write count is greater than or equal to:

6,384 - SmartFusion devices
2,288 - Fusion devices

Note: Write count, if corrupted, cannot be reset to a valid value within the customer
flow;invalid write count will not prevent device from being programmed with the FlashPro
tool.

The write count on all good eNVM pages is set to be 2288 instead of 0 in the manufacturing
flow. The starting count of the eNVM is 2288. Each time the page is programmed or erased
the count increments by one. There is a Threshold that is set to 12288, which equals to 3 *

4096.

Since the threshold can only be set in multiples of 4096 (2*12), to set a 10,000 limit, the
Threshold is set to 12288 and the start count is set to 2288; and thus the eNVM has a 10k
write cycle limit. After the write count exceeds the threshold, the STATUS bit goes to 11
when attempting to erase/program the page.

110

SmartDebug User Guide Q/ Micmsemi,

Power Matters.”

Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Microsemi SoC Products Group and using these support
services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.
From North America, call 800.262.1060

From the rest of the world, call 650.318.4460
Fax, from anywhere in the world 650. 318.8044

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers
who can help answer your hardware, software, and design questions about Microsemi SoC Products. The
Customer Technical Support Center spends a great deal of time creating application notes, answers to
common design cycle questions, documentation of known issues and various FAQs. So, before you contact
us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support

For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-
support/fpga-soc-support.

Website

You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group
home page, at http://www.microsemi.com/soc/.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted
by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We
constantly monitor the email account throughout the day. When sending your request to us, please be sure
to include your full name, company name, and your contact information for efficient processing of your
request.

The technical support email address is soc_tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

111

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/soc
http://www.microsemi.com/soc/
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/

SmartDebug User Guide C Micmsemi.

Power Matters.”

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Visit About Us for sales office listings and
corporate contacts.

ITAR Technical Support

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations
(ITAR), contact us via soc_tech@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

112

mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
mailto:tech@microsemi.com
http://www.microsemi.com/soc/ITAR/

	Table of Contents
	Introduction to SmartDebug 7
	Supported Families, Programmers, and Operating Systems 8
	Supported Tools 8
	Getting Started with SmartDebug 8
	Using SmartDebug with SmartFusion and Fusion 9
	Using SmartDebug with SmartFusion2, IGLOO2, and RTG4 9
	Create Standalone SmartDebug Project 9
	Import from DDC File (created from Libero) 10
	Construct Automatically 10
	Configuring a Generic Device 10
	Connected FlashPRO Programmers 11
	Standalone SmartDebug User Interface 12
	Programming Connectivity and Interface 13
	View Device Status (SmartFusion2, IGLOO2, and RTG4) 16
	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion2 and IGLOO2 Only) 18
	Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4) 21
	Hierarchical View 21
	Netlist View 23
	Live Probes (SmartFusion2, IGLOO2, and RTG4) 24
	Active Probes (SmartFusion2, IGLOO2, and RTG4) 26
	Probe Grouping (Active Probes Only) 28
	Memory Blocks (SmartFusion2, IGLOO2, and RTG4) 32
	Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4 37
	Pseudo Static Signal Polling 40
	Debug SERDES (SmartFusion2, IGLOO2, and RTG4) 42
	Debug SERDES – Loopback Test 44
	Debug SERDES – PRBS Test 46
	Debug SERDES – PHY Reset 51
	Inspect Device Dialog Box (SmartFusion, Fusion, and ProASIC3 Only) 52
	Device Status Report (SmartFusion and Fusion Only) 52
	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion and Fusion Only) 53
	Embedded Flash Memory: Browse Retrieved Data (SmartFusion and Fusion Only) 54
	Embedded Flash Memory: Compare Memory Client (SmartFusion and Fusion Only) 56
	FlashROM Content Dialog Box (Fusion and SmartFusion Only) 57
	Analog Block Configuration Dialog Box (SmartFusion and Fusion Only) 58
	SmartDebug Tcl Support (SmartFusion2, IGLOO2, and RTG4) 61
	Device Debug / SmartDebug Tcl Commands (SmartFusion, IGLOO, ProASIC3, and Fusion Only) 62
	add_probe_insertion_point 64
	add_to_probe_group (SmartFusion2, IGLOO2, and RTG4) 64
	check_flash_memory 65
	compare_analog_config 66
	compare_flashrom_client 67
	compare_memory_client 67
	create_probe_group (SmartFusion2, IGLOO2, and RTG4) 68
	delete_active_probe 68
	export_smart_debug_data (SmartFusion2, IGLOO2, and RTG4) 69
	get_programmer_info 70
	load_active_probe_list 70
	loopback_test (SmartFusion2, IGLOO2, RTG4) 71
	move_to_probe_group (SmartFusion2, IGLOO2, and RTG4) 71
	prbs_test (SmartFusion2, IGLOO2, RTG4) 72
	program_probe_insertion 73
	read_active_probe (SmartFusion2, IGLOO2, and RTG4) 73
	read_analog_block_config 74
	read_device_status 74
	read_id_code 75
	read_flashrom 75
	read_flash_memory 76
	read_lsram (SmartFusion2, IGLOO2, RTG4) 77
	read_usram (SmartFusion2, IGLOO2, RTG4) 78
	recover_flash_memory 79
	remove_from_probe_group (SmartFusion2, IGLOO2, and RTG4) 79
	remove_probe_insertion_point 80
	sample_analog_channel 80
	save_active_probe_list 82
	select_active_probe (SmartFusion2, IGLOO2, and RTG4) 82
	serdes_lane_reset 83
	serdes_read_register (SmartFusion2, IGLOO2, and RTG4) 84
	serdes_write_register (SmartFusion2, IGLOO2, and RTG4) 84
	set_debug_device 85
	set_debug_programmer 86
	set_live_probe (SmartFusion2, IGLOO2, and RTG4) 86
	ungroup (SmartFusion2, IGLOO2, and RTG4) 87
	unset_live_probe 87
	write_active_probe (SmartFusion2, IGLOO2, and RTG4) 88
	write_lsram (SmartFusion2, IGLOO2, RTG4) 88
	write_usram (SmartFusion2, IGLOO2, RTG4) 89
	Embedded Flash Memory (NVM) - Failure when Programming/Verifying 91
	Analog System Not Working as Expected 91
	ADC Not Sampling the Correct Value 91
	How do I unlock the device security so I can debug? 93
	How do I export a report? 93
	How do I generate diagnostic reports for my target device? 93
	How do I monitor a static or pseudo-static signal? 94
	How do I force a signal to a new value? 94
	How do I count the transitions on a signal? 95
	How do I monitor or measure a clock? 96
	How do I perform simple PRBS and loopback tests? 98
	How do I read LSRAM or USRAM content? 98
	How do I change the content of LSRAM or USRAM? 99
	How do I read the health check of the SERDES? 101
	Where can I find files to compare my contents/settings? 101
	What is a UFC file? What is an EFC file? 102
	Is my FPGA fabric enabled? 102
	Is my Embedded Flash Memory (NVM) programmed? 103
	How do I display Embedded Flash Memory (NVM) content in the Client partition? 103
	How do I know if I have Embedded Flash Memory (NVM) corruption? 103
	Why does Embedded Flash Memory (NVM) corruption happen? 103
	How do I recover from Embedded Flash Memory corruption? 104
	What is a JTAG IR-Capture value? 104
	What does the ECC1/ECC2 error mean? 104
	What happens if invalid firmware is loaded into eNVM in SmartFusion2 devices? 104
	How can I tell if my FlashROM is programmed? 104
	Can I compare serialization data? 104
	Can I tell what security options are programmed in my device? 104
	Is my analog system configured? 104
	How do I interpret data in the Device Status report? 105
	How do I interpret data in the Flash Memory (NVM) Status Report? 109

	Welcome to SmartDebug
	Introduction to SmartDebug
	Use Models
	Integrated Mode
	Standalone Mode
	Demo Mode
	Standalone Mode Use Model Overview

	Supported Families, Programmers, and Operating Systems
	Supported Tools
	Getting Started with SmartDebug
	Using SmartDebug with SmartFusion and Fusion
	Using SmartDebug with SmartFusion2, IGLOO2, and RTG4
	Create Standalone SmartDebug Project
	Import from DDC File (created from Libero)
	Construct Automatically
	Configuring a Generic Device
	Connected FlashPRO Programmers
	See Also

	SmartDebug User Interface
	Standalone SmartDebug User Interface
	Programming Connectivity and Interface
	Hover Information
	Device Chain Details
	Right-click Properties
	Debug Context Save
	Selecting Devices for Debug

	View Device Status (SmartFusion2, IGLOO2, and RTG4)
	IdCode
	Device Certificate
	Design Information
	Digest Information
	Device Security Settings
	Programming Information

	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion2 and IGLOO2 Only)
	Contents of Page Status

	Debugging
	Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4)
	Hierarchical View
	Netlist View
	Live Probes (SmartFusion2, IGLOO2, and RTG4)
	SmartFusion2 and IGLOO2
	RTG4
	Live Probes in Demo Mode

	Active Probes (SmartFusion2, IGLOO2, and RTG4)
	Active Probes in Demo Mode

	Probe Grouping (Active Probes Only)
	Context Menu of Probe Points Added to the Active Probes UI
	Differences Between a Bus and a Probe Group

	Memory Blocks (SmartFusion2, IGLOO2, and RTG4)
	Memory Block Fields
	User Design Memory Block
	Data Width
	Port Used
	Read Block
	Logical Block Read
	Physical Block Read
	Write Block
	Logical Block write
	Physical Block Write
	Unsupported Memory Blocks
	Memory Blocks in Demo Mode

	Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4
	Introduction
	Probe Insertion
	Probe Deletion
	Reverting to the Original Design

	Pseudo Static Signal Polling
	Scalar Signal Polling
	Vector Signal Polling

	Debug SERDES (SmartFusion2, IGLOO2, and RTG4)
	Debug SERDES - Configuration
	Configuration Report
	SERDES Register Read or Write

	Debug SERDES – Loopback Test
	SERDES Lanes
	Test Type
	Running Loopback Tests in Demo Mode

	Debug SERDES – PRBS Test
	SERDES Lanes
	Test Type
	Pattern
	Cumulative Error Count
	Bit Error Rate
	Running PRBS Tests in Demo Mode

	Debug SERDES – PHY Reset
	Inspect Device Dialog Box (SmartFusion, Fusion, and ProASIC3 Only)
	Device Status Report (SmartFusion and Fusion Only)
	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion and Fusion Only)
	Embedded Flash Memory: Browse Retrieved Data (SmartFusion and Fusion Only)
	Embedded Flash Memory: Compare Memory Client (SmartFusion and Fusion Only)
	FlashROM Content Dialog Box (Fusion and SmartFusion Only)
	Analog Block Configuration Dialog Box (SmartFusion and Fusion Only)

	SmartDebug Tcl Commands
	SmartDebug Tcl Support (SmartFusion2, IGLOO2, and RTG4)
	Device Debug / SmartDebug Tcl Commands (SmartFusion, IGLOO, ProASIC3, and Fusion Only)
	add_probe_insertion_point
	Arguments
	Supported Families
	Example

	add_to_probe_group (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	check_flash_memory
	Arguments
	Supported Families
	Exceptions
	Example

	compare_analog_config
	Arguments
	Supported Families
	Exceptions
	Example

	compare_flashrom_client
	Arguments
	Supported Families
	Exceptions
	Example

	compare_memory_client
	Arguments
	Supported Families
	Exceptions
	Example

	create_probe_group (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	delete_active_probe
	Arguments
	Supported Families
	Example

	export_smart_debug_data (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	get_programmer_info
	Supported Families
	Example

	load_active_probe_list
	Arguments
	Supported Families
	Example

	loopback_test (SmartFusion2, IGLOO2, RTG4)
	Arguments
	Supported Families
	Example

	move_to_probe_group (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	prbs_test (SmartFusion2, IGLOO2, RTG4)
	Arguments
	Supported Families
	Example

	program_probe_insertion
	Supported Families

	read_active_probe (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	read_analog_block_config
	Arguments
	Supported Families
	Exceptions
	Example

	read_device_status
	Arguments
	Supported Families
	Exceptions
	Example

	read_id_code
	Arguments
	Supported Families
	Exceptions
	Example

	read_flashrom
	Arguments
	Supported Families
	Exceptions
	Example

	read_flash_memory
	Arguments
	Supported Families
	Exceptions
	Example

	read_lsram (SmartFusion2, IGLOO2, RTG4)
	Physical block
	Arguments
	Exceptions
	Example
	Logical block
	Arguments
	Example

	read_usram (SmartFusion2, IGLOO2, RTG4)
	Physical block
	Arguments
	Exceptions
	Example
	Logical block
	Arguments
	Example

	recover_flash_memory
	Arguments
	Supported Families
	Exceptions
	Example

	remove_from_probe_group (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	remove_probe_insertion_point
	Arguments
	Supported Families
	Example

	sample_analog_channel
	Arguments
	Supported Families
	Exceptions
	Example

	save_active_probe_list
	Arguments
	Supported Families
	Example

	select_active_probe (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	serdes_lane_reset
	Arguments
	Supported Families
	Example
	Errors

	serdes_read_register (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	serdes_write_register (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example
	See Also

	set_debug_device
	Arguments
	Supported Families
	Exceptions
	Example

	set_debug_programmer
	Arguments
	Supported Families
	Exceptions
	Example

	set_live_probe (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Exceptions
	Example

	ungroup (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	unset_live_probe
	Arguments
	Supported Families
	Exceptions
	Example

	write_active_probe (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	write_lsram (SmartFusion2, IGLOO2, RTG4)
	Physical block
	Arguments
	Exceptions
	Example
	Logical block
	Arguments
	Example

	write_usram (SmartFusion2, IGLOO2, RTG4)
	Physical block
	Arguments
	Exceptions
	Example
	Logical block
	Arguments
	Example

	Solutions to Common Issues Using SmartDebug
	Embedded Flash Memory (NVM) - Failure when Programming/Verifying
	Analog System Not Working as Expected
	ADC Not Sampling the Correct Value

	Frequently Asked Questions
	How do I unlock the device security so I can debug?
	How do I export a report?
	How do I generate diagnostic reports for my target device?
	How do I monitor a static or pseudo-static signal?
	How do I force a signal to a new value?
	How do I count the transitions on a signal?
	See Also

	How do I monitor or measure a clock?
	How do I perform simple PRBS and loopback tests?
	How do I read LSRAM or USRAM content?
	See Also

	How do I change the content of LSRAM or USRAM?
	See Also

	How do I read the health check of the SERDES?
	Where can I find files to compare my contents/settings?
	What is a UFC file? What is an EFC file?
	Is my FPGA fabric enabled?

	Embedded Flash Memory (NVM) Frequently Asked Questions
	Is my Embedded Flash Memory (NVM) programmed?
	How do I display Embedded Flash Memory (NVM) content in the Client partition?
	How do I know if I have Embedded Flash Memory (NVM) corruption?
	Why does Embedded Flash Memory (NVM) corruption happen?
	How do I recover from Embedded Flash Memory corruption?
	What is a JTAG IR-Capture value?
	What does the ECC1/ECC2 error mean?
	What happens if invalid firmware is loaded into eNVM in SmartFusion2 devices?
	How can I tell if my FlashROM is programmed?
	Can I compare serialization data?
	Can I tell what security options are programmed in my device?
	Is my analog system configured?
	How do I interpret data in the Device Status report?
	Device Status Report: IDCode
	Device Status Report: User Info
	Device Status Report: Device State
	Device Status Report: Analog Block
	Device Status Report: Factory Data
	Device Status Report: Security
	Encrypted Programming
	FPGA Array (Fabric)

	How do I interpret data in the Flash Memory (NVM) Status Report?

	Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

	newField: This document is released with Libero SoC Design Suite v11.8 SP4 without changes from v11.8 SP3.

