

MSC180SMA120S

Silicon Carbide N-Channel Power MOSFET

Product Overview

The silicon carbide (SiC) power MOSFET product line from Microsemi increases the performance over silicon MOSFET and silicon IGBT solutions while lowering the total cost of ownership for high-voltage applications. The MSC180SMA120S device is a 1200 V, 180 m Ω SiC MOSFET in a TO-268 (D3PAK) package.

1—Gate 2—Drain 3—Source Backside—Drain

Features

The following are key features of the MSC180SMA120S device:

- · Low capacitances and low gate charge
- · Fast switching speed due to low internal gate resistance (ESR)
- Stable operation at high junction temperature, T_{J(max)} = 175 °C
- · Fast and reliable body diode
- · Superior avalanche ruggedness
- RoHS compliant

Benefits

The following are benefits of the MSC180SMA120S device:

- · High efficiency to enable lighter, more compact system
- · Simple to drive and easy to parallel
- Improved thermal capabilities and lower switching losses
- · Eliminates the need for external freewheeling diode
- Lower system cost of ownership

Applications

The MSC180SMA120S device is designed for the following applications:

- · PV inverter, converter, and industrial motor drives
- · Smart grid transmission and distribution
- Induction heating and welding
- H/EV powertrain and EV charger
- Power supply and distribution

1. Device Specifications

This section shows the specifications of the MSC180SMA120S device..

1.1 Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the MSC180SMA120S device.

Table 1-1. Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
V _{DSS}	Drain source voltage	1200	V
I _D	Continuous drain current at T _C = 25 °C	ontinuous drain current at T _C = 25 °C 21	
	Continuous drain current at T _C = 100 °C	15	
I _{DM}	Pulsed drain current ¹	40	
V _{GS}	Gate-source voltage	23 to -10	V
P _D	Total power dissipation at T _C = 25 °C	125	W
	Linear derating factor	0.85	W/°C

Note:

1. Repetitive rating: pulse width and case temperature limited by maximum junction temperature.

The following table shows the thermal and mechanical characteristics of the MSC180SMA120S device.

Table 1-2. Thermal and Mechanical Characteristics

Symbol	Characteristic/Test Conditions	Min	Тур	Max	Unit
$R_{\theta JC}$	Junction-to-case thermal resistance		0.79	1.18	°C/W
T _J	Operating junction temperature	- 55		175	°C
T _{STG}	Storage temperature	- 55		150	°C
T _L	Soldering temperature for 10 seconds (1.6 mm from case)			300	°C
Wt	Package weight		0.14		oz
			4.0		g

1.2 Electrical Performance

The following table shows the static characteristics of the MSC180SMA120S device. T_J = 25 °C unless otherwise specified.

Table 1-3. Static Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 100 \mu\text{A}$	1200			V
R _{DS(on)}	Drain-source on resistance ¹	$V_{GS} = 20 \text{ V}, I_D = 8 \text{ A}$		180	225	mΩ
V _{GS(th)}	Gate-source threshold voltage	$V_{GS} = V_{DS}$, $I_D = 500 \mu A$	1.9	3.26		V

continued						
Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
$\Delta V_{GS(th)}/$ ΔT_J	Threshold voltage coefficient	$V_{GS} = V_{DS}$, $I_D = 500 \mu A$		-5.8		mV/°C
I _{DSS}	Zero gate voltage drain current	V _{DS} = 1200 V, V _{GS} = 0 V			100	μA
		V_{DS} = 1200 V, V_{GS} = 0 V, T_{J} = 125 °C			500	
I _{GSS}	Gate-source leakage current	V _{GS} = 20 V/–10 V			±100	nA

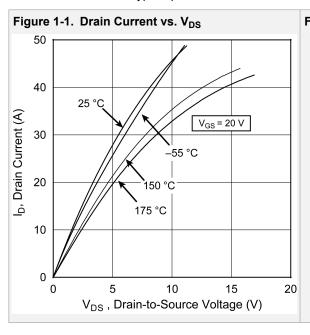
Note:

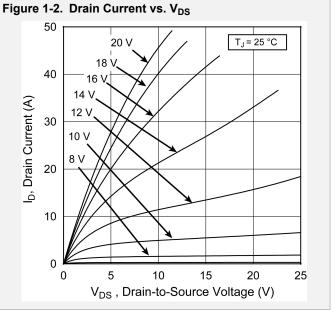
1. Pulse test: pulse width < 380 μ s, duty cycle < 2%.

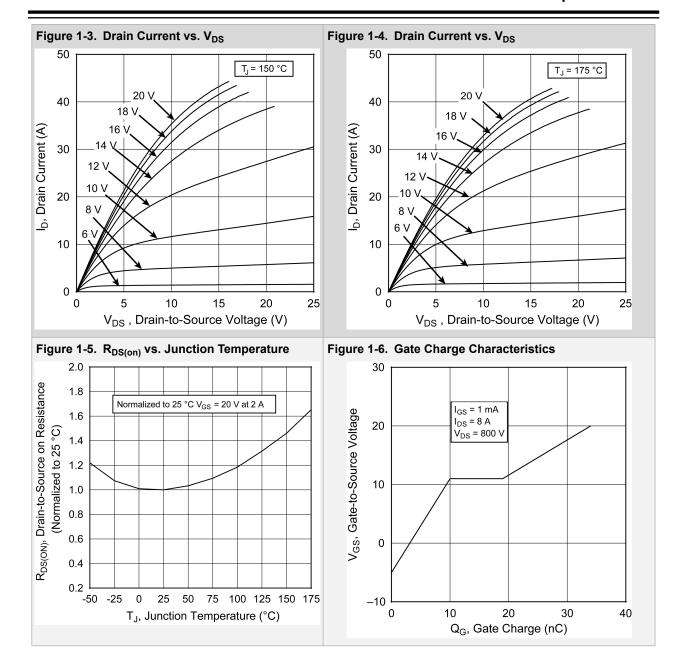
The following table shows the dynamic characteristics of the MSC180SMA120S device. T_J = 25 °C unless otherwise specified.

Table 1-4. Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
C _{iss}	Input capacitance	V _{GS} = 0 V, V _{DD} = 1000 V, V _{AC} = 25		510		pF
C _{rss}	Reverse transfer capacitance	mV, <i>f</i> = 1 MHz		4		
C _{oss}	Output capacitance			45		
Qg	Total gate charge	$V_{GS} = -5 \text{ V/20 V}, V_{DD} = 800 \text{ V}, I_{D} =$		34		nC
Q_{gs}	Gate-source charge	40 A		10		
Q_{gd}	Gate-drain charge			9		
t _{d(on)}	Turn-on delay time	$V_{DD} = 800 \text{ V}, V_{GS} = -5 \text{ V}/20 \text{ V}, I_{D} =$				ns
t _r	Voltage rise time	10 A, $R_{g(ext)}$ = 8.0 Ω , Freewheeling diode = MSC180SMA120S (V_{GS} = -5 V)				
t _{d(off)}	Turn-off delay time					
t _f	Voltage fall time					
E _{on}	Turn-on switching energy			210		μJ
E _{off}	Turn-off switching energy			23		
t _{d(on)}	Turn-on delay time	$V_{DD} = 800 \text{ V}, V_{GS} = -5 \text{ V}/20 \text{ V}, I_{D} =$				ns
t _r	Voltage rise time	10 A, $R_{g(ext)}$ = 8.0 Ω , Freewheeling diode = MSC010SDA120B				
t _{d(off)}	Turn-off delay time					
t _f	Voltage fall time					
E _{on}	Turn-on switching energy			170		μJ
E _{off}	Turn-off switching energy			23		
ESR	Equivalent series resistance	f = 1 MHz, 25 mV, drain short		3.29		Ω
SCWT	Short circuit withstand time	V _{DS} = 960 V, V _{GS} = 20 V				μs
E _{AS}	Avalanche energy, single pulse	V _{DS} = 150 V, I _D = 30 A				mJ


The following table shows the body diode characteristics of the MSC180SMA120S device. T_J = 25 °C unless otherwise specified.


Table 1-5. Body Diode Characteristics


Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
V _{SD}	Diode forward voltage	I _{SD} = 0 V, V _{GS} = 0 V		3.81		V
		I _{SD} = 0 V, V _{GS} = -5 V		3.96		
t _{rr}	Reverse recovery time	$I_{SD} = 10 \text{ A}, V_{GS} = -5 \text{ V}, V_{DD} =$		28		ns
Q _{rr}	Reverse recovery charge	800 V, dl/dt = -1120 A/ μ s, Drive Rg = 8 Ω		88		nC
I _{RRM}	Reverse recovery current			4.2		Α

1.3 Typical Performance Curves

This section shows the typical performance curves of the MSC180SMA120S device.

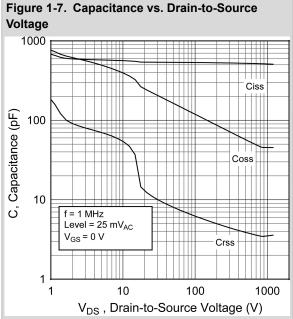


Figure 1-8. I_D vs. V_{DS} 3^{rd} Quadrant Conduction

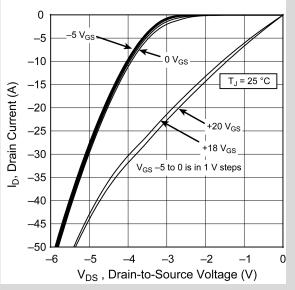


Figure 1-9. I_D vs. V_{DS} 3rd Quadrant Conduction

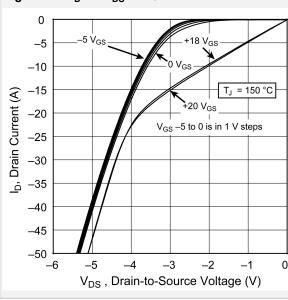
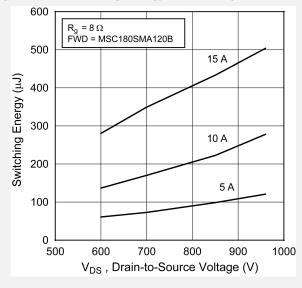



Figure 1-10. Switching Energy Eon vs. $V_{DS} \& I_{D}$

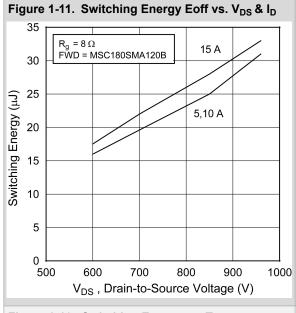
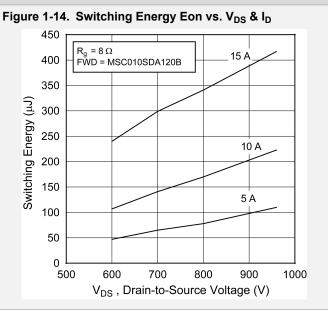
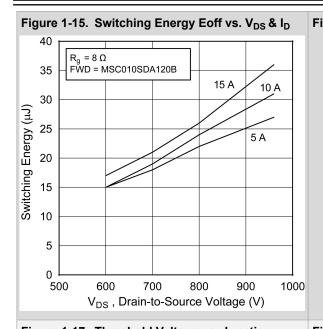
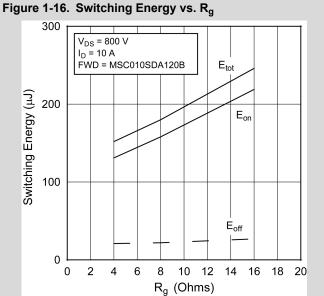
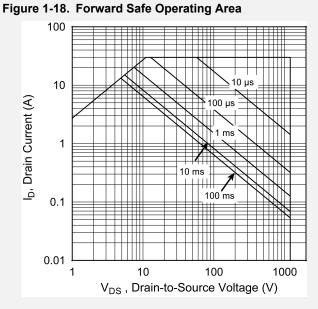
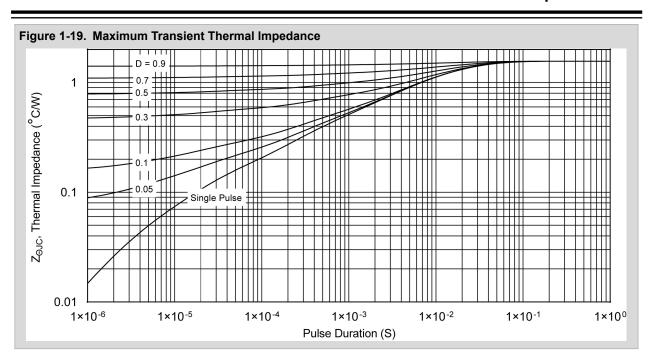
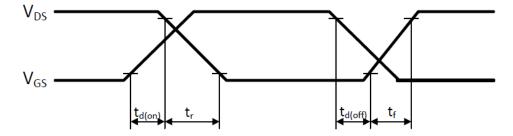




Figure 1-12. Switching Energy vs. Rq V_{DS} = 800 V I_D = 10 A FWD = MSC180SMA120B E_{tot} 300 Switching Energy (μJ) E_{on} 200 100 $\mathsf{E}_{\mathsf{off}}$ 0 0 2 4 6 8 10 12 14 16 18 R_g (Ohms)

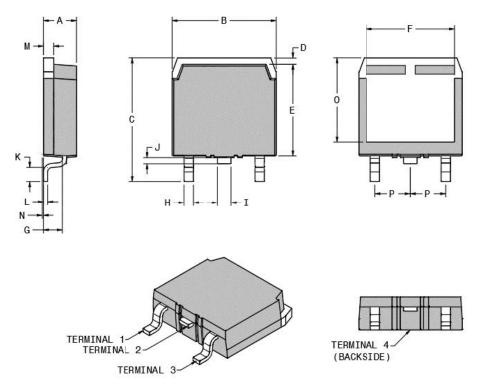
Figure 1-13. Switching Energy vs. Temperature 400 $V_{DS} = 800 V$ E_{tot} I_D = 10 A 350 $R_g = 8 \Omega$ FWD = MSC180SMA120B 300 Switching Energy (µJ) E_{on} 250 200 150 100 $\mathsf{E}_{\mathsf{off}}$ 50 75 100 150 0 25 50 125 Junction Temperature (°C)


Figure 1-17. Threshold Voltage vs. Junction Temp. 4.5 4.0 $V_{GS} = V_{DS}$, $I_D = 100 \ \mu A$ V_{GS(th)} Threshold Voltage (V) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 50 75 100 125 150 175 -50 -25 25 T_J, Junction Temperature (°C)

The following figure shows the switching waveform diagram of the MSC180SMA120S device.

Figure 1-20. Switching Waveform


2. Package Specification

This section shows the package specification of the MSC180SMA120S device.

2.1 Package Outline Drawing

The following figure illustrates the TO-268 package outline of the MSC180SMA120S device.

Figure 2-1. Package Outline Drawing

The following table shows the TO-268 dimensions and should be used in conjunction with the package outline drawing.

Table 2-1. TO-268 Dimensions

Symbol	Min (mm)	Max (mm)	Min (in.)	Max (in.)
Α	4.90	5.10	0.193	0.201
В	15.85	16.20	0.624	0.638
С	18.70	19.10	0.736	0.752
D	1.00	1.025	0.039	0.049
E	13.80	14.00	0.543	0.551
F	13.30	13.60	0.524	0.535
G	2.70	2.90	0.106	0.114
Н	1.15	1.45	0.045	0.057
1	1.95	2.21	0.077	0.087

MSC180SMA120S

Package Specification

continued						
Symbol	Min (mm)	Max (mm)	Min (in.)	Max (in.)		
J	0.94	1.40	0.037	0.055		
K	2.40	2.70	0.094	0.106		
L	0.40	0.60	0.016	0.024		
M	1.45	1.60	0.057	0.063		
N	0.00	0.018	0.00	0.007		
0	12.40	12.70	0.488	0.500		
Р	5.45 BSC (nom.)		0.215 BSC (nom.)			
Terminal 1	Gate					
Terminal 2	Drain					
Terminal 3	Source					
Terminal 4	Drain					

3. Revision History

Table 3-1. Revision History

Revision	Date	Description
A	03/2021	Document created.

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
 of the Microchip devices. We believe that these methods require using the Microchip products in a manner
 outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code
 protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
 protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly
 evolving. We at Microchip are committed to continuously improving the code protection features of our products.
 Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act.
 If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
 for relief under that Act.

© 2021 Microchip Technology Inc. Preliminary Datasheet DS-00003886A-page 13

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-7835-5

© 2021 Microchip Technology Inc. Preliminary Datasheet DS-00003886A-page 14

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

© 2021 Microchip Technology Inc. Preliminary Datasheet DS-00003886A-page 15

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380	15 55 155 52 155 15		Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			1 da. 77-110-321-3020
Fax: 905-695-2078			
I ax. 300-030-20/0			