
 Libero® SoC v2021.1
 Design Flow User Guide for PolarFire®

Introduction
The Microchip Libero® System-on-Chip (SoC) design suite offers high productivity with its comprehensive, easy to
learn, easy to adopt development tools for designing Resolved Microchip’s power efficient flash field-programmable
gate arrays (FPGAs), SoC FPGAs, and Rad-Tolerant FPGAs. The suite integrates industry-standard Synopsys
SynplifyPro® synthesis and Mentor Graphics ModelSim® simulation with best-in-class constraints management,
debug capabilities, and secure production programming support.

Supported Device Family
The following table lists the family of devices that Libero SoC supports. This guide covers all of these device families.
Table 1. Device Family Supported by Libero SoC

Device Family Description

PolarFire PolarFire® FPGAs deliver the industry’s lowest power at mid-range densities with
exceptional security and reliability.

PolarFire SoC PolarFire SoC is the first SoC FPGA with a deterministic, coherent RISC-V CPU
cluster and a deterministic L2 memory subsystem enabling Linux and real-time
applications.

Helpful Links
• Data sheets, tutorials, application notes, and silicon user guides
• Development boards and kits
• Libero SoC v12.0 and later
• Programming Solutions
• XLS-based power calculator estimators for device families
• Libero licensing
• Libero SoC PolarFire® product family
• Libero SoC PolarFire technology
• Libero SoC PolarFire documentation
• Libero SoC PolarFire software tools

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 1

https://www.microsemi.com/products/fpga-soc/fpgas
https://www.microsemi.com/products/fpga-soc/fpgas
https://www.microsemi.com/products/fpga-soc/soc-fpgas
https://www.microsemi.com/products/fpga-soc/rad-tolerant-fpgas
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/modelsim
https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
http://www.microsemi.com
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits-boards
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc
https://www.microsemi.com/product-directory/dev-tools/4970-programming
https://www.microsemi.com/products/fpga-soc/design-resources/power-calculator
https://www.microsemi.com/products/fpga-soc/design-resources/licensing
https://www.microsemi.com/product-directory/fpgas/3854-polarfire-fpgas#product-table
https://www.microsemi.com/product-directory/fpgas/3854-polarfire-fpgas#overview
https://www.microsemi.com/product-directory/fpgas/3854-polarfire-fpgas#documentation
https://www.microsemi.com/product-directory/dev-tools/5536-fpga-design-tools

Table of Contents

Introduction...1

1. Overview... 5

1.1. Libero SoC Design Flow...5
1.2. Software IDE Integration.. 7
1.3. Software Tools..8

2. Managing Licenses... 9

2.1. Microsemi License Utility..9
2.2. Selecting a Default License from a License List...10
2.3. Setting a Default License... 12
2.4. Viewing License Details... 14
2.5. Libero SoC Online Help..15
2.6. Libero SoC User Guides.. 15

3. Getting Started.. 17

3.1. Starting Libero SoC..17
3.2. Design Report.. 17
3.3. Creating a New Project.. 17
3.4. Opening a Project...24

4. Creating and Verifying Designs...26

4.1. Create SmartDesign...26
4.2. Create Core from HDL... 35
4.3. Designing with HDL..37
4.4. Designing with Block Flow..39
4.5. Viewing Configured Components and SmartDesigns in a Project... 39
4.6. Create a New SmartDesign Testbench.. 42
4.7. HDL Testbench...42
4.8. Import MSS.. 44
4.9. Verify Pre-Synthesized Design - RTL Simulation... 44

5. Libero SoC Constraint Management...50

5.1. Invocation of Constraint Manager from the Design Flow Window..50
5.2. Libero SoC Design Flow...50
5.3. Introduction to Constraint Manager..52
5.4. Import a Constraint File..55
5.5. Constraint Types.. 59
5.6. Constraint Manager – I/O Attributes Tab..60
5.7. Constraint Manager – Timing Tab.. 62
5.8. Derived Constraints..64
5.9. Constraint Manager – Floor Planner Tab... 65
5.10. Constraint Manager – Netlist Attributes Tab...66

6. Implementing Designs...68

6.1. Synthesize..68
6.2. Verifying Post-Synthesized Designs...74

 Libero® SoC v2021.1

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 2

6.3. Compile Netlist... 75
6.4. Constraint Flow in Implementation...76
6.5. Place and Route...81
6.6. Multiple Pass Layout Configuration..85
6.7. Post Layout Editing of I/O Signal Integrity and Delay Parameters...88
6.8. Resource Usage...89
6.9. Global Net Report...90
6.10. Verify Post Layout Implementation...95

7. Configure Hardware.. 113

7.1. Programming Connectivity and Interface... 113
7.2. Select and Configure Actions and Procedures...115
7.3. Programmer Settings..116
7.4. Select Programmer...118

8. Program Design.. 120

8.1. Generating FPGA Array Data...120
8.2. Initializing Design Blocks..120
8.3. Generating Initialization Clients..156
8.4. Configuring Actions and Procedures..156
8.5. Configuring I/O States During JTAG Programming..160
8.6. Configuring Programming Options...164
8.7. Configuring Security...166
8.8. Configure Permanent Locks for Production... 176
8.9. Configure Bitstream..179
8.10. Generate Bitstream.. 180
8.11. Run Programming Device Actions... 181
8.12. Program SPI Flash Image..187

9. Debug Design... 194

9.1. Generate SmartDebug FPGA Array Data.. 194
9.2. SmartDebug... 194
9.3. Identify Debug Design..195

10. Handoff Design for Production.. 196

10.1. Export Bitstream...196
10.2. Export FlashPro Express Job...213
10.3. Export Job Manager Data.. 217
10.4. Export SPI Flash Image... 218
10.5. Export Pin Report...219
10.6. Export BSDL File..220
10.7. Export IBIS Model.. 220

11. Export SmartDebug Data (Libero SoC)...223

12. References..225

12.1. Archive Project Dialog Box...225
12.2. Adding or Modifying Bus Interfaces in SmartDesign..226
12.3. Catalog...228

 Libero® SoC v2021.1

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 3

12.4. Changing Output Port Capacitance..231
12.5. Core Manager.. 232
12.6. Configure Permanent Locks for Production... 232
12.7. Importing Source Files – Copying Files Locally... 233
12.8. Create Clock Constraint Dialog Box...233
12.9. Select Source Pins for Clock Constraint Dialog Box..234
12.10. Specifying Clock Constraints... 235
12.11. Specifying Generated Clock Constraints..241
12.12. Design Hierarchy in the Design Explorer... 244
12.13. Digest File.. 250
12.14. Design Rules Check...251
12.15. Editable Constraints Grid... 252
12.16. Files Tab and File Types.. 253
12.17. Importing Files..253
12.18. Layout Error Message: layoutg4NoValidPlacement...254
12.19. Layout Error Message: layoutg4DesignHard... 255
12.20. Save Project As Dialog Box... 255
12.21. Project Settings Dialog Box..256
12.22. Global Include Files..265
12.23. Create and Configure Core Component.. 265
12.24. Search in Libero SoC...266
12.25. Organize Source Files Dialog Box – Synthesis..268
12.26. SmartDesign Testbench...269
12.27. Stimulus Hierarchy...269
12.28. Timing Exceptions Overview..270
12.29. Admin Profile Tool Dialog Box..270
12.30. Tool Profiles Dialog Box... 271
12.31. User Preferences Dialog Box – Design Flow Preferences...272
12.32. IP Report..273
12.33. Force Update Design Flow...274
12.34. Generic/Parameter Report...276

13. Revision History.. 278

The Microchip Website...279

Product Change Notification Service..279

Customer Support.. 279

Microchip Devices Code Protection Feature.. 279

Legal Notice... 280

Trademarks.. 280

Quality Management System... 281

Worldwide Sales and Service...282

 Libero® SoC v2021.1

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 4

1. Overview
The following topics provide an overview of Libero SoC.

1.1 Libero SoC Design Flow
The following figure shows the Libero SoC design flow.

Figure 1-1. Libero SoC Design Flow

1.1.1 Creating Your Design
Create your design with the following design capture tools:

• System Builder
• Create SmartDesign
• Create HDL

 Libero® SoC v2021.1
Overview

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 5

• Create SmartDesign Testbench (optional, for simulation only)
• Create HDL Testbench (optional, for simulation only)

After you create the design, invoke simulation for pre-synthesis verification.

You can also click the button to invoke the Libero SoC software through Place and Route with default settings.
However, doing so bypasses constraint management.

1.1.2 Working with Constraints
In the FPGA design world, constraint files are as important as design source files. Constraint files are used
throughout the FPGA design process to guide FPGA tools to achieve the timing and power requirements of
the design. For the synthesis step, SDC timing constraints set the performance goals whereas non-timing FDC
constraints guide the synthesis tool for optimization. For the Place-and-Route step, SDC timing constraints guide
the tool to achieve the timing requirements whereas Physical Design Constraints (PDC) guide the tool for
optimized placement and routing (Floorplanning). For Static Timing Analysis, SDC timing constraints set the timing
requirements and design-specific timing exceptions for static timing analysis.

Libero SoC provides the Constraint Manager to manage your design constraint needs. Constraint Manager is a
single centralized graphical interface that allows you to create, import, link, check, delete, edit design constraints and
associate the constraint files to design tools in the Libero SoC environment. Constraint Manager also allows you
to manage constraints for SynplifyPro synthesis, Libero SoC Place-and-Route, and the SmartTime Timing Analysis
throughout the design process.

After project creation, double-click Manage Constraints in the Design Flow window to open the Constraint
Manager.

Figure 1-2. Constraint Manager

1.1.3 Implementing Your Design
The following guides and topics provide information about implementing your design.

• Netlist Viewer (User Guide)
• 6.1 Synthesize. This procedure runs synthesis on your design with the default settings, and passes to Synplify

the constraints associated with Synthesis in the Constraint Manager.
• 6.2 Verifying Post-Synthesized Designs
• #unique_9
• 6.5 Place and Route. Place and Route takes the design constraints from the Constraint Manager and uses

default settings. This is the last step in the push-button design flow execution.
• 6.10 Verify Post Layout Implementation

 Libero® SoC v2021.1
Overview

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 6

https://coredocs.s3.amazonaws.com/Libero/12_3_0/Tool/stdalone_nlv_ug.pdf

• 6.10.1 Generate Back Annotated Files
• 6.10.2 Simulate - Opens ModelSim ME
• 6.10.3 Verify Timing
• 6.10.5 SmartTime
• 6.10.6 Verify Power
• 6.10.9 Simultaneous Switching Noise

1.1.4 Programming and Debugging Your Design
The following topics provide information about programming and debugging your design.

Generating and Updating Data
• Generate FPGA Array Data
• Update eNVM Memory Content

Configuring Your Hardware
• Programming Connectivity and Interface
• Configure Programmer
• Device I/O States During Programming - JTAG Mode Only
• Configure Programming Options
• Configure Security Policy Manager

Programming Your Design
• Generate Bitstream
• Run PROGRAM Action

Debugging Your Design
• Identify Debug Design
• SmartDebug (User Guide)
• Configure Permanent Locks for Production (Configure OTP Security)

1.1.5 Handing Off Your Design to Production
The following topics provide information about handing off your design to production.

• Export Bitstream
• Export FlashPro Express Job
• Export Job Manager Data
• Export Pin Report
• Export BSDL
• Export IBIS Model
• Handoff Design for Firmware Development
• Handoff Design for Debugging (Export SmartDebug Data)

1.2 Software IDE Integration
Libero SoC simplifies the task of transitioning between designing your FPGA to developing your embedded firmware.

Libero SoC manages the firmware for your FPGA hardware design, including:

• Firmware hardware abstraction layers required for your processor.
• Firmware drivers for the processor peripherals that you use in your FPGA design.
• Sample application projects are available for drivers that illustrate the proper usage of the APIs.

 Libero® SoC v2021.1
Overview

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 7

https://coredocs.s3.amazonaws.com/Libero/12_3_0/Tool/smartdebug_ug.pdf

To see which firmware drivers Libero SoC has found to be compatible with your design, open the Firmware View.
From this view, you can change the configuration of your firmware, change to a different version, read driver
documentation, and generate sample projects for each driver.

Libero SoC manages the integration of your firmware with your preferred Software Development Environment,
including SoftConsole, Keil, and IAR Embedded Workbench. The projects and workspace for your selected
development environment are generated automatically with the proper settings and flags so you can write your
applications immediately.

1.3 Software Tools
Libero SoC integrates design tools, streamlines design flow, manages design and log files, and passes design
data between tools. The following table identifies the tools you can use to perform Libero SoC functions.
For more information about Libero SoC tools, visit https://www.microsemi.com/products/fpga-soc/design-resources/
design-software/libero-soc#overview.

Table 1-1. Matching Functions with Tools

Function Tool Comments

Project Manager, HDL Editor, Core
Generation

Libero SoC Project Manager, HDL Editor targets
the creation of HDL code. HDL Editor
supports VHDL and Verilog with color,
highlighting keywords for both HDL
languages.

Synthesis Synplify® Pro ME SynplifyPro ME is integrated as part of
the design package, enabling designers
to target HDL code to specific devices.

Simulation ModelSim® ME Pro Allows source-level verification so
designers can verify HDL code line by
line. Designers can perform simulation at
all levels: behavioral (or pre-synthesis),
structural (or post-synthesis), and
dynamic simulation.

Timing/Constraints, Power Analysis,
Netlist Viewer, Floorplanning, Package
Editing, Place-and-Route, Debugging

Libero SoC This software package includes:
• ChipPlanner — displays I/O and

logic macros in your design for
floorplanning

• Netlist Viewer — design schematic
viewer.

• SmartPower — power analysis tool.
• SmartTime — static timing analysis

and constraints editor.

 Libero® SoC v2021.1
Overview

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 8

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview

2. Managing Licenses
This chapter describes Libero SoC licensing.

2.1 Microsemi License Utility
The Microsemi License Utility allows you to check and update your license settings for the Libero SoC software. It
displays your current license settings, the license host-id for the current host, and allows you to add a new license file
to your settings.

Starting the Microsemi License Utility
Click Start > All Programs > Microsemi Libero SoC vx.xx> Microsemi License Utility.
Note:  If you have more than one license available and have not selected a default license, the Select License dialog
box appears.

Requesting a License
To request a license, click Request License to display the Microsemi license website. Then right-click and copy the
disk volume value in the window, and paste the value into the Microsemi license web form.

The following table describes the available licenses.

Table 2-1. Available Licenses

License Description

1-year Platinum Purchased license that supports all devices.

1-year Gold Purchased license that supports a smaller set of devices
than Platinum.

1-year Silver Free license that supports a smaller set of devices than
Gold.

30-day Evaluation Free license that supports all devices, but disables
programming.

When you receive your license file, follow the instructions that come with it and save the license to your local disk. In
the Microsemi License Utility window, click Add License File. browse to the license file, and then select it. If you use
a floating license, click Add License Server and enter the port number and name of the license server host.

Although the list of features for which you are licensed shows all versions, your license must have a version equal to
or greater than your design tools release version for the libero.exe and designer.exe tools to run.

The list at the lower right shows the order in which the license files are read. The first file read appears at the top of
the list.

 Libero® SoC v2021.1
Managing Licenses

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 9

Figure 2-1. Example of Microsemi License Utility

Printing the Microsemi Licenses Report
Click Write Report File to print the Microsemi Tools Licenses Report or to save it as a .txt file.

Related Information
For more information about licensing, including links to troubleshooting and FAQ documents, see the Microsemi
Libero SoC License Information Web Page.

2.2 Selecting a Default License from a License List
If you have more than one license available and have not selected a default license, the Select License dialog box
appears when you start the Microsemi License Utility. Select the feature license you want to use from the list of
available licenses shown.

• The Quantity and Available columns show the total number of licenses and number of available licenses,
respectively.

• The License Type column shows whether an available license is a Node Locked license or a Floating or
Server-based license. Floating and Server-based Licenses can be used by multiple users, depending on the
number of seats available.

 Libero® SoC v2021.1
Managing Licenses

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 10

https://www.microsemi.com/product-directory/design-resources/1711-licensing#documents
https://www.microsemi.com/product-directory/design-resources/1711-licensing#documents

Figure 2-2. License Dialog Box

Selecting a License to Use
1. In the Select License dialog box, click Select to activate Libero using the selected license. This button is

disabled by default, and is enabled after you select a license.
2. Check the Set Selected License as Default check box to save the selected license as the default license to

be used for future sessions. Selecting this option skips the license selection step for future sessions. Use this
option if you want to use the same license features for future sessions.

– If you select a license that was acquired by another user, the following message appears:

– If you select a license for which there are no valid licenses available, the following message appears:

To close the license selection window and exit Libero, click Cancel. To view the online help topic for License
Selection, click Help.

License Expiration
If a license will expire within 15 days, a warning appears in the Comments column of the dialog box and in the Log
window (see the following examples).

 Libero® SoC v2021.1
Managing Licenses

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 11

Figure 2-3. Select License Dialog Box with License Expiration Warning Message

Figure 2-4. Log Window with License Expiration Warning Message

2.3 Setting a Default License
After you start Libero, you can select the default Libero license that will be used for future sessions. After you select a
default Libero license, you can use this same procedure to change the default license.

Click Help > Select Default License.

Figure 2-5. Selecting Help > Select Default License

When the following Select License dialog box appears, click a row, and then click Set Default License to specify the
Libero license you selected as the default and close the dialog box.

 Libero® SoC v2021.1
Managing Licenses

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 12

Figure 2-6. Select License Dialog Box

After you select a default Libero license, you can set license options in the Libero Preferences dialog box by clicking
Project > Preferences. The following Preferences dialog box appears with the options described below.

Figure 2-7. License Options in Libero Preferences Dialog Box

 Libero® SoC v2021.1
Managing Licenses

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 13

Table 2-2. Preferences Dialog Box Options

Option Description

Reset Default License Selection This option is selected when a default license is
available. When checked, the default license is cleared
and the check box is disabled.

Warn we when my Libero license is about to expire Enables or disables Notification of License expiry.
When checked, a popup message informs you about
the impending expiration when the selected license’s
expiration date is within 15 days. Use this option only
when the license’s expiration date is longer than 5 days
and shorter than 15 days.

2.4 Viewing License Details
The License Details dialog box shows detailed information about Libero SoC licenses and cores. To display this
dialog box, click Help > License Options.
Figure 2-8. Selecting Help > License Options

The License Details dialog box has two tabs:

• Tools displays tool license details.
• IP Cores displays IP Cores license details, as shown in the following example.

 Libero® SoC v2021.1
Managing Licenses

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 14

Figure 2-9. IP Cores License Details

The following table describes the elements in the dialog box.
Table 2-3. Elements in the License Details Dialog Box

Element Description

Close Closes the dialog box.

Help Displays the online help topic for License Selection.

Filter Searches for the pattern entered in the text edit box.
Filtered rows appear in the Cores table.

Lookup Path Shows the list of License hosts included in the
LM_LICENSE_FILE.

2.5 Libero SoC Online Help
The Libero SoC online help system is designed to open in the HTML Help Viewer – Microsoft's Help window for
viewing compiled HTML Help. If you do not have the HTML Help Viewer components installed on your system, you
can view the help using Microsoft Internet Explorer browser version 4.x or later.

The Libero SoC online help includes the following navigation tabs:
• Contents. The Contents tab shows books and pages that represent the categories of information in the online

help system. When you click a closed book, it opens to display its content of sub-books and pages. When you
click an open book, it closes. When you click pages, you select topics to view in the right-hand pane of the
HTML Help viewer.

• Search. The Search tab allows you to find topics that contain key words. Full-text searching searches through
every word in the online help to find matches. When the search is completed, a list of topics appears, so you can
select a topic to view.

Note:  Linux users might need to set the LINUX_HTMLREADER variable to enable an HTML viewer. For example:
setenv LINUX_HTMLREADER /usr/bin/firefox. If you do not set this variable, HTML files, such as the online
help, will not be available from within the software.

2.6 Libero SoC User Guides
Libero SoC includes online manuals that are in PDF format and are available from the Libero SoC Start menu. To
access these guides, click All Programs > Microsemi > Libero SoC > Libero SoC Reference Manuals. You must
have Adobe Acrobat Reader or similar PDF viewer to open and view the PDF user guides.

 Libero® SoC v2021.1
Managing Licenses

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 15

Note:  Linux users may need to set their LINUX_PDFREADER variable to enable a PDF viewer. For example:
setenv LINUX_PDFREADER /usr/bin/kpdf. If you do not set this variable, some PDF files will not be available
from within software.

 Libero® SoC v2021.1
Managing Licenses

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 16

3. Getting Started
The following sections describe how to start using Libero SoC.

3.1 Starting Libero SoC
When you start Libero SoC, the Welcome screen appears. In the left pane, links under Projects allow you to create a
new Libero SoC project or open an existing one.

• Clicking New starts the New Project Creation Wizard. You use this wizard to create new Libero SoC projects.
• Clicking Open opens an existing Libero SoC project.

3.2 Design Report
The Design Report tab lists the reports available for your design. Reports are added automatically as you move
through design development. For example, Timing reports are added when you run timing analysis on your design.
Reports are updated each time you run a timing analysis.

To display the Design Report tab, click Design > Reports.

If a report is not listed in the tab, you might have to create it manually. For example, you must invoke Verify Power
manually before its report is available.

The following table lists the reports you can view in the Design Report tab.
Table 3-1. Reports That Can be Viewed from the Design Report Tab

Category Report

Project Summary • Synthesize
• Place and Route
• Verify Timing
• Verify Power

Programming • Generate FPGA Array Data
• Generate Bitstream

Export • Export Pin Report
• Export BSDL File

3.3 Creating a New Project
To simplify project creation, Libero SoC provides a wizard that takes you step by step through the process of creating
a new Libero SoC project.

To start a new Libero SoC project, click Project > New. The following table summarizes the screens in the wizard.
Table 3-2. Screens in the New Project Wizard

Screen Description

Project Details Specify the name and location of your project, device
family and parts, I/O standards, and HDL source files
and design constraint files.

Device Selection Select a device for your project. After you select a
device, or in any wizard screen that follows, you can
click the Finish button to create the project and exit the
wizard.

 Libero® SoC v2021.1
Getting Started

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 17

...........continued
Screen Description

Device Settings Specify the device I/O technology and reserve pins for
probes.

Add HDL Sources Add HDL design source files to your Libero SoC project.

Add Constraints Add timing and physical constraints files to your Libero
SoC project.

3.3.1 New Project Creation Wizard – Project Details
Project Details is the first screen that appears in the New Project Creation wizard.

Figure 3-1. Libero SoC New Project Creation Wizard - Project Details

The following table describes the fields in the Project Details screen. After you complete the fields, click Next to go to
Device Selection.

Table 3-3. Fields in the Libero SoC New Project Creation Wizard - Project Details

Field Description

Project Name Identifies your project name. Do not use spaces or
reserved Verilog or VHDL keywords.

Project Location Identifies your project location on disk.

Description General information about your design and project.

Preferred HDL Type Sets your HDL type to one of the following:
• Verilog
• VHDL

Libero-generated files (SmartDesigns, SmartGen cores,
and so on) are created in the HDL type you specify.
Libero SoC supports mixed HDL designs.

Enable Block Creation Allows you to build blocks for your design. These blocks
can be assembled in other designs, with partial layout,
and been optimized for timing and power performance
for a specific Microchip device. Once optimized, you can
use the same blocks in multiple designs.

3.3.2 New Project Creation Wizard – Device Selection
The Device Selection screen is where you specify the Microchip device for your project. Use the filters and drop-
down lists to refine your search for the right part to use for your design.

 Libero® SoC v2021.1
Getting Started

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 18

This screen contains a table of all the parts, with associated FPGA resource details generated based on a value you
enter in a filter. When you select a filter value:

• The parts table is updated to reflect the result of the new filtered value.
• All other filters are updated, and only relevant items are available in the filter drop-down lists. For example, if you

select PolarFire in the Family filter, the parts table includes only PolarFire parts and the Die filter includes only
PolarFire dies in the Die drop-down list.
Figure 3-2. Libero SoC New Project Creation Wizard - Device Selection

The following table describes the fields in the Device Selection screen. After you complete the fields, click Next
to go to the Device Settings screen or click Finish to complete new project creation with all remaining defaults.

Table 3-4. Fields in the Libero SoC New Project Creation Wizard - Device Selection

Field Description

Family Specify the Microchip device family. Only devices that
belong to the family are listed in the parts table.

Die/Package/Speed Select your device die, package, and speed grade.
Use the Die/Package/Speed filters to view only the
selections that interest you. The Die/Package/Speed
grades available for selection depend on the level of
Libero SoC license you have (Evaluation, Silver, Gold,
or Platinum). For more information, see the Libero SoC
Licensing web page.

Range Defines the voltage and temperature ranges a device
might encounter in your application. Tools such as
SmartTime, SmartPower, timing-driven layout, power-
driven layout, the timing report, and back-annotated
simulation are affected by operating conditions.
Select the appropriate option for your device. Supported
operating condition ranges vary according to your device
and package. To find your recommended temperature
range, see your device datasheet.

• All – All ranges
• EXT – Extended
• IND – Industrial
• MIL (Military)

Reset Filters Reset all filters to the default ALL option except Family.

 Libero® SoC v2021.1
Getting Started

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 19

https://www.microsemi.com/products/fpga-soc/design-resources/licensing
https://www.microsemi.com/products/fpga-soc/design-resources/licensing

...........continued
Field Description

Search Parts Enter a character-by-character search for parts. Search
results appear in the parts table.

3.3.3 New Project Creation Wizard – Device Settings
For PolarFire devices, the Device Settings page is where you set the device I/O technology and reserve pins for
probes.

Figure 3-3. Libero SoC New Project Creation Wizard – Device Settings (PolarFire)

The following table describes the fields in the Device Settings screen. After you complete the fields:
• Click Next to go to the Add HDL Sources screen for PolarFire and PolarFire2 devices .

OR
• Click Finish to complete new project creation with all remaining defaults.

Table 3-5. Fields in the Libero SoC New Project Creation Wizard - Device Settings

Field Description

Core Voltage Set the core voltage for your device.

Default I/O Technology Set all your I/Os to a default value. You can change the
values for individual I/Os in the I/O Attribute Editor. The
I/O technology available is family-dependent.

Reserve Pins for Probes Reserve your pins for probing if you intend to debug
using SmartDebug.

System controller suspended mode PolarFire only. If the system controller suspended mode
is enabled, the following operations will not be available
during normal operation.

• All System controller services requested after
power-up is complete and the System controller is
suspended

• System controller-generated Tamper flags
• Device reset and zeroization Tamper responses
• SPI-Master In-Application Programming (IAP)
• SPI-Slave programming mode

 Libero® SoC v2021.1
Getting Started

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 20

3.3.4 New Project Creation Wizard – Add HDL Source Files
The Add HDL Source Files screen is where you add HDL design source files to your Libero SoC project. The HDL
source files can be imported or linked to the Libero SoC project.
Figure 3-4. Libero SoC New Project Creation Wizard - Add HDL Source Files

The following table describes the elements in the Add HDL Source Files screen. After you complete the fields, click
Next to go to the Add Constraints screen or click Finish to complete new project creation with all remaining defaults.
Table 3-6. Elements in the Libero SoC New Project Creation Wizard - Add HDL Source Files

Element Description

Import File button Imports an HDL source file. When the dialog box
appears, go to the location where the HDL source
resides, select the HDL file, and click Open. The HDL
file is copied to the <prj_folder>/hdl folder in your
Libero project.

Link File button Allows you to continue with an absolute or relative path
for linked files. When the Link files dialog box appears
(see the figure below), go to the location where the HDL
source resides, select the HDL file, and click Open.

Create links relative to the path set in Environment
variable

The HDL file is linked to the Libero project. Check
this check box if the HDL source file is located
and maintained outside the Libero project. This option
requires you to specify an environment variable that has
a relative path set to it. Links are created relative to the
path set in the environment variable.

Note:  If you select relative path and provide an
environment variable for the relative path, you cannot
switch to absolute path. After the environment variable is
set, this option becomes read-only in all other link files
dialog boxes.

Delete button Deletes the selected HDL source file from your project. If
the HDL source file is linked to the Libero project, the link
will be removed.

 Libero® SoC v2021.1
Getting Started

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 21

Figure 3-5. New Project Creation Wizard – Link Files Dialog Box

3.3.5 New Project Creation Wizard - Add Constraints
The Add Constraints screen is where you add timing constraints and physical constraints files to your Libero SoC
project. The constraints file can be imported or linked to the Libero SoC project.
Figure 3-6. Libero SoC New Project Creation Wizard – Add Constraints

The following table describes the elements in the Add Constraints screen.

 Libero® SoC v2021.1
Getting Started

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 22

Table 3-7. Elements in the Libero SoC New Project Creation Wizard - Add Constraints

Element Description

Import File button Go to the location where the constraints file resides.
Select the constraints file and click Open. The
constraints file is copied to the <prj_folder>/
constraint folder in your Libero project.

Link File button Click this button if the constraint file is located and
maintained outside the Libero project. When the Link
files dialog box appears (see the figure below), specify
an absolute path or choose a relative path for linked
files. Go to the location where the constraints file
resides. Select the constraints file and click Open. The
constraints file is linked to the Libero project.

Create links relative to the path set in Environment
variable

The constraints file is linked to the Libero project.
Check this check box if the constraints file is located
and maintained outside the Libero project. This option
requires you to specify an environment variable that has
a relative path set to it. Links are created relative to the
path set in the environment variable.

Note:  If you select relative path and provide an
environment variable for the relative path, you cannot
switch to absolute path. After the environment variable is
set, this option becomes read-only in all other link files
dialog boxes.

Delete button Deletes the selected constraints file from your project. If
the constraints file is linked to the Libero project, the link
will be removed.

Figure 3-7. New Project Creation Wizard – Link Files Dialog Boxj

After you complete the fields, click Finish to complete new project creation. The Reports tab shows the result of your
new project.

 Libero® SoC v2021.1
Getting Started

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 23

Figure 3-8. Reports Tab

3.4 Opening a Project
To open a project:

1. From the File menu, choose Open Project.
2. Select the project file you want to open. The file ends in the extension .prjx.
3. Click Open.

Note:  Opening a project created using a relative path for linked files displays the following error message if the
environment variable does not exist or the path set in the environment variable is empty and cancels opening the
project.

Figure 3-9. Error Message, g g pp

rror messageWhen you open an existing Libero SoC project:
• A Design Flow window appears on the left side.
• A log and message window appear at the bottom.
• Project information windows appear on the right side.

The following figure is an example of a newly created project, with only the top-level Design Flow window steps
shown.

 Libero® SoC v2021.1
Getting Started

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 24

Figure 3-10. Sample Design Flow Window

The Design Flow window may be slightly different for each technology family. However, all flows include some version
of the following design steps:

• Create Design
• Constraints
• Implement Design
• Configure Hardware
• Program Design
• Debug Design
• Handoff Design for Production
• Handoff Design for Debugging

 Libero® SoC v2021.1
Getting Started

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 25

4. Creating and Verifying Designs
Create your design with the following design capture tools:

• Create SmartDesign
• Create HDL
• Create SmartDesign Testbench (optional, for simulation only)
• Create HDL Testbench (optional, for simulation only)
• Verify Pre-synthesized Design

4.1 Create SmartDesign
SmartDesign is a visual block-based design creation and entry tool for instantiating, configuring, and connecting
Microchip IPs, user-generated IPs, and custom/glue-logic HDL modules. This tool provides a canvas for instantiating
and stitching together design objects. The final result from SmartDesign is a design-rule-checked and automatically
abstracted synthesis-ready HDL file. A generated SmartDesign can be the entire FPGA design or a component
subsystem to be re-used in a larger design.

The following design objects can be instantiated in the SmartDesign Canvas:

• Microchip IP Cores
• User-generated or third-party IP Cores
• HDL design files
• HDL + design files
• Basic macros
• Other SmartDesign components (*.cxf files. These files can be generated from SmartDesign in the current

Libero SoC project, or they can be imported from other Libero SoC projects.
• Re-usable design blocks (*.cxz files) published from Libero SoC. For more information, see the SmartDesign

User Guide.

4.1.1 Create New SmartDesign
This SmartDesign component may be the top level of the design, or it can be used as a lower level SmartDesign
component after successful generation in another design.

1. From the File menu, choose New > SmartDesign in the Design Flow window or double-click Create
SmartDesign. The Create New SmartDesign dialog box appears.
Figure 4-1. Create New SmartDesign Dialog Box

2. Enter a name and click OK. The component appears in the Design Hierarchy tab of the Design Explorer.

Note:  The component name you choose must be unique in your project. For more information, see the SmartDesign
User Guide.

4.1.2 Export Component Description (Tcl)
Using the Export Component Description option, you can export components such as SmartDesign components,
configured cores, and HDL+ cores separately as Tcl.

To export a SmartDesign component:

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 26

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf

1. Right-click the component and choose Export Component Description (Tcl).

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 27

Figure 4-2. Export as TCL Option for SmartDesign Component

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 28

Figure 4-3. Export Script Dialog Box

2. Click the Browse button to specify the location where you want to export the Tcl file, and then click OK.

4.1.3 Examples
The following is an example of an exported Tcl script for a SmartDesign Component (PCIe_TL_CLK).
Creating SmartDesign PCIe_TL_CLK set sd_name {PCIe_TL_CLK}
create_smartdesign -sd_name ${sd_name}
Disable auto promotion of pins of type 'pad' auto_promote_pad_pins -promote_all 0
Create top level Ports
sd_create_scalar_port -sd_name ${sd_name} -port_name {CLK_125MHz} -port_direction {IN}
sd_create_scalar_port -sd_name ${sd_name} -port_name {TL_CLK} -port_direction {OUT}
sd_create_scalar_port -sd_name ${sd_name} -port_name {DEVICE_INIT_DONE} -port_direction
{OUT}
Add CLK_DIV2_0 instance
sd_instantiate_component -sd_name ${sd_name} -component_name {CLK_DIV2} -instance_name
{CLK_DIV2_0}
Add NGMUX_0 instance
sd_instantiate_component -sd_name ${sd_name} -component_name {NGMUX} -instance_name
{NGMUX_0}
Add OSC_160MHz_0 instance
sd_instantiate_component -sd_name ${sd_name} -component_name {OSC_160MHz} -instance_name
{OSC_160MHz_0}
Add PCIe_INIT_MONITOR_0 instance
sd_instantiate_component -sd_name ${sd_name} -component_name {PCIe_INIT_MONITOR} -
instance_name {PCIe_INIT_MONITOR_0}
sd_mark_pins_unused -sd_name ${sd_name} -pin_names {PCIe_INIT_MONITOR_0:FABRIC_POR_N}
sd_mark_pins_unused -sd_name ${sd_name} -pin_names {PCIe_INIT_MONITOR_0:USRAM_INIT_DONE}
sd_mark_pins_unused -sd_name ${sd_name} -pin_names {PCIe_INIT_MONITOR_0:SRAM_INIT_DONE}
sd_mark_pins_unused -sd_name ${sd_name} -pin_names {PCIe_INIT_MONITOR_0:XCVR_INIT_DONE}
sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:USRAM_INIT_FROM_SNVM_DONE}
sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:USRAM_INIT_FROM_UPROM_DONE}
sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:USRAM_INIT_FROM_SPI_DONE}
sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:SRAM_INIT_FROM_SNVM_DONE}
sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:SRAM_INIT_FROM_UPROM_DONE}
sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:SRAM_INIT_FROM_SPI_DONE}
sd_mark_pins_unused -sd_name ${sd_name} -pin_names {PCIe_INIT_MONITOR_0:AUTOCALIB_DONE}
Add scalar net connections
sd_connect_pins -sd_name ${sd_name} -pin_names {"NGMUX_0:CLK1" "CLK_125MHz" } sd_connect_pins
-sd_name ${sd_name} -pin_names {"CLK_DIV2_0:CLK_OUT" "NGMUX_0:CLK0" }
sd_connect_pins -sd_name ${sd_name} -pin_names {"PCIe_INIT_MONITOR_0:DEVICE_INIT_DONE"
"DEVICE_INIT_DONE" }
sd_connect_pins -sd_name ${sd_name} -pin_names {"CLK_DIV2_0:CLK_IN"
"OSC_160MHz_0:RCOSC_160MHZ_CLK_DIV" }
sd_connect_pins -sd_name ${sd_name} -pin_names {"NGMUX_0:SEL"
"PCIe_INIT_MONITOR_0:PCIE_INIT_DONE" }
sd_connect_pins -sd_name ${sd_name} -pin_names {"NGMUX_0:CLK_OUT" "TL_CLK" }
Re-enable auto promotion of pins of type 'pad'
auto_promote_pad_pins -promote_all 1
Save the smartDesign save_smartdesign -sd_name ${sd_name}
Generate SmartDesign PCIe_TL_CLK
generate_component -component_name ${sd_name}

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 29

The following is an example of an exported Tcl script for a System Builder Core (PF_DDR3_SS).
Exporting core PF_DDR3_SS to TCL
Create design TCL command for core PF_DDR3_SS
create_and_configure_core -core_vlnv {Actel:SystemBuilder:PF_DDR3:2.3.120} - component_name
{PF_DDR3_SS} -params {\
"ADDRESS_MIRROR:false" \
"ADDRESS_ORDERING:CHIP_ROW_BANK_COL" \
"AUTO_SELF_REFRESH:1" \
"AXI_ID_WIDTH:6" \
"AXI_WIDTH:64" \
"BANKSTATMODULES:4" \
"BANK_ADDR_WIDTH:3" \
"BURST_LENGTH:0" \
"CAS_ADDITIVE_LATENCY:0" \
"CAS_LATENCY:9" \
"CAS_WRITE_LATENCY:7" \
"CCC_PLL_CLOCK_MULTIPLIER:6" \
"CLOCK_DDR:666.666" \
"CLOCK_PLL_REFERENCE:111.111" \
"CLOCK_RATE:4" \
"CLOCK_USER:166.6665" \
"COL_ADDR_WIDTH:11" \
"DLL_ENABLE:1" \
"DM_MODE:DM" \
"DQ_DQS_GROUP_SIZE:8" \
"ENABLE_ECC:0" \
"ENABLE_INIT_INTERFACE:false" \
"ENABLE_LOOKAHEAD_PRECHARGE_ACTIVATE:false" \
"ENABLE_PAR_ALERT:false" \
"ENABLE_REINIT:false" \
"ENABLE_TAG_IF:false" \
"ENABLE_USER_ZQCALIB:false" \
"EXPOSE_TRAINING_DEBUG_IF:false" \
"FABRIC_INTERFACE:AXI4" \
"FAMILY:26" \
"MEMCTRLR_INST_NO:1" \
"MEMORY_FORMAT:COMPONENT" \
"MINIMUM_READ_IDLE:1" \
"ODT_ENABLE_RD_RNK0_ODT0:false" \
"ODT_ENABLE_RD_RNK0_ODT1:false" \
"ODT_ENABLE_RD_RNK1_ODT0:false" \
"ODT_ENABLE_RD_RNK1_ODT1:false" \
"ODT_ENABLE_WR_RNK0_ODT0:true" \
"ODT_ENABLE_WR_RNK0_ODT1:false" \
"ODT_ENABLE_WR_RNK1_ODT0:false" \
"ODT_ENABLE_WR_RNK1_ODT1:true" \
"ODT_RD_OFF_SHIFT:0" \
"ODT_RD_ON_SHIFT:0" \
"ODT_WR_OFF_SHIFT:0" \
"ODT_WR_ON_SHIFT:0" \
"OUTPUT_DRIVE_STRENGTH:RZQ6" \
"PARAM_IS_FALSE:false" \
"PARTIAL_ARRAY_SELF_REFRESH:FULL" \
"PHYONLY:false" \
"PIPELINE:false" \
"QOFF:0" \
"QUEUE_DEPTH:3" \
"RDIMM_LAT:0" \
"READ_BURST_TYPE:SEQUENTIAL" \
"ROW_ADDR_WIDTH:16" \
"RTT_NOM:DISABLED" \
"RTT_WR:OFF" \
"SDRAM_NB_RANKS:1" \
"SDRAM_NUM_CLK_OUTS:1" \
"SDRAM_TYPE:DDR3" \
"SELF_REFRESH_TEMPERATURE:NORMAL" \
"SHIELD_ENABLED:true" \
"SIMULATION_MODE:FAST" \
"TDQS_ENABLE:DISABLE" \
"TGIGEN_ADD_PRESET_WIDGET:true" \
"TIMING_DH:150" \
"TIMING_DQSCK:400" \
"TIMING_DQSQ:200" \
"TIMING_DQSS:0.25" \
"TIMING_DS:75" \

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 30

"TIMING_DSH:0.2" \
"TIMING_DSS:0.2" \
"TIMING_FAW:30" \
"TIMING_IH:275" \
"TIMING_INIT:200" \
"TIMING_IS:200" \
"TIMING_MODE:0" \
"TIMING_MRD:4" \
"TIMING_QH:0.38" \
"TIMING_QSH:0.38" \
"TIMING_RAS:36" \
"TIMING_RC:49.5" \
"TIMING_RCD:13.5" \
"TIMING_REFI:7.8" \
"TIMING_RFC:350" \
"TIMING_RP:13.5" \
"TIMING_RRD:7.5" \
"TIMING_RTP:7.5" \
"TIMING_WR:15" \
"TIMING_WTR:5" \
"TURNAROUND_RTR_DIFFRANK:1" \
"TURNAROUND_RTW_DIFFRANK:1" \
"TURNAROUND_WTR_DIFFRANK:1" \
"TURNAROUND_WTW_DIFFRANK:0" \
"USER_POWER_DOWN:false" \
"USER_SELF_REFRESH:false" \
"WIDTH:16" \
"WRITE_LEVELING:ENABLE" \
"WRITE_RECOVERY:5" \
"ZQ_CALIB_PERIOD:200" \
"ZQ_CALIB_TYPE:0" \
"ZQ_CALIB_TYPE_TEMP:0" \
"ZQ_CAL_INIT_TIME:512" \
"ZQ_CAL_L_TIME:256" \
"ZQ_CAL_S_TIME:64" } -inhibit_configurator 0
Exporting core PF_DDR3_SS to TCL done

The following is an example of an exported Tcl script for a HDL+ core.
Exporting core pattern_gen_checker to TCL
Exporting Create HDL core command for module pattern_gen_checker create_hdl_core -file
{X:/10_docs_review/12.0_Release/pcie_demo_tcl_example/DG0756_PF_PCIe_EP/new/project/hdl/
PATTERN_GEN_CHECKER.v} -module {pattern_gen_checker} -library {work} -package {}
Exporting BIF information of HDL core command for module pattern_gen_checker

The following is an example of an exported Tcl script for a SgCore (PF_TX_PLL).
Exporting core PCIe_TX_PLL to TCL
Exporting Create design command for core PCIe_TX_PLL
create_and_configure_core -core_vlnv {Actel:SgCore:PF_TX_PLL:1.0.115} -component_name
{PCIe_TX_PLL} -params {\
"CORE:PF_TX_PLL" \
"FAMILY:26" \
"INIT:0x0" \
"PARAM_IS_FALSE:false" \
"SD_EXPORT_HIDDEN_PORTS:false" \
"TxPLL_AUX_LOW_SEL:true" \
"TxPLL_AUX_OUT:125" \
"TxPLL_CLK_125_EN:true" \
"TxPLL_DYNAMIC_RECONFIG_INTERFACE_EN:false" \
"TxPLL_EXT_WAVE_SEL:0" \
"TxPLL_FAB_LOCK_EN:false" \
"TxPLL_FAB_REF:200" \
"TxPLL_JITTER_MODE_SEL:10G SyncE 32Bit" \
"TxPLL_MODE:NORMAL" \
"TxPLL_OUT:2500.000" \
"TxPLL_REF:100" \
"TxPLL_SOURCE:DEDICATED" \
"TxPLL_SSM_DEPTH:0" \
"TxPLL_SSM_DIVVAL:1" \
"TxPLL_SSM_DOWN_SPREAD:false" \
"TxPLL_SSM_FREQ:64" \
"TxPLL_SSM_RAND_PATTERN:0" \
"VCOFREQUENCY:1600" } -inhibit_configurator 1
Exporting core PCIe_TX_PLL to TCL done

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 31

4.1.4 Hierarchical Export Component Description (Tcl)
This option exports the complete design and its subcomponents to Tcl. When this option is executed on a
SmartDesign, it iterates through all the instances and collects information about the pins, groups, and nets in
the SmartDesign. All the TCL scripts generated are exported to a folder you select when the Hierarchical Export
Component Description (Tcl) option executes.
Figure 4-4. Export Script for Hierarchical Export Description (Tcl)

This exported folder consists of the following files and subfolders:
Table 4-1. Subfolders in the Exported File

Subfolders Description

HDL Contains all of the imported HDL source files.

Stimulus Contains all of the imported HDL stimulus files.

Components Contains all of the Tcl files of the components used in the
SmartDesign.

Table 4-2. Files in the Exported File

Files Description

hdl_source.tcl Contains the tcl for imported and linked files.

<component>_recursive.tcl Top-level tcl used to recreate the design.

Un_Supported_Cores_List.txt Contains all the cores for which the export function
cannot be performed.

To run this option, right-click the desired component for which the information must be exported in Tcl in the Design/
Stimulus Hierarchy, and then choose Hierarchical Export Component Description (Tcl).

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 32

Figure 4-5. Hierarchical Export Component Description (Tcl) Option

Figure 4-6. Hierarchical Export Component Description (Tcl) Option After Right-clicking a Component

The following figure shows an example of files that have been generated in the Exported folder.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 33

Figure 4-7. Files and Subfolders Generated in the Exported Folder

Limitations
Hierarchical Export Component Description (Tcl) support is not available for blocks.

Messages
The following table lists the messages that the tool generates in the log window.

Table 4-3. Tool-generated Messages

Message Description

Error: Please check the permission of the specified
folder.

The folder you specified is not writable.

Error: Unable to Export Component ‘top’ to path The export operation was not successful.

Info: Component ‘top’ exported successfully to path The export operation was successful.

4.1.5 Generating a SmartDesign Component
Before your SmartDesign component can be used by downstream processes, such as synthesis and simulation, you
must generate it.

Click the Generate () button to generate a SmartDesign component. An HDL file is generated in the directory
<libero_project>/components/<library>/<yourdesign>.

Note:  The generated HDL file will be deleted when your SmartDesign design is modified and saved to ensure
synchronization between your SmartDesign component and its generated HDL file.

Generating a SmartDesign component may fail if there are any design rule checking (DRC) errors. DRC errors must
be corrected before you generate your SmartDesign design.

If the ports of a sub-design change, the parent SmartDesign component is annotated with the icon in the Design
Hierarchy tab of the Design Explorer.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 34

Generate Recursively vs. Non-Recursively
You can generate a SmartDesign component recursively or nonrecursively. These options are set in the Project
Preference Dialog Box - Design Flow Preferences section.
Table 4-4. Design Flow Preferences Options

Option Description

Recursive generation Clicking the Generate button generates all sub-design
SmartDesigns, depth first. The parent SmartDesign
is generated only if all the sub-designs generate
successfully.

Non-Recursive generation Clicking the Generate button generates the specified
SmartDesign only. The generation can be marked as
successful even if a sub-design is “ungenerated” (either
never attempted or unsuccessful). An ungenerated

component is annotated with the icon in the Design
Hierarchy tab of the Design Explorer.

4.2 Create Core from HDL
You can instantiate any HDL module and connect it to other blocks inside SmartDesign. However, there are situations
where you may want to extend your HDL module with more information before using it inside SmartDesign.

• If you have an HDL module that contains configurable parameters or generics.
• If your HDL module is intended to connect to a processor subsystem and has implemented the appropriate bus

protocol, then you can add a bus interface to your HDL module so that it can easily connect to the bus inside of
SmartDesign.

4.2.1 Creating a Core from Your HDL
To create a core from your HDL:

1. Import or create a new HDL source file; the HDL file appears in the Design Hierarchy.
2. Select the HDL file in the Design Hierarchy and click the HDL+ icon.

OR

Right-click the HDL file and choose Create Core from HDL.

The Edit Core Definition – Ports and Parameters dialog box shows the ports and parameters that were
extracted from your HDL module.

3. Remove parameters that are not intended to be configurable by selecting them from the list and clicking the
X icon. Remove parameters that are used for internal variables, such as state machine enumerations. If you
removed a parameter by accident, click Re-extract ports and parameters from HDL file to reset the list so it
matches your HDL module.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 35

Figure 4-8. Edit Core Definition - Ports and Parameters Dialog Box

4. (Optional) To add bus interfaces to your core, click Add/Edit Bus Interfaces.
5. After you specify the information, your HDL turns into an HDL+ icon in the Design Hierarchy. Click and drag

your HDL+ module from the Design Hierarchy to the Canvas.
6. If you added bus interfaces to your HDL+ core, it appears in your SmartDesign, with a bus interface pin you

can used to connect to the appropriate bus IP core.
7. If your HDL+ has configurable parameters, double-clicking the object on the Canvas (or right-clicking and

choosing Configure) displays a configuration dialog box that allows you to set these values. On generation,
the specific configuration values per instance are written to the SmartDesign netlist.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 36

Figure 4-9. HDL+ Instance and Configuration Dialog Box

8. To open the HDL file inside the text editor, right-click the instance and choose Modify HDL.

4.2.2 Editing Core Definitions
After you create a core definition, you can edit it by selecting your HDL+ module in the Design Hierarchy and clicking
the HDL+ icon.

4.2.3 Removing Core Definitions
If you do not want the extended information on your HDL module, you can revert it to a regular HDL module.

1. Right-click the HDL+ in the Design Hierarchy and choose Remove Core Definition.
2. After removing your definition, update the instances in your SmartDesign that referenced the core you

removed by right-clicking the instance and choosing Replace Component for Instance.

4.3 Designing with HDL
This section describes how to use HDL to implement designs using the HDL Editor.

4.3.1 Create HDL
Create HDL opens the HDL editor with a new VHDL or Verilog file. Your new HDL file is saved to your /hdl directory
and all modules created in the file appear in the Design Hierarchy.

You can use VHDL and Verilog to implement your design.

To create an HDL file:

1. In the Design Flow window, double-click Create HDL. The Create new HDL file dialog box opens.
2. Select your HDL Type. Choose whether to Initialize file with standard template to populate your file with

default headers and footers. The HDL Editor workspace opens.
3. Enter a name. Do not enter a file extension because Libero SoC adds one for you. The filename must follow

Verilog or VHDL file naming conventions.
4. Click OK.
5. After creating your HDL file, click the Save button to save your file to the project.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 37

4.3.2 Using the HDL Editor
The HDL Editor is a text editor for editing HDL source files. In addition to regular editing features, the editor provides
keyword highlighting, line numbering, and a syntax checker.

You can have multiple files open at one time in the HDL Editor workspace. Click the tabs to move between files.

To start the editor:

1. Right-click inside the HDL Editor to show the Edit menu items. Available editing functions include the
following. These functions are also available in the toolbar.

• Cut, copy, and paste
• Go to line
• Comment and Uncomment Selection
• Check HDL File
• Word Wrap mode (disabled by default)
• Font size changes. To increase or decrease the font size of text in the editor, right-click in the editor and

choose Increase Font or Decrease Font.
2. Save your file to add it to your Libero SoC project by selecting Save from the File menu.

OR

Clicking the Save icon in the toolbar.
3. To print your project, select Print from the File menu or the toolbar.

Note:  To avoid conflicts between changes made in your HDL files, use one editor for all of your HDL edits.

4.3.3 HDL Syntax Checker
The HDL syntax checker parses through HDL files to identify typographical mistakes and syntactical errors.

To run the syntax checker:

1. From the Files list, double-click the HDL file to open it.
2. Right-click in the body of the HDL editor and choose Check HDL File. The syntax checker parses the selected

HDL file and looks for typographical mistakes and syntactical errors. Warning and error messages for the HDL
file appear in the Libero SoC Log window.

4.3.4 Commenting Text
You can comment text as you type in the HDL Editor, or you can comment out blocks of text by selecting a group of
text and applying the Comment command.

To comment or uncomment out text:

1. Type your text.
2. Select the text.
3. Right-click inside the editor and choose Comment Selection or Uncomment Selection.

4.3.5 Find
You can search for a whole or partial word, with or without matching the case.

To find an entire or partial word:

1. From the File menu, choose Find. The Find dialog box appears below the Log/Message window.
2. Enter the text you want to find.
3. Use the options to match case, whole word, and/or regular expression.

Note:  The editor also supports a Find to Replace function.

4.3.6 Editing Columns
To select a column of text to edit, select the column, and then press ALT+click.

4.3.7 Importing HDL Source Files
To import an HDL source file:

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 38

1. In the Design Flow window, right-click Create HDL and choose Import Files. The Import Files window
appears.

2. Go to the location where the HDL file is located.
3. Select the file to import and click Open.

Note:  You can import SystemVerilog (*.sv), Verilog (*.v), and VHDL (*.vhd/*.vhdl) files.

4.3.8 Mixed HDL Support in Libero SoC
To use mixed HDL in the Libero SoC, you require:

• ModelSim ME Pro
• SynplifyPro to synthesize a mixed HDL design

When you create a project, you select a preferred language. The HDL files generated in the flow are created in the
preferred language. If your preferred language is Verilog, the post-synthesis and post-layout netlists are in Verilog
2001.

The language used for simulation is the same language as the last compiled test bench. For example, if tb_top is in
Verilog, <fam>.v is compiled.

4.4 Designing with Block Flow
For information about designing with Block Flow, see Designing with Blocks for Libero SoC Enhanced Constraint
Flow.

4.5 Viewing Configured Components and SmartDesigns in a Project
Libero SoC supports the Components view that lists all the configured components and SmartDesigns in a project.

To open the view, click View > Windows > Components. Follow the same procedure to close the Components view.

Figure 4-10. Opening the Components View

When you open the Components view, it appears as a tab in the left-side area of the Libero SoC and lists all
configured components and SmartDesigns in the project. If you open the Components view when a project is not
open, the tab is displayed as blank.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 39

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_block_flow_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_block_flow_ug.pdf

Figure 4-11. Example of the Components View

Right-clicking a component in the Components view tab displays a menu that is similar to the one that appears when
you right-click entries in the Components section of the Design Hierarchy.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 40

Figure 4-12. Right-Click Menu in Components View

HDL source files present at various levels in <project>/Component/work/<core_name>/ appear under HDL
Source Files.
Figure 4-13. Example of HDL Source Files

The Vendor, Library, CoreName, and Version columns show the appropriate information.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 41

The timestamp shown for Generation appears in the Date Generated column and gets updated when the
component gets regenerated.

4.6 Create a New SmartDesign Testbench
The SmartDesign Testbench component can be the top level of the design or, following a successful generation, it
can be used as a lower level SmartDesign Testbench component in another design.

1. From the File menu, choose New > SmartDesign Testbench.
OR

In the Design Flow window, double-click Create SmartDesign Testbench.

The Create New SmartDesign Testbench dialog box appears.
Figure 4-14. Create New SmartDesign Testbench

2. Enter a name.
Note:  The component name must be unique in your project.

3. To make this SmartDesign Testbench your active stimulus, check Set as Active Stimulus.
4. Click OK. The component appears in the Stimulus Hierarchy tab of the Design Explorer.

For more information, see the SmartDesign User Guide.

4.7 HDL Testbench
To create an HDL testbench, right-click a SmartDesign in the Design Hierarchy and choose Create Testbench >
HDL. The HDL testbench instantiates the selected SmartDesign into the component automatically.

To create a new testbench file, double-click Create HDL Testbench to display the Create New HDL Testbench dialog
box. This dialog box allows you to create a new testbench file, with the option to include standard testbench content
and your design data.

4.7.1 HDL Type
Set HDL Type to Verilog or VHDL for the testbench.

4.7.2 Name
Specify a testbench file name. A *.v or a *.vhd file is created and opened in the HDL Editor.

4.7.3 Clock Period (ns)
Enter a clock period in nanoseconds (ns) for the clock to drive the simulation. The default value is 100 ns (10 MHz).
Libero creates in the testbench a SYSCLK signal with the specified frequency to drive the simulation.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 42

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf

Table 4-5. Clock Period Options

Option Description

Set as Active Stimulus Sets the HDL Testbench as the stimulus file to use
for simulations. The active stimulus file/testbench is
included in the run.do file that Libero generates to
drive the simulation. Setting one testbench as the
Active Stimulus is necessary when there are multiple
testbenches in the stimulus hierarchy.

Initialize with Standard Template Adds boilerplate for a minimal standard test module. This
test module does not include an instantiation of the root
module under test.

Instantiate Root Design Creates a test module that includes an instance of the
root module under test, and clocking logic in the test
module that drives the base clock of the root module
under test.

Figure 4-15. Create New HDL Testbench File Dialog Box

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 43

Figure 4-16. HDL Testbench Example - VHDL, Standard Template, and Root Design Enabled

4.8 Import MSS
If you use a device from the PolarFire SoC family, a new tool Import MSS is added under Create Design in the
design flow process. When you run this tool, an Import MSS Component dialog box allows you to select the MSS
Component (*.cxz) files. After the selected *.cxz module file is imported, it appears in the Design Hierarchy
window preceded by a new icon, as shown in the following figure.
Figure 4-17. MSS Component File in Design Hierarchy Window

4.9 Verify Pre-Synthesized Design - RTL Simulation
To perform pre-synthesis simulation, either:

• Double-click Simulate under Verify Pre-Synthesized Design in the Design Flow window.
OR

• In the Stimulus Hierarchy, right-click the testbench and choose Simulate Pre-Synth Design > Run

The default tool for RTL simulation in Libero SoC PolarFire is ModelSim™ ME Pro.

ModelSim ME Pro is a custom edition of ModelSim PE that is integrated into Libero SoC's design environment.
ModelSim for Microchip is an OEM edition of Mentor Graphics ModelSim tools. ModelSim ME Pro supports mixed
VHDL, Verilog, and SystemVerilog simulation. It works only with Microchip simulation libraries and is supported by
Microchip.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 44

Libero SoC supports other editions of ModelSim. To use other ModelSim editions, do not install ModelSim ME from
the Libero SoC media.

Note:  ModelSim for Microchip includes online help and documentation. After starting ModelSim, click the Help
menu to display the help.

For more information about simulations in Libero SoC, see the following topics:

• Simulation Options
• Selecting a Stimulus File for Simulation
• Selecting additional modules for simulation
• Performing Functional Simulation

4.9.1 Project Settings: Simulation - Options and Libraries
The Project Settings dialog box allows you to change how Libero SoC handles Do files in simulation and imports
your DO files. You can also set simulation run time, change the DUT name used in your simulation, and change your
library mapping.

To access the Project Settings dialog box:

1. From the Project menu, choose Project Settings.
2. In the left pane, click Simulation options or Simulation libraries to expand the options.
3. For Simulation options, click the option you want to edit:

– DO file
– Waveforms
– Vsim commands
– Timescale

4. For Simulation libraries, click the library whose path you want to change.

Figure 4-18. Project Settings: DO File

4.9.2 DO file
Table 4-6. DO File Options

Option Description

Use automatic DO file Allows Project Manager to create a DO file automatically
that will allow you to simulate your design.

Simulation Run Time Specifies how long the simulation should run. If the value
is 0 or if the field is empty, the run command is omitted
from the run.do file.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 45

...........continued
Option Description

Testbench module name Specifies the name of your testbench entity name.
Default is testbench, which is the value that
WaveFormer Pro uses.

Top Level instance name Default is <top_0>, the value that WaveFormer Pro
uses. Project Manager replaces <top> with the top-level
macro when you run simulation (presynth/postsynth/
postlayout).

Generate VCD file Clicking the check box generates a VCD file.

VCD file name Specifies the name of your generated VCD file. The
default is power.vcd. To change the name, click
power.vcd and enter the new name.

User defined DO file Enter the DO file name or click the Browse button to go
to the file.

DO command parameters Text in this field is added to the DO command.

4.9.3 Waveforms
Table 4-7. Waveforms Options

Option Description

Include DO file Including a DO file allows you to customize the set of
signal waveforms displayed in ModelSim.

Display waveforms for You can display signal waveforms for the top-level
testbench or for the design under test.

• top-level testbench = Project Manager outputs
the line addwave/testbench/* in the DO file
run.do.

• DUT = Project Manager outputs the line add
wave/testbench/DUT/* in the run.do file.

Log all signals in the design Saves and logs all signals during simulation.

4.9.4 Vsim Commands
Table 4-8. Vsim Command Options

Option Description

Resolution The default is 1ps. Some custom simulation resolutions might not work with
your simulation library. Consult your simulation help for information about
how to work with your simulation library and detect infinite zero-delay loops
caused by high resolution values.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 46

...........continued
Option Description

Additional options Text entered in this field is added to the vsim command.
• SRAM ECC Simulation = two options can be added to specify the

simulated error and correction probabilities of all ECC SRAMs in the
design:

– -gERROR_PROBABILITY=<value>, where 0 <= value <= 1
– -gCORRECTION_PROBABILITY=<value>, where 0 <= value <=

1
• During Simulation, the SB_CORRECT and DB_DETECT flags on each

SRAM block are raised based on generated random numbers that fall
below the specified <value>s.

When you run the Post-Layout Simulation Tool, a run.do file is created,
which consists of information that must be sent to a simulator. To run a
simulation on a corner, select an SDF corner along with the type of delay
needed from one of the options in SDF timing delays section.

• SDF Corners:
– Slow Process, Low Voltage and High Temperature
– Slow Process, Low Voltage and Low Temperature
– Fast Process, High Voltage and Low Temperature

• SDF Timing Delays
– Minimum
– Typical
– Maximum

• Disable pulse filtering during SDF based simulations: This option
disables pulse filtering during SDF simulations.

• After you select the corner, appropriate files for simulation are written in
the run.do file, as shown in the following figure.

Figure 4-19. Files Written to the run.do File

vlog -sv-work postlayout “$(PROJECT_DIR)/designer/sd1/sd1_fast_hv_lt_ba.v”
vsim -L PolarFire -L postlayout -t 1ps -sdfmax
/sd1=$(PROJECT_DIR)/designer/sd1/sd1_fast_hv_lt_ba.sdf +pulse_int_e/1
+pulse_int_r/1 +transport _int_delays postlayout.sd1

4.9.5 Timescale
Table 4-9. Timescale Options

Option Description

TimeUnit Time base for each unit. Enter a value and select s, ms,
us, ns, ps, or fs from the drop-down list. The default
setting is ns.

Precision Enter a value and select s, ms, us, ns, ps, or fs from the
drop-down list. The default setting isps.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 47

4.9.6 Simulation Libraries
Table 4-10. Simulation Libraries Options

Option Description

Restore Defaults Sets the library path to default from your Libero SoC
installation.

Library path Allows you to change the mapping for your Verilog and
VHDL simulation libraries. Enter the pathname or click
the Browse button to go to your library directory.

4.9.7 Selecting a Stimulus File for Simulation
Before running simulation, associate a testbench. If you try to run simulation without an associated testbench, the
Libero SoC Project Manager prompts you to associate a testbench or open ModelSim without a testbench.

To associate a stimulus:

1. Run the simulation.
OR

In the Design Flow window, under Verify Pre-Synthesized Design, right-click Simulate and choose Organize
Input Files > Organize Stimulus Files.

The Organize Stimulus Files dialog box appears.
2. Associate your testbenches. In the Organize Stimulus Files dialog box, all the stimulus files in the current

project appear in Source Files in the Project list box. Files already associated with the block appear in the
Associated Source Files list box.
In most cases, you will have one testbench associated with your block. However, if you want simultaneous
association of multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files
to the Associated Source Files list.

– To add a testbench: Select the testbench you want to associate with the block in Source Files in the
Project list box and click Add to add it to the Associated Source Files list.

– To remove a testbench or change the files in the Associated Source Files list box: Select the files and
click Remove.

– To order testbenches: Use the up and down arrows to arrange the order in which you want the
testbenches compiled. The top level-entity should be at the bottom of the list.

3. When you are satisfied with the Associated Source Files list, click OK.

4.9.8 Selecting Additional Modules for Simulation
Libero SoC passes all the source files related to the top-level module to simulation.

If you need additional modules in simulation:

1. Right-click Simulate in the Design Flow window and choose Organize Input Files > Organize Source Files.
The Organize Files for Simulation dialog box appears.

2. From the Simulation Files in the Project list, select the HDL modules you want to add and click Add to add
them to the Associated Stimulus Files list.

4.9.9 Performing Functional Simulation
To perform functional simulation:

1. Create your testbench.
2. In the Design Flow window, select Implement Design > Verify Post-Synthesis Implementation.
3. Right-click Simulate and choose Organize Input Files > Organize Simulation Files from the right-click

menu. In the Organize Files for Source dialog box, all the stimulus files in the current project appear under
Source Files in the Project list box. Files associated with the block appear in the Associated Source Files
list box.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 48

4. In most cases, you will have one testbench associated with your block. However, if you want simultaneous
association of multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files
to the Associated Source Files list.

– To add a testbench: In the Source Files of the Project list box, select the testbench you want to
associate with the block. Click Add to add it to the Associated Source Files list.

– To remove a testbench or change the files in the Associated Source Files list box: Select the files and
click Remove.

5. When you are satisfied with the Associated Simulation Files list, click OK.
6. To start ModelSim ME Pro, right-click Simulate in the Design Hierarchy window and choose Open

Interactively. ModelSim starts and compiles the appropriate source files. When the compilation completes,
the simulator runs for 1̮ microsecond and the Wave window shows the simulation results.

7. Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom buttons
to zoom in and out as necessary.

8. When finished, select Quit from the File menu.

 Libero® SoC v2021.1
Creating and Verifying Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 49

5. Libero SoC Constraint Management
In the FPGA design world, constraint files are as important as design source files. Constraint files are used
throughout the FPGA design process to guide FPGA tools to achieve the timing and power requirements of
the design. For the synthesis step, SDC timing constraints set the performance goals whereas non-timing FDC
constraints guide the synthesis tool for optimization. For the Place-and-Route step, SDC timing constraints guide
the tool to achieve the timing requirements whereas Physical Design Constraints (PDC) guide the tool for
optimized placement and routing (Floorplanning). For Static Timing Analysis, SDC timing constraints set the timing
requirements and design-specific timing exceptions for static timing analysis.

Libero SoC provides the Constraint Manager as the cockpit to manage your design constraint needs. This is a single
centralized graphical interface for you to create, import, link, check, delete, and edit design constraints and associate
the constraint files to design tools in the Libero SoC environment. The Constraint Manager allows you to manage
constraints for SynplifyPro synthesis, Libero SoC Place-and- Route and the SmartTime Timing Analysis throughout
the design process.

5.1 Invocation of Constraint Manager from the Design Flow Window
After project creation, double-click Manage Constraints in the Design Flow window to open the Constraint Manager.

Figure 5-1. Constraint Manager

5.2 Libero SoC Design Flow
The Constraint Manager is Libero SoC’s single centralized Graphical User Interface for managing constraints files in
the design flow.

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 50

Figure 5-2. Constraint Manager in Libero SoC Design Flow

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 51

5.3 Introduction to Constraint Manager
The Constraint Manager manages these synthesis constraints and passes them to SynplifyPro:

• Synplify Netlist Constraint File (*.fdc)
• Compile Netlist Constraint File (*.ndc)
• SDC Timing Constraints (*.sdc)
• Derived Timing Constraints (*.sdc)

5.3.1 Synplify Netlist Constraints (*.fdc)
These are non-timing constraints that help SynplifyPro optimize the netlist. From the Constraint Manager Netlist
Attribute tab import (Netlist Attributes > Import) an existing FDC file or create a new FDC file in the Text Editor
(Netlist Attributes > New > Create New Synplify Netlist Constraint). After the FDC file is created or imported,
click the checkbox under synthesis to associate the FDC file with Synthesis.

5.3.2 Compile Netlist Constraints (*.ndc)
These are non-timing constraints that help Libero SoC optimize the netlist by combining I/Os with registers. I/Os are
combined with a register to achieve better clock-to-out or input-to-clock timing. From the Constraint Manager Netlist
Attribute tab import (Netlist Attributes > Import) an existing NDC file or create a new NDC file in the Text Editor
(Netlist Attributes > New > Create New Compile Netlist Constraint). After the NDC file is created or imported,
click the checkbox under synthesis to associate the NDC file with Synthesis.

5.3.3 SDC Timing Constraints (*.sdc)
These are timing constraints to guide SynplifyPro to optimize the netlist to meet the timing requirements of the
design. From the Constraint Manager Timing tab, import (Timing > Import) or create in the Text Editor (Timing >
New) a new SDC file. After the SDC file is created or imported, click the checkbox under synthesis to associate the
SDC file with Synthesis.

After the synthesis step, you may click Edit with Constraint Editor > Edit Synthesis Constraints to edit existing
constraints or add new SDC constraints.

5.3.4 Derived Timing Constraints (*.sdc)
These are timing constraints Libero SoC generates for IP cores used in your design. These IP cores, available
in the Catalog, are family/device-dependent. Once they are configured, generated, and instantiated in the design,
the Constraint Manager can generate SDC timing constraints based on the configuration of the IP core and the
component SDC. From the Constraint Manager Timing tab, click Derive Constraints to generate the Derived Timing
Constraints (*.sdc). Click the *derived_constraints.sdc file to associate it with synthesis.

5.3.5 Place and Route Constraints
The Constraint Manager manages these constraints for the Place-and-Route step:

• I/O PDC Constraints (*io.pdc)
• Floorplanning PDC Constraints (*fp.pdc)
• Timing SDC constraint file (*.sdc)

5.3.6 I/O PDC Constraints
These are I/O Physical Design Constraints in an *io.pdc file. From the Constraint Manager I/O Attribute tab, you may
import (I/O Attributes > Import) or create in the Text Editor (I/O Attributes > New) an *io.pdc file.

Click the checkbox under Place and Route to associate the file with Place and Route.

5.3.7 Floorplanning PDC Constraints
These are floorplanning Physical Design Constraints in a *fp.pdc file. From the Constraint Manager Floor Planner tab,
you may import (Floor Planner > Import) or create in the Text Editor (Floor Planner > New) a *fp.pdc file. Click the
checkbox under Place and Route to associate the file with Place and Route.

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 52

5.3.8 Timing SDC Constraint File (*.sdc)
These are timing constraint SDC files for Timing-driven Place and Route. From the Constraint Manager Timing tab,
you can import (Timing > Import) or create in the Text Editor (Timing > New) a timing SDC file. Click the check box
under Place and Route to associate the SDC file with Place and Route. This file is passed to Timing-driven Place
and Route (Place and Route > Configure Options > Timing Driven).

5.3.9 Timing Verifications Constraints
The Constraint Manager manages the SDC timing constraints for Libero SoC’s SmartTime, which is a Timing
Verifications/Static Timing analysis tool. SDC timing constraints provide the timing requirements (e.g. create_clock
and create_generated_clock) and design-specific timing exceptions (e.g. set_false_path and set_multicycle_path) for
Timing Analysis.

From the Constraint Manager Timing tab, you may import (Timing > Import) or create in the Text Editor (Timing
New) a SDC timing file. Click the checkbox under Timing Verifications to associate the SDC timing constraints file
with Timing Verifications.

Note: You may have the same set of SDC Timing Constraints for Synthesis, Place and Route and Timing Verifications
to start with in the first iteration of the design process. However, very often and particularly when the design is not
meeting timing requirements you may find it useful in subsequent iterations to have different sets of Timing SDC files
associated with different tools. Take for example; you may want to change/modify the set of SDC timing constrains
for Synthesis or Place and Route to guide the tool to focus on a few critical paths. The set of SDC timing constraints
associated with Timing Verifications can remain unchanged.

The Constraint Manager lets you associate/dis-associate the constraint files with the different tools with a mouse
click.

5.3.10 Constraint Manager Components
The Constraint Manager has four tabs, each corresponding to a constraint type that Libero SoC supports:

• I/O Attributes
• Timing
• Floor Planner
• Netlist Attribute

Clicking the tabs displays the constraint file of that type managed in the Libero SoC project.

5.3.11 Constraint File and Tool Association
Each constraint file can be associated or disassociated with a design tool by checking and unchecking the checkbox
corresponding to the tool and the constraint file. When associated with a tool, the constraint file is passed to the tool
for processing.
Figure 5-3. Constraint File and Tool Association

Libero SoC’s Design Flow window displays the state the tool is in. A green check mark indicates

successful completion. A warning icon indicates invalidation of the state because the input files for the tool
have changed since the last successful run. Association of a new constraint file with a tool or dis-association of an
existing constraint file with a tool invalidates the state of the tool with which the constraint file is associated.

All Constraint files except Netlist Attributes can be opened, read, and edited by the following Interactive Tools invoked
from the Constraint Manager directly:

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 53

• I/O Editor
• Chip Planner
• Constraint Editor

Table 5-1. Constraint Types, File Extensions, Locations, and Tools

Constraint Type Constraint File
Extension

Location Inside Project Associated with
Design Tool

Interactive
Tool (for
Editing)

I/O Attributes PDC (*.pdc) <proj>\constraints\io*.pdc Place and Route I/O Editor

Floorplanning PDC (*.pdc) <proj>\constraints\fp*.pdc Place and Route Chip Planner

Timing SDC (*.sdc) <proj>\constraints*.sdc Synthesis, Place
and Route, Timing
Verification

Constraint
Editor

Netlist Attributes FDC (*.fdc) <proj>\constraints*.fdc Synthesis n/a

NDC (*.ndc) <proj>\constraints*.ndc Synthesis n/a

5.3.12 Derive Constraints in Timing Tab
The Constraint Manager can generate timing constraints for IP cores used in your design. These IP cores, available
in the Catalog, are family- and device-dependent. After they are configured, generated, and instantiated in your
design, the Constraint Manager can generate SDC timing constraints based on the configuration of the IP core and
the component SDC. A typical example of an IP core for which the Constraint Manager can generate SDC timing
constraints is the IP core for Clock Conditioning Circuitry (CCC).

5.3.13 Create New Constraints
From the Constraint Manager, create new constraints in one of two ways:

• Use the Text Editor
• Use Libero SoC’s Interactive Tools

To create new constraints from the Constraint Manager using the Text Editor:
1. Select the Tab that corresponds to the type of constraint you want to create.
2. Click New.
3. When prompted, enter a file name to store the new constraint.
4. Enter the constraint in the Text Editor.
5. Click OK.

The Constraint file is saved and visible in the Constraint Manager in the tab you select:

– I/O Attributes constraint file (<proj>\io*.pdc) in the I/O Attributes tab
– Floorplanning constraints (<proj>\fp*.pdc) in the Floor Planner tab
– Timing constraints (<proj>\constraints*.sdc) in the Timing tab

6. (Optional) Double-click the constraint file in the Constraint Manager to open and add more constraints to the
file.

Note:  Netlist Attribute constraints cannot be created by an Interactive Tool. Netlist Attribute files can only be created
with a Text Editor.
Note:  Except for timing constraints for Synthesis, the design needs to be in the post-synthesis state to enable
editing/creation of new constraints by the Interactive Tool.

Note:  The *.pdc or *.sdc file the Constraint Manager creates is marked [Target]. This denotes that it is the target file.
A target file receives and stores new constraints from the Interactive Tool. When you have multiple constraint files of
the same type, you may select any one of them as target. When there are multiple constraint files but none of them is
set as target, or there are zero constraint files, Libero SoC creates a new file and sets it as target to receive and store
the new constraints created by the Interactive Tools.

To create new constraints from the Constraint Manager using Interactive Tools:

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 54

1. Select the Tab that corresponds to the type of constraint you want to create.
2. Click Edit to open the Interactive Tools. The Interactive Tool that Libero SoC opens varies with the constraint

type:
– I/O Editor to edit/create I/O Attribute Constraints. See I/O Editor User Guide for details.
– Chip Planner to edit/create Floorplanning constraints. See Chip Planner User Guide for details.
– Constraint Editor to edit/create Timing Constraints. See Timing Constraints Editor User Guide for details.

3. Create the Constraints in the Interactive Tool. Click Commit and Save.
4. Check that Libero SoC creates these files to store the new constraints:

– Constraints\io\user.pdc file when I/O constraints are added and saved in I/O Editor.
– Constraints\fp\user.pdc file when floorplanning constraints are added and saved in Chip Planner.
– Constraints\user.sdc file when Timing Constraints are added and saved in Constraint Editor.

5.3.14 Constraint File Order
When there are multiple constraint files of the same type associated with the same tool, use the Up and Down arrow
to arrange the order in which the constraint files pass to the associated tool. Constraint file order is important when
there is a dependency between constraints files. When a floorplanning PDC file assigns a macro to a region, the
region must first be created and defined. If the PDC command for region creation and macro assignment are in
different PDC files, the order of the two PDC files is critical.

1. To move a constraint file up, select the file and click the Up arrow.
2. To move a constraint file down, select the file and click the Down arrow.

Figure 5-4. Move constraint file Up or Down

Note:  Changing the order of the constraint files associated with the same tool invalidates the state of that tool.

5.4 Import a Constraint File
Use the Constraint Manager to import a constraint file into the Libero SoC project. When a constraint file is imported,
a local copy of the constraint file is created in the Libero Project.

To import a constraint file:

1. Click the Tab corresponding to the type of constraint file you want to import.
2. Click Import.
3. Navigate to the location of the constraint file.
4. Select the constraint file and click Open. A copy of the file is created and appears in Constraint Manager in the

tab you have selected.

Link a Constraint File

Use the Constraint Manager to link a constraint file into the Libero SoC project. When a constraint file is linked, a file
link rather than a copy is created from the Libero project to a constraint file physically located and maintained outside
the Libero SoC project.

To link a constraint file:

1. Click the Tab corresponding to the type of constraint file you want to link.
2. Click Link.
3. Navigate to the location of the constraint file you want to link to.
4. Select the constraint file and click Open. A link of the file is created and appears in Constraint Manager under

the tab you have selected. The full path location of the file (outside the Libero SoC project) is displayed.

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 55

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smarttime_ce_ug.pdf

5.4.1 Check a Constraint File
Use the Constraint Manager to check a constraint file.

To check a constraint file:

1. Select the tab for the constraint type to check.
2. Click Check.

Note:  I/O constraints, Floorplanning constraints, Timing constraints, and Netlist Attributes can be checked only
when the design is in the proper state. A pop-up message appears when the check is made and the design state is
not proper for checking.

All constraint files associated with the tool are checked. Files not associated with a tool are not checked.

For Timing Constraints, select from the one of the following from the Check drop-down menu:

• Check Synthesis Constraints
• Check Place and Route Constraints
• Check Timing Verification Constraints

Figure 5-5. Check Constraints

Check Synthesis Constraints checks only the constraint files associated with the Synthesis.

Check Place and Route Constraints checks only the constraint files associated with Place and Route.

Check Timing Verification Constraints checks only the Constraint Files associated with Timing Verification. For the
constraint files and tool association shown in the SDC file and Tool Association figure below:

• Check Synthesis Constraints checks the following files:
– top_derived_constraints.sdc
– user.sdc
– mytiming2.sdc

• Check Place and Route Constraints checks the following files:
– top_derived_constraints.sdc
– mytiming.sdc
– mytiming2.sdc

• Check Timing Verification Constraints checks the following files:
– top_derived_constraints.sdc
– user.sdc
– mytiming.sdc
– mytiming2.sdc

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 56

Note:  sdfsadf.sdc Constraint File is not checked because it is not associated with any tool.
Figure 5-6. Timing Constraints SDC File and Tool

Association when a constraint file is checked, the Constraint Manager:

• Checks the SDC or PDC syntax.
• Compares the design objects (pins, cells, nets, ports) in the constraint file versus the design objects in the netlist

(RTL or post-layout ADL netlist). Any discrepancy (e.g. constraints on a design object which does not exist in the
netlist) are flagged as errors and reported in the *.log file or message window.

5.4.2 Check Result
If the check is successful, the following message appears.
Figure 5-7. Check Successful Message

If the check fails, the following error message appears.
Figure 5-8. Check Fails Message

Constraint Type Check for Tools Required Design State
Before Checks

Check Result Details

I/O Constraints Place and Route Post-Synthesis Libero Message Window

Floorplanning Constraints Place and Route Post-Synthesis Libero Message Window

Timing Constraints Synthesis Pre-Synthesis synthesis_sdc_check

.log

Place and Route Post-Synthesis placer_sdc_check.lo g

Timing Verifications Post-Synthesis timing_sdc_check.lo g

Netlist Attributes (*.fdc) Synthesis Pre-Synthesis *cck.srr file

Netlist Attributes (*.ndc) Synthesis Pre-Synthesis Libero Log Window

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 57

5.4.3 Edit a Constraint File
The Edit button in the Constraint Manager allows you to:

• Create new constraint files. See 5.3.13 Create New Constraints for details.
• Edit existing constraint files.

To edit a constraint file

Note:  Netlist Attributes cannot be edited by an Interactive Tool. Use the Text Editor to edit the Netlist Attribute
constraint (*.fdc and *.ndc) files.

1. Select the tab for the constraint type to edit. An Interactive Tool is opened to make the edits.
2. Click Edit.

– All constraint files associated with the tool are edited. Files not associated with the tool are not edited.
– When a constraint file is edited, the constraints in the file are read into the Interactive Tool.
– Different Interactive Tools are used to edit different constraints/different files:

• I/O Editor to edit I/O Attributes (<proj>\io*.pdc). For details, refer to the I/O Editor User Guide
• Chip Planner to edit Floorplanning Constraints (<proj>\fp*.pdc). For details, refer to the Chip

Planner User Guide (Chip Planner > Help > Reference Manuals)
• Constraint Editor to edit Timing Constraints (constraints*.sdc). For details, refer to the Timing

Constraints Editor User Guide (Help > Constraints Editor User’s Guide)
Note:  I/O constraints, Floorplanning constraints, Timing constraints can be edited only when the
design is in the proper state. A message pops up if the file is edited when the design state is not
proper for edits. If, for example, you open the Constraints Editor (Constraint Manager > Edit) to edit
timing constraints when the design state is not post-synthesis, a pop-up message appears.
Figure 5-9. Pop-up Message

3. For Timing Constraints, click one of the following to edit from the Edit with Constraint Editor drop-down menu.
– Edit Synthesis Constraints
– Edit Place and Route Constraints
– Edit Timing Verification Constraints

Figure 5-10. Edit Drop-down Menu

For the constraint files and tool association shown in the Timing Constraint File and Tool Association
below:

• Edit Synthesis Constraints reads the following files into the Constraint Editor:
– user.sdc
– myuser1.sdc

• Edit Place and Route Constraints reads the following files into the Constraint Editor:
– user.sdc
– mytiming2.sdc
– myuser1.sdc

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 58

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smarttime_ce_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smarttime_ce_ug.pdf

• Edit Timing Verification Constraints reads the following files into the Constraint Editor:
– user.sdc
– mytiming2.sdc

Figure 5-11. Timing Constraint File and Tool Association

4. Edit the constraint in the Interactive Tool, save and exit.
5. The edited constraint is written back to the original constraint file when the tool exits.

Refer to the Timing Constraints Editor User Guide (Help > Constraints Editor User’s Guide) for details on how to
enter/modify timing constraints.

Note:  When a constraint file is edited inside an Interactive Tool, the Constraint Manager is disabled until the
Interactive Tool is closed.

Note:  Making changes to a constraint file invalidates the state of the tool with which the constraint file is associated.
For instance, if Place and Route has successfully completed with user.sdc as the associated constraint file, then
making changes to user.sdc invalidates Place and Route. The green checkmark (denoting successful completion)
next to Place and Route turns into a warning icon when the tool is invalidated.

5.5 Constraint Types
Libero SoC manages four types of constraints:

• I/O Attributes Constraints: Used to constrain placed I/Os in the design. Examples include setting I/O
standards, I/O banks, and assignment to Package Pins, output drive, and so on. These constraints are used by
Place and Route.

• Timing Constraints: Specific to the design set to meet the timing requirements of the design, such as clock
constraints, timing exception constraints, and disabling certain timing arcs. These constraints are passed to
Synthesis, Place and Route, and Timing Verification.

• Floor Planner Constraints: Non-timing floorplanning constraints created by the user or Chip Planner and
passed to Place and Route to improve Quality of Routing.

• Netlist Attributes: Microchip-specific attributes that direct the Synthesis tool to synthesize/optimize the design,
leveraging the architectural features of the Microchip devices. Examples include setting the fanout limits and
specifying the implementation of a RAM. These constraints are passed to the Synthesis tool only.

The following table summarizes the features and specifics of each constraint type.

Constraint
Type

File Location File
Ext.

User
Actions

Constraints
Edited By

Constraints
Used By

Changes
Invalidate

Design
State?

I/O Attributes <proj>/constraints/io
folder

*.pdc Create New,
Import, Link,
Edit, Check

I/O Editor

Or user editing
the

*.pdc file in Text
Editor

Place and
Route

YES

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 59

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smarttime_ce_ug.pdf

...........continued
Constraint
Type

File Location File
Ext.

User
Actions

Constraints
Edited By

Constraints
Used By

Changes
Invalidate

Design
State?

Timing
Constraints

<proj>/constraints folder *.sdc Create New,
Import, Link,
Edit, Check

Constraint
Editor

Or user editing
the

*.sdc file in Text
Editor

Synplify

Place and
Route

Verify Timing
(SmartTime)

YES

Floor Planner
Constraints

<proj>/constraints/fp
folder

*.pdc Create New,
Import, Link,
Edit, Check

Chip Planner

Or user Editing
the

*.pdc file in Text
Editor

Place and
Route

YES

Netlist
Attributes

<proj>/constraints folder *.fdc Create New,
Import, Link,
Check

User to Open in
Text Editor to
Edit

Synplify YES

Netlist
Attributes

<proj>/constraints folder *.ndc Import, Link,
Check

User to Open in
Text Editor to
Edit

Synplify YES

5.6 Constraint Manager – I/O Attributes Tab
The I/O Attributes tab allows you to manage I/O attributes/constraints for your design’s Inputs, Outputs, and Inouts.
All I/O constraint files (PDC) have the *.pdc file extension and are placed in the <Project_location>/constraint/io
folder. Available actions are:

• New: Creates a new I/O PDC file and saves it into the <Project_location>\constraint\io folder. There are two
options:

– Create New I/O Constraint
– Create New I/O Constraint From Root Module -- This will pre-populate the PDC file with information from

the Root Module
– Having selected the create method:

• When prompted, enter the name of the constraint file.
• The file is initially opened in the text editor for user entry.

• Import: Imports an existing I/O PDC file into the Libero SoC project. The I/O PDC file is copied into the
<Project_location>\constraint\io folder.

• Link: Creates a link in the project’s constraint folder to an existing I/O PDC file (located and maintained outside
of the Libero SoC project).

• Edit: Opens the I/O Editor tool to modify the I/O PDC file(s) associated with the Place and Route tool.
• View: Opens the I/O Editor tool to view the I/O PDC file(s) associated with the Place and Route tool. You cannot

save/commit any changes made to the constraints file. However, you can export the PDC file(s) using the I/O
Editor.

• Check: Checks the legality of the PDC file(s) associated with the Place and Route tool against the gate level
netlist.

When the I/O Editor tool is invoked or the constraint check is performed, all files associated with the Place and Route
tool are being passed for processing.

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 60

When you save your edits in the I/O Editor tool, the I/O PDC files affected by the change will be updated to reflect
the change you have made in the I/O Editor tool. New I/O constraints you add in the I/O Editor tool are written to
the Target file (if a target file has been set) or written to a new PDC file (if no file is set as target) and stored in the
<project>\constraint\io folder.
Figure 5-12. Constraint Manager – I/O Attributes Tab

Right-click the I/O PDC files to access the available actions:

• Set/UnSet as Target: Sets or clears the selected file as the target to store new constraints created in the I/O
Editor tool. Newly created constraints only go into the target constraint file. Only one file can be set as target.
This option is not available for linked files.

• Open in Text Editor: Opens the selected constraint file in the Libero Text Editor.
• Clone: Copies the file to a file with a different name. The original file name and its content remain intact. This

option is not available for linked files.
• Rename: Renames the file to a different name. This option is not available for linked files.
• Copy File Path: Copies the file path to the clipboard.
• Delete: Deletes the file from the project and from the disk. This option is not available for linked files.
• Unlink: Removes the linked file from the project. The original file is untouched. This option is only available for

linked files.
• Unlink: Copy file locally: Removes the link and copies the file into the <Project_location>\constraint\io folder.

This option is only available for linked files.

5.6.1 File and Tool Association
Each I/O constraint file can be associated or disassociated with the Place and Route tool. Click the checkbox under
Place and Route to associate/disassociate the file from the tool.

5.6.2 I/O Settings
Reserve Pins for Device Migration – This option allows you to reserve pins in the currently selected device that are
not bonded in a device or list of devices you may later decide to migrate your design to. Select the target device(s)
you may migrate to later to ensure that there will be no device/package incompatibility if you migrate your design to
that device.

Reserve Pins for Probes – Check this box if you plan to use live probes when debugging your design with
SmartDebug.

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 61

5.7 Constraint Manager – Timing Tab
The Timing tab allows you to manage timing constraints throughout the design process. Timing constraints files
(SDC) have the *.sdc file extension and are placed in the <Project_location>\constraint folder.

Available actions are:

• New: Creates a new timing SDC file and saves it into the <Project_location>\constraintfolder.
– When prompted, enter the name of the constraint file.
– The file is initially opened in the text editor for user entry.

Figure 5-13. Create New SDC Dialog Box

• Import: Imports an existing timing SDC file into the Libero SoC project. The timing SDC file is copied into the
<Project_location>\constraint folder.

• Link: Creates a link in the project’s constraint folder to an existing timing SDC file (located and maintained
outside of the Libero SoC project).

• Edit: Opens the Timing Constraints Editor (see Timing Constraints Editor User Guide for details) to modify
the SDC file(s) associated with one of the three tools:

– Synthesis: When selected, the timing SDC file(s) associated with the Synthesis tool is loaded in the
constraints editor for editing.

– Place and Route: When selected, the timing SDC file(s) associated with the Place and Route tool is
loaded in the constraints editor for editing.

– Timing Verification: When selected, the timing SDC file(s) associated with the Timing Verification tool is
loaded in the constraints editor for editing.
Figure 5-14. Timing Constraints Edit Options in Constraint Manager

• Check: Check the legality of the SDC file(s) associated with one of the three tools described below:
– Synthesis: The check is performed against the pre-synthesis HDL design.
– Place and Route: The check is performed against the post-synthesis gate level netlist.
– Timing Verification: The check is performed against the post-synthesis gate level netlist.

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 62

https://coredocs.s3.amazonaws.com/Libero/12_3_0/Tool/smarttime_ce_ug.pdf

Figure 5-15. Timing Constraints Check Options in Constraint Manager

• Derive Constraints: When clicked, Libero generates a timing SDC file based on user configuration of IP
core, components, and component SDC. It generates the create_clock and create_generated_clock SDC timing
constraints. This file is named <top_level_> derived_constraints.sdc. The component SDC and the generated
<root>_derived_constraint.sdc files are dependent on the IP cores and vary with the device family.
create -name {REF_CLK_PAD_0} -period 5 [get_ports { REF_CLK_PAD_0 }]
create_generated_clock -name {PF_TX_PLL_0/txpll_isnt_0/DIV_CLK} -divide_by 2 - source
[get_pins { PF_TX_PLL_0/txpll_isnt_0/REF_CLK_P }] [get_pins { PF_TX_PLL_0/txpll_isnt_0/
DIV_CLK }]

• Constraint Coverage: When clicked, a pull-down list displays. Select the Constraint Coverage Reports you
want:

– Generate Place and Route Constraint Coverage Report
– Generate Timing Verification Constraint Coverage Report

Figure 5-16. Constraint Coverage Options for Timing Constraints in Constraint Manager

Note:  Constraint Coverage Reports can be generated only after synthesis. A warning message appears if the
design is not in the post-synthesis state when this button is clicked.

The generated report will be visible in the respective nodes of the report view (Design > Reports).

When the SmartTime Constraint Editor tool is invoked or the constraint check is performed, all the files associated
with the targeted tool – Synthesis, Place and Route, Timing Verification – are being passed for processing.

When you save your edits in the SmartTime Constraint Editor tool, the timing SDC files affected by the change are
updated to reflect the changes you have made in the SmartTime Constraints Editor tool. New timing constraints you
add in the SmartTime Constraint Editor tool are written to the Target file (if a target file has been set) or written to a
new SDC file (if no file is set as target) and stored in the <project>\constraint folder.
Figure 5-17. Constraint Manager – Timing Tab

Right-click the timing SDC files to access the available actions for each constraint file:

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 63

• Set/Unset as Target: Sets or clears the selected file as the target to store new constraints created in the
SmartTime Constraint Editor tool. Newly created constraints only go into the target constraint file. Only one file
can be set as target, and it must be a PDC or SDC file. This option is not available for the derived constraint
SDC file. This option is not available for linked files.

• Open in Text Editor: Opens the selected constraint file in the Libero Text Editor.
• Clone: Copies the file to a file with a different name. The original file name and its content remain intact. This

option is not available for linked files.
• Rename: Renames the file to a different name. This option is not available for linked files.
• Copy File Path: Copies the file path to the clipboard.
• Delete: Deletes the selected file from the project and from the disk. This option is not available for linked files.
• Unlink: Removes the linked file from the project. The original file is untouched. This option is only available for

linked files.
• Unlink: Copy file locally: Removes the link and copies the file into the <Project_location>\constraint folder.

This option is only available for linked files.

File and Tool Association

Each timing constraint file can be associated or disassociated with any one, two, or all three of the following tools:

• Synthesis
• Place and route
• Timing Verification

Click the check box under Synthesis, Place and Route, or Timing Verification to associate/disassociate the file
from the tool.

When a file is associated, Libero passes the file to the tool for processing.

5.7.1 Example
Figure 5-18. File and Tool Association Example

In the context of the graphic above, when Edit Synthesis Constraint is selected, user.sdc,
top_derived_constraints.sdc, and mytiming2.sdc are read (because these three files are associated with Synthesis);
mytiming.sdc and sdfsadf.sdc are not read (because they are not associated with Synthesis). When the SmartTime
Constraint Editor opens for edit, the constraints from all the files except for sdfsadf.sdc are read and loaded into the
Constraint Editor. Any changes you made and saved in the Constraint Editor are written back to the files.

Note:  sdfsadf.sdc Constraint File is not checked because it is not associated with any tool.

5.8 Derived Constraints
Libero SoC is capable of generating SDC timing constraints for design components when the root of the design has
been defined. Click Derive Constraints in the Constraint Manager’s Timing tab to generate SDC timing constraints
for your design’s components.

The generated constraint file is named <root>_derived.sdc and is created by instantiating component SDC files
created by IP configurators (for example, CCC) and oscillators used in the design.

The <root>_derived.sdc file is associated by default to the Synthesis, Place and Route and Timing Verification tool.
You can change the file association in the Constraint Manager by checking or unchecking the checkbox under the
tool.

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 64

To generate SDC timing constraints for IP cores:

1. Configure and generate the IP Core.
2. From the Constraint Manager’s Timing tab, click Derive Constraints (Constraint Manager > Timing > Derive

Constraints).
The Constraint Manager generates the <root>_derived_constraints.sdc file and places it in the Timing Tab
along with other user SDC constraint file.

3. When prompted for a Yes or No on whether you want the Constraint Manager to automatically associate
the derived SDC file to Synthesis, Place and Route, and Timing Verification, click Yes to accept automatic
association or No and then check or uncheck the appropriate checkbox for tool association.
Microchip recommends the <root>_derived_constraints.sdc be always associated with all three tools:
Synthesis, Place and Route, and Verify Timing. Before running SynplifyPro Synthesis, associate the
<root>_derived_constraints.sdc file with Synthesis and Place and Route. This will ensure that the design
objects (such as nets and cells) in the <root>_derived_constraints.sdc file are preserved during the synthesis
step and the subsequent Place and Route step will not error out because of design object mismatches
between the post-synthesis netlist and the <root>_derived_constraints.sdc file.

Note:  Full hierarchical path names are used to identify design objects in the generated SDC file.

Note:  The Derive Constraints button is available for HDL-based and SmartDesign-based design flows. It is not
available for Netlist Designs (Project > Project Settings > Design Flow > Enable Synthesis [not checked]).

5.9 Constraint Manager – Floor Planner Tab
The Floor Planner tab allows you to manage floorplanning constraints. Floorplanning constraints files (PDC) have the
*.pdc file extension and are placed in the <Project_location>\constraint\fp folder.

Available actions are:

• New: Creates a new floorplanning PDC file and saves it into the <Project_location>\constraint\fp folder.
• Import: Imports an existing floorplanning PDC file into the Libero SoC project. The floorplanning PDC file is

copied into the <Project_location>\constraint\fp folder.

• Link: Creates a link in the project’s constraint folder to an existing floorplanning PDC file (located and
maintained outside of the Libero SoC project).

• Edit: Opens the Chip Planner tool to modify the floorplanning PDC file(s) associated with the Place and Route
tool.

• View: Opens the Chip Planner tool to view the floorplanning PDC file(s) associated with the Place and Route
tool. You cannot save/commit any changes made to the constraints file. However, you can export the PDC file(s)
using Chip Planner.

• Check: Checks the legality of the PDC file(s) associated with the Place and Route tool against the gate level
netlist.

When the Chip Planner tool is invoked or the constraint check is performed, all files associated with the Place and
Route tool are passed for processing.

When you save your edits in the Chip Planner tool, the floorplanning PDC files affected by the change are updated to
reflect the change you made in the Chip Planner tool. New floorplanning constraints that you add in the Chip Planner
tool are written to the Target file (if a target file has been set) or written to a new PDC file (if no file is set as target)
and stored in the <project>\constraint\fp folder.

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 65

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/chipplanner_ug.pdf

Figure 5-19. Constraint Manager – Floor Planner Tab

Right-click the floorplanning PDC files to access the available actions:

• Set/Unset as Target: Sets or clears the selected file as the target to store new constraints created in the Chip
Planner tool. Newly created constraints only go into the target constraint file. Only one file can be set as target.
This option is not available for linked files.

• Open in Text Editor: Opens the selected constraint file in the Libero Text Editor.
• Clone: Copies the file to a file with a different name. The original file name and its content remain intact. This

option is not available for linked files.
• Rename: Renames the file to a different name. This option is not available for linked files.
• Copy File Path: Copies the file path to the clipboard.
• Delete: Deletes the selected file from the project and from the disk. This option is not available for linked files.
• Unlink: Removes the linked file from the project. The original file is untouched. This option is only available for

linked files.
• Unlink: Copy file locally: Removes the link and copies the file into the <Project_location>\constraint\fp folder.

This option is only available for linked files.

5.9.1 File and Tool Association
Each floorplanning constraint file can be associated or disassociated to the Place and Route tool. Click the checkbox
under Place and Route to associate/disassociate the file from the tool.

When a file is associated, Libero passes the file to the tool for processing.

5.9.1.1 See Also
Chip Planner User Guide

5.10 Constraint Manager – Netlist Attributes Tab
The Netlist Attributes tab allows you to manage netlist attribute constraints to optimize your design during the
synthesis and/or compile process. Timing constraints should be entered using SDC files managed in the Timing
tab. Netlist Attribute constraints files are placed in the <Project_location>\constraint folder. Libero SoC manages two
types of netlist attributes:

• FDC constraints are used to optimize the HDL design using Synopsys SynplifyPro synthesis engine and have
the *.fdc extension.

• NDC constraints are used to optimize the post-synthesis netlist with the Libero SoC compile engine and have
the *.ndc file extension.

Available operations are:

• New: Creates a new FDC or NDC netlist attribute constraints file in the <Project_location>\constraint folder.
• Import: Imports an existing FDC or NDC netlist attribute constraints file into the Libero SoC project. The FDC or

NDC netlist attribute constraints file is copied into the <Project_location>\constraint folder.
• Link: Creates a link in the project’s constraint folder to an existing FDC or NDC netlist attribute constraints file

(located and maintained outside of the Libero SoC project).
• Check: Checks the legality of the FDC and NDC file(s) associated with the Synthesis or Compile tools.

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 66

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/chipplanner_ug.pdf

When the constraint check is performed, all files associated with the Synthesis or Compile tools are passed for
processing.
Figure 5-20. Constraint Manager – Netlist Attributes Tab

Right-click the FDC or NDC files to access the available actions:

• Open in Text Editor: Opens the selected constraint file in the Libero SoC Text Editor.
• Clone: Copies the file to a file with a different name. The original file name and its content remain intact. This

option is not available for linked files.
• Rename: Renames the file to a different name. This option is not available for linked files.

• Copy File Path: Copies the file path to the clipboard.
• Delete: Deletes the file from the project and from the disk. This option is not available for linked files.
• Unlink: Removes the linked file from the project. The original file is untouched. This option is only available for

linked files.
• Unlink: Copy file locally: Removes the link and copies the file into the <Project_location>\constraint folder.

This option is only available for linked files.

5.10.1 File and Tool Association
Each netlist attributes constraint file can be associated with or disassociated from the Synthesis tool.

Click the checkbox under Synthesis (Compile) to associate/disassociate the file from Synthesis (Compile). When a
file is associated, Libero passes the file to Synthesis (Compile) for processing when Synthesis is run.

When Synthesis is ON (Project > Project Settings > Design Flow > Enable synthesis [checked]) for a project, the
Design Flow Synthesis action runs both the synthesis engine and the post-synthesis compile engine.

When Synthesis is OFF (Project > Project Settings > Design Flow > Enable synthesis [not checked]) for a project, the
Design Flow Synthesis action is replaced by the Compile action and runs the compile engine on the gate-level netlist
(EDIF or Verilog) available in the project.

Note: Linked files in constraint manager are shown with relative path if relative option is set for linked files. When
a constraint file is missing during environment variable change or a path in an environment variable changes, the
constraint manager does show any broken links. Therefore, if a constraint file is missing, an error message appears
in the log window if the user tries to access the file.

 Libero® SoC v2021.1
Libero SoC Constraint Management

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 67

6. Implementing Designs
The following topics describe how to implement your design.

6.1 Synthesize
There are two ways to run synthesis using the synthesis tool:

• Run synthesis on your design with the default settings specified in the synthesis tool: Double-click Synthesize.
• Run the synthesis tool interactively: Right-click Synthesize and choose Open Interactively. If you open the tool

interactively, you must complete synthesis from within the synthesis tool.

The default synthesis tool included with Libero SoC is SynplifyPro ME. If you want to use a different synthesis tool,
change the settings in Tool Profiles.

You can organize input synthesis source files using the Organize Source Files dialog box.

6.1.1 Synthesize Options
You can set or change synthesis configuration options for your synthesis tool using the Synthesize Options dialog
box.

To display this dialog box, expand Implement Design in the Design Flow window, right-click Synthesize, and choose
Configure Options.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 68

Figure 6-1. Synthesize Options Dialog Box

6.1.2 Global Nets (Promotions and Demotions)
Use the following options to specify to the Synthesis tool the threshold value beyond which the Synthesis tool
promotes the pins to globals:

Note:  You cannot use these options to control hardwired connections to global resources, such as CCC hardwired
connections to GB and I/O hardwired connections to GB.

Table 6-1. Global Nets Options

Option Description

Minimum number of clock pins Threshold value for Clock pin promotion.
Default: 2

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 69

...........continued
Option Description

Minimum number of asynchronous pins Threshold value for Asynchronous pin promotion.
Default: 800

Minimum fanout of non-clock nets to be kept on globals Threshold value for data pin promotion to global
resources. This value is the minimum fanout of non-clock
(data) nets to be kept on globals (no demotion).
Range: 1000 - 200000

Default: 5000

Number of global resources Controls the number of Global resources you want to
use in your design.
Default: 36

Maximum number of global nets that could be demoted
to row-globals

Maximum number of global nets that could be demoted
to row-globals.
Range: 0 - 50

Default: 16

Minimum fanout of global nets that could be demoted to
row-globals

Minimum fanout of global nets that could be demoted
to row-global. It is undesirable to have high fanout nets
demoted using row globals because it may result in high
skew. If you run out of global routing resources for your
design, reduce this number to allow more globals to be
demoted to Row Globals.
Range: 25 - 5000

Default: 1000

Infer Gated Clocks from Enable-registers Enable this option to infer gated clocks from enable
registers. This option is unchecked by default. Additional
sub-options are as follows:

• Minimum number of Enable pins to Infer Gated
Clock global - Enter the minimum number of enable
pins to infer gated chip-level global. Default value is
1000.

• Minimum number of Enable pins to Infer Gated
Clock row-global - Enter the minimum number of
enable pins to infer gated clock row-global. Default
value is 100.

Detect Clock Domain Crossings Enable this option to detect all clock domain crossings
(CDC) in the RTL design that have paths either between
two asynchronous clocks or two synchronous clocks
but with a false path or max-delay constraint. For each
crossing, analyze if the RTL design contains a control or
data synchronizer circuit and report if it is considered
"safe" according to the minimum requirements you
specify below. The option is checked by default.

• Minimum number of synchronizer registers - Default
value is 2. Range of value can be from 2 - 9.

The generated CDC report will not contain any synchronizer circuits formed with macros instantiated from the
catalog. The report will contain all CDC inferred from the RTL design and explain the reason(s) of why a synchronizer
is considered "unsafe":

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 70

• No synchronizer circuit detected
• In case of control signals (reset,enable,set) on first and second of sync registers are not matching.
• Combinational logic between the first and second register synchronizers.
• Diversion between first and second register synchronizers (i.e., the fanout is greater than 1).
• Only 1 register in the synchronizer circuit.

• Number of register levels in synchronizer logic is less than the specified threshold.
• Combinational logic detected at clock domain crossing.

• Combinational logic is present between the source register(start instance) and the destination register(end
instance) at the crossover.

• Divergence detected in the crossover path.
• Source register (start instance) has fanout greater than 1 at the crossover.

• Enable signal for synchronizer registers does not have a safe crossing.
• Enable of data synchronizer doesn’t have a safe synchronizer circuit.

• Sources from different domains in fanin.
• The destination is driven by multiple registers from different clock domains and are asynchronous to the

destination register clock domain.
• Synchronizer registers have synchronous reset or set as control signal.

• The Synchronizer registers have a synchronous set or reset even if shared by all. This is tagged as unsafe
since the reset logic can move to the data path instead of connecting to the reset port of the register and
hence lead to metastability.

6.1.3 Optimizations
The following table describes the Optimizations options

Table 6-2. 

Option Description

Enable retiming Check this box to enable Retiming during synthesis.
Retiming is the process of moving registers (register
balancing) across combinational gates automatically to
improve timing, while ensuring identical logic behavior.
Default: Not checked (no retiming during synthesis)

Enable automatic compile point Check this box to enable Automatic Compile Point during
synthesis.
Default: Checked (Automatic Compile Point enabled)

RAM optimized for Guides the Synthesis tool to optimize RAMs to achieve
your design goal.

• High speed: RAM is optimized for speed.
The resulting synthesized design achieves better
performance (higher speed) at the expense of more
dynamic power. (Default)

• Low power: RAM is optimized for power. RAMs are
inferred and configured to ensure the lowest power
consumption.

Map seq-shift register components to: Maps sequential shift registers. Choices are:

• Registers: Sequential shift logic in the RTL maps to
registers.

• RAM64x12: Sequential shift logic in the RTL maps
to a 64x12 RAM block. This is the default setting.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 71

...........continued
Option Description

Map ROM components to: Maps ROM components. Choices are:

• Logic: Maps ROM components to logic. (Default)
• RAM: Maps ROM components to RAM.

6.1.4 Additional Options for SynplifyPro Synthesis
The following table describes additional options for SynplifyPro Synthesis.
Table 6-3. Additional Options for SynplifyPro Synthesis

Option Description

Script File Click the Browse () button to navigate to a Synplify
Tcl file that contains the SynplifyPro-specific options.
Libero passes the options in the Tcl file to SynplifyPro
for processing.

Additional Options Enter additional Synplify options. Place each option on
a separate line. Libero passes these additional options
“as-is” to SynplifyPro for processing, without checking
syntax. All of these options are set on the Active
Implementation only.
Note:  Options from the Additional Options Editor have
priority over Tcl Script file options if they are the same.

Recommended Synthesis Tcl Options

You can add or modify the following list of recommended Synthesis Tcl options in the Tcl Script File or Additional
Options Editor.

set_option -use_fsm_explorer 0/1
set_option -frequency 200.000000
set_option -write_verilog 0/1
set_option -write_vhdl 0/1
set_option -resolve_multiple_driver 1/0
set_option -rw_check_on_ram 0/1
set_option -auto_constrain_io 0/1
set_option -run_prop_extract 1/0
set_option -default_enum_encoding default/onehot/sequential/gray
set_option -maxfan 30000
set_option -report_path 5000
set_option -update_models_cp 0/1
set_option -preserve_registers 1/0
set_option -continue_on_error 1/0
set_option -symbolic_fsm_compiler 1/0
set_option -compiler_compatible 0/1
set_option -resource_sharing 1/0
set_option -write_apr_constraint 1/0
set_option -dup 1/0
set_option -enable64bit 1/0
set_option -fanout_limit 50
set_option -frequency auto
set_option -hdl_define SLE_INIT=2
set_option -hdl_param -set "width=8"
set_option -looplimit 3000
set_option -fanout_guide 50
set_option -maxfan_hard 1/0
set_option -num_critical_paths 10
set_option -safe_case 0/1

Entering Additional Options

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 72

You can enter any additional options using the Script File or Additional Options Editor. All of these options can be
added and modified outside of Libero through interactive SynplifyPro.

For more information about the options and supported families, see the SynplifyPro Reference Manual. The following
options are set by Libero. Do not include them in the additional options field or Script File:
add_file <*>
impl <*>
project_folder <*>
add_folder <*>
constraint_file <*>
project <*>
project_file <*>
open_file <*>
set_option –part
set_option -package
set_option -speed_grade
set_option -top_module
set_option -technology
set_option -opcond
set_option -vlog_std
set_option -vhdl2008
set_option -disable_io_insertion
set_option -async_globalthreshold
set_option -clock_globalthreshold
set_option -globalthreshold
set_option -low_power_ram_decomp
set_option -retiming
set_option -automatic_compile_point
set_option -seqshift_to_uram
set_option -rom_map_logic
set_option -gclkint_threshold
set_option -rgclkint_threshold
set_option -low_power_gated_clock
set_option -report_preserve_cdc
set_option -min_cdc_sync_flops

6.1.5 SynplifyPro ME
SynplifyPro ME is the default synthesis tool for Libero SoC.

To run synthesis using SynplifyPro ME and its default settings, right-click Synthesize and choose Run.

To use custom settings, use the following procedure to run Synplify interactively.

1. If Synplify is your default synthesis tool, right-click Synthesize in the Libero SoC Design Flow window and
choose Open Interactively. Synplify starts and loads the appropriate design files with preset default values.

2. From Synplify’s Project menu, choose Implementation Options.
3. Set your specifications and click OK.
4. Deactivate synthesis of the defparam statement. The defparam statement is only for simulation tools and is not

intended for synthesis. Embed the defparam statement between the translate_on and translate_off synthesis
directives:
/* synthesis translate_off */
defparam M0.MEMORYFILE = "meminit.dat"
/*synthesis translate_on */
// rest of the code for synthesis

5. Click the Run button. Synplify compiles and synthesizes the design into an HDL netlist. The resulting *.vm
files appear under Synthesis Files in the Files list.
If errors appear after you click the Run button, use the Synplify editor to edit the file. Double-click the file name
in the Synplify window showing the loaded design files. Your changes are saved to the original design file in
your project.

6. To close Synplify, from the File menu, choose Exit. When prompted to save changes you made, click Yes.
Note:  For a list of attributes related to Microchip devices, see the Microchip Attribute and Directive Summary
in the Synplify online help.

Note:  To add a clock constraint in Synplify, add n:<net_name> in your SDC file. If you omit the n:, the
constraint will not be added.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 73

6.1.6 Identifying Debug Designs
Libero SoC integrates the Identify RTL debugger tool. Identify debugging software allows you to probe and debug
your FPGA design directly in the source RTL. Use the software if the design behavior after programming is not in
accordance with the simulation results.

The following list summarizes the Identify key features:

• Instrument and debug your FPGA directly from RTL source code.
• Internal design visibility at full speed.
• Incremental iteration - Design changes are made to the device from the Identify environment using incremental

compile operations. This allows you to iterate in a fraction of the time it takes route the entire device.
• Debug and display results - You collect only the data you need using unique and complex triggering

mechanisms.

To open the Identify RTL debugger, in the Design Flow window, under Debug Design, double-click Instrument
Design.

The following procedure describes how to use the Identify Instrumentor and Debugger. To run the debugging flow
described below, you must have the Identify RTL Debugger and the Identify Instrumentor.

1. Create your source file and run pre-synthesis simulation.
2. Optional: Perform an entire flow (Synthesis - Compile - Place and Route - Generate a Programming File)

without starting Identify.
3. Right-click Synthesize and choose Open Interactively in Libero SoC to launch Synplify.
4. In Synplify, click Options > Configure Identify Launch to setup Identify.
5. In Synplify, create an Identify implementation by clicking Project > New Identify Implementation.
6. In the Implementations Options dialog box, make sure the Implementation Results > Results Directory

points to a location under <libero project>\synthesis\; otherwise, Libero SoC will not detect your
resulting Verilog Netlist file.

7. From the Instrumentor UI, specify the sample clock, the breakpoints, and other signals to probe. Synplify
creates a new synthesis implementation. Synthesize the design.

8. In Libero SoC, run Synthesis, Place and Route and generate a programming file.
Note:  Libero SoC works from the edit netlist of the current active implementation, which is the implementation
you created in Synplify for Identify debug.

9. In the Design Flow window, double-click Identify Debug Design to launch the Identify Debugger.

To work properly, the Identify RTL Debugger, Synplify, and FlashPro must be synchronized. For more information
about which versions of the tools work together, see the Release Notes.

6.2 Verifying Post-Synthesized Designs
The following topics describe how to verify designs that have been synthesized.

6.2.1 Generating Simulation Files
This step generates the post-synthesis Verilog or VHDL netlist for post-synthesis simulation.

• The post-synthesis Verilog netlist end with a *.v extension.
• The VHDL netlist ends with a *.vhd extension.

Post-synthesis simulation verifies the post-synthesis implementation of the design.

The netlist file is located in the synthesis folder of the project. Libero SoC passes this file to the simulator for the
post-synthesis simulation run.
Note:  Before performing post-synthesis, the design must pass the synthesis process. If you have not run synthesis,
generating Simulation Files initiates a synthesis run automatically.

6.2.2 Verifying Post-Synthesis Implementations - Simulate
The steps for performing functional (post-synthesis) and timing (post-layout) simulation are nearly identical.

• You perform functional simulation before place-and-route to simulate the functionality of the logic in the design.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 74

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads

• You perform timing simulation after the design completes place-and-route. This simulation uses timing
information based on the delays in the placed-and-routed designs.

To perform functional simulation:

1. Back-annotate your design and create your testbench.
2. In the Design Flow window, click Implement Design.
3. Right-click Simulate and choose Organize Input Files > Organize Stimulus Files.

In the Organize Files for Source dialog box, all stimulus files in the current project appear in Source Files in
the Project list box. Files associated with the block appear in the Associated Source Files list box.

In most cases, you will have one testbench associated with your block. However, if you want simultaneous
association of multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files
to the Associated Source Files list.

4. To add a testbench, select the testbench you want to associate with the block in the Source Files in the
Project list box and click Add to add it to the Associated Source Files list.

5. To remove a testbench or change the files in the Associated Source Files list box, select the files and click
Remove.

6. To order testbenches, use the up and down arrows to define the order in which you want the testbenches
compiled. The top level-entity should be at the bottom of the list.

7. When you are satisfied with the Associated Simulation Files list, click OK.
8. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open Interactively.

ModelSim starts and compiles the appropriate source files. When the compilation completes, the simulator
runs for 1ps and the Wave window shows the simulation results.

9. Scroll in the Wave window to verify the logic works as intended. Use the cursor and zoom buttons to zoom in,
zoom out, and measure timing delays.

10. When you are done, choose Quit from the File menu.

6.3 Compile Netlist
Compile contains functions that perform legality checking and basic netlist optimization. Compile checks for netlist
errors (bad connections and fan-out problems) removes unused logic (gobbling) and combines functions to reduce
logic count and improve performance. Compile also verifies that your selected device has sufficient resources to fit
your design.

The Compile Netlist step appears in the Design Flow window after unchecking the Enable Synthesis option in the
Project > Project Settings > Design Flow page. This option appears after importing or linking your HDL Netlist files
into the project and building the design hierarchy.

To compile your device with default settings, right-click Compile Netlist in the Design Flow window and choose Run
or double-click Compile Netlist.

To compile your design with custom settings, right-click Compile Netlist in the Design Flow window and choose
Configure Options.

During compile, the Log window shows information about your design, including warnings and errors. Libero SoC
issues warnings when your design violates recommended Microchip design rules. Microchip recommends that you
address all warnings, if possible, by modifying your design before you continue.

If the design fails to compile due to errors, modify the design to remove the errors and re-Compile.

The Compile Netlist Options set the threshold value for global resource promotion and demotion when Place and
Route is executed.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 75

Figure 6-2. Compile Netlist Options Dialog Box

Table 6-4. Compile Netlist Options

Option Description

Number of global resources Number of available global resources for the die.

Maximum Number of global nets that could be demoted
to row-globals

Maximum number of global nets that can be demoted to
row-globals.

Default: 16

Minimum fanout of global nets that could be demoted to
row-globals

Minimum fanout of global nets that can be demoted to
row-global. If you run out of global routing resources for
your design, reduce this number to allow more globals to
be demoted or select a larger die for your design.

Default: 1000

Minimum fanout of non-clock nets to be kept on globals Minimum fanout of non-clock (data) nets to be kept on
globals (no demotion). If you run out of global routing
resources for your design, increase this number.

Range: 1000 - 200000

Default: 5000

6.4 Constraint Flow in Implementation

6.4.1 Design State Invalidation
The Libero SoC Design Flow window displays status icons to indicate the status of the design state. For any status
other than a successful run, the status icon is identified with a tooltip to give you additional information.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 76

Status Icon Tooltip Description Possible Causes/Remedy

N/A Tool has not run yet. NEW state. Tool has not run or it has been cleaned.

Tool runs
successfully.

Tool runs with no errors.
PASS state.

N/A

Tool forced by user
to completed state.

Force updates the tools
state to PASS state.

Only for Synthesize/Compile and Place and Route
tools. The remaining tools do not change states

Varies with the tool. Tool runs but with
Warnings.

Varies with the tool (e.g., for the Compile Netlist step,
not all I/Os have been assigned and locked).

Tool Fails. Tool fails to run. Invalid command options or switches, invalid design
objects, invalid design constraints.

Design State is Out
of Date.

Tool state changes from
PASS to OUT OF
DATE.

Since the last successful run, design source design
files, constraint files or constraint file/tool association,
constraint files order, tool options, and/or project
settings have changed.

Timing Constraints
have not been met.

Timing Verification runs
successfully but the
design fails to meet
timing requirements.

Design fails Timing Analysis. Design has either set-
up or hold time violations or both. See PolarFire
FPGA Timing Constraints User Guide on how to
resolve the timing violations.

6.4.2 Constraints and Design Invalidation
A tool in the Design Flow changes from a PASS state (green check mark) to an OUT OF DATE state when a source
file or setting affecting the outcome of that tool has changed.

The out-of-date design state is identified by the icon in the Design Flow window. Sources and/or settings are
defined as:

• HDL sources (for Synthesis), gate level netlist (for Compile), and Smart Design components

• Design Blocks (*.cxz files) – low-level design units which may have completed Place and Route and re-used as
components in a higher-level design

• Constraint files associated with a tool
• Upstream tools in the Design Flow:

– If the tool state of a Design Flow tool changes from PASS to OUT OF DATE, the tool states of all the
tools below it in the Design Flow, if already run and are in PASS state, also change to OUT OF DATE with
appropriate tooltips. For example, if the Synthesis tool state changes from PASS to OUT OF DATE, the tool
states of Place and Route tool as well as all the tools below it in the Design Flow change to OUT OF DATE.

• If a Design Flow tool is CLEANED, the tool states of all the tools below it in the Design Flow, if already
run, change from PASS to OUT OF DATE.

• If a Design Flow tool is rerun, the tool states of all the tools below it in the Design Flow, if already run,
are CLEANED.

– Tool Options
• If the configuration options of a Design Flow tool (right-click the tool and choose Configure Options)

are modified, the tool states of that tool and all the other tools below it in the Design Flow, if already
run, are changed to OUT OF DATE with appropriate tooltips.

– Project Settings:
• Device selection
• Device settings
• Design Flow
• Analysis operating conditions

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 77

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_timing_constr_flow_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_timing_constr_flow_ug.pdf

Setting Changed Note Design Flow Tools Affected New State of the Affected
Design Flow Tools

Die Part# is changed All CLEANED/NEW

Package Part# is changed All CLEANED/NEW

Speed Part# is changed All CLEANED/NEW

Core Voltage Part# is changed All CLEANED/NEW

Range Part# is changed All CLEANED/NEW

Default I/O Technology Synthesize, and all tools below
it

OUT OF DATE

Reserve Pins for Probes Place and Route, and all tools
below it

OUT OF DATE

PLL Supply Voltage (V) Verify Power, Generate FPGA
Array Data and all other
“Program and Debug Design”
tools below it

OUT OF DATE

Power On Reset Delay Generate FPGA Array Data and
all other “Program and Debug
Design” tools below it

OUT OF DATE

System controller
suspended mode

Generate FPGA Array Data and
all other “Program and Debug
Design” tools below it

OUT OF DATE

Preferred Language None N/A

Enable synthesis All OUT OF DATE

Synthesis gate level netlist
format

Synthesize CLEANED/NEW

Reports(Maximum number
of high fanout nets to be
displayed)

None N/A

Abort flow if errors are
found in PDC

None N/A

Abort flow if errors are
found in SDC

None N/A

Temperature range(C) Verify Timing, Verify Power OUT OF DATE

Core voltage range(V) Verify Timing, Verify Power OUT OF DATE

Default I/O voltage range Verify Timing, Verify Power OUT OF DATE

Note:  Cleaning a tool means the output files from that tool are deleted including log and report files, and the tool’s
state is changed to NEW.

6.4.3 Check Constraints
When a constraint file is checked, the Constraint Checker does the following:

• Checks the syntax

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 78

• Compares the design objects (pins, cells, nets, ports) in the constraint file versus the design objects in the netlist
(RTL or post-layout ADL netlist). Any discrepancy (e.g., constraints on a design object which does not exist in
the netlist) are flagged as errors and reported in the *_sdc.log file

6.4.4 Design State and Constraints Check
Constraints can be checked only when the design is in the right state.

Constraint Type Check for Tools Required Design State
Before Checking

Netlist Used for Design
Objects Checks

Check Result

I/O Constraints Place and Route Post-Synthesis ADL Netlist Reported in
Libero Log
Window

Floorplanning
Constraints

Place and Route Post-Synthesis ADL Netlist par_sdc.log

Timing Constraints Synthesis Pre-Synthesis RTL Netlist synthesis_sdc.l
og

Place and Route Post-Synthesis ADL Netlist par_sdc.log

Timing
Verification

Post-Synthesis ADL Netlist vt_sdc.log

Netlist Attributes FDC Check Pre-Synthesis RTL Netlist Libero Message
Window

Netlist Attributes NDC Check Pre-Synthesis RTL Netlist Reported in
Libero Log
Window

A pop-up message appears when the check is made and the design flow has not reached the right state.
Figure 6-3. Pop-Up Message: Design State Insufficient for Constraints Check Operation

6.4.5 Edit Constraints
Click the Edit with I/O Editor/Chip Planner/Constraint Editor button to edit existing and add new constraints.
Except for the Netlist Attribute constraints (*.fdc and *.ndc) file, which cannot be edited by an interactive tool, all other
constraint types can be edited with an Interactive Tool. The *.fdc and *.ndc files can be edited using the Libero SoC
Text Editor.

The I/O Editor is the interactive tool to edit I/O Attributes, Chip Planner is the interactive tool to edit Floorplanning
Constraints, and the Constraint Editor is the interactive tool to edit Timing Constraints.

For Timing Constraints that can be associated to Synthesis, Place and Route, and Timing Verification, you need to
specify which group of constraint files you want the Constraint Editor to read and edit:

• Edit Synthesis Constraints - reads associated Synthesis constraints to edit.
• Edit Place and Route Constraints - reads only the Place and Route associated constraints.

• Edit Timing Verification Constraints - reads only the Timing Verification associated constraints.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 79

For the three SDC constraints files (a.sdc, b.sdc, and c.sdc, each with Tool Association as shown in the table
below) when the Constraint Editor opens, it reads the SDC file based on your selection and the constraint file/tool
association.

Synthesis Place and Route Timing Verification

a.sdc X X

b.sdc X X

c.sdc [target] X X X

• Edit Synthesis Constraints reads only the b.sdc and c.sdc when Constraint Editor opens.
• Edit Place and Route Constraints reads a.sdc, b.sdc and c.sdc when Constraint Editor opens.
• Edit Timing Verification Constraints reads a.sdc and c.sdc when Constraint Editor opens.

Constraints in the SDC constraint file that are read by the Constraint Editor and subsequently modified by you will be
written back to the SDC file when you save the edits and close the Constraint Editor.

When you add a new SDC constraint in the Constraint Editor, the new constraint is added to the c.sdc file, because it
is set as target. If no file is set as target, Libero SoC creates a new SDC file to store the new constraint.

6.4.6 Constraint Type and Interactive Tool

Constraint Type Interactive Tool for Editing Design Tool the Constraints
File is Associated

Required Design State
Before Interactive Tool
Opens for Edit

I/O Constraints I/O Editor Place and Route Tool Post-Synthesis

Floorplanning
Constraints

Chip Planner Place and Route Tool Post-Synthesis

Timing Constraints SmartTime Constraints Editor Synthesis Tool Place and
Route Timing Verification

Pre-Synthesis Post-
Synthesis Post-
Synthesis

Netlist Attributes
Synplify Netlist
Constraint (*.fdc)

Interactive Tool Not Available
Open the Text Editor to edit.

Synthesis Pre-Synthesis

Netlist Attributes
Compile Netlist
Constraint (*.ndc)

Interactive Tool Not Available
Open the Text Editor to edit.

Synthesis Pre-Synthesis

Note:  If the design is not in the proper state when Edit with <Interactive tool> is invoked, a pop-up message
appears.

Note:  When an interactive tool is opened for editing, the Constraint Manager is disabled. Close the Interactive Tool
to return to the Constraint Manager.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 80

6.5 Place and Route
Double-click Place and Route to run Place and Route on your design with the default settings.

6.5.1 Place and Route Options
To change your place and route settings from the Design Flow window, expand Implement Design, right-click Place
and Route, and choose Configure Options. When the Layout Options dialog box appears, specify your settings,
and then click OK.
Figure 6-4. Layout Options Dialog Box

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 81

Figure 6-5. Layout Options Dialog Box with Block Flow Enabled

The following table describes the place and route options.
Table 6-5. Place and Route Options

Option Description

Timing-Driven Timing-driven Place and Route strives to meet
timing constraints specified by you or generated
automatically. Timing-driven Place and Route delivers
better performance than Standard Place and Route.
If you do not select this option, Libero SoC ignores
timing constraints, although timing reports based on
timing constraints can still be generated for the design.

Power-driven Runs the Power-Driven layout. This layout reduces
dynamic power while still maintaining timing constraints.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 82

...........continued
Option Description

I/O Register Combining Combines any register directly connected to an I/O when
it has a timing Constraint. If multiple registers are directly
connected to a bi-directional I/O, select one register to
combine in the following order: input-data, output-data,
output-enable.

Global Pins Demotion This option is selected when Timing-Driven Place and
Route is enabled. This option allows the layout tool
to select the most timing critical pins on any Global
network and moves them to the source that drives the
Global resource (proactively attempts to improve timing
by putting timing-critical pins onto routed resources).
If the driver for the global is a fabric register, the driver is
replicated and the duplicate names are printed. Each set
of names should be used in place of the original register
in any specified timing constraint.

Driver Replication Allows an algorithm to replicate critical net drivers to
reduce timing violations. The algorithm prints the list of
registers along with the duplicate names. Each set of
names should be used in place of the original register in
any specified timing constraint.

High Effort Layout Improves layout success, but increases layout runtime
and may impact timing performance.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 83

...........continued
Option Description

Repair Minimum Delay Violations Repairs Minimum Delay violations (Timing-Driven Place
and Route option enabled) and performs an additional
route. This is done by increasing the length of routing
paths and inserting routing buffers to add delay to the
top violating paths.
If this option is enabled, the programmable delays
through I/Os are adjusted to meet hold time
requirements from input to registers. For register-to-
register paths, buffers are inserted.

The Repair tool analyzes paths iteratively with negative
minimum delay slacks (hold time violations), and
chooses suitable connections and locations to insert
buffers. Not all paths can be repaired using this
technique, but many common cases will benefit.

Even when this option is enabled, it will not repair a
connection or path that:

• Is a hardwired, preserved, or global net.
• Has a sink pin which is a clock pin.
• Violates a maximum delay constraint (that is, the

maximum delay slack for the pin is negative).
• May cause the maximum delay requirement for the

sink pin to be violated (setup violations).

Typically, this option is enabled with the Incremental
Layout option when a design’s maximum delay
requirements have been satisfied.

Every effort is made to avoid creating max-delay timing
violations on worst case paths.

Min Delay Repair generates a report in the
implementation directory that lists all of the paths that
were considered.

If your design continues to have internal hold time
violations, rerun repair Minimum Delay Violations with
Incremental Layout to analyze additional paths.

Incremental Layout Uses previous placement data as the initial placement
for the next run.

To preserve portions of your design, use Compile
Points, which are RTL partitions of the design that you
define before synthesis. The synthesis tool treats each
Compile Point as a block that allows you to preserve its
structure and timing characteristics. By executing Layout
in Incremental Mode, locations of previously placed cells
and the routing of previously routed nets is preserved.
Compile Points makes it easy to mark portions of a
design as black boxes, and let you divide the design
effort between designers or teams. for more information,
see the Synopsys FPGA Synthesis Pro ME User Guide.

Use Multiple Pass Runs multiple passes of Place and Route to achieve the
best layout result. Click Configure to specify the criteria
you want to use to determine the best layout result.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 84

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me#documents

...........continued
Option Description

Block Creation This option is available only when the Block Creation
option is turned on (Project > Project Settings >
Design Flow > Enable Block Creation). The value
entered here limits the number of row-global resources
available in every row-global region of the device. During
Place and Route of the block, the tool will not exceed
this capacity on any row-global region. The default value
is the maximum number of row-globals. If you enter a
value lower than the maximum capacity (the default),
the layout of the block can integrate with the rest of the
design if it consumes the remaining row-global capacity.

6.6 Multiple Pass Layout Configuration
Multiple Pass Layout attempts to improve layout quality by selecting results from a few number of Layout passes.
This is done by running individual place and route multiple times with varying placement seeds and measuring the
best results for the specified criteria.

When using Multiple Pass Layout, observe the following guidelines:

• Multiple Pass Layout saves your design file with the pass that has the best layout results. If you want to
preserve your existing design state, you should save your design file with a different name before proceeding. To
do this, from the File menu, choose Save As.

• The following four types of reports for each pass are written to the working directory to assist you in later
analysis: timing, maximum delay timing violations, minimum delay timing violations, and power.

– <root_module_name>_timing_r<runNum>_s<seedIndex>.rpt
– <root_module_name>_timing_violations_r<runNum>_s<seedIndex>.rpt
– <root_module_name>_timing_violations_min_r<runNum>_s<seedIndex>.rpt
– <root_module_name>_power_r<runNum>_s<seedIndex>.rpt
– <root_module_name>_iteration_summary.rpt provides additional details about the saved files.

To configure multiple pass options:

1. When running Layout, select the Use Multiple Passes in the Layout Options dialog box.
2. Click Configure. The Multi-Pass Configuration dialog box appears.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 85

Figure 6-6. Multi-Pass Configuration Dialog Box

3. Set the options in the following table and click OK.

Table 6-6. Multi-Pass Configuration Options

Option Description

Number of passes Number of passes (iterations) using the slider. 1 is the
minimum and 25 is the maximum.

Default: 5

Start at seed index Index into the array of random seeds that is to be the
starting point for the passes. If not specified, the default
behavior is to continue from the last seed index that was
used.

Measurement Measurement criteria against which you want to
compare layout results.

Slowest clock Uses the slowest clock frequency in the design in a
given pass as the performance reference for the layout
pass.

Specific clock Uses a specific clock frequency as the performance
reference for all layout passes.

Timing violations Timing Violations to use the pass that best meets the
slack or timing-violations constraints. This is the default.
Note:  You must enter your own timing constraints
through SmartTime or SDC.

Maximum delay Examines timing violations (slacks) obtained from
maximum delay analysis. This is the default.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 86

...........continued
Option Description

Minimum delay Examines timing violations (slacks) obtained from
minimum delay analysis.

Select by Slack criteria. Choices are:
• Worst Slack: Largest amount of negative slack (or

least amount of positive slack if all constraints are
met) for each pass is identified, and the largest
value of all passes determines the best pass.
(Default)

• Total Negative Slack. Sum of negative slacks from
the first 100 paths in the Timing Violations report for
each pass is identified, and the largest value of all
the passes determines the best pass. If no negative
slacks exist for a pass, the worst slack is used to
evaluate that pass.

• Stop on first pass without violations: Stops
performing remaining passes if all timing constraints
have been met when there are no negative slacks
reported in the timing violations report.

Total power Determines the best pass to be the one that has the
lowest total power (static + dynamic) of all layout passes.

6.6.1 Iteration Summary Report
The file <root_module>_iteration_summary.rpt records a summary of whether the multiple pass run was
invoked through the GUI or extended_run_lib Tcl script, with arguments for repeating each run. Each new run
appears with its own header in the Iteration Summary Report with fields RUN_NUMBER and INVOKED AS, followed
by a table containing Seed Index, corresponding Seed value, Comparison data, Report Analyzed, and Saved Design
information.
Figure 6-7. Iteration Summary Report

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 87

6.7 Post Layout Editing of I/O Signal Integrity and Delay Parameters
The Edit Post Layout Design tool in the Design Flow allows you to tune I/O signal integrity parameters and external
timing without executing Place and Route again.

Input is provided using a PDC file. From the Libero user interface, double-click Edit Post Layout Design to
open a file selection dialog box and selecting the input file. In the batch flow, you can issue the command
edit_post_layout_design <input.pdc>.

The PDC file contains one or more invocations of two PDC commands:
• edit_io
• edit_instance_delay

For more information about these commands, see the PDC Command User Guide - Polarfire.

To assist you in knowing those instances on which this tool can update delays, the Place and Route tool generates a
<root>_delayinstance.rpt report file. This report has an editable (Editable?) column with Yes and No values
that indicate whether or not a delay parameter can be edited by this tool.

The batch command edit_post_layout_design fails when any commands in the input PDC file fail. The PDC
commands fail if the syntax is incorrect, the referenced instances do not exist, or the values are out of legal ranges. If
the batch command fails, the layout state of the design does not change. If the batch command succeeds:

• Layout state changes to reflect the values in the PDC commands
• Pin report and delay instance report files are regenerated to reflect the latest values
• Downstream tools Verify Timing, Verify Power, Generate FPGA Array Data, and Generate Back Annotated Files

are invalidated.

The batch command edit_post_layout_design generates the log file <project>/designer/<root>/
top_editpostlayout_log.log to provide information about the run and which PDC file was used in the run.
This log gets appended with information from each run of the command. Each run’s start message is prefixed by
the time when the run executed. The log file can be viewed from the Reports tab (Design > Reports). The log file is
removed when Place and Route is run or cleaned.
Note:  In the following figure, downstream steps this tool invalidates are highlighted in yellow.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 88

Figure 6-8. Edit Post Layout Design Tool in Design Flow

6.8 Resource Usage
After layout, you can check the resource usage of your design.

1. From the Design menu, choose Design > Reports.
2. Click <design_name>_layout_log.log to open the log file.

The log file contains a Resource Usage report that lists the type and percentage of resource used for each resource
type relative to the total resources available for the chip.

Table 6-7. Resource Usage

Type Used Total Percentage

4LUT 400 86184 0.46

DFF 300 86184 0.34

I/O Register 0 795 0.00

Logic Element 473 86184 0.55

4LUTs are 4-input Look-up Tables that can implement any combinational logic functions with up to four inputs.

The Logic Element (LE) is a logic unit in the fabric. It may contain a 4LUT, a DFF, or both. The number of LEs in the
report includes all LEs, regardless of whether they contain 4LUT only, DFF only, or both.

6.8.1 Overlapping of Resource Reporting
The number of 4LUTs in the report is the total number used for your design, regardless of whether they are combined
with the DFFs. Similarly, the number of DFFs in the report is the total number used for your design, regardless of
whether they are combined with 4LUT’s.

In the report above, a total of 473 LEs are used for the design.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 89

• 300 of the 473 LEs have DFFs inside, which means 173 (473-300) of them have no DFFs in them. These 173
LEs use only the 4LUTs portion of the LE.

• 400 of the 473 LEs have 4LUTs inside, which means 73 (473-400) of them have no 4LUTS in them. These 73
LEs use only the DFF portion of the LE.

Table 6-8. Logical Element Calculations

Logical Element Description Calculated Logical Elements

LEs using DFF Only = 473-400 = 73

LEs using 4LUTS only = 473-300= 173

= 246 (Total of LEs using 4LUTS ONLY or DFF ONLY)

Report’s Overlapped resource = 227 (LEs using both 4LUTS and DFF)

Total number of LEs used = 473

In the following figure, the area where the two circles overlap represents the overlapped resources in the Resource
Usage report.

Figure 6-9. Overlapped Resources

6.9 Global Net Report
The Global Net Report displays all the nets that use the global routing resources of the device. This report is
generated after the Place and Route step and is available in XML format in the Reports tab (Libero SoC >
Design>Reports > <design_name>_glb_net_report.xml).

The global routing resources in Microchip FPGA devices offer a low-skew network for effective distribution of high
fanout nets including clock signals. Global routing resources include the following:

• Fabric CCC
• Global Buffers (GB)
• Row Global Buffers (RGB)

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 90

Figure 6-10. Global Net Report

The following topics describe the sections in the Global Net Report.

6.9.1 Global Nets Information
Under Global Nets Information, the GB Location column refers to the location of the global routing resource/
instance name of the macro on the chip. The location is indicated by X-Y coordinates of the global resource macro.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 91

Figure 6-11. Global Nets Information Section

6.9.2 I/O to GB Connections
The I/O to GB Connections section lists all the I/Os connected to the Global Resource/instance name of the macro.
Figure 6-12. I/O to GB Connections Section

Table 6-9. Columns in the I/O to GB Connections Section

Column Description

I/O Function I/O connection details, such as the bank name, any
hardwired GB or hardwired CCC connections, and any
dedicated SERDES/DDR connections.

• For hardwired connections, the function
name (DDRIO120PB2/MDDR_DQ_ECC1/GB12/
CCC_NE1_CLKI2) contains the GB index (GB12 in
the example above) that matches the GB index in
the To column (GBL[12] in the example above).

For routed connections, the function name does not
contain the proper GB index.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 92

...........continued
Column Description

Net Type Routed or hardwired:
• Hardwired net types are dedicated wiring resources

and have lower insertion delays.
• Routed net types are implemented using fabric

routing resources and the insertion delay (generally
higher than hardwired nets) and vary from iteration
to iteration.

6.9.3 Fabric to GB Connections
The Fabric to GB Connections section lists all the nets originating from the fabric to the Global Resources/Instance
name of the macro. The From Location column refers to the X-Y coordinates of the driver pin of the net. The nets
are routed nets, not hardwired.

Figure 6-13. Fabric to GB Connections Section
Fabric to GB Connections

From From Location To Net Na me Net Type Fanout

1 reset_ctrl_tR_core_reset_out·a (720, 160) GB(4I reset_ctrljcoreJesE!_oul ROUTED 1
2 reset_ctrljR_global_reset:O (722, 160) GB(13J resel_d�jgooal_resel_O ROUTED 3
3 serdesjSERCESJF_(l'SERCESIF_INST/lr-lST_SEROESIF_IP EPCS_RlClK_1 (72, 2) GB[2) serdesjSEROESJF_Cl'EPCS_1_RX_CU< ROUTED
4 serdesjSERCESJF _Cl'SERCESIF_INST/lr-lST_SERDESIF JP·EPCS_RJClK_O (72, 2)
5 serdesjSERCESJF _Cl'SERCESIF JNST/lr-lST_SEROESIF JP:EPCS_RlCltqOJ (72, 2)
6 serdesjpcs_ll_O_pcs_Cl'rx_rsl_n_i_O·Y (269, 54)
7 s.,.des_Vpcs_ll_1_pcs_Cl'rx_rsl_n_,_O:Y (266, 96)
8

�
desjSERCESJF _Cl'SERCESIF JNST/lr-lST_SEROESIF JP EPCS_TJClK_O (72, 2)

9 5"des_VSERCESJF _Cl'SERCESIF _INST/lr-lST_SEROESIF JP·EPCS_TJClK(OJ (72, 2)
10 s.,.desjSERCESJF _Cl'SERCESlF_INST/lr-lST_SEROESIF JP.EPCS_TJClK_1 (72, 2)

GB(OJ serdes_VSEROESJF_Cl'EPCS_O_RX_CU< ROUTED 1
GB(3! serdes_;SEROESJF_Cl'EPCS_2_RX_CU< ROUTED
GB(7] serdes_rpcs_g O pcs_Olrx_rst_n_i_0_1 ROUTED
GB(11J serdes_rpcs_ll.1 pcs_Olrx_rst_n..!_O ROUTED 1
GB(ll serdes_VSEROESJF_Cl'EPCS_O_TX_QK ROUTED
GB(5J serdes_;SEROESJF_Cl'EPCS_2_TX_QK ROUTED
GB(6J serdesjSEROESJF_Cl'EPCS_1_TX_QK ROUTED 1

6.9.4 CCC to GB Connections
The CCC to GB Connections section lists the nets originating from the Clock Conditioning Circuitry (CCC) outputs
(GLx) to the Global Resources/instance name of the macro. To minimize clock skew, CCC clock outputs usually are
hardwired dedicated connections to Global resources (GB).
Figure 6-14. CCC to GB Connections Section

6.9.5 CCC Input Connections
The CCC Input Connections section lists the nets from the I/O pins to the CCC inputs.

Net type can be routed or hardwired. Hardwired net types are dedicated wiring resources and have lower insertion
delays. Routed net types are implemented using fabric routing resources and the insertion delay (generally higher
than that of hardwired nets), varies from iteration to iteration.
Figure 6-15. CCC Input Connections Section

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 93

Table 6-10. Columns in the CCC Input Connections Section

Column Description

I/O Function I/O connection details, such as the bank name, any
hardwired GB or hardwired CCC connections, and any
dedicated SERDES/DDR connections. For hardwired
connections, the I/O function name contains the CCC
location (CCC_NE0 in the figure above).

To (Pin Swapped for Back Annotation Only) For hardwired connections, input pin of the CCC in the
back annotated netlist.

6.9.6 Local Clock Nets to RGB Connections
The Local Clock Nets to RGB Connections section lists the clock nets from the local clock nets to RGB (Row
globals). RGBs are situated on the vertical stripes of the global network architecture inside the FPGA fabric. The
global signals from the GBs are routed to the RGBs. Each RGB is independent and can be driven by fabric routing
in addition to being driven by GBs. This facilitates using RGBs to drive regional clocks spanning a small fabric area,
such as the clock network for SERDES.
Figure 6-16. Local Clock Nets to RGB Connections Section

Table 6-11. Columns in the Local Clock Nets to RGB Connections Sections

Column Description

From Driver routed to different RGBs, each with different local
fanout.

From Location X-Y coordinates of the driver of the net.

Fanout Total fanout of the net and the local fanout column gives
the fanout at the local RGB only.

RGB Location X-Y coordinates on the chip.

RGB Fanout Fanout at the local RGB.

6.9.7 Global Clock Nets to RGB Connections
The Global Clock Nets to RGB Connections section lists all nets from Globals (GBs) to Row Globals (RGBs).

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 94

Figure 6-17. Global Clock Nets to RGB Connections Section

Table 6-12. Columns in the Global Clock Nets to RGB Connections Section

Column Description

From Hardwired to different RGBs each with different local
fanout.

From Location X-Y coordinates on the chip. The Fanout column gives
the total fanout of the net.

Local Fanout Fanout local to RGB.

6.10 Verify Post Layout Implementation
The following sections describe how to verify post-implementations of your design.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 95

6.10.1 Generate Back Annotated Files
The first step when verifying the post-layout implementation generates two files:

• *ba.sdf
• *ba.v/.vhd

The *ba.sdf file is a delay file in Standard Delay Format (SDF). It is used for back annotation to the simulator.

The *ba.v/.vhd file is a post-layout flattened netlist used for back-annotated timing simulation. The file can contain
low-level macros to improve design performance.

This step allows you to select Export Enhanced min delays for best case. Checking this option exports your
enhanced min delays to include the best-case timing results in your Back Annotated File.

6.10.2 Simulate - Opens ModelSim ME
The back-annotation functions are used to extract timing delays from your post layout data. These extracted delays
are placed into a file for use by your CAE package’s timing simulator. The default simulator for Libero SoC is
ModelSim ME. You can change your default simulator in your Tool Profile.

To perform pre-layout simulation, in the Design Flow Window, under Verify Pre-Synthesized design, double-click
Simulate.

To perform timing simulation:

1. Back-annotate your design and create your testbench.
2. Right-click Simulate in the Design Flow window (Implement Design > Verify Post-Synthesis

Implementation > Simulate) and choose Organize Input Files > Organize Simulation Files.
– In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the

Source Files in the Project list box. Files already associated with the block appear in the Associated
Source Files list box.

– In most cases, you will have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of PCI
cores, add multiple files to the Associated Source Files list.

– To add a testbench: Select the testbench you want to associate with the block in the Source Files in the
Project list box and click Add to add it to the Associated Source Files list.

– To remove or change the files in the Associated Source Files list box: select the files and click Remove.
– To order testbenches: Use the up and down arrows to define the order you want the testbenches

compiled. The top level-entity should be at the bottom of the list.
3. When you are satisfied with the Associated Simulation Files list, click OK.
4. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open Interactively.

ModelSim starts and compiles the appropriate source files. When the compilation completes, the simulator
runs for 1 microsecond and the Wave window opens to display the simulation results.

5. In the Wave window, scroll to verify the logic works as intended. Use the cursor and zoom buttons to zoom in
and out and measure timing delays. If you did not create a testbench with WaveFormer Pro, you may get error
messages with the vsim command if the instance names of your testbench do not follow the same conventions
as WaveFormer Pro. Ignore the error message and type the correct vsim command.

6. When you are done, from the File menu, choose Quit.

6.10.3 Verify Timing
Using the Verify Timing Configuration dialog box, you can configure the Verify Timing tool to generate a timing
constraint coverage report along with detailed static timing analysis and violation reports based on different
combinations of process speed, operating voltage, and temperature.

The following figures show an example of the Verify Timing Configuration dialog box.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 96

Figure 6-18. Verify Timing Configuration Dialog Box – Report Tab

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 97

Figure 6-19. Verify Timing Configuration Dialog Box – Report Settings Tab

The reports can be generated in XML or text format. The following table describes the report settings.
Note:  If any options are left blank in the Report Settings tab, a tool tip error icon appears as shown in the following
figure.
Figure 6-20. Verify Timing Configuration Dialog Box - Tooltip Error

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 98

Table 6-13. Verify Timing Configuration Dialog Box Settings

Report Setting Description

Timing Report Limit the number of reported paths
per section

Number of reported paths under
each section.
Range: 1 - 20000

Limit the number of expanded paths
per section

Number of expanded paths under
each section.
Range: 1 - 20000

Limit the number of parallel paths per
expanded path to

Number of parallel paths for each
expanded path.
Range: 1 - 20000

Timing Violations Report Limit the number of reported paths
per section

Number of reported paths under
each section.
Range: 1 - 20000

Limit the number of expanded paths
per section

Number of expanded paths under
each section.
Range: 0 - 20000

Limit the number of parallel paths per
expanded path to

Number of parallel paths for each
expanded path.
Range: 1 - 20000

Maximum Slack Maximum slack threshold value in
nanoseconds. Paths are filtered
based on the slack threshold value
in Timing Violation reports.

Timing Report
Explorer

Limit the max number of paths in
Explorer

Number of input paths in Timing
Report Explorer.

Range: 1 - 10000

Timing Report Explorer can also be
opened from Design Tab > Timing
Report Explorer.

After generating a report, the Timing
Report Explorer appears in Path
View as shown in the following
figure.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 99

Figure 6-21. Timing Report Explorer - Path View

In the figure above, click any path and select the Detailed view from the settings drop down list to display a detailed
view similar to the one in the following figure.

Figure 6-22. Timing Report Explorer - Detailed View

Observe the following guidelines:

• The following warning message appears if there are no paths for a selected filter: No paths were found to
match your filter. Choose another filter or try modifying your search criteria.
Cross Probing between Timing Report Explorer and Chip-Planner is supported for nets and cells.

Mousing over the Source/Destination clock combo boxes displays tool tips similar to the following:

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 100

Figure 6-23. Example of Source Tool Tip

Figure 6-24. Example of Destination Tool Tip

6.10.4 Types of Timing Reports
From the Design Flow window > Verify Timing, you can generate the following reports. The following reports
organize timing information by clock domain. Four types of timing reports are available. To configure which reports to
generate, use the Verify Timing Configuration dialog box (Design Flow > Verify Timing > Configure Options).

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 101

Table 6-14. 

Report Description

Timing reports The following reports can be generated:

• Max Delay Static Timing Analysis report based on
Slow process, Low Voltage, and High Temperature
operating conditions.

• Min Delay Static Timing Analysis report based on
Fast process, High Voltage, and Low Temperature
operating conditions.

• Max Delay Static Timing Analysis report based on
Fast process, High Voltage, and Low Temperature
operating conditions.

• Min Delay Static Timing Analysis report based on
Slow process, Low Voltage, and High Temperature
operating conditions.

• Max Delay Static Timing Analysis report based on
Slow process, Low Voltage, and Low Temperature
operating conditions.

• Min Delay Static Timing Analysis report based on
Slow process, Low Voltage, and Low Temperature
operating conditions.

Timing violations reports Organizes timing information by clock domain. Four
types of timing violations reports are available. You can
configure which reports to generate using the Verify
Timing Configuration dialog box. The following reports
can be generated:

• Max Delay Analysis Timing Violation report
based on Slow process, Low Voltage, and High
Temperature operating conditions.

• Min Delay Analysis Timing Violation report
based on Fast process, High Voltage, and Low
Temperature operating conditions.

• Max Delay Analysis Timing Violation report
based on Fast process, High Voltage, and Low
Temperature operating conditions.

• Min Delay Analysis Timing Violation report
based on Slow process, Low Voltage, and High
Temperature operating conditions.

• Max Delay Analysis Timing Violation report
based on Slow process, Low Voltage, and Low
Temperature operating conditions.

• Min Delay Analysis Timing Violation report
based on Slow process, Low Voltage, and Low
Temperature operating conditions.

Constraints coverage report Displays the overall coverage of the timing constraints
set on the current design.
<root>_timing_constraints_coverage.xml (generated by
default)

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 102

Figure 6-25. Reports Example

The following tale describes the icons associated with reports.

Table 6-15. Report Listing Icon Legend

Icon Definition

Timing requirement met for this report

Timing requirement not met (violations) for this report

Timing report available for generation but has not been selected/configured for generation

6.10.5 SmartTime
SmartTime is the Libero SoC gate-level static timing analysis tool. With SmartTime, you can perform complete timing
analysis of your design to ensure that you meet all timing constraints and that your design operates at the desired
speed, with the right amount of margin across all operating conditions.

For information about creating and editing timing constraints, see the Timing Constraints Editor User Guide.

6.10.5.1 Static Timing Analysis (STA)
Static timing analysis (STA) identifies timing violations in your design and ensures it meets your timing requirements.
You can communicate timing requirements and timing exceptions to the system by setting timing constraints. A
static timing analysis tool then checks and reports setup and hold violations as well as violations on specific path
requirements.

STA is well-suited for traditional synchronous designs. The main advantage of STA is that, unlike dynamic simulation,
it does not require input vectors. It covers all possible paths in the design and does all the above with relatively low
run-time requirements.

STA tools report all possible paths, including false paths. False paths are timing paths in the design that do not
propagate a signal. Because STA tools do not automatically detect false paths in their algorithms, you need to identify
false paths as false path constraints to the STA tool and exclude them from timing considerations to obtain a true and
useful timing analysis.

Timing Constraints
SmartTime supports a range of timing constraints to provide useful analysis and efficient timing-driven layout.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 103

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smarttime_ce_ug.pdf

Timing Analysis
SmartTime provides analysis types that allow you to:

• Find the minimum clock period/highest frequency that does not result in a timing violations
• Identify paths with timing violations
• Analyze delays of paths that have no timing constraints
• Perform inter-clock domain timing verification
• Perform maximum and minimum delay analysis for setup and hold checks

To improve the accuracy of the results, SmartTime evaluates clock skew during timing analysis by computing
individual clock insertion delays for each register.

SmartTime checks the timing requirements for violations, such as multicycle or false paths, while evaluating timing
exceptions.

6.10.5.2 SmartTime and Place and Route
Timing constraints impact analysis the same way they affect place and route. As a result, adding and editing timing
constraints in SmartTime is the best way to achieve optimum performance.

6.10.5.3 SmartTime and Timing Reports
The following report files can be generated from SmartTime > Tools > Reports:

• Timing Report (for both Max and Min Delay Analysis)
• Timing Violations Report (for both Max and Min Delay Analysis)
• Bottleneck Report
• Constraints Coverage Report
• Combinational Loop Report

6.10.5.4 SmartTime and Cross-Probing into Chip Planner
From SmartTime, you can select a design object and cross-probe the same design object in Chip Planner. Design
objects that can be cross-probed from SmartTime to Chip Planner include:

• Ports
• Macros
• Timing Paths

For more information, see the SmartTime User’s Guide (Libero SoC > Help > Reference Manual > SmartTime
User’s Guide).

6.10.5.5 SmartTime and Cross-Probing into Constraint Editor
From SmartTime, you can cross-probe into the Constraint Editor. Select a Timing Path in SmartTime’s Analysis View
and add one of the following Timing Exception Constraints:

• False Path
• Multicycle Path
• Max Delay
• Min Delay

The Constraint Editor reflects the newly added timing exception constraint.

For more information, see the SmartTime Static Timing Analyzer User Guide.

6.10.6 Verify Power
In the Design Flow window, right-click Verify Power to display following menu options.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 104

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smarttime_sta_ug.pdf

Figure 6-26. Verify Power Right-click Menu

The following table describes the options.
Table 6-16. 

Option Description

Run Runs the default power analysis and produces a power
report. This option is functionally equivalent to double-
clicking.

Clean and Run All functionally equivalent to the sequence of Clean and
Run (described below).

Open Interactively Displays the SmartPower for Libero SoC tool (see
below)

Clean Clears the history of any previous default power
analysis, including deletion of any reports. The flow task

completion icon will also be cleared.

Configuration Options If there are options to configure, a dialog box displays
technology-specific choices.

View Report If a report is available, clicking this option adds the
Report tab to the Libero SoC GUI window and Power
Report will be selected.

6.10.7 Verify Power sub-commands
Run - Runs the default power analysis and produces a power report. This is also the behavior of a double-click to

Verify Power.

Clean and Run All - Identical to the sequence of commands "Clean" (see below) and "Run"

Open interactively - Brings up the SmartPower for Libero SoC tool (see below)

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 105

Clean - Clears the history of any previous default power analysis, including deletion of any reports. The flow task

completion icon will also be cleared.

Configure Options ... - This sub-command is only available if there are options to configure, in which case a dialog
box will pop-up presenting the user with technology-specific choices.

View Report - This sub-command is only available and visible if a report is available. When View Report is invoked,
the Report tab will be added to the Libero SoC GUI window, and the Power Report will be selected and made visible.

6.10.8 SmartPower
SmartPower is the Microchip SoC state-of-the-art power analysis tool. SmartPower allows you to visualize power
consumption and potential power consumption problems within your design globally and in-depth, so you can make
adjustments to reduce power.

SmartPower provides a detailed and accurate way to analyze designs for Microchip SoC FPGAs. From a top-level
summaries, you can drill down specific functions within the design, such as gates, nets, I/Os, memories, clock
domains, blocks, and power supply rails.

You can analyze the hierarchy of block instances and specific instances within a hierarchy. Each analysis can be
viewed in different ways to show the respective power consumption of the component pieces.

SmartPower allows you to analyze power by functional modes, such as Active, Flash*Freeze, Shutdown, Sleep,
or Static, depending on the specific FPGA family used. You can also create custom modes created in the design.
Custom modes can also be used for testing "what if" potential operating modes.

SmartPower allows you to create test scenario profiles. Using a profile, you can create sets of operational modes to
understand the average power consumed by a combination of functional modes, such as a combination of Active,
Sleep, and Flash*Freeze modes used over time in an application.

SmartPower generates detailed hierarchical reports of the power consumption of a design for easy evaluation. This
allows you to find power consumption sources and take appropriate action to reduce power.

SmartPower supports the Value-Change Dump (VCD) file format, as specified in the IEEE 1364 standard, generated
by the simulation runs. Support for this format allows you to generate switching activity information from ModelSim
or other simulators, and then use the switching activity-over-time results to evaluate average and peak power
consumption for your design.

For more information, see the SmartPower User Guide.

6.10.9 Simultaneous Switching Noise
Simultaneous Switching Noise (SSN) is the Libero SoC voltage noise analysis tool. It provides a detailed analysis
of the noise margin about each I/O pin in the design, based on the pin information and other active pins placed in
the same I/O bank of the design. The tool computes the noise margin based on I/O standards, drive strength, and
pin placement. The SSN Analyzer helps you achieve the desired voltage noise margin, resulting in improved signal
integrity.

To open the SSN Analyzer, right-click SSN Analyzer in the Design Flow window and select Open Interactively.

6.10.10 Supported Dies and Packages
The following shows supported dies and packages. Dies and packages for which characterization data is unavailable
are not supported.
Note:  In the following table, 1 ns pulse width is supported for MPF300XT/FCG1152 only.

Table 6-17. Supported Dies and Packages

Family Die Package

PolarFire MPF300XT FCG1152

— MPF100T FCG484

— MPF200T FCG484

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 106

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartpower_ug.pdf

...........continued
Family Die Package

— MPF300T FCG484/FCG1152

— MPF500T FCG1152

6.10.11 Supported I/O Standard
The SSN Analyzer supports the following I/O standards:

• LVCMOS 3.3V
• LVCMOS 2.5V
• LVCMOS 1.8V
• LVCMOS 1.5V
• LVCMOS 1.2V
• LVTTL

6.10.12 Supported I/O Types
The SSN Analyzer supports single-end I/Os only. Differential I/Os are not supported.

6.10.13 SSN Analyzer Tabs
The SSN Analyzer has three tabs:

• Noise Report
• Excluded IOs
• Summary

6.10.13.1 Noise Report Tab
The Noise Report tab displays by default when the SSN Analyzer opens. This tab lists all of the design Output and
Inout ports. Input I/Os are not supported.
Figure 6-27. SN Analyzer – Noise Report Tab

':' SSNAnaly:'1 - - •-1-m-

F<, Edit v ... H<lp

C llll l!i

--· .

Partffamei � ""'""""!"" • I

�
e/Pin Number Porttume lnstMKe�me JO Sbnd.Md Drive Strenqth (mA) SU.tic Oon'tC..,e Moise�rqin{%) WrthinGuideline .

kC'.l(LSY)

A16 - wr.obuf/UDJ\JJOPAO LVCMOS15 • , 99,n V6
All dmo!281 dtUo _ obuf(28)/U)/U JOPAO UICMOSl.S • l"l 991)1 V6

4 �nltlO,lY) .

Jl8 dataoJigJ datio_ol>uf[29)/U)/U_IOPAO LI/TTL • l'l !'l 98.38 V6
J29 dataof25] datao _ obuf[25)/1.ll/U _IOPAD LVCMOS33 • l'l l"l 98.38 V6

4 8.lnkl(2.Slf)
MlO dataol•J datto_obuf[4VU0/UJOPAD LVCM0525 12 t'l El -U.66 No
N26 1ddrenlf7J adctesst_cbuff7l,AJO,llJO? LIJCMOS25 " l'l l!:'l ·6UI No
M28 1ddress1[4J adct'esst_obuf{4!N0NJ0P LVCMOS25 " l'l l"l -S0.88 No
KlO 1ddress1!31 odcl'essl_obuf(lJNONJOP LVCMOS25 16 tl l"l -11'6 No
NZ7 •ddrcu.1121 adlh::sst_obuft2}NONJOP LVCMOS25 16 l'l l"l ·2S,Q.I No
...,., 1ddresslf2SJ adcnsst_obuf125]}..0j'\J_IO. LVCMOS2S 16 l'l l"l �7Ul No
l.28 eddrcsslf24J .dhsst_obufl�,1.Xl,NJ:O .. L\ICMOS25 16 l'l !'l •7-4.21 No
Pl) 1ddress1(23] �1_obJf123}flJOJ\JJ:O .. LVCMOS25 16 l'l l"l -72.10 No
,..,. 1ddressl[22J adctesst_obufl:22},u:Jj\.1_10 LVCMOS25 16 tl l"l -ll.03 No
N2S 1ddres5l!21J aci:t"essl_obuff_21]ft.J(l,l.1_10. LVCMOQS " l'l !'l No
IC28 addrei;5l{20] adit-esst_obufJ:20],AJO,t.J_IO. LVCMOS25 " l'l l"l -73.62 No
N24 tddrenlfl] «tct-esst_obufltJ,AJO,l.J_IOP. LVCMOS2S " I"! l"l --49.89 No
,,, 1ddressl{19J ad:tesst_obufl.t9Jft.JON_ro LVCM0525 16 !"I El -59.92 No
l.J9 1ddreHl[l5] �l_obut{15}ft,J0j'\JJ0 LVCMOS2.5 " l'l !'l •76JS No
JV 1ddteHl!l4] idctesst_obufft4jAJO,tJJO LVCMOS25 " l'l l!"l --62.78 No
l.30 1ddresslfl3] idh:Bt_i:lbufl13]N0,tl_lO LVCMOSl.5 16 l'l l"l -75.03 No
P30 •ddressl[12] adctessl_obufllZlNON..JO LVCMOS25 16 rl C 10000 fo

4 8-anltJQ.Sv)
AB/9 moo mt-0_c,buf/U)/UJOPAO L\ICMOS2S 6 rl !'l 70.52 V6
.,,,. dateo{20J datao_ c,buf[20)/U)/UJOPAO LVCMOS25 12 rl C 7-4.07 V6
U25 datao{l.SJ d,uo _ obuf(l.5)/U)/ll JOPA.0 L\ICMOS25 12 rl C 68.75 V6

---""- _.l��,.rJl.A.l-<Ub,..,,h..ft;IA.IAMJ..IQOAD-1.ltCUO(.,,;, __ _., __ Zl. _____..__ _,,.,.___ ,_ ..:.

I """""""" 11--11

Rudy Fn:SrMr1fusionZ ,Die;M.ZSQ� [Plq;i:896RIGA ISOttd: -1

The following table describes the columns in the tab.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 107

Table 6-18. Columns in the Noise Report Tab

Column Description

Bank Name/Pin Number Shows the bank number and package pin number of the
port.

Port Name Shows the name of the port.

Instance name Shows the instance name of the port.

I/O Standard Shows the I/O standards supported by SSN Analyzer.
Supported standards are:

• LVCMOS 3.3V
• LVCMOS 2.5V
• LVCMOS 1.8V
• LVCMOS 1.5V
• LVCMOS 1.2V
• LVTTL

Drive Strength (mA) Drive Strength selections are available from 2 to 12.

Static Checked: I/O is considered neither as an Aggressor nor
as a Victim. It is excluded from SSN Analysis.

Don’t Care Checked: I/O is excluded from consideration as a Victim
for Noise Margin computation. This is considered as an
Aggressor for Noise Margin computation of other I/Os.
Note:  Static and Don’t Care are mutually exclusive.

Noise Margin (%) Noise margin number computed by the SSN Analyzer.
A red negative number indicates that it is outside the
guideline of SSN analysis.

Within Guideline Yes (Positive Noise Margin) or No (Negative Noise
Margin). The Yes (within guideline) or No (outside
guideline) guideline is different for different I/O
standards:

• LVTTL/LVCMOS (3.3V): Yes (within guideline) is
defined as follows:

– A ground bounce voltage less than or equal to
1.25V and a pulse width of less than or equal
to 1 ns.

– A VDD dip voltage greater than or equal to
VIHmin and a pulse width of less than or equal
to 1 ns.

• All other LVCMOS standards (2.5V, 1.8V, 1.5V,
1.2V): A Yes (within guideline) is defined as follows:

– A ground bounce voltage less than or equal to
VILmax for ground bounce and a pulse width
of less than or equal to 1 ns.

– A VDD dip voltage greater than or equal to
VIHmin and a pulse width of less than or equal
to 1 ns.

• Noise margin violating the criteria for “Yes” is
considered to fall outside the specified guidelines,
and is reported as a “No.”

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 108

The following table describes the menu items available when you right-click an I/O in the Noise Report tab. You can
select multiple I/Os and then right-click to apply the menu items to all selected I/Os.

Table 6-19. Noise Report Right-Click Menu

Menu Description

Show in IO Editor/Chip Planner Allows you to cross-probe or reconfigure the selected
I/Os in I/O Editor or Chip Planner.
Note:  This menu item is active when the I/O Editor is
open.

Mark Selected Static Marks the selected I/Os as static (excluded from Noise
Analysis).

Unmark Selected Static Unmarks the selected I/Os as static (included for Noise
Analysis).

Mark Selected Don’t Care Marks the selected I/O as Don’t Care (not to be
considered as Victim).

Unmark Selected Don’t Care Unmarks the selected I/Os as Don’t Care (to be
considered as Victim).

Copy Selection Copies the selected I/Os to the Clipboard for pasting into
other applications.

Print Selection Copies the selected I/Os and sends to the printer.

Sort by Package Die Pad Number Sorts the pin number by the order of the I/O pad number.
Use this option to find a pin and its neighboring pins.
All used pins are arranged in order of geographical
proximity.

Search and Filter Filtering is available for Port Names. For example, if
you enter the search pattern “DATA*” in the Port Name
field and click Search, the list is populated with all I/O
names beginning with DATA. Names that do not begin
with DATA are excluded from the list. Filtering allows you
to focus on I/Os in which you are interested for SSN
analysis.

Pulse Width Settling time of the signal bounce. This is a threshold
value that the signal bounce must exceed before
the signal bounce is recognized for SSN calculation.
Choices are:

• 0ns: any signal bounce with a pulse width above
0ns is recognized for SSN calculation.

• 1ns: only signal bounces with a pulse width at or
above 1ns are recognized for SSN calculation.

Changing this selection discards changes made for the
current pulse width selection and triggers a re-analysis
based on the new pulse width.

Note:  1 ns pulse width is supported for the MPF300XT/
FCG1152 die/package only.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 109

...........continued
Menu Description

Run Analysis not active when SSN first opens. It is activated only
when you have made changes in the Noise Report.
These changes may include one or more of the
following:

• Checking/unchecking the Don’t’ Care check box for
one or more I/Os.

• Checking/unchecking the Static check box for one
or more I/Os.

When you have made your changes, click Run Analysis
to have SSN recompute the Noise Margin number.

Save Report Click to save the Noise Report in one of the following
formats:

• Text: Text file with *.txt file extension.
• CSV: Spreadsheet file with *.csv file extension.
• XML: XML file with *.xml file extension.

6.10.13.2 Excluded I/Os Tab
The Excluded I/O tab shows all I/Os excluded from Noise Analysis. Excluded I/Os include:

• I/Os on unsupported I/O standards
• I/Os marked as Static in the Noise Analysis tab
• JTAG I/Os for which noise analysis is irrelevant

Figure 6-28. SSN Analyzer – Excluded I/Os Tab

The following table describes the columns in the tab.

Note:  You can right-click an I/O previously marked as static in the Excluded I/Os list and select Unmarked
Selected Static to include it in Noise Report Analysis.

Table 6-20. Columns in the Excluded I/Os Tab

Bank Name/Pin Number Shows the bank number and package pin number of the
port.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 110

...........continued

Port Name Shows the name of the port.

Instance name Shows the instance name of the port.

I/O Standard Shows the I/O standards supported by SSN Analyzer.
Supported standards are:

• LVCMOS 3.3V
• LVCMOS 2.5V
• LVCMOS 1.8V
• LVCMOS 1.5V
• LVCMOS 1.2V
• LVTTL

Comment Reason for exclusion (for example, unsupported I/O
Standards or Marked as Static I/Os).

6.10.13.3 Summary Tab
The Summary tab summarizes the SSN Analyzer. Click Save Summary to save the summary in text, CSV, or XML
format.
Figure 6-29. SSN Analyzer - Summary Tab

6.10.14 SSN Noise Analyzer Reports Failure Procedure
If the SSN Noise Analyzer reports poor noise margin or failure, perform the following procedure to improve the noise
margin:

1. Change the I/O standard to one that has a lower noise impact for the failing I/O Bank.
2. Select the lower Drive-Strength to reduce the noise. Open the I/O Advisor to see the power/timing impact of

the specific I/O cell.
3. Rerun the SSN Analyzer to see if the noise margin of the I/O Cell improves. In this scenario, Place and Route

information remains intact.
4. If the improvement is not significant, open the Pin Attributes Editor and change the placement of the pin within

the I/O bank to a location farther away from the noisy pins.
5. Spread the failing pins across multiple I/O banks. This reduces the number of aggressive outputs on the power

system of the I/O bank.

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 111

6. Rerun Place and Route and rerun SSN Analyzer to check the Noise Report.

Figure 6-30. SSN Analyzer in the Design Flow

 Libero® SoC v2021.1
Implementing Designs

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 112

7. Configure Hardware
The following sections provide information about configuring the hardware for your designs.

7.1 Programming Connectivity and Interface
The Programming Connectivity and Interface window shows the physical chain from TDI to TDO or SPI Slave
configuration. To open this window, expand Configure Hardware in the Libero SoC Design Flow window, and then
double-click Programming Connectivity and Interface.

The Programming Connectivity and Interface view provides options for performing the following actions on non-target
devices.

Table 7-1. Programming Connectivity and Interface Options

Option Description

Select Programming Interface Select JTAG or SPI Slave mode. SPI Slave mode is
supported by FlashPro6 for PolarFire devices. JTAG is
the default interface.

Construct Chain Automatically Constructs the physical chain automatically.

Add Microsemi Device Adds a Microsemi device to the chain.

Add Non-Microsemi Device Adds a non-Microsemi device to the chain.

Add Microsemi Devices From Files Adds a Microsemi device from a programming file.

Delete Selected Devices Deletes selected devices in the grid.

Scan and Check Chain Scans the physical chain connected to the programmer
and check if it matches the chain constructed in the grid.

Zoom In Zooms into the grid.

Zoom Out Zooms out of the grid.

7.1.1 Hover Information
If you hover your pointer over a device in the grid, the device tooltip shows the following device information.

Table 7-2. 

Tooltip Description

Name User-specified device name. If you have two or more
identical devices in your chain, use this field to give them
unique names.

Device Name of the device.

File Path to the programming file.

Programming action When a programming file is loaded, select a
programming action for any device that is not a Libero
design device.

IR Length of the device instruction.

TCK Maximum clock frequency, in Hz, to program a specific
device; Libero uses this information to ensure the
programmer operates at a frequency lower than the
slowest device in the chain.

 Libero® SoC v2021.1
Configure Hardware

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 113

7.1.2 Device Chain Details
The device within the chain has the following details.

Table 7-3. Device Chain Details

Detail Description

Libero design device Red circle within Microsemi logo. Libero design device
cannot be disabled.

Left/right arrow Moves the device left or right according to the physical
chain.

Enable device Enables the device for programming.
• Green: device is enabled.
• Gray: device is disabled.

Name Name of your specified device.

File Path to the programming file.

7.1.3 Right-Click Options
The following figure shows the options that appear when you right-click your design.

Figure 7-1. Right-click Properties

Right-clicking a device displays the following options.

Table 7-4. Right-Click Options

Option Description

Set as Libero Design Device Sets the Libero design device when there are multiple
identical Libero design devices in the chain.

Configure Device Reconfigures the device. For a Libero SoC target device,
the dialog box appears, but only the device name can be
edited.

 Libero® SoC v2021.1
Configure Hardware

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 114

...........continued
Option Description

Enable Device for Programming Enables the device for programming.
• Green: enabled devices.
• Gray: disabled devices.

Load Programming File Loads the programming file for the selected device. This
option is not supported for Libero SoC target design
devices.

Set Serial Data Displays the Serial Settings dialog box, where you can
set your serialization data.

Select and Configure Action/Procedure This option applies to devices other than the Libero SoC
target design device. Choices are:

• Select an action to program: Selected action is
programmed in the Libero environment and saved
to an exported FlashPro Express job.

• Configure actions and procedures:
– Actions: List of programming actions for your

device.
– Procedures: Advanced option that allows you

to customize the list of recommended and
optional procedures for an action.

Move Device Left/Right Moves the device in the chain to left or right.

7.2 Select and Configure Actions and Procedures
The Libero SoC allows you to configure actions and procedures for devices other than the Libero SoC target design
device and select an action to program in the Libero environment. You perform these actions using the Configure
Actions and Procedures dialog box.

To display the Configure Actions and Procedures dialog box, in the Programming and connectivity interface, right-
click a non-target device and choose Select and Configure Actions/Procedures.

 Libero® SoC v2021.1
Configure Hardware

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 115

Figure 7-2. Configure Actions and Procedures Dialog Box

The following table describes the elements in the Configure Actions and Procedures dialog box.

Table 7-5. Elements in the Configure Actions and Procedures Dialog Box

Element Description

Select an action to program The selected action will be programmed in the Libero
environment.

Configure actions and procedures Configure actions and procedures:
• Actions: List of programming actions for your

device.
• Procedures: Advanced option that allows you to

customize the list of recommended and optional
procedures for an action.

Note:  You cannot select an action or configure actions
in the chain view for the target device. To configure
actions for Libero target devices, use the Configure
Actions and Procedures tool.

7.3 Programmer Settings
For the JTAG interface, you can set specific voltage and force TCK frequency values for your programmer. For the
SPI Slave interface, you can set specific voltage and force SCK frequency values for your programmer. You perform
these actions using the view the Programmer Settings dialog box.

 Libero® SoC v2021.1
Configure Hardware

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 116

To display the Programmer Settings dialog box, in the Libero SoC Design Flow window, expand Configure
Hardware and double-click Configure Programmer

OR

Right-click Configure Programmer and choose Programmer Settings.

Note:  SPI Slave mode is supported by FlashPro6 for PolarFire devices.

Figure 7-3. Programmer Settings Dialog Box (FlashPro6)

The Programmer Settings dialog box has options for FlashPro6/5/4/3/3X. The following table lists the TCK frequency
limitations for the selected programmer:

Table 7-6. TCK Frequency Limitations

Programmer Limitations

FlashPro6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20 MHz

 Libero® SoC v2021.1
Configure Hardware

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 117

...........continued
Programmer Limitations

FlashPro5 1, 2, 3, 4, 5, 6, 10, 15, 30 MHz

FlashPro4 1, 2, 3, 4, 5, 6 MHz

FlashPro3/3X 1, 2, 3, 4, 6 MHz

For information about TCK frequency limits by target device, see the target device data sheet.

During execution, the frequency set by the FREQUENCY statement in the PDB/STAPL file overrides the TCK
frequency setting in the Programmer Settings dialog box. To prevent this override, check Force TCK Frequency

The following list shows the SCK frequency limitations for the selected programmer:
• 1.00 MHz
• 2.00 MHz
• 2.50 MHz
• 3.33 MHz
• 4.00 MHz
• 5.00 MHz
• 6.67 MHz
• 8.00 MHz
• 10.00 MHz
• 13.33 MHz
• 20.00 MHz

7.3.1 FlashPro5/4/3/3X Programmer Settings
By default, Force TCK Frequency is not checked. This setting instructs the FlashPro5/4/3/3X to use the TCK
frequency specified by the Frequency statement in the PDB/STAPL file(s). If you check Force TCK Frequency,
select the appropriate MHz frequency.

For FlashPro4/3X settings, you can switch the TCK mode between Free Running Clock and Discrete Clocking.
By default, TCK Mode is set to Free Running Clock. Use Discrete Clocking when there is a JTAG non-compliant
device in a chain with Microchip devices.

After you make your selections, click OK.

Note:  The Set Vpump check box has been removed. For older projects prior to Libero SoC v12.5, if Set Vpump
was checked , the warning "Set Vpump parameter is obsolete. VPUMP will not be sensed or
driven for all devices." appears in the log window when the design opens for the first time in Libero SoC
v12.5.

7.3.2 TCK Setting (Force TCK Frequency)
If Force TCK Frequency is checked in Programmer Setting, the selected TCK value is set for the programmer and
the Frequency statement in the PDB/STAPL file is ignored.

7.3.3 Default TCK Frequency
If the IPD/STAPL file or Chain does not exist, the default TCK frequency is set to 4 MHz. If more than one Microchip
flash device is targeted in the chain, the FlashPro Express software passes through all the files and searches for the
freq keyword and the MAX_FREQ Note field. The FlashPro Express software uses the lowest value of all the TCK
frequency settings and the MAX_FREQ Note field values.

7.4 Select Programmer
The Select Programmer dialog box allows you to select the programmer you want to use.

To display the Select Programmer dialog box, in the Libero SoC Design Flow window, expand Configure Hardware
and double-click Select Programmer.

 Libero® SoC v2021.1
Configure Hardware

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 118

OR

Right-click Select Programmer.

Use the drop-down list to select the programmer you want to use. If no programmers are connected, connect a
programmer without closing the dialog box, and then click Refresh/Rescan Programmers to display the connected
programmer in the drop-down list.
Figure 7-4. Select Programmer Dialog Box

 Libero® SoC v2021.1
Configure Hardware

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 119

8. Program Design
The following topics provide program design considerations.

8.1 Generating FPGA Array Data
The Generate FPGA Array Data tool generates database files used in the following downstream tools:

• *.map files used for Programming
• RAM structural information used in Configure Design Initialization and Memories tools

To generate FPGA array data:
1. Make sure the design completed the Place and Route step. If not, Libero SoC runs the upstream tools

(Synthesis, Compile Netlist, and Place and Route) implicitly before it generates the FPGA Array Data.
2. Double-click Generate FPGA Array Data or right-click Generate FPGA Array Data in the Design Flow

window and click Run

Figure 8-1. Generate FPGA Array Data

8.2 Initializing Design Blocks
The Configure Design Initialization Data and Memories tool allows you to initialize design blocks such as LSRAM,
uSRAM, XCVR (transceivers), and PCIe using data stored in non-volatile uPROM, sNVM, or external SPI Flash
storage memory. The tool has the following tabs for defining the specification of the design initialization sequence and
the specification of the initialization clients:

• Design Initialization tab
• uPROM tab
• sNVM tab
• SPI Flash tab

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 120

• eNVM tab (applies to PolarFire SoC only)
• Fabric RAMs tab

Note:  The Configure Design Initialization Data and Memories tool can be invoked only after completing the
Generate FPGA Array Data step.

Use the tabs in the tool to configure the design initialization data and memories. If a tab title has an asterisk (*) next
to it, it means an item on that tab has been changed but not yet applied. The following table describes the buttons
common to every tab.

Table 8-1. Common Buttons on Every Tab

Button Description

Apply Click this button to save the changes made in a tab.
The Apply button saves configuration changes only. For
the initialization of the memory block to take effect,
click Generate Initialization Clients on the Device
Initialization tab.

Discard Click this button to cancel any changes made in a tab.

After completing the configuration, perform the following steps to program the initialization data:

1. Generate initialization clients.
2. Generate or export the bitstream.
3. Program the device.

When importing memory files, note that the option Use relative path allows you to choose the relative to project or
relative to environment variable, depending on the setting used in Libero. This option is extended to all memory files
that are referenced in various configurators, as well as to sNVM/uPROM/SPI-Flash update tools.

Figure 8-2. Import Memory File Dialog Box

8.2.1 Design Initialization Tab
Design Initialization is the first tab in the Configure Design Initialization Data and Memories tool. The following
topics describe the options in this tab.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 121

Figure 8-3. Design Initialization Tab

8.2.1.1 First Stage (sNVM)
In the first stage, the initialization sequence de-asserts the FABRIC_POR_N signal and starts the I/O calibration
routine. The initialization client for this stage is always placed in sNVM. It uses the last two pages of the sNVM
memory space. There is one configuration option for this stage.

Figure 8-4. Design Initialization Tab - First Stage

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 122

Table 8-2. First Stage Configuration Option

Configuration Option Description

Broadcast instructions to initialize RAMs to zeros Affects all LSRAM and uSRAM blocks in the device.
Selecting this option initializes all RAM blocks to zeros
before FABRIC PoR is asserted. To accommodate the
additional instructions, the sNVM start page will be 202.
To initialize the individual logical RAM blocks to zeros
without using this global option, select the Content filled
with 0s option in the Add Data Storage Client dialog
box, and then wait for the corresponding RAM INIT
complete signal before accessing those RAMs (see the
PolarFire FPGA Device Powerup and Reset User Guide,
which describes the INIT DONE/COMPLETE signals).
If this global option is not selected, the sNVM start page
will be 219.

8.2.1.2 Second Stage (sNVM)
In the second stage, the initialization sequence initializes the PCIe and XCVR blocks present in the design. This
stage is grayed out if the design does not have PCIe or XCVR Blocks.

The initialization client for this stage is named INIT_STAGE_2_SNVM_CLIENT. It is always placed in sNVM at the
start address of your choice. The start address can be at the start of an sNVM page (page boundary) only.

Each sNVM page is 256 bytes in size, so the valid start hexadecimal addresses are 0x0, 0x100, 0x200, and so on.
Only the plain text non-authenticated client is supported for initialization.

Figure 8-5. Design Initialization Tab - Second Stage

8.2.1.3 Third Stage (uPROM/sNVM/SPI Flash)
In the third stage, the initialization sequence initializes the Fabric RAMs present in the design. The initialization client
for this stage is placed in the memory type of the user’s choice (uPROM/sNVM/External SPI Flash). If the design
does not have any Fabric RAMs, this stage of the initialization sequence is not needed and is grayed out. Each
logical RAM block can be initialized from any of the three memory types. Use the Fabric RAMs configuration tab to
assign the memory type to the logical RAM blocks.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 123

http://www.microsemi.com/index.php?option=com_docman&%3Btask=doc_download&%3Bgid=136530

Only the memory types used by the design, as defined in the Fabric RAMs configuration tab, are selected and
enabled.
Figure 8-6. Design Initialization Tab - Third Stage

Table 8-3. Memory Types

Memory Type Description

uPROM Name of the initialization client is
INIT_STAGE_3_UPROM_CLIENT. Its start address is at
the user's choice, subject to the limitation that the start
address can only be at the start of a uPROM block. Each
uPROM block is 256 words, so the allowed hexadecimal
start addresses are 0x0, 0x100, 0x200, and so on.

sNVM Name of the initialization client is
INIT_STAGE_3_SNVM_CLIENT. Its start address is at
the user's choice, subject to the limitation that the start
address can only be at the start of an sNVM page (page
boundary). Each sNVM page is 256 bytes long, so the
allowed hexadecimal start addresses are 0x0, 0x100,
0x200, and so on.

SPI-Flash Name of the initialization client is
INIT_STAGE_3_SPIFLASH_CLIENT.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 124

...........continued
Memory Type Description

SPI-Flash Binding The four Binding options that you can select are:
• No Binding Plaintext: <root>_uic.bin file is a

script file that can be opened to see readable text.
• Binding Encrypted with Default Key:

<root>_uic.bin file is encrypted with the default
encryption key. The design version is displayed
and can be modified from Configure Programming
Options. If Default key is selected, you do not need
to specify any other details.

• Binding Encrypted with User Encryption Key 1
(UEK1): <root>_uic.bin file is encrypted with
UEK1. The design version is displayed and can
be modified from Configure Programming Options.
You must configure SPM along with UEK1. If
UEK1 is not specified, the Generate SPI Flash
Image and Export SPI Flash Image steps cause an
error. UEK1 can be configured using the Configure
Security Tool.

• Binding Encrypted with User Encryption Key 2
(UEK2): <root>_uic.bin file is encrypted with
UEK2. The design version is displayed and can
be modified from Configure Programming Options.
You must configure SPM along with UEK2. If
UEK2 is not specified, the Generate SPI Flash
Image and Export SPI Flash Image steps cause an
error. UEK2 can be configured using the Configure
Security Tool.

SPI Clock divider value Sets the clock divider value for the clock that is
generated by the System Controller. Choose the value
that meets the minimum clock width requirement of the
external SPI Flash.
Range: 1, 2, 4, 6

Default: 2

8.2.1.4 Time Out (s)
Use the Time Out (s) drop-down list to select a time-out for completing all three stages of the initialization process.
The default setting is 128, which is the maximum value.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 125

Figure 8-7. Design Initialization Tab - Time Out (s)

8.2.1.5 Auto Calibration Time Out
The Auto Calibration Time Out value specifies the time-out before which the I/O calibration instructions must be
completed. The default value is 3000 milliseconds. This time-out value applies to MPF100T, MPF200T, MPF300T,
and MPF500T devices.
Figure 8-8. Design Initialization Tab - Auto Calibration Time Out

8.2.1.6 Custom Configuration File
The Custom Configuration file contains signal integrity parameters for Transceivers. Click the Browse button at the
far right to navigate to and select a custom configuration file for Transceiver solutions. For more information, contact
Microchip Technical Support.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 126

Figure 8-9. Design Initialization Tab - Custom Configuration File

8.2.2 uPROM Tab
uPROM is the second tab in the Configure Design Initialization Data and Memories tool. Use this tab to manage data
clients targeted for uPROM memory.
Figure 8-10. uPROM Tab

The following table describes the elements in the uPROM tab.
Table 8-4. Elements in the uPROM Tab

Element Description

Add button Adds uPROM clients.

Edit button Edits uPROM clients.

Delete button Deletes uPROM clients.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 127

...........continued
Element Description

Load Design Configuration button Loads the design’s original µPROM configuration file into
the <project>/component/work/UPROM.cfg file.
This button is grayed out if the design does not have an
original uPROM configuration file.

This configuration changes when the design is updated
in the design window. If changes are made to the design
configuration after you click Apply, info icons appear next
to the Load design configuration button and the title of
the uPROM tab.

The tool-tip for both icons contains the time-stamp
information of the design configuration file. The icons
disappear the next time you click Apply.

Usage Statistics pie chart Shows memory usage for the uPROM.

8.2.2.1 Adding uPROM Clients
1. In the uPROM tab, click Add.
2. When the Add Data Storage Client dialog box appears, complete the fields (see the following figure and table).
3. Click OK.
4. Click the Apply button. The client is added to the uPROM clients table.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 128

Figure 8-11. Add Data Storage Client Dialog Box

Table 8-5. Add Data Storage Client Dialog Box

Field Description

Client name Name of the uPROM client to be added.

Content from file Navigate to and select a file whose content will be used
to fill the uPROM.

Format Memory file types. Choices are:
• Micro Binary 9-bit (default)
• Micro Binary 32-bit
• Intel-Hex
• Motorola-S
• Simple-Hex

Content filled with 0s Populates the uPROM with zeros.

Start address Start address, in hexadecimal notation, of the uPROM
client. If there are multiple uPROM clients, the
start address must not overlap; otherwise, a warning
message appears.
Range: 0 – CBFF (Hex)

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 129

...........continued
Field Description

Number of 9-bit words Number, in decimal notation, of 9-bit words to populate
the uPROM. If the number of 9-bit words exceeds
the memory size of the uPROM, an “out-of –bounds”
warning message appears.

Use for initialization of RAMs Disabled and unavailable.

Use content for simulation Disabled and unavailable.

8.2.2.1.1 uPROM Clients Table
The uPROM clients table shows the uPROM clients you add.

Each uPROM client appears on its own row. After you add a uPROM client, you can select it in this table to edit or
delete the client.

Figure 8-12. uPROM Clients Table

Table 8-6. Columns in the uPROM Clients Table

Column Description

Client Name Name you gave to the client.

Start Address Starting address you gave to the client.

9-bit words Number of 9-bit words in the client.

8.2.2.2 Editing uPROM Clients
If you need to change the settings for a uPROM client, you can edit the client.

To edit a uPROM client:
1. In the table of the uPROM tab, perform one of the following steps:

– Double-click the client you want to edit.
– Click the client you want to edit, and then click the Edit button.
– Right-click the client you want to edit, and select Edit.

2. When the Edit Data Storage Client dialog box appears, complete the fields (see the following table).

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 130

3. Click OK.
4. Click the Apply button.

Table 8-7. Edit Data Storage Client Dialog Box

Field Description

Client name Read-only field that shows the name of the uPROM
client.

Content from file Navigate to and specify a file whose content will be used
to fill the uPROM.

Content filled with 0s Populates the uPROM with zeros.

Start address Start address, in hexadecimal notation, of the uPROM
client. If there are multiple uPROM clients, the
start address must not overlap; otherwise, a warning
message appears.
Range: 0 - CBFF (Hex)

Number of 9-bit words Number, in decimal notation, of 9-bit words to populate
the uPROM. If the number of 9-bit words exceeds
the memory size of the uPROM, an “out-of –bounds”
warning message appears.

Use for initialization of RAMs Disabled and unavailable.

Use content for simulation Disabled and unavailable.

8.2.2.3 Deleting uPROM Clients
If you no longer need a uPROM client, you can delete the client.

CAUTION
A warning message does not appear before you delete a client. Therefore, be sure you no longer need a
client before you delete it.

To delete a uPROM client:
1. In the table at the bottom of the uPROM tab, perform one of the following steps:

– Click the client you want to delete, and then click the Delete button.
– Right-click the client you want to delete, and select Delete.

2. Click the Apply button.

8.2.3 sNVM Tab
sNVM is the third tab in the Configure Design Initialization Data and Memories tool. Use this tab to manage data
clients targeted for sNVM memory. The table in the tab is automatically populated if Broadcast instructions to
initialize RAM’s to zero’s is checked in the Design Initialization tab.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 131

Figure 8-13. sNVM Tab with Broadcast Option Enabled

Figure 8-14. sNVM Tab without Broadcast Option Enabled

The following table describes the elements in the sNVM tab.
Table 8-8. Elements in the sNVM Tab

Element Description

Add button Adds sNVM clients.

Edit button Edits sNVM clients.

Delete button Deletes sNVM clients.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 132

...........continued
Element Description

Load Design Configuration button Loads the design’s original sNVM configuration file into
the <project>/component/work/sNVM.cfg file.
This button is grayed out if the design does not have an
original sNVM configuration file.

This configuration changes when the design is updated
in the design window. If changes are made to the design
configuration after you click Apply, info icons appear next
to the Load design configuration button and the title of
the sNVM tab.

The tool-tip for both icons contains the time-stamp
information of the design configuration file. The icons
disappear the next time you click Apply.

Usage Statistics pie chart Shows available, used, and free memory, in pages, for
all sNVM clients.

8.2.3.1 Adding sNVM Clients
1. In the sNVM tab, click the Add drop-down list, and then select the client you want to add (see the following

figure).
Figure 8-15. sNVM Client Selections

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 133

2. Complete the fields in the dialog box, and then click OK (see the following sections).
3. Click the Apply button. The client is added to the sNVM clients table.

8.2.3.1.1 Settings for Add PlainText and Add CipherText Clients

In the sNVM tab, click the Add drop-down list, and then select the Add Plain Text NonAuthenticated Client to add
the client to the sNVM clients table.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 134

Figure 8-16. Add Plain Text NonAuthenticated Client Dialog Box

Table 8-9. Fields in the Add PlainText NonAuthenticated Client Dialog Box

Field Description

Client name Name of the sNVM client to be added.

Content from file Navigate to and specify a file whose content will be used
to fill the sNVM.
Note:  If you select the format Intel-HEX, the Base
address specified is subtracted from user address
records. Intel-Hex files have Extended Linear and
Extended Segment addresses. The Complete Starting
address of the Linear or Segment address in the Hex
file must be specified. For example, if the Intel-Hex file
has the Extended Linear address 2022, specify the base
address 20220000.

Content filled with 0s Populates the sNVM with zero’s.

No content Client is a placeholder and will not be programmed.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 135

...........continued
Field Description

Start page Start page, in decimal notation, of the sNVM client.
sNVM client address starts at page boundaries. If there
are multiple sNVM clients, their start page cannot be the
same; otherwise, a warning message appears.
Range: 0 – 220 (decimal)

Number of bytes Total number, in decimal notation, of bytes to populate
the sNVM. If the number of bytes exceeds the memory
size of the sNVM, an out-of–bounds warning message
appears.
Range: 1 – 47376

Use content for simulation Check if this client should be loaded for the simulation
run.

Fabric access Allows you to read from Fabric, write to Fabric, or both.

MSS access Allows you to read from MSS, write to MSS, or both.

8.2.3.1.2 Settings for Boot Mode 2 Clients
In this boot mode, you specify the start page in SNVM. All authenticated/encrypted clients will share the same USK. If
you add authenticated/encrypted clients, you must create a USK client to specify the USK.

Figure 8-17. Add PlainText Authenticated Boot Mode 2 Client Dialog Box

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 136

Figure 8-18. Add CipherText Authenticated Boot Mode 2 Client Dialog Box

Table 8-10. Fields in the Boot Mode 2 Client Dialog Box

Field Description

Client name Read-only field that shows the name of the sNVM client.

Content from file Navigate to and specify a file whose content will be used
to fill the sNVM.
Note:  If you select the format Intel-HEX, the Base
address specified is subtracted from user address
records. Intel-Hex files have Extended Linear and
Extended Segment addresses. The Complete Starting
address of the Linear or Segment address in the Hex
file must be specified. For example, if the Intel-Hex file
has the Extended Linear address 2022, specify the base
address 20220000.

Format Memory file types. Choice is Intel-Hex. The Intel-Hex file
is generated using Soft Console.

Base Address Base address that is subtracted from the user address
records for Intel-Hex files.

Start page Start page, in decimal notation, of the sNVM client.
sNVM client address starts at page boundaries. If there
are multiple sNVM clients, their start page cannot be the
same; otherwise, a warning message appears.
Range: 0 – 220 (decimal)

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 137

...........continued
Field Description

Number of bytes Read-only field that shows the total number of bytes
to populate the sNVM. The value is shown in decimal
notation. If the number of bytes exceeds the memory
size of the sNVM, an out-of–bounds warning message
appears.
Range: 1 – 47376

8.2.3.1.3 Settings for Add USK Clients

Figure 8-19. Add USK Client Dialog Box

Table 8-11. Fields in the Add USK Client Dialog Box

Field Description

Start page Start page can vary between 0 and 220.

USK Key USK key (24 hexadecimal characters). A random key
can be generated by clicking the padlock icon to the right
of this field.

Reprogram Check if this client should be programmed.

Use content for simulation Check if this client should be loaded for the simulation
run.

Use as ROM Check if this client should be used as ROM.

8.2.3.1.4 sNVM Clients Table
The sNVM clients table shows the sNVM clients you add.

Each sNVM client appears on its own row. After you add an sNVM client, you can select it in this table to edit or
delete the client.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 138

Figure 8-20. sNVM Clients Table

The following table describes the columns in the sNVM clients table.
Table 8-12. Columns in the sNVM Clients Table

Column Description

Client Name Name you gave to the client.

Start Page Starting page you gave to the client.

Number of bytes Number of bytes in the client.

End Page Ending page that Libero SoC ascertained based on the
start page you provided.

8.2.3.2 Editing sNVM Clients
If you need to change the settings for an sNVM client, you can edit the client.

To edit an sNVM client:
1. In the table of the sNVM tab, perform one of the following steps:

– Double-click the client you want to edit.
– Click the client you want to edit, and then click the Edit button.
– Right-click the client you want to edit, and select Edit.

2. When the dialog box appears, complete the fields (see Settings for Add PlainText and Add CipherText Clients,
Settings for Boot Mode 2 Clients, or Settings for Add USK Clients).

3. Click OK.
4. Click the Apply button.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 139

8.2.3.3 Deleting sNVM Clients
If you no longer need an sNVM client, you can delete the client.

CAUTION
A warning message does not appear before you delete a client. Therefore, be sure you no longer need a
client before you delete it.

To delete an sNVM client:
1. In the table at the bottom of the sNVM tab, perform one of the following steps:

– Click the client you want to delete, and then click the Delete button.
– Right-click the client you want to delete, and select Delete.

2. Click the Apply button.

8.2.4 SPI Flash Tab
SPI Flash is the fourth tab in the Configure Design Initialization Data and Memories tool. Use this tab to enable auto
update and select the SPI flash memory size in kilobytes. The configuration is saved in the spiflash.cfg file in the
Libero design implementation folder.
Figure 8-21. SPI Flash Tab

The following table describes the elements in the SPI Flash tab.
Table 8-13. Elements in the SPI Flash Tab

Element Description

Add button Adds SPI Flash clients.

Edit button Edits SPI Flash clients.

Delete button Deletes SPI Flash clients.

Program All This option selects all clients for programming at once. It
is enabled when there is at least one unselected client.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 140

...........continued
Element Description

Bypass All This option unselects all clients, except for STAGE 3
Initialization client. It is enabled if there is at least one
client besides the STAGE 3 Initialization that is selected
for programming (STAGE 3 Initialization client must
always be programmed).

Enable Auto Update check box Enables auto update on the target device. The bitstream
generated in Libero enables this feature.

If you check this option, two SPI Bitstreams can be
added.

• One for auto update.
• Another for recovery/golden.

The tool enforces the recovery/golden bitstream to be
at index 0 and the auto update bitstream to be at index
1. The auto update bitstream design version must be
greater than the design version of the recovery/golden
bitstream.

SPI Flash memory size Selects the memory size, in KB, for the SPI Flash.

Usage Statistics pie chart Shows available, used, and free memory, in KB, for all
SPI Flash clients.

8.2.4.1 Adding SPI Flash Clients
1. In the SPI Flash tab, click the Add drop-down list, and then select the client you want to add (see the following

figure).
Figure 8-23. SPI Flash Client Selections

2. Complete the fields in the dialog box, and then click OK (see the following sections).
3. Click the Apply button. The client is added to the SPI Flash clients table.

8.2.4.1.1 Settings for Add SPI Bitstream Client

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 141

Figure 8-24. Add SPI Bitstream Client Dialog Box

Table 8-14. Fields in the Add SPI Bitstream Client Dialog Box

Client Guideline

Name Name of the SPI bitstream client.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 142

...........continued
Client Guideline

Type Type of the SPI bitstream client. Choices are:

• SPI Bitstream Client for IAP: Adds a SPI Client
for IAP. The total number of SPI Bitstream
Clients allowed including Recovery/Golden and
Auto Update Clients is 255. Index range: 2 - 255

• SPI Bitstream Client for Recovery/Golden:
Highlighted in yellow in the client table in this tab.
Required if a SPI Bitstream is added. There can
be only one SPI Bitstream configured as Recovery/
Golden. An error message appears if none is
configured or more than one is configured. Index
0 is reserved for this client.

– If Auto Update is enabled, the SPI Bitstream
Client for Recovery/Golden must have a
Design Version smaller than the Design
Version for the SPI Bitstream Client for Auto
Update.

– Do not use the master file for Recovery/
Golden client with IAP.

– If Back Level Protection is enabled in
the Configure Security tool, Programming
Recovery fails if the Back Level Version
programmed in the device is greater than
or equal to the Design Version of the SPI
Bitstream Client for Recovery/Golden.

– To allow for programming Recovery to pass,
import a Bitstream that has been exported with
the Bypass Back Level Protection option.

Note:  Bypass Back Level protection feature
is supported only for SPI Bitstream clients for
Recovery/Golden.

• SPI Bitstream Client for Auto Update: Highlighted
in green in the client table in this tab. To add a
SPI Client for Auto Update, check the Enable Auto
Update check box in this tab. This client is optional.
The Design Version of this client must be greater
than the Design Version for the SPI Bitstream Client
for Recovery/Golden. Index 1 is reserved for this
client.
Note:  The tool rejects a Bitstream file with Bypass
Back Level Protection enabled for this type of client.

• Filled with 1s: Populates the SPI bitstream client
with one’s.

Start address Start address, in hexadecimal notation, of the SPI
bitstream client. sNVM client address starts at page
boundaries.

Size in bytes Size, in bytes, of the SPI bitstream client.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 143

8.2.4.1.2 Settings for Add Data Storage Client

Figure 8-25. Add Data Storage Client Dialog Box

Table 8-15. Fields in the Add Data Storage Client Dialog Box

Client Guideline

Name Name of the SPI flash data storage client.

Content Choices are:
• Intel = Hex Files (*.hex, *.ihx)
• Filled with 1s: Populates the data storage client with

one’s.

Start address Start address, in hexadecimal notation, of the data
storage client.

Size in bytes Size of bytes, in decimal notation, of the data storage
client.

8.2.4.1.3 SPI Flash Clients Table
The SPI Flash clients table shows the SPI Flash clients you add.

Each SPI Flash client appears on its own row. After you add a SPI Flash client, you can select it in this table to edit or
delete the client.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 144

Figure 8-26. SPI Flash Clients Table

Table 8-16. Columns in the SPI Flash Clients Table

Column Description

Program Check boxes for selecting clients that will be enabled or
disabled for programming. Clients whose content is filled
with 1s cannot be enabled for programming.

Name Name you gave to the client.

Type Type of client. Choices are:
• SPI Bitstream for Recovery/Golden
• SPI Bitstream for IAP
• SPI Bitstream for Auto Update
• Data Storage

Index • Index 0 is reserved for SPI Bitstream for Recovery/
Golden.

• Index 1 is reserved for auto update.

The index for an IAP client can be in the range of 2 -
255.

Start Address Starting address you gave to the client.

End Address Ending address that Libero SoC ascertained based on
the start address you provided.

Content Choices are:
• .spi file: spi bitstream clients.
• intel-hex(.hex or .ihx): data storage clients.

Design Version Client design version.

Bypass Back Level
Protection for Recovery/Golden bitstream

This feature is enabled for only the SPI Bitstream clients
for Recovery/Golden.

8.2.4.2 Editing SPI Flash Clients
If you need to change the settings for a SPI Flash client, you can edit the client.

To edit a SPI Flash client:
1. In the table of the SPI Flash tab, perform one of the following steps:

– Double-click the client you want to edit.
– Click the client you want to edit, and then click the Edit button.
– Right-click the client you want to edit, and select Edit.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 145

2. When the dialog box appears, complete the fields (see 8.2.4.1.1 Settings for Add SPI Bitstream Client or
8.2.4.1.2 Settings for Add Data Storage Client).

3. Click OK.
4. Click the Apply button.

8.2.4.3 Deleting SPI Flash Clients
If you no longer need a SPI Flash client, you can delete the client.

CAUTION
A warning message does not appear before you delete a client. Therefore, be sure you no longer need a
client before you delete it.

To delete a SPI Flash client:
1. In the table at the bottom of the SPI Flash tab, perform one of the following steps:

– Click the client you want to delete, and then click the Delete button.
– Right-click the client you want to delete, and select Delete.

2. Click the Apply button.

8.2.5 Fabric RAMs Tab
The Fabric RAMs tab allows you to select initialization options for Dual-Port SRAM, Two-Port SRAM, and μSRAM
memory blocks in your design.

Figure 8-27. Fabric RAMs Tab

The following table describes the elements in the Flash RAMs tab.
Table 8-17. Elements in the Flash RAMs Tab

Element Description

Load design configuration button Resets all Fabric RAM clients to the initial configuration
that was in effect the first time you clicked Apply. Clicking
this button overrides any subsequent commands you
applied and resets the Fabric RAM clients table.

Edit button Edits Fabric RAMs clients.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 146

...........continued
Element Description

Initialize all clients from drop-down list Initializes clients from SmartDesign.

Filtered out Inferred RAMs check box Filters out the inferred RAMs and shows only the RAMs
that were generated using the Configurator.

Usage Statistics, LSRAM pie chart Shows available, used, and free memory, in bytes, for
large static random access memory (LSRAM).

Usage Statistics, uSRAM pie chart Shows available, used, and free memory, in bytes, for
micro SRAMs (uSRAM).

8.2.5.1 Initializing Fabric RAM Clients
1. In the Fabric RAMs tab, click the Initialize all clients from drop-down list, and then select the client you want

to initialize (see the following figure). Your selection appears in the Storage Type column in the Fabric RAMS
client table.
Note:  Selecting User Selection indicates that each Fabric RAM client will be configured separately.

Figure 8-28. Fabric RAMs Client Selections

8.2.5.1.1 Fabric RAMs Clients Table
The Fabric RAMs clients table shows the Fabric RAM clients you initialize.

Each Fabric RAM client appears on its own row. After you add a Fabric RAM client, you can select it in this table to
edit the client.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 147

Figure 8-29. Fabric RAMs Clients Table

Table 8-18. Columns in the Fabric RAMs Clients Table

Column Description

Logical Instance Name Name of the logical instance that indicates the memory
type.

PortA
Depth*Width

Depth and width of Port A.

PortB
Depth*Width

Depth and width of Port B.

Memory Content Shows information about the content held in memory.

Storage Type Storage type you selected for the client.

Memory Source Shows the memory source (for example, Synthesis,
Configurator, and so on).

8.2.5.2 Editing Fabric RAM Clients
If you need to change the settings for a Fabric RAM client, you can edit the client.

To edit a Fabric RAM client:
1. In the table of the Fabric RAM tab, perform one of the following steps:

– Double-click the client you want to edit.
– Click the client you want to edit, and then click the Edit button.
– Right-click the client you want to edit, and select Edit.

2. When the Edit Fabric RAM Initialization dialog box appears, complete the fields (see the following figure and
table).

3. Click OK.
4. Click the Apply button.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 148

Figure 8-30. Edit Fabric RAM Initialization Client Dialog Box

Table 8-19. Fields in the Edit Fabric RAM Initialization Client Dialog Box

Option Description

Client name Read-only field that shows the name of the client.

Physical Name Read-only field that shows the physical name of the
client.

RAM Initialization Options Choices are:
• Content from file: Click the Browse button to go

to the location of a memory file, and then import
the file to the memory block. By default, the same
memory file specified in the memory configurator is
used. Supported memory file formats are:

– Intel-HEX (*.hex)
– Motorola (*.s)
– Simple-Hex (*.shx)
– Microsemi-Binary (*.mem)

• Content Filled with 0s: Memory block is filled with
zeros for initialization.

• No Content: Memory block is not initialized.

Optimize for Read-only field.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 149

...........continued
Option Description

Storage Type If you change the storage type for a client to a selection
other than the one previously chosen for all clients, the
Initialize all clients from value also changes. Choices
are:

• sNVM
• uPROM
• SPI-Flash (default)

8.2.6 eNVM Tab (PolarFire SoC Only)
PolarFire SoC users can use the eNVM tab to manage and configure eNVM clients. Libero SoC supports 512 pages.

The procedures for adding, editing, and deleting eNVM clients are similar as those for adding, editing, and deleting
sNVM clients, except that you can add only Add Plaintext Boot Mode 1 and Add Plaintext Boot Mode 3.

Figure 8-31. eNVM Tab

8.2.6.1 Adding eNVM Clients
1. In the eNVM tab, click the Add drop-down list, and then select the client you want to add (see the following

figure).

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 150

Figure 8-32. eNVM Client Selections

2. Complete the fields in the dialog box, and then click OK (see the following sections).
3. Click the Apply button. The client is added to the eNVM clients table.

8.2.6.1.1 Settings for Boot Mode 1 Clients
In this boot mode, the Core Complex boots directly from a specified address in eNVM with no authentication. The
Start Page of of Boot Mode 1 client cannot be modified.

Note:  eNVM memory can have one client only: Boot Mode 1 or Boot Mode 3.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 151

Figure 8-33. Boot Mode 1 Client Dialog Box

Table 8-20. Fields in the Boot Mode 1 Client Dialog Box

Field Description

Client name Read-only field that shows the name of the eNVM client.

Content from file Navigate to and specify a file whose content will be used
to fill the eNVM.
Note:  If you select the Intel-HEX format, the Base
address specified is subtracted from user address
records. Intel-Hex files have Extended Linear and
Extended Segment addresses. The Complete Starting
address of the Linear or Segment address in the Hex
file must be specified. For example, if the Intel-Hex file
has the Extended Linear address 2022, specify the base
address 20220000.

Format Memory file types. Choice is Intel-Hex. The Intel-Hex file
is generated using Soft Console.

Base Address Read-only field that shows the base address that is
subtracted from the user address records for Intel-Hex
files.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 152

...........continued
Field Description

Start page Read-only field that shows the start page, in decimal
notation, of the eNVM client. eNVM client address
starts at page boundaries. If there are multiple eNVM
clients, their start page cannot be the same; otherwise, a
warning message appears.
Range: 0 – 220 (decimal)

Number of bytes Read-only field that shows the total number of bytes
to populate the eNVM. The value is shown in decimal
notation. If the number of bytes exceeds the memory
size of the eNVM, an out-of-bounds warning message
appears.
Range: 1 – 47376

8.2.6.1.2 Settings for Boot Mode 3 Clients
In this boot mode, you specify the start page in eNVM. You must specify the public keys x and y, along with SBIC
reset.

Note:  An eNVM client can have one client only: Boot Mode 1 or Boot Mode 3.

Figure 8-34. Boot Mode 3 Client Dialog Box

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 153

Table 8-21. Fields in the Boot Mode 3 Client Dialog Box

Field Description

Client name Read-only field that shows the name of the eNVM client.

Content from file Navigate to and specify a file whose content will be used
to fill the eNVM.
Note:  If you select the format Intel-HEX, the Base
address specified is subtracted from user address
records. Intel-Hex files have Extended Linear and
Extended Segment addresses. The Complete Starting
address of the Linear or Segment address in the Hex
file must be specified. For example, if the Intel-Hex file
has the Extended Linear address 2022, specify the base
address 20220000.

Format Memory file types. Choice is Intel-Hex. The Intel-Hex file
is generated using Soft Console.

Base Address Read-only field that shows the base address that is
subtracted from the user address records for Intel-Hex
files.

Start page Read-only field that shows the start page, in decimal
notation, of the eNVM client. eNVM client address
starts at page boundaries. If there are multiple eNVM
clients, their start page cannot be the same; otherwise, a
warning message appears.
Range: 0 – 220 (decimal)

Number of bytes Read-only field that shows the total number of bytes
to populate the eNVM. The value is shown in decimal
notation. If the number of bytes exceeds the memory
size of the eNVM, an out-of–bounds warning message
appears.
Range: 1 – 47376

Public Key X A unique secret number is generated and known only to
the generated person. For more information, see x9.org/.

Public Key Y A number that corresponds to a private key, but does
not need to be kept secret. The public key can be used
to determine whether a signature is genuine without
requiring the private key to be divulged. For more
information, see x9.org/.

8.2.6.1.3 eNVM Clients Table
The eNVM clients table shows the eNVM clients you initialize.

Each eNVM client appears on its own row. After you add an eNVM client, you can select it in this table to edit the
client.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 154

https://x9.org/
https://x9.org/

Figure 8-35. eNVM Clients Table

Table 8-22. Columns in the eNVM Clients Table

Column Description

Client Name Name you gave to the client.

Start Page Starting page you gave to the client.

Number of bytes Number of bytes in the client.

End page Ending page that Libero SoC ascertained based on the
start page you provided.

8.2.6.2 Editing eNVM Clients
If you need to change the settings for an eNVM client, you can edit the client.

To edit an eNVM client:
1. In the table of the eNVM tab, perform one of the following steps:

– Double-click the client you want to edit.
– Click the client you want to edit, and then click the Edit button.
– Right-click the client you want to edit, and select Edit.

2. When the dialog box appears, complete the fields (see 8.2.6.1.1 Settings for Boot Mode 1 Clients or
8.2.6.1.2 Settings for Boot Mode 3 Clients).

3. Click OK.
4. Click the Apply button.

8.2.7 Deleting eNVM Clients
If you no longer need an eNVM client, you can delete the client.

CAUTION
A warning message does not appear before you delete a client. Therefore, be sure you no longer need a
client before you delete it.

To delete an eNVM client:
1. In the table at the bottom of the eNVM tab, perform one of the following steps:

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 155

– Click the client you want to delete, and then click the Delete button.
– Right-click the client you want to delete, and select Delete.

2. Click the Apply button.

8.3 Generating Initialization Clients
To generate the initialization clients, perform one of the following steps in the Design Flow window:

• Double-click Generate Design Initialization Data.
OR

• Right-click Generate Design Initialization Data and choose Run.

Either step causes Libero SoC to perform the following actions:

• Generates memory files corresponding to the three stages of the initialization sequence.
• Removes all pre-existing initialization clients.
• Creates initialization clients for each stage and places them in their target memories (see the following table).

For more information, see 8.2 Initializing Design Blocks.
Table 8-23. Client Initialization Stages

Stage Description

First stage initialization client Client is always placed in sNVM. The default start
address is either 0xca00 (page 202), or 0xdb00 (page
219) if Broadcast instructions to initialize RAM’s to
zero’s is disabled in the Design Initialization tab.

Second stage initialization client Client is created when there are PCIe blocks or
Transceiver blocks in the design. The client is always
placed in sNVM at the start address you specified in
the Design Initialization tab of the Configure Design
Initialization Data and Memories tool.

Third stage initialization client Client is created only when there are Fabric RAMs in
the design. The client can be placed in any uPROM,
sNVM, or SPI memories at a start address you specify.
You specify the target memory and target start address
in the Design Initialization tab of the Configure Design
Initialization Data and Memories tool.

8.4 Configuring Actions and Procedures
The Configure Actions and Procedures tool allows you to configure actions with optional or recommended
procedures for a Libero target device. The information is saved and can be used by the Run Action tool.

Observe the following guidelines when using this tool:

• Available actions and their procedures depend on current bitstream components selected in the Generate
Bitstream and Configure Options tools.

• Changing procedures for the action selected to run invalidates the Run Action tool state. Changing any other
action does not affect the Run Action tool state.

To run the Configure Actions and Procedures tool, from the Libero Design Flow window, expand Program Design
and double-click Configure Actions and Procedures.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 156

The Configure Actions and Procedures dialog box opens. The actions and procedures shown depend on the device
family you use and the bitstream components selected in the Generate Bitstream and Configure Options tools.
Figure 8-36. Configure Actions and Procedures Dialog Boxe Configure Actions and Procedures dialog box opens. See the following example figu

8.4.1 Programming File Actions and Supported Procedures
The following table lists programming file actions and supported procedures.

• Mandatory procedures are grayed out and not selectable, and must be performed.
• Recommended procedures are shown in green, and can be included or excluded.
• Optional procedures are shown in blue, and can be included or excluded.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 157

Table 8-24. Programming File Actions and Supported Procedures

Action Procedures

DEVICE_INFO • INIT_VARIABLES_FOR_ACTION
• SET_DEVICE_INFO_ACTIONTYPE
• VERIFY_IDCODE
• DO_DEVICE_INFO
• DO_EXIT

ENC_DATA_AUTHENTICATION • INIT_VARIABLES_FOR_ACTION
• SET_AUTHORIZATION_ACTIONTYPE
• VERIFY_IDCODE
• DO_AUTHENTICATION
• DO_EXIT

ERASE • INIT_VARIABLES_FOR_ACTION
• SET_ERASE_ACTIONTYPE
• VERIFY_IDCODE
• PROC_ENABLE
• DO ERASE DO_EXIT

PROGRAM • INIT_VARIABLES_FOR_ACTION
• SET_PROGRAM_ACTIONTYPE
• VERIFY_IDCODE
• PROC_ENABLE
• DO_PROGRAM
• DO_VERIFY (optional)
• DO_EXIT

READ_IDCODE • INIT_VARIABLES_FOR_ACTION
• SET_READ_IDCODE
• VERIFY_IDCODE
• PRINT_IDCODE
• DO_EXIT

VERIFY • INIT_VARIABLES_FOR_ACTION
• SET_VERIFY_ACTIONTYPE
• VERIFY_IDCODE
• PROC_ENABLE
• DO_VERIFY
• DO_EXIT

VERIFY_DIGEST • INIT_VARIABLES_FOR_ACTION
• VERIFY_IDCODE PROC_ENABLE
• DO_ENABLE_FABRIC (recommended)
• DO_ENABLE_SNVM (recommended)
• DO_ENABLE_ENVM(recommended)
• DO_ENABLE_SECURITY (recommended)
• DO_VERIFY_DIGEST (recommended)
• DO_EXIT

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 158

...........continued
Action Procedures

ZEROIZE_LIKE_NEW • INIT_VARIABLES_FOR_ACTION
• VERIFY_IDCODE
• DO_ZEROIZE_LIKE_NEW DO_EXIT

ZEROIZE_UNRECOVERABLE • INIT_VARIABLES_FOR_ACTION
• VERIFY_IDCODE
• DO_ZEROIZE_UNRECOVERABLE
• DO_EXIT

8.4.2 Programming File Actions and Descriptions
The following table lists programming file actions and descriptions.

Table 8-25. Programming File Actions

Action Description

PROGRAM Programs all selected family features:
• FPGA Array
• Targeted sNVM clients
• Targeted eNVM clients
• Security settings

ERASE Erases the selected family features for:
• FPGA Array
• Security settings

VERIFY_DIGEST Calculates the digests for the components (Custom Security, Fabric, or sNVM or
eNVM) included in the bitstream and compares them against the programmed
values.

VERIFY Verifies all selected family features for:
• FPGA Array
• Targeted sNVM clients
• Targeted eNVM clients
• Security settings

ENC_DATA_AUTHENTICA
TION

Encrypted bitstream authentication data.

READ_IDCODE Reads the device ID code from the device.

DEVICE_INFO Displays the IDCODE, design name, checksum, and device security settings and
programming environment information programmed into the device.

8.4.3 Options for Specific Programming Actions
The following table lists the options available for specific programming actions.

To configure actions for other JTAG devices, use the Programming Connectivity and Interface tool.
Note:  The eNVM feature is available for PolarFire SoC devices only.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 159

Table 8-26. Programming File Actions - Options

Action Option Description

PROGRAM DO_VERIFY Enable or disable programming
verification.

VERIFY_DIGEST DO_ENABLE_FABRIC Include Fabric and Fabric configuration in
the digest check.

VERIFY_DIGEST DO_ENABLE_SNVM Include the sNVM in the digest check.

VERIFY_DIGEST DO_ENABLE_ENVM Include the eNVM in the digest check.

VERIFY_DIGEST DO_ENABLE_SECURITY Include security policy settings, and
UPK1, UEK1, User Key Set 2 (UPK2 and
UEK2), DPK, and SMK security segments
in the digest check.

8.5 Configuring I/O States During JTAG Programming
You can specify I/O states either prior to programming or during programming. The following topics describe both
methods.

8.5.1 Specifying I/O States Prior to Programming
This feature is not supported for PolarFire SoC. The Libero SoC v12.5 hard-codes all I/Os to tri-state after you
complete the layout.

In the Libero SoC Design Flow window, expand Program Design and double-click Configure I/O States During
JTAG Programming. The default state for all I/Os is Tri-state.

8.5.2 Specifying I/O States During Programming
Use the following procedure to specify I/O states during programming or when exporting a bitstream.

1. Click a column header to sort the entries by that header, and then select the I/Os you want to modify.
2. Set the I/O output state using either basic I/O settings to accept default I/O settings for your pins (see the

following table) or custom I/O settings to customize the settings for each pin.
Table 8-27. Basic I/O State Settings

Setting Description

1 I/O is set to drive out logic High.

0 I/O is set to drive out logic Low.

Last Known State I/O is set to the last value that was driven out prior to
entering the programming mode, and then held at that
value during programming.

Z - Tri-State I/O is tristated with weak pull up (10k Ω).

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 160

Figure 8-37.  I/O States During Programming Window

3. Click OK to save your settings.

8.5.2.1 Configuring Custom Settings
The I/O States During Programming dialog box allows you to specify custom settings for I/Os in your programming
file. This is useful if you want to set an I/O to drive out specific logic, or if you want to use a custom I/O state to
manage settings for each Input, Output Enable, and Output associated with an I/O.
Figure 8-38. I/O States During Programming Dialog Box

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 161

Table 8-28. Elements in the I/O States During Programming Dialog Box

Element Description

Load from file button Loads an I/O settings (*.ios) file that you can use to
import saved custom settings for your I/Os. The exported
IOS file has the following format:

• Used I/Os have a file entry with the following
format:
set_prog_io_state -portName
{<design_port_name>} -input <value> -
outputEnable <value> - output <value>

• Unused I/Os have a file entry with the following
format:
set_prog_io_state -pinNumber
{<device_pinNumber>} -input <value> -
outputEnable <value> - output <value>

In the above formats, <value> is one of the values
shown in the key in the following table.

Save to file button Saves your I/O Settings File (*.ios) for future use. This is
useful if you set custom states for your I/Os and want to
use them again later with a PDC file.

Port Name column Names of all the ports in your design.

Macro Cell column I/O types, such as INBUF, OUTBUF, PLLs, and so on.

Pin Number column Package pin associated with the I/O.

I/O State (Output Only) column Sets your I/O states during programming (see the
Default I/O Output Settings table below). This column
header changes to Boundary Scan Register if you select
the Show BSR Details check box.

Boundary Scan Registers - Enabled with Show BSR
Details

Sets your I/O state to a specific output value during
programming and allows you to customize the values
for the Boundary Scan Register (Input, Output Enable,
and Output). You can change any Don't Care value in
Boundary Scan Register States without changing the
Output State of the pin (as shown in the BSR Details
I/O Output Settings table below).

Examples:
• To Tri-State a pin during programming, set Output

Enable to 0; the Don't Care indicates that the other
two values are immaterial.

• To have a pin drive a logic High and have a logic
1 stored in the Input Boundary scan cell during
programming, set all the values to 1.

Table 8-29. Default I/O Output Settings

Output State Settings

Input Control (Output Enable) Output

Z (Tri-State) 1 0 0

0 (Low) 1 1 0

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 162

...........continued
Output State Settings

Input Control (Output Enable) Output

1 (High) 0 1 1

Last_Known_State Last_Known_State Last_Known_State Last_Known_State

Table Key:

• 1: High: I/Os are set to drive out logic High.
• 0: Low: I/Os are set to drive out logic Low.
• Last_Known_State: I/Os are set to the last value that was driven out prior to entering the programming mode,

and then held at that value during programming.
• Z: Tri-State: I/O is tristated.

Table 8-30. BSR Details I/O Output Settings

Output State Settings

Input Output Enable Output

Z (Tri-State) Don't Care 0 Don't Care

0 (Low) Don't Care 1 0

1 (High) Don't Care 1 1

Last Known State Last State Last State Last State

Table Key:

• 1 – High: I/Os are set to drive out logic High.
• 0 – Low: I/Os are set to drive out logic Low.
• Don't Care – Don’t Care values have no impact on the other settings.
• Last_Known_State – Sampled value: I/Os are set to the last value that was driven out prior to entering the

programming mode, and then held at that value during programming.
• Z: Tri-State: I/O is tristated.

The following figure shows an example of Boundary Scan Register settings.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 163

Figure 8-39. I/O States During Programming Dialog Box

8.6 Configuring Programming Options
The program options you can configure depend on the device you are programming. The following topics describe
the options available to all product families.

To configure programming options, from the Design Flow window, double-click Configure Programming Options
or right-click it and choose Configure Options. The Configure Programming Options dialog box appears with the
appropriate options (see the remaining topics in this section for more information).

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 164

Figure 8-40. Selecting Configure Programming Options

8.6.1 PolarFire Programming Options
The following figure shows the programming options for PolarFire. The table following the figure describes the
options.

Note:  SPI file programming for Auto Programming, Auto Update (IAP), and IAP/ISP Services can program security
only one time with the master file. Update files cannot update the Security settings. In addition, Silicon signature and
Tamper Macro can be programmed with the master file only and cannot be updated.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 165

Figure 8-41. PolarFire Programming Options

Table 8-31. PolarFire Programming Options

Option Description

Design name Read-only field that identifies your design.

Design version Design version to be programmed into the device. This
value is also used for Back Level protection in the
Update Policy step of the Configure Security tool.

Black Level version Back Level version to be programmed to the device. This
value must be less than or equal to the Design version
number. This value is used for Back Level protection
(if enabled) in the Update Policy step of the Configure
Security tool.

Silicon signature 32-bit user configurable silicon signature to be
programmed into the device. This field can be read
from the device using the JTAG (IEEE 1149-1)
USERCODE instruction or by running the DEVICE_INFO
programming action.

8.7 Configuring Security
The following topics describe how to configure custom security settings using the Configure Security Wizard, and
provide answers to frequently asked questions about security.

8.7.1 Configure Security Wizard
The Configure Security Wizard is a GUI-based wizard that guides you through the procedure for configuring custom
security settings. The wizard consists of the following five steps:

1. User keys
2. Update Policy
3. Debug Policy
4. Microsemi Policy
5. JTAG/SPI Slave Commands

The following table describes the elements in the Configure Security Wizard.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 166

Figure 8-42. Configure Security Wizard

Table 8-32. Elements in the Configure Security Wizard

Element Description

Summary window Displays the summary of the current configuration
settings. The window scrolls to the current page as you
move from page to page.

Security key mode Two security key modes are available:

• Bitstream encryption with default key: Use the
default encryption key for security. The Next and
Back buttons are disabled. All steps are disabled.
Custom User Keys and security settings are
disabled.

• Custom security Mode: Configures custom security
keys and settings. All steps are enabled, as are the
Next and Back buttons.

Back button Click to return to previous step.

Next button Click to proceed to next step.

Finish button Click to skip steps and complete the configuration.

8.7.2 Step 1: User Keys
In step 1 of the Configure Security Wizard, you configure user keys. All keys are 256 bits (64 HEX characters).

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 167

Figure 8-43. Configure Security Wizard - User Keys

The following table describes the options in this step.

Table 8-33. Options in the User Keys Step

Option Description

FlashLock/UPK1 Protects all security settings. This key is required and
must be a string of 64 HEX characters.
Enter the key or click the padlock icon at the far right to
generate a random key.

Default: enabled

User Encryption Key 1 (UEK1) Used for updating the Fabric, uPROM, and sNVM.
This key is required and must be a string of 64 HEX
characters.
Enter the key or click the padlock icon at the far right to
generate a random key. To disable it, click Disable.

Default: enabled

User Encryption Key 2 (UEK2) Used as a second encryption key for updating the
Fabric, uPROM, and sNVM. This key is required and
must be a string of 64 HEX characters.
Enter the key or click the padlock icon at the far right to
generate a random key. To disable it, click Disable.

Default: enabled

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 168

...........continued
Option Description

User Pass Key 2 (UPK2) UPK2 is required if UEK2 is enabled.
Enter the key or click the padlock icon at the far right to
generate a random key.

8.7.3 Step 2: Update Policy
In step 2 of the Configure Security Wizard, you disable field updates and specify field-update protection parameters.
Field updates are enabled by default.
Figure 8-44. Configure Security Wizard - Update Policy

The following table describes the options in this step.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 169

Table 8-34. Options in the Update Policy Step

Option Description

Fabric/sNVM update protection Choices are:
• Disable Erase/Write operations.

Note:  The field-update STAPL files _uek1 and
_uek2 include plain-text FlashLock/UPK1.

• Updates allowed using user-defined encryption
keys: FlashLock/UPK1 is not required for updates.

eNVM Update Protection (PolarFire SoC only) Updates allowed using user-defined
encryption keys; FlashLock/UPK1 is not required for
updates.

Enable Back Level protection When checked, a field update design being programmed
must be a version higher than the Back Level version
value in the programmed device. This safeguard
prevents field update designs with back level versions
less than or equal to the design version programmed in
the device.

• Design version (number between 0 to 65535):
Display the current Design version set in the
Configure Programming Options tool.

• Back Level version (number between 0 to 65535):
Display the current Back Level version set in the
Configure Programming Options tool). Back Level
version uses the Design version value to determine
which bitstreams are allowed for programming. The
Back Level version must be smaller than or equal to
Design version.

Note:  If Back Level Protection is disabled and Back
Level version is greater than zero, Generate Bitstream
and Export Bitstream tools error out.

The examples in the following tables show Back Level
protection enabled in the Configure Security tool.

Disable Auto Programming and IAP Services When this option is selected, Auto Programming, Auto
Update, IAP Services, and Programming Recovery are
disabled. FlashLock/UPK1 unlocking is only available for
JTAG and SPI Slave interfaces.

Disable programming interfaces You can disable the following programming interfaces:
• JTAG
• SPI Slave

Note:  You cannot disable Auto Programming and IAP
Services and both the programming interfaces. If you try,
an error message appears.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 170

...........continued
Option Description

Disable bitstream programming actions (JTAG/SPI
Slave)

Choices are:
• Program
• Authenticate
• Verify

Note:  The field-update STAPL files _uek1 and _uek2
include plain-text FlashLock/UPK1. The summary at the
top of the wizard summarizes the result of the selection.

Reset to default Reset the options to default values. All options are
unchecked.

Table 8-35. Example 1: Programming the Back Level Version to the Same Version as the Design Version

Step Bitstream Action Bitstream
Design
version

Bitstream
Back Level
version

Device
Back
Level
version

Result

1 _master PROGRAM 1 1 1 Pass

2 _master VERIFY 1 1 1 Pass if device has
UPK1

3 _master ERASE 1 1 1 Pass if device has
UPK1

4 _master AUTHENTICATE 1 1 1 Pass if device has
UPK1

5 _master DEVICE_INFO 1 1 1 Always passes

6 _uek1 PROGRAM 2 2 2 Pass

7 _master PROGRAM 1 1 2 Fail due to back
level protection

Table 8-36. Example 2: Programming the Back Level Version Less Than the Design Version

Step Bitstream Action Bitstream
Design
version

Bitstream
Back Level
version

Device
Back
Level
version

Result

1 _master PROGRAM 2 1 1 Pass

2 _uek1 PROGRAM 3 1 1 Pass

3 _uek1_1 PROGRAM 4 1 1 Pass

4 _uek1_2 PROGRAM 5 4 4 Pass

5 _master PROGRAM 2 1 4 Fail due to back
level protection

6 _uek1 PROGRAM 3 1 4 Fail due to back
level protection

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 171

...........continued
Step Bitstream Action Bitstream

Design
version

Bitstream
Back Level
version

Device
Back
Level
version

Result

7 _uek1_1 PROGRAM 4 1 1 Fail due to back
level protection

8 uek1_2 VERIFY 5 4 4 Pass

8.7.4 Step 3: Debug Policy
Debugging is enabled by default. Use this page to configure Debug Protections.

Table 8-37. Elements in Debug Policy Step

Element Description

Debug with DPK (Debug Pass Key) - Optional Protect Debug with a 256-bit (64-character HEX) Debug
Pass Key. Enter the key in the field or click the padlock
icon at the far right to generate a random key. This key
is optional if you want a separate passkey to enable
access to disabled debug features during one debugging
session.
If the DPK key is entered, then at least one option must
be checked.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 172

...........continued
Element Description

SmartDebug Access Control All of the following are enabled by default for
SmartDebug access. Check to disable access.

• Disable User Debug Access and Active Probe
• Disable Live Probe
• Disable sNVM

WARNING
Leaving SmartDebug access control enabled
on production devices will allow anyone to
debug or access active probes, access Live
Probe, or read the content of sNVM.

Three additional options are:

• Disable UJTAG command through JTAG Interface.
• Disable JTAG (1149.1) boundary scan. Disables

JTAG (1149.1) commands. The following JTAG
commands will be disabled: HIGHZ, EXTEST,
INTEST, CLAMP, SAMPLE, and PRELOAD. I/Os
will be tri-stated when in JTAG programming mode
and BSR control during programming is disabled.
BYPASS, IDCODE, and USERCODE instructions
will remain functional.

• Disable reading temperature and voltage sensor
(JTAG/SPI Slave). The summary at the top of the
page displays the results of the selection.

8.7.5 Step 4: Microsemi Factory Access Policy
In step 4 of the Configure Security Wizard, you configure the policy for Microsemi test mode access. Field updates
are enabled by default. Test mode access is required for failure analysis on the device.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 173

Figure 8-45. Configure Security Wizard - Microsemi Access Policy

Table 8-38. Option in the Microsemi Access Policy Step

Option Description

Microsemi factory access level Choices are:
• Allow factory test mode access: (default)

Note:  Do not use this setting for production
devices.

• Disable factory test mode access.
• Note:  Use FlashLock/UPK1 to change access

level.

8.7.6 Step 5: JTAG/SPI Slave Command Policy
In step 5 of the Configure Security Wizard, you configure the policy for JTAG/SPI slave user commands.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 174

Figure 8-46. Configure Security Wizard - JTAG/SPI Slave Commands Policy

Table 8-39. Options in the JTAG/SPI Slave Command Policy Step

Option Description

Disable all external access to PUF emulation Determines whether PUF emulation is available by
default. Choices are:

• Checked: Disable all external access to PUF
emulation through the JTAG/SPI slave.

• Not checked: Enable all external access to PUF
emulation through the JTAG/SPI slave. (default)

Disable external Fabric/sNVM digest requests through
JTAG/SPI Slave

Determines whether external Fabric/sNVM digest
requests through the JTAG/SPI slave are available by
default. Choices are:

• Checked: Disable external Fabric/sNVM digest
requests through JTAG/SPI slave.

• Not checked: Enable external Fabric/sNVM digest
requests through JTAG/SPI slave. (default)

WARNING
Repeated external Fabric digest calculations
can impact device reliability. For more
information, see the datasheet.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 175

...........continued
Option Description

Disable external zeroization through JTAG/SPI Slave Determines whether external zeroization through the
JTAG/SPI slave is available by default. Choices are:

• Checked: Disable external zeroization through
JTAG/SPI slave.

• Not checked: Enable external zeroization through
JTAG/SPI slave. (default)

WARNING
Do not enable zeroization for production
devices.

8.7.7 Security Features Frequently Asked Questions
I have configured the Security Wizard and enabled security in my design but I do not want to program my
design with the Security Policy Manager features enabled. What do I do?

Go to Configure Bitstream and uncheck Security.

What is programmed when I click Program Device?

All features configured in your design and enabled in the Configure Bitstream tool. Any features you have configured
(such as sNVM or Security) are enabled for programming by default.

When I click Program Device is the programming file encrypted?

All programming files are encrypted. To generate programming files encrypted with UEK1 or UEK2, you must
generate them from Export Bitstream for field updates.

Note:  Once security is programmed, you must erase the security before attempting to reprogram the security.

How do I generate encrypted programming files with User Encryption Key 1/2?

• Configure the Security Wizard and specify User Key Set 1, User Key Set 2. Ensure the Security programming
feature is enabled in Configure Bitstream; it is enabled by default once you configure the Security Policy
Manager.

• Export Bitstream from Handoff Design for Production - <filename>_uek1.(stp/spi/dat),
<filename>_uek2.(stp/spi/dat) files are encrypted with UEK1, UEK2, respectively. See Security Programming
File Descriptions below for more information on programming files.

What are Security Programming Files?

See the Security Programming Files topic for more information.

8.8 Configure Permanent Locks for Production
Configure Permanent Locks for Production is a GUI-based tool that guides the user step by step on how to configure
the Permanent Locks for Production. The wizard has six steps/pages executed in sequential order. One Time
Programmable (OTP) settings in the Permanent Locks page are applied to configured Security settings from the
Configure Security tool. The subsequent pages have read only fields, which will be affected by Permanent Lock
settings. These settings can only be configured by the Configure Security tool.

If you configure any Permanent Lock settings, you will be forced to go through each page to review the Security
settings to make sure they are as desired. The settings cannot be changed once they have been programmed.

Note: This feature is not supported for PolarFire SoC devices.

1. Permanent Locks
2. User keys in Configure Security
3. Update Policy in Configure Security

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 176

4. Debug Policy in Configure Security
5. Microsemi Factory Access in Configure Security
6. JTAG/SPI Slave Commands Policy in Configure Security

8.8.1 Summary Window
The summary window displays the summary of the current page configuration settings. Based on the selection made
in the first page, the summary for the subsequent pages change. The window will scroll to the current page as you
move from page to page.

8.8.2 Back
Click Back to return to the previous step.

8.8.3 Next
Click Next to proceed to the next step.

8.8.4 Finish
Click Finish to complete the configuration after executing the all the steps in sequential order.

8.8.5 Save Summary to File
Click Save Summary to File to save the display in the Summary field to a file.

8.8.6 Permanent Locks
This page allows you to configure Permanent Locks for Production programming. Permanent Locks should be
configured after the Design/Debug phase has been completed. The Permanent Lock settings will not be applied
to programming within Libero. They are only applied to the Export tools used for Production programming. Once
the Permanent Locks are programmed, they cannot be changed. Configuring the Permanent Locks will affect the
settings on the subsequent pages and should be reviewed carefully. The settings cannot be changed once they are
programmed.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 177

Figure 8-47. Configure Permanent Lock for Production

All the user keys and security policies are protected with FlashLock and can be made One-Time Programmable, by
configuring the Permanent Lock settings.

You can select one or more of the below options to be locked permanently:

• Permanently disable UPK1 - This will permanently disable FlashLock/UPK1 from being able to be matched
by the device. Any feature that is disabled will be permanently disabled. Any feature that is available will be
permanently available.

• Permanently disable UPK2 - This will permanently disable FlashLock/UPK2 from being able to be matched by
the device. If UEK2 is enabled and selected for programming, then it cannot be changed.

• Permanently disable SmartDebug access control and reading temperature and voltage sensor -This will
permanently disable SmartDebug access control for user debug and active probes, live probes and, sNVM
along with the ability to read the temperature and voltage sensor.

• Permanently disable Debug Pass Key (DPK) - This will permanently disable the FlashLock/DPK from being
able to be matched by the device. If DPK was programmed, then it can no longer be used for SmartDebug
access.

• Permanently write-protect Fabric - This will make the Fabric One-Time Programmable. Verify of the Fabric will
still be possible. Erase/Program of the Fabric is permanently disabled.

• Permanently disable Microsemi factory test mode access - This will permanently disable Microsemi factory
test mode access. Microsemi will not be able to perform a Failure Analysis on this device.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 178

• Permanently disable Auto Programming, JTAG and SPI Slave programming interfaces - This will
permanently disable all programming interfaces. The actual JTAG and SPI Slave ports are disabled and you
cannot access the device for any operations including reading the IDCODE of the device. The device will
become One-Time Programmable and there will be no way to Erase/Program/Verify the device.

The summary window displays the summary of the current configuration set in Permanent Locks page. The summary
can be exported to a file and is recommended to keep a record of the settings configured. It is important to review the
summary carefully and ensure the settings and behaviors are as expected since they cannot be changed once the
device is programmed.

8.8.7 Remove Permanent Locks
You can remove the Permanent Lock settings by either right-clicking on the tool in the Design Tree or by clicking the
button in the UI.

When selected removes all the Permanent Locks selected and restores to initial security settings configured in
Configure Security tool. This option is highlighted only when at least one of the Permanent Locks is enabled.

8.8.7.1 See Also
Configure Security

Tcl command for Permanent Locks remove_permanent_locks

8.9 Configure Bitstream
Right-click Generate Bitstream in the Design Flow window and choose Configure Options to open the Configure
Bitstream dialog box.

The Configure Bitstream dialog box enables you to select which components you wish to program. Only features that
have been added to your design are available for programming.

sNVM sanitize option is supported for PolarFire and PolarFire SoC. The sNVM sanitization option is enabled in the
Configure Bitstream if Fabric/sNVM component is selected.

If the design includes uPROM, it will be included in the Fabric.

Figure 8-48. Configure Bitstream

eNVM option will available only if eNVM clients are present and are being programmed and is available for PolarFire
SoC devices only.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 179

Figure 8-49. Configure Bitstream with eNVM option

Notes:

• Custom security is enabled if security was configured.
• All available features are selected by default.
• sNVM is always programmed with Fabric.

See Also

Generate Bitstream

8.10 Generate Bitstream
Generates the bitstream for use with the Run PROGRAM Action tool.

The tool incorporates the Fabric design, sNVM configuration, eNVM configuration (if configured) and custom security
settings (if configured) to generate the bitstream file. You need to configure the bitstream before you generate
the bitstream. Otherwise, default settings with all available features included will be used. Right-click Generate
Bitstream and choose Configure Options to open the Configure Bitstream dialog box to select which components
you wish to program. Only features that have been added to your design are available for programming.

If the design includes uPROM, it will be included in the Fabric.

eNVM option will available only if eNVM clients are present and are being programmed and is available for PolarFire
SoC devices only.

Modifications to the Fabric design, sNVM configuration, eNVM configuration or security settings will invalidate this
tool and require regeneration of the bitstream file.

The Fabric programming data will only be regenerated if you make changes to the Fabric design, such as in the
Create Design, Create Constraints and Implement Design sections of the Design Flow window.

When the process is complete a green check appears next to the operation in the Design Flow window (as shown in
the figure below) and information messages appear in the Log window.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 180

Figure 8-50. Generate Bitstream (Complete)

See Also

Configure Bitstream Dialog Box

8.11 Run Programming Device Actions
If you have a device programmer connected, you can double-click Run PROGRAM Action to execute your
programming in batch mode with default settings.

If your programmer is not connected, or if your default settings are invalid, the Reports view lists the error(s). To
select a programming action to run:

1. Right-click Run PROGRAM Action and choose Select Action. The Select Action dialog box opens.
Figure 8-51. Select Action Dialog Box

2. Select a programming action from the drop-down list and click OK.

To configure programming actions, use the Configure Actions and Procedures tool.

See Also

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 181

Configure Actions and Procedures

8.11.1 Programming File Actions
Libero SoC enables you to program security settings, FPGA Array, sNVM and eNVM features.

Note:  eNVM features are available for PolarFire SoC devices only.

Note:  If the design includes UPROM, it will be included in the Fabric.

You can program these features separately using different programming files or you can combine them into one
programming file.

In the Design Flow window, expand Program Design, click Run PROGRAM Action, and right-click Select Action.

The Select Action dialog box opens.

Figure 8-52. Select Action Dialog Box

For details about configuring actions and procedures, see Configure Actions and Procedures.

Table 8-40. Exit Codes (PolarFire)

Error
Code

Exit Message Exit
Code

Possible Cause Possible Solution

Passed (no error) 0 — —

0x8002 Failed to disable
programming mode

Failed to set
programming mode

5 Unstable voltage level

Signal integrity issues on
JTAG pins

Monitor related power supplies that
cause the issue during programming;
check for transients outside of
Microchip specifications. See your device
datasheet for more information on
transient specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 182

...........continued
Error
Code

Exit Message Exit
Code

Possible Cause Possible Solution

0x8032 Device is busy 5 Unstable VDDIx voltage
level

Monitor related power supplies that
cause the issue during programming;
check for transients outside of
Microchip specifications. See your device
datasheet for more information on
transient specifications.

0x8003 Failed to enter
programming mode

5 Unstable voltage level

Signal integrity issues on
JTAG pins DEVRST_N
is tied to LOW

Monitor related power supplies that
cause the issue during programming;
check for transients outside of
Microchip specifications. See your device
datasheet for more information on
transient specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

Tie DEVRST_N to HIGH prior to
programming the device.

0x8004 Failed to verify
IDCODE

6 Incorrect programming
file

Incorrect device in chain

Signal integrity issues on
JTAG pins

Choose the correct programming file and
select the correct device in the chain.

Measure JTAG pins and noise for
reflection. If TRST is left floating then
add pull-up to pin.

Reduce the length of Ground connection.

0x8005

0x8006

0x8007

0x8008

0x8009

Failed to verify FPGA
Array

Failed to verify Fabric
Configuration

Failed to verify
Security Failed to
verify sNVM Failed to
verify eNVM

11 Device is programmed
with a different design or
the component is blank

Unstable voltage level

Signal integrity issues on
JTAG pins

Verify the device is programmed with the
correct data/design.

Monitor related power supplies that
cause the issue during programming;
check for transients outside of
Microchip specifications. See your device
datasheet for more information on
transient specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8013 External digest check
via JTAG/SPI Slave is
disabled.

-18 External Digest check
via JTAG/SPI Slave is
disabled

Need to use a bitstream file which has a
valid FlashLock/UPK1 to enable external
digest check via JTAG/SPI Slave.

0x8015 FPGA Fabric digest
verification: FAIL

Deselect procedure
'DO_ENABLE_FABRI
C'

to remove this digest
check.

-20 FPGA Fabric is either
erased or the data
has been corrupted or
tampered with

If the Fabric is erased, deselect
procedure "DO_ENABLE_FABRIC" from
action "VERIFY_DIGEST"

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 183

...........continued
Error
Code

Exit Message Exit
Code

Possible Cause Possible Solution

0x8016 sNVM digest
verification: FAIL

Deselect procedure
'DO_ENABLE_SNVM'

to remove this digest
check.

-20 sNVM is either erased
or the data has been
corrupted or tampered
with

If the sNVM is erased, deselect
procedure "DO_ENABLE_SNVM" from
action "VERIFY_DIGEST"

0x8018 User security policies
segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_SECU
RI

TY' to remove this
digest check.

-20 Security segment is
either erased or the data
has been corrupted or
tampered with

If the security is erased, deselect
procedure "DO_ENABLE_SECURITY"
from action "VERIFY_DIGEST"

0x8019 UPK1 segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_SECU
RI

TY' to remove this
digest check.

-20 UPK1 segment is either
erased or the data
has been corrupted or
tampered with

If the UPK1 is erased, deselect
procedure "DO_ENABLE_SECURITY"
from action "VERIFY_DIGEST"

0x801A UPK2 segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_UKS2'
to

remove this digest
check.

-20 UPK2 segment is either
erased or the data
has been corrupted or
tampered with

If the UPK2 is erased, deselect
procedure "DO_ENABLE_UKS2" from
action "VERIFY_DIGEST"

0x801B Factory row and
factory key segment
digest verification:
FAIL

-20 Factory row and factory
key segment have
been erased through
zeroization or the data
has been corrupted or
tampered with

0x801C Fabric configuration
segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_FABRI
C'

to remove this digest
check.

-20 Fabric configuration
segment is either erased
or has been corrupted or
tampered with

If the Fabric configuration
is erased, deselect procedure
"DO_ENABLE_FABRIC" from action
"VERIFY_DIGEST"

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 184

...........continued
Error
Code

Exit Message Exit
Code

Possible Cause Possible Solution

0x8052 UEK1 segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_UEK1'
to remove this digest
check.

-20 UEK1 segment is either
erased or the data
has been corrupted or
tampered with

If the UEK1 is erased, deselect
procedure "DO_ENABLE_UEK1" from
action "VERIFY_DIGEST"

0x8053 UEK2 segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_UEK2'
to remove this digest
check.

-20 UEK2 segment is either
erased or the data
has been corrupted or
tampered with

If the UEK2 is erased, deselect
procedure "DO_ENABLE_UEK2" from
action "VERIFY_DIGEST"

0x8054 DPK segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_DPK'
to remove this digest
check.

-20 DPK segment is either
erased or the data
has been corrupted or
tampered with

If the DPK is erased, deselect
procedure "DO_ENABLE_DPK" from
action "VERIFY_DIGEST"

0x8057 SMK segment digest
verification: FAIL

-20 SMK segment is either
erased or the data
has been corrupted or
tampered with

If the SMK is erased, deselect
procedure "DO_ENABLE_SMK" from
action "VERIFY_DIGEST"

0x8058 User Public Key
segment digest
verification: FAIL

-20 User Public Key
segment is either erased
or the data has been
corrupted or tampered
with

If the User Public Key
is erased, deselect procedure
"DO_ENABLE_USER_PUBLIC_KEY"
from action "VERIFY_DIGEST"

0x801D Device security
prevented operation

-21 The device is protected
with user pass key 1 and
the bitstream file does
not contain user pass
key 1

User pass key 1 in the
bitstream file does not
match the device

Run DEVICE_INFO to view security
features that are protected.

Provide a bitstream file with a user pass
key 1 that matches the user pass key 1
programmed into the device.

0x801F Programming Error.

Bitstream or data is
corrupted or noisy

-22 Bitstream file has
been corrupted or was
incorrectly generated

Unstable voltage level

Signal integrity issues on
JTAG pins

Regenerate bitstream file

Monitor related power supplies that
cause the issue during programming;
check for transients outside of
Microchip specifications. See your
device datasheet for more information
on transient specifications. Monitor
JTAG supply pins during programming;
measure JTAG signals for noise or
reflection.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 185

...........continued
Error
Code

Exit Message Exit
Code

Possible Cause Possible Solution

0x8021 Programming Error.

Invalid/Corrupted
encryption key

-23 File contains an
encrypted key that does
not match the device

File contains user
encryption key, but
device has not been
programmed with the
user encryption key

Provide a programming file with an
encryption key that matches that on the
device

First program security with master
programming file, then program with user
encryption 1/2 field update programming
files

0x8023 Programming Error.

Back level not
satisfied

-24 Design version is
not higher than the
back-level programmed
device

Generate a programming file with a
design version higher than the back level
version

0x8001 Failure to read DSN -24 Device is in System
Controller Suspend
Mode Check board
connections

TRSTB should be driven High or disable
"System Controller Suspend Mode".

0x8027 Programming Error.

Insufficient device
capabilities

-26 Device does not support
the capabilities specified
in programming file

Generate a programming file with the
correct capabilities for the target device

0x8029 Programming Error.
Incorrect DEVICEID

-27 Incorrect programming
file

Incorrect device in chain

Signal integrity issues on
JTAG pins

Choose the correct programming file and
select the correct device in chain

Measure JTAG pins and noise or
reflection. If TRST is left floating, then
add pull-up to pin

Reduce the length of ground connection

0x802B Programming Error.

Programming file is
out of date, please
regenerate.

-28 Programming file version
is out of date

Generate programming file with latest
version of Libero SoC

0x8030 Programming Error

Invalid or inaccessible
Device Certificate

-31 FAB_RESET_N is tied to
ground

FAB_RESET_N should be tied to HIGH

0x8032

0x8034

0x8036

0x8038

Instruction timed out -32 Unstable voltage level

Signal integrity issues on
JTAG pins

Monitor related power supplies that
cause the issue during programming;
check for transients outside of
Microchip specifications. See your device
datasheet for more information on
transient specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8010 Failed to unlock user
pass key 1

-35 Pass key in file does not
match device

Provide a programming file with a pass
key that matches pass key programmed
into the device.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 186

...........continued
Error
Code

Exit Message Exit
Code

Possible Cause Possible Solution

0x8011 Failed to unlock user
pass key 2

-35 Pass key in file does not
match device

Provide a programming file with a pass
key that matches pass key programmed
into the device.

0x804F Bitstream
programming action is
disabled

-38 Unstable voltage level

Bitstream programming
action has been disabled
in Security Policy
Manager

Monitor related power supplies that
cause the issue during programming;
check for transients outside of
Microchip specifications. See your device
datasheet for more information on
transient specifications.

Need to use a bitstream file which has
a valid FlashLock/UPK1 to enable the
bitstream programming action.

0x805B Error, security must
be either programmed
on a blank device or
with the FPGA Fabric
design

-42 Security only bitstream
programming on a
programmed device

Use this bitstream on a blank device or
generate a new bitstream that contains
the FPGA Fabric design along with the
security

0x805C eNVM digest
verification: FAIL

Deselect procedure
‘DO_ENABLE_ENVM’
to remove this digest
check

-20 eNVM is either erased
or the data has been
corrupted or tampered
with.

If the eNVM is erased, deselect
procedure ‘DO_ENABLE_ENVM’ from
action ‘VERIFY_DIGEST’

8.12 Program SPI Flash Image

8.12.1 Generate SPI Flash Image
This tool generates the <design>_spi_flash.bin file in the implementation folder.

To run this tool; under the Program SPI Flash Image, right-click Generate SPI Flash Image and choose Run.

Figure 8-53. Selecting the Run Command

This tool depends on the Configure Design Initialization Data and Memories tool and the Generate Design
Initialization Data tool. When running, the tool verifies that the SPI Flash configuration data is saved and valid;
and that the SPI Flash initialization client was generated successfully (if required).

8.12.2 Configure SPI Flash Image Actions and Procedures
If SPI Flash is configured, you can select supported SPI Flash Image actions and procedures in the Select Action and
Procedures dialog box. See the following example.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 187

Figure 8-54. Select Action and Procedures Dialog Box

The following table lists the actions and procedures for the Run PROGRAM_SPI_Flash tool.

Action Mandatory Procedures Description

PROGRAM_SPI_IMA
GE

VERIFY_DEVICE_I
D ERASE_DIE
PROGRAM_IMAGE

This action will erase the entire SPI flash then program
the SPI image.

VERIFY_SPI_IMAGE VERIFY_DEVICE_I D
VERIFY_IMAGE

This action verifies the SPI Image on the SPI Flash.

READ_SPI_IMAGE VERIFY_DEVICE_I D
READ_IMAGE

This action reads the SPI Image from the SPI Flash.

ERASE_SPI_FLASH VERIFY_DEVICE_I D
ERASE_DIE

This action erases the entire SPI Flash.

Note:  If the device ID does not match when running any action, the action will fail.

8.12.3 Run Programming SPI Flash Actions
This tool allows the user to program the SPI Flash device connected to the PolarFire device through the JTAG
programming interface. Currently, only the Micron 1Gb SPI flash is supported, and is included with the Evaluation Kit.
This feature minimizes cost by not requiring a mux and external SPI pins on the board for SPI flash programming by
another tool. This tool always erases the entire SPI flash prior to programming. Programming starts at address 0 of
the SPI flash until the last client. Any gaps in the SPI flash are programmed with all 1’s.

Note:  This version of the programmer does not support SPI Flash security. Device security options such as
"Hardware Write Protect" should be disabled for the External SPI Flash device.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 188

Note:  The SPI pins are controlled by the Boundary Scan Register one bit at a time.

Figure 8-55. SPI Flash Programming with PolarFire Device

The following table provides the expectations of programming the SPI flash with a FP5 programmer. Future
programmers are planned, and should greatly improve programming times. All times are in hh:mm:ss.

SPI

Size

ERASE PROGRAM VERIFY/READ TCK Programmer

1 MB 3:55 00:00:45 00:10:46 4MHz FP5

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 189

...........continued
SPI

Size

ERASE PROGRAM VERIFY/READ TCK Programmer

1 MB 3:55 00:00:28 00:10:05 15MHz FP5

9 MB 3:55 00:06:38 01:19:15 4MHz FP5

9 MB 3:55 00:04:26 01:08:49 10MHz FP5

18

MB

3:55 00:09:04 02:32:43 10MHz FP5

128

MB

3:55 00:58:38 22:07:55 15MHz FP5

Recommendations:

1. Since the verify time is currently not optimized, it is recommended to authenticate the SPI bitstreams with
system services for quicker verification.

2. Since this tool erases the SPI flash prior to programming and currently does not support Data Storage clients
for user data, it is recommended to program the SPI flash with Libero prior to programming other data on the
SPI flash.

3. Since programming time is currently not optimized, it is recommended to not have huge gaps between clients
in the SPI flash, since gaps are currently programmed with 1’s.

If SPI Flash is configured, you can execute Run PROGRAM_SPI_IMAGE Action and select SPI Flash Image actions
and procedures.

In the Design Flow window, under Program SPI Flash Image, right-click Run PROGRAM_SPI_Image Action and
choose Configure Action/Procedures.

Note:  In this release, SPI Flash programming is supported for MICRON devices only.

See Configure SPI Flash Image Actions and Procedures for information about supported actions and procedures.

8.12.4 Partial Programming Support

eFP6/FP6 Partial Support
This feature allows you to program clients anywhere within the SPI-Flash memory space connected to PolarFire and
PolarFire SoC devices.

Every client is programmed at a specified target Start Address, from the lowest address to the highest. The
Libero generated lookup table is programmed first, followed by INIT_STATGE_3_SPI_CLIENT, SPI bitstream for
IAP, Recovery/Golden, and Auto Update.

The following image is a sample list of clients:

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 190

The memory regions between the clients are left intact. However, SPI-Flash erase erases data in the selected sector,
subsector, or block if clients target Start Address is outside of sector, subsector, or block boundaries.

The software reports an error code along with messages that indicate whether original data has been lost.

The verify operation verifies only the data of the selected clients.

The following example is a sample log from FPExpress SPI Flash programming:

programmer '138000A' : Scan Chain...
programmer '138000A' : Scan and Check Chain PASSED.
programmer '138000A' : device 'MPF200T' : Executing action PROGRAM_SPI_IMAGE
programmer '138000A' : JTAG TCK frequency = 4 MHz
Performing SPI-Flash action. Please wait...
Warning: It is recommended that the target client addresses align to sector, subsector or
block boundaries. Else, during erase or program actions, the software will erase and restore
data that is partly outside of target memory regions. If restoring data operation fails, the
user must reprogram the original clients covering the affected failed areas.
Processing SPI-Flash Client 0: Target Address = 0x0. Size = 1024 Bytes
FP6 acceleration mode enabled with PPD file. Please wait...
Programmer '138000A' : JTAG TCK frequency = 4 MHz
FP6 Messages:
==
JTAG DirectC Version: 5.1
Identifying FPGA device...
ActID = 0x0f8121cf
Micron device is found.
SPI-Flash IDCode = 0x21ba20
Device size (MBytes) = 128
Performing SPI Flash Program Action:
SPI-Flash memory target address = 0x00. Image byte size = 1024
SPI Flash memory region to erase: 0x00 - 0x03ff. Please wait...
Restoring data at address = 0x0400 - 0x0fff
Programming image from address = 0x00 - 0x03ff
Programming data at address: 0x00 - 0x03ff
Operation Status: Passed
==
Processing SPI-Flash Client 1: Target Address = 0x666. Size = 32 Bytes
FP6 acceleration mode enabled with PPD file. Please wait...
Programmer '138000A' : JTAG TCK frequency = 4 MHz
FP6 Messages:
==
JTAG DirectC Version: 5.1
Identifying FPGA device...
ActID = 0x0f8121cf
Micron device is found.
SPI-Flash IDCode = 0x21ba20
Device size (MBytes) = 128
Performing SPI Flash Program Action:
SPI-Flash memory target address = 0x0666. Image byte size = 32
SPI Flash memory region to erase: 0x0666 - 0x0685. Please wait...
Restoring data at address = 0x00 - 0x0665
Restoring data at address = 0x0686 - 0x0fff
Programming image from address = 0x0666 - 0x0685
Programming data at address: 0x0666 - 0x0685
Operation Status: Passed
==

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 191

Processing SPI-Flash Client 6: Target Address = 0x1AFFFCD. Size = 157 Bytes
FP6 acceleration mode enabled with PPD file. Please wait...
Programmer '138000A' : JTAG TCK frequency = 4 MHz
FP6 Messages:
==
JTAG DirectC Version: 5.1
Identifying FPGA device...
ActID = 0x0f8121cf
Micron device is found.
SPI-Flash IDCode = 0x21ba20
Device size (MBytes) = 128
Performing SPI Flash Image Erase Action:
SPI-Flash memory target address = 0x01afffcd. Image byte size = 157
SPI Flash memory region to erase: 0x01afffcd - 0x01b00069. Please wait...
Restoring data at address = 0x01aff000 - 0x01afffcc
Restoring data at address = 0x01b0006a - 0x01b00fff
Operation Status: Passed

FlashPro3/FlashPro4/FlashPro5 Partial Support
The partial programming support described for eFP6/FP6 does not apply for FP3/FP4, or FP5 programmers. FP3/4/5
programmers deal with partial clients by generating on the fly one bitstream containing the data of all the clients, as
shown in the previous example. Memory gaps between the clients are filled with 0xff. The entire SPI-Flash memory
device is erased first, and then the generated bitstream is programmed, starting with address 0.

The verify operation verifies that the client data and the memory gaps between the clients are verified against 0xff.

The following example is a sample output for programming the previous clients using FP5 programmer.

programmer 'S2001KZSR7' : Scan Chain...
Programmer 'S2001KZSR7' : JTAG TCK / SPI SCK frequency = 1 MHz
programmer 'S2001KZSR7' : Check Chain...
programmer 'S2001KZSR7' : Scan and Check Chain PASSED.
programmer 'S2001KZSR7' : device 'MPF200T' : Executing action PROGRAM_SPI_IMAGE
Programmer 'S2001KZSR7' : JTAG TCK / SPI SCK frequency = 4 MHz
?Warning: FP3, FP4, and FP5 programmers do not support partial SPI-Flash programming. The
entire SPI-Flash device will be erased and programmed with the currently enabled clients.
ID: 00441021ba20
Erasing SPI flash die...
ERASE SPI Flash Finished : Fri Feb 19 15:31:05 2021 (Elapsed time 00:00:05)
Programming SPI image...
Program SPI image Finished : Fri Feb 19 15:31:07 2021 (Elapsed time 00:00:02)
programmer 'S2001KZSR7' : device 'MPF200T' : Executing action PROGRAM_SPI_IMAGE PASSED.
programmer 'S2001KZSR7' : Chain programming PASSED.
Chain Programming Finished: Fri Feb 19 15:31:07 2021 (Elapsed time 00:00:07)

Notes: 
• Backward Compatibility:

FP3/4/5/6 that use the software version 2021.1 release support all jobs created using older versions of the
Libero software.

Do not use older FPExpress versions of software with FPExpress jobs created by Libero version 2021.1 and
later releases. If used, the entire bitstream, including header contents, will be programmed into the SPI-Flash
memory device, which is not the intended behavior.

• Programmers used:

Jobs programmed with FP6 but verified with FP3/4/5 programmers may fail using software version 2021.1
release. Such jobs fail because the memory gap between clients is skipped during verification but are verified
against 0xff if FP3/4/5 programmers are used.

• SPI address table:

If only storage clients are created, Libero generates a 1024-byte SPI address lookup table automatically while
adding any SPI-Flash client.

Erasing a client using eFP6/FP6 programmers also erases the SPI lookup address table. For FP3/4/5
programmers, erase operations erase the entire SPI-Flash memory device.

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 192

8.12.5 SPI-Flash Bitstream Format
For versions prior to Libero SoC v2021.1, the SPI-Flash Bitstream is the payload.

For Libero SoC v2021.1 and later, the SPI-Flash Bitstream format is as follows:

Table 8-41. SPI-Flash Bitstream Format

Number of Bytes Value Description

4 FF FF FF FF Tag to indicate new version of
bitstream.

2 XX XX Major Version of bitstream.

2 XX XX Minor Version of bitstream.

4 XX XX XX XX Client0 Target Address.

4 FF FF FF FF Client0 Byte Size.

1 XX Flag.
If set to 1, Payload will follow.

If set to 0, Payload is not present and
memory region will be erased.

X X Payload based on previous flag

4 XX XX XX XX Client1 Target Address

4 XX XX XX XX Client1 Byte Size

1 XX Flag.
If set to 1, Payload will follow.

If set to 0, no Payload is present and
memory region will be erased only

X X Payload based on previous flag

Repeat for other clients

4 FF FF FF FF End Tag

 Libero® SoC v2021.1
Program Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 193

9. Debug Design

9.1 Generate SmartDebug FPGA Array Data
The Generate SmartDebug FPGA Array Data tool generates database files used in downstream tools:

• *.db used for debugging FPGA Fabric in SmartDebug

Double-click Generate SmartDebug FPGA Array Data or right-click Generate SmartDebug FPGA Array Data
in the Design Flow window and click Run to generate SmartDebug FPGA Array Data. Before running this tool,
the design should have completed the Place and Route step. If not, Libero SoC runs implicitly the upstream tools
(Synthesis, Compile Netlist, and Place and Route) before it generates the FPGA SmartDebug Array Data.

Figure 9-1. Generate SmartDebug FPGA Array Data

9.2 SmartDebug
Design debug is a critical phase of FPGA design flow. Microchip's SmartDebug tool complements design simulation
by allowing verification and troubleshooting at the hardware level. SmartDebug can provide access to Microchip
FPGA device's built-in probe logic, which enables designers to check the state of inputs and outputs in real-time
without re-layout of the design.

SmartDebug can be run in two modes:

• Integrated mode from the Libero Design Flow
• Standalone mode

9.2.1 Integrated Mode
When run in integrated mode from Libero, SmartDebug can access all design and programming hardware
information. No extra setup step is required. In addition, the Probe Insertion feature is available in Debug FPGA
Array.

To open SmartDebug in the Libero Design Flow window, expand Debug Design and double-click SmartDebug
Design.

 Libero® SoC v2021.1
Debug Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 194

9.2.2 Standalone Mode
SmartDebug can be installed separately in the setup containing FlashPro Express and Job Manager. This provides
a lean installation that includes all the programming and debug tools to be installed in a lab environment for debug.
In this mode, SmartDebug is launched outside of the Libero Design Flow. Prior to launch of SmartDebug standalone
mode, you must to go through SmartDebug project creation and import a Design Debug Data Container (DDC) file,
exported from Libero, to access all debug features in the supported devices.

Note: In standalone mode, the Probe Insertion feature is not available in FPGA Array Debug, as it requires
incremental routing to connect the user net to the specified I/O.

9.2.3 See Also
SmartDebug User Guide

9.3 Identify Debug Design
Libero SoC integrates the Identify RTL debugger tool. It enables you to probe and debug your FPGA design directly
in the source RTL. Use Identify software when the design behavior after programming is not in accordance with the
simulation results.

To open the Identify RTL debugger, in the Design Flow window under Debug Design double-click Instrument
Design.

Identify features:

• Instrument and debug your FPGA directly from RTL source code.
• Internal design visibility at full speed.
• Incremental iteration - Design changes are made to the device from the identify environment using incremental

compile. You iterate in a fraction of the time it takes route the entire device.
• Debug and display results - You gather only the data you need using unique and complex triggering

mechanisms.

You must have both the Identify RTL Debugger and the Identify Instrumentor to run the debugging flow outlined
below.

To use the Identify Instrumentor and Debugger:

1. Create your source file (as usual) and run pre-synthesis simulation.
2. (Optional) Run through an entire flow (Synthesis - Compile - Place and Route - Generate a Programming File)

without starting Identify.
3. Right-click Synthesize and choose Open Interactively in Libero SoC to launch Synplify.
4. In Synplify, click Options > Configure Identify Launch to setup Identify.
5. In Synplify, create an Identify implementation; to do so, click Project > New IdentifyImplementation.
6. In the Implementations Options dialog, make sure the Implementation Results > Results Directory points to

a location under <libero project>\synthesis\, otherwise Libero SoC is unable to detect your resulting Verilog
Netlist file.

7. From the Instrumentor UI specify the sample clock, the breakpoints, and other signals to probe. Synplify
creates a new synthesis implementation. Synthesize the design.

8. In Libero SoC, run Synthesis, Place and Route and Generate a Programming File.
Note:  Libero SoC works from the edif netlist of the current active implementation, which is the implementation
you created in Synplify for Identify debug.

9. Double-click Identify Debug Design in the Design Flow window to launch the IdentifyDebugger.

The Identify RTL Debugger, Synplify, and FlashPro must be synchronized in order to work properly. See the Release
Notes for more information on which versions of the tools work together.

 Libero® SoC v2021.1
Debug Design

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 195

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/pf_smartdebug_ug.pdf
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads

10. Handoff Design for Production

10.1 Export Bitstream
Export Bitstream enables you to export PPD, STAPL, DAT, and SPI programming files.

To export a bitstream file:

1. Under Handoff Design for Production, double-click Export Bitstream. The Export Bitstream dialog box opens.
The dialog box options depend on your Custom Security settings and Permanent Locks for production
settings:

– Export Bitstream tool when the device is configured with Bitstream Encryption with Default key option in
the Configure Security tool

– Export Bitstream tool when the device is configured with Custom Security option in the Configure Security
tool

– Export Bitstream tool when the device is configured with Permanent Locks for Production tool
2. Enter your Bitstream file name and select the location to export the bitstream file.
3. Choose your options, such as DAT file if you wish to include support for Embedded ISP, SPI file if you need

support for Auto programming, Auto Update and IAP services, PPD, or STAPL if you need support for ISP.
4. You can choose whether you want to export the ASCII HEX file for debugging when DAT bitstream file format

is selected.
5. Select whether you want to export files for Microchip In House Programming (IHP).
6. Select to include the bitstream components, Bypass Back Level protection option for Recovery/Golden

Bitstream and Include Pass Keys in Plaintext.
7. Choose the Zeroization Action that you want to use to reprogram the device.

Note:  Zeroization Action is not supported for XT and ES devices.

Note:  PolarFire SoC has same zeroization options in Export Bitstream tool and Programming Actions and
Procedures as PolarFire.

8. Click OK to export the selected bitstream files.
9. The sanitization settings for ERASE action has two options. Depending on the device and configured features,

the corresponding options are visible.
– Sanitize all sNVM pages (This option is available for both PolarFire and PolarFire SoC families).
– Sanitize all eNVM pages (This option is available for PolarFire SoC family only).

See Also

Digest File

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 196

10.1.1 Export Bitstream tool when the device is configured with Bitstream Encryption with Default Key in
the Configure Security Tool
Figure 10-1. Export Bitstream with Default Key Dialog Box (For PolarFireSoC)

Figure 10-2. Export Bitstream with Default Key Dialog Box (For PolarFire)

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 197

Design Settings:

• Programming Options set with Configure Programming Options tool- Displays the Design version and
Back Level version set in the Configure Programming Options tool. They are read-only options and cannot be
modified.

Note:  Info and warning messages appear based on the value set for Back Level version.

• Security options set with the Configure Security tool- Provides a brief description of current security options.

Bitstream file(s):

• Name - Sets the name of your bitstream file. The default name is the design name.
• Location - Location to save the exported file.
• Existing files - Lists bitstream files previously created.
• Formats - Select the Bitstream File format you want to export:

– PPD

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 198

– DAT
– Export separate ASCII HEX file for debugging – Exports DAT file in HEX format. This option is active only

when DAT file format is selected.
– STAPL
– SPI

PPD and DAT file formats are the default file formats. If Auto programming is disabled in SPM, neither
master nor update files can be exported in SPI format.

For PolarFire, Auto programming is disabled if Fabric is disabled for updates or if Fabric is open but disable
Auto programming option is selected. If Auto programming is enabled and an action is locked, plaintext
options are disabled if only SPI format is selected and enabled otherwise.

For PolarFireSoC, Auto programming is disabled if Fabric and eNVM both are disabled for updates or
disable Auto programming option is selected. If Fabric is disabled for updates but eNVM is not, then SPI
bitstream file for update cannot include Fabric component. If Fabric is open and eNVM is locked then, SPI
bitstream file for update cannot include eNVM.

– Export files for Microsemi In House Programming (IHP) – Exports DAT and STP file formats if ‘Yes’ is
selected.

• File types: Lists all the bitstream files to be exported
– File to program at trusted facility – Click to include Fabric /sNVM into the bitstream files to be

programmed at a trusted facility.
– eNVM option is available for PolarFireSoC family only.
– Advanced options are available for PolarFireSoC devices only. The advanced options are always enabled if

SPI file format is selected else the advanced options are disabled.

For a test case when fabric is being programmed, all options are set automatically and cannot be changed.
The advanced options appear as in below figure:

Figure 10-3. Advanced Options for a testcase without Custom Security (when fabric is being
programmed)

For a test case when fabric is NOT being programmed, you can choose to Keep Fabric in operational
state during programming. The advanced options appear as in below figure:

Figure 10-4. Advanced Options for a testcase without Custom Security (when fabric is NOT being
programmed)

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 199

If Keep Fabric in operational state during programming option is selected, you can choose to Skip
device startup sequence after programming. The advanced options appear as in below figure:

Figure 10-5. Advanced Options for a testcase without custom security(when fabric is NOT being
programmed) and "Keep Fabric in operational state during programming" option is selected

If Keep Fabric in operational state during programming and Skip device startup sequence after
programming options are selected, then the advanced options appear as in below figure:

Figure 10-6. Advanced Options for a testcase without custom security(when fabric is NOT being
programmed) and "Keep Fabric in operational state during programming" and "Skip device startup
sequence after programming" options are selected

• Zeroization Actions – Select the Like New checkbox to erase all user data to make the device like new
and reprogram the device immediately, or select the Unrecoverable checkbox to erase all data and destroy
reprogrammability (in this case, the device must be scrapped).

• Sanitization settings for ERASE Action -

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 200

The sNVM sanitization option is enabled if Fabric/sNVM component is selected for at least one file type (master
or update).

The eNVM sanitization option is available if eNVM is configured and selected for at least one file type (master or
update). This option is applicable for PolarFireSoC family only.

Default for both options when they are enabled is “off”.

The sanitization options do not depend on OTP security setting; ERASE action will fail if there is OTP security.

10.1.2 Export Bitstream tool when the Device is Configured with Custom Security option in the
Configure Security Tool
Note:  If Permanent Locks for Production are configured along with Custom Security settings, Export Bitstream
Security options are set with Configure Permanent Lock for Production tool. Otherwise, they are set with the
Configure Security tool. The Permanent Lock Security settings can be removed by either right-clicking on the tool in
the Design Tree or by clicking the Remove Permanent Locks button in the UI.

Figure 10-7. Export Bitstream with Custom Security Dialog Box (For PolarFireSoC)

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 201

Figure 10-8. Export Bitstream with Custom Security Dialog Box (For PolarFire)

Design Settings:

• Programming Options set with Configure Programming Options tool- Displays the Design version and
Back Level version set in the Configure Programming Options tool. They are read-only options and cannot be
modified.

Note:  Info and warning messages appear based on the value set for Back Level version.

• Security options set with the Configure Security tool- Provides a brief description of current security
settings.

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 202

Bitstream file(s):

• Name - Sets the name of your bitstream file. The default name is the design name.
• Location - Location to save the exported file.
• Existing files - Lists bitstream files previously created.
• Formats - Select the Bitstream File format you want to export:

– PPD
– DAT
– Export separate ASCII HEX file for debugging – Exports DAT file in HEX format. This option is active only

when DAT file format is selected.
– STAPL
– SPI

PPD and DAT file formats are the default file formats. If Auto programming is disabled in SPM, neither
master nor update files can be exported in SPI format.

For PolarFire, Auto programming is disabled if Fabric is disabled for updates or if Fabric is open but disable
Auto programming option is selected. If Auto programming is enabled and an action is locked, plaintext
options are disabled if only SPI format is selected and enabled otherwise.

For PolarFireSoC, Auto programming is disabled if Fabric and eNVM both are disabled for updates or
disable Auto programming option is selected. If Fabric is disabled for updates but eNVM is not, then SPI
bitstream file for update cannot include Fabric component. If Fabric is open and eNVM is locked then, SPI
bitstream file for update cannot include eNVM.

– Export files for Microsemi In House Programming (IHP) – Exports DAT and STP file formats if ‘Yes’ is
selected.

• File types –
Note:  Refer to Include Plaintext Pass Keys to check the availability of Export Pass keys for Plaintext option for
the following Bitstream files.

Note:  eNVM option is only visible when eNVM is used in the design. eNVM features are available for PolarFire
SoC devices only.

Lists all the bitstream files to be exported.

• Master file – Click to include:
– Fabric/sNVM.
– eNVM (If the design does not have eNVM, but in Configure Security tool, the user locked eNVM for

updates, the eNVM component is disabled and eNVM OTP warning is shown).
– Bypass Back Level protection for Recovery/Golden bitstream (This option is available only if Back Level

protection is enabled in the Configure Security tool and SPI file format is selected. For update files, this
option is available if Back Level protection is enabled in Configure Security Tool, SPI file format is selected
and Fabric is selected. By default, Back Level bypass is “off” for update files).

– Include Plaintext Pass Keys. If UPK1 is permanently disabled, Include Plaintext Pass Keys option is
disabled for Master file.

– Advanced options are available for PolarFireSoC devices only. The advanced options are always enabled if
SPI file format is selected else the advanced options are disabled.
For a testcase with Custom Security, the advanced options for Master file can be viewed as in figure below.

Figure 10-9. Advanced Options for Master File

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 203

Notes:

1. Custom Security is always programmed in the Master file.
2. Security-only programming must be performed only on erased or new devices. If performed on a device

with fabric programmed, the fabric will be disabled after performing security-only programming. You must
reprogram the fabric to re- enable it.

3. Depending on the Permanent Locks configured in the Configure Permanent Locks for Production tool, some of
the bitstream components for Master file are selected by default and are unavailable for users to change.

– File encrypted with UEK1 to program at untrusted facility or for Broadcast field update - Click to include:
• Fabric/sNVM.
• eNVM
• Bypass Back Level protection for Recovery/Golden bitstream.

(This option is available only if Back Level protection is enabled in the Configure Security tool and
SPI file format is selected.

For update files, this option is available if Back Level protection is enabled in Configure Security
Tool, SPI file format is selected and Fabric is selected. By default, Back Level bypass is “off” for
update files).

• Include Plaintext Pass Keys is available if UPK1 is not permanently locked and the Update Policy
Fabric /sNVM or eNVM (available in PolarFireSoC only) is passcode protected or any of program,
authenticate or verify action is locked.

• For a test case when fabric is being programmed for file encrypted with UEK1, all options are set
automatically and cannot be changed. The advanced options appear as in below figure:

Figure 10-10. Advanced options for File Encrypted with UEK1 (when fabric is being
programmed)

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 204

For a test case when fabric is NOT being programmed, users can choose to Keep Fabric in
operational state during programming. The advanced options appear as in below figure:

Figure 10-11. Advanced options for File Encrypted with UEK1 (when fabric is NOT being
programmed)

If Keep Fabric in operational state during programming option is selected, users can choose
to Skip device startup sequence after programming. The advanced options appear as in below
figure:

Figure 10-12. Advanced Options for File Encrypted with UEK1 when Fabric is NOT being
programmed and user selects "Keep Fabric in operational state during programming" option

If Keep Fabric in operational state during programming and Skip device startup sequence
after programming options are selected. The advanced options appear as in below figure:

Figure 10-13. Advanced Options for File Encrypted with UEK1 when Fabric is NOT being
programmed and user selects both "Keep Fabric in operational state during programming"
and "Skip device startup sequence after programming" options

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 205

– File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to include:
• Fabric/sNVM.
• eNVM
• Bypass Back Level protection for Recovery/Golden bitstream.

(This option is available only if Back Level protection is enabled in the Configure Security tool and
SPI file format is selected.

For update files, this option is available if Back Level protection is enabled in Configure Security
Tool, SPI file format is selected and Fabric is selected. By default, Back Level bypass is “off” for
update files).

• Include Plaintext Pass Keys is available if UPK1 is not permanently locked and the Update Policy
Fabric /sNVM or eNVM (available in PolarFireSoC only) is passcode protected or any of program,
authenticate or verify action is locked.

• For a test case when fabric is being programmed for file encrypted with UEK2, all options are set
automatically and cannot be changed. The advanced options appear as in below figure:

Figure 10-14. Advanced options for File Encrypted with UEK2 (when fabric is being
programmed)

For a test case when fabric is NOT being programmed, users can choose to Keep Fabric in
operational state during programming. The advanced options appear as in below figure:

Figure 10-15. Advanced options for File Encrypted with UEK2 (when fabric is NOT being
programmed)

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 206

If Keep Fabric in operational state during programming option is selected, users can choose
to Skip device startup sequence after programming. The advanced options appear as in below
figure:

Figure 10-16. Advanced Options for File Encrypted with UEK2 when Fabric is NOT being
programmed and user selects "Keep Fabric in operational state during programming" option

If Keep Fabric in operational state during programming and Skip device startup sequence
after programming options are selected. The advanced options appear as in below figure:

Figure 10-17. Advanced Options for File Encrypted with UEK2 when Fabric is NOT being
programmed and user selects both "Keep Fabric in operational state during programming"
and "Skip device startup sequence after programming" options

Note:  If sNVM/Fabric is One Time Programmable, it is precluded from bitstream encrypted with UEK1/2.

• Zeroization Actions – Select the Like New checkbox to erase all user data to make the device like new
and reprogram the device immediately, or select the Unrecoverable checkbox to erase all data and destroy
reprogrammability (in this case, the device must be scrapped).

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 207

• Sanitization settings for ERASE Action -

The sNVM sanitization option is enabled if Fabric/sNVM component is selected for at least one file type (master
or update).

The eNVM sanitization option is available if eNVM is configured and selected for at least one file type (master or
update). This option is applicable for PolarFireSoC family only.

Default for both options when they are enabled is “off”.

The sanitization options do not depend on OTP security setting; ERASE action will fail if there is OTP security.

Bypass Back Level protection for Recovery/Golden bitstream- If Back Level protection is enabled in the
Configure Security tool, you can bypass the back level protection for SPI bitstreams to prevent Programming
Recovery failures.

The following examples show the usage of Bypass Back Level Protection.

Table 10-1. Example 1 – Fails without Bypass Back Level Protection

Step Bitstream Action Result Design
version

Back
Level
version

Device
Back
Level
version

1 Golden/Recovery Auto Programming Pass 2 1 1

2 IAP/Update Bitstream Auto Update/IAP Pass 3 2 2

3 IAP/Update Bitstream Auto Update/IAP Fail, Attempt
Programming
Recovery

4 N/A 2

In the above example, the device will have Back Level version 2 after step 2. If you attempt to program with
bitstream in step 3, it will fail. If the device attempts to reprogram, it will initiate Programming Recovery with the
Golden/Recovery bitstream. Since the Golden/Recovery Bitstream has Design version 2, which is less than or equal
to the Back Level version in the device, it will fail. If the Bypass Back Level version option is selected, this back level
protection check will be bypassed for the Golden/Recovery Bitstream only and it will succeed.

Table 10-2. Example 2 – Does not require Bypass Back Level Protection

Step Bitstream Action Result Design
version

Back
Level
version

Device
Back
Level
version

1 Golden/Recovery Auto Programming Pass 2 1 1

2 IAP/Update Bitstream Auto Update/IAP Pass 3 1 1

3 IAP/Update Bitstream Auto Update/IAP Fail, Attempt
Programming
Recovery

4 N/A 1

In this example, the device will have Back Level version 1 after step 2. If you attempt to program with bitstream
in step 3, it will succeed since the Golden/Recovery Design version is greater than the Back Level version on the
device.

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 208

Table 10-3. Example 3 – Requires Bypass Back Level Protection

Step Bitstream Action Result Design
version

Back
Level
version

Device
Back
Level
version

1 Golden/Recovery Auto Programming Pass 1 1 1

2 IAP/Update Bitstream Auto Update/IAP Pass 2 1 1

3 IAP/Update Bitstream Auto Update/IAP Fail, Attempt
Programming
Recovery

3 N/A 1

In this example, the device will have Back Level version 1 after step 2. If you attempt to program with bitstream in
step 3, it will fail. If the device attempts to reprogram, it will initiate Programming Recovery with the Golden/Recovery
bitstream. Since the Golden/Recovery Bitstream has Design version 1, which is less than or equal to the Back Level
version in the device, it will fail. If the Bypass Back Level version option is selected, this back level protection check
will be bypassed for the Golden/Recovery Bitstream only and it will succeed.

10.1.3 Export Bitstream Tool when the Device is Configured with Permanent Locks for Production Tool
Notes: 

• This feature is available for PolarFire family only. PolarFireSoC devices do not support permanent locks.

• If Permanent Locks for Production are configured along with Custom Security settings, Export Bitstream
Security options are set with the Configure Permanent Lock for Production tool. Otherwise, they are set with the
Configure Security tool. The Permanent Lock Security settings can be removed by either right-clicking on the
tool in the Design Tree or by clicking the Remove Permanent Locks button in the UI.

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 209

Figure 10-18. Export Bitstream Dialog Box with Security Options Set with the Configure Permanent Locks for
Production Tool

Design Settings:

• Programming Options set with the Configure Programming Options tool- Displays the Design version and
Back Level version set in the Configure Programming Options tool. They are read-only options and cannot be
modified.

Note:  Info and warning messages appear based on the value set for Back Level version.

• Security options set with the Configure Permanent Locks for Production tool- Provides a brief description
of current security settings.

Bitstream file(s):

• Name - Sets the name of your bitstream file. The default name is the design name.
– Location - Location to save the exported file.
– Existing files - Lists bitstream files previously created.

Formats - Select the Bitstream File format you want to export:
– PPD
– DAT

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 210

– Export separate ASCII HEX file for debugging – Exports DAT file in HEX format. This option is active only
when DAT file format is selected.

– STAPL
– SPI

PPD and DAT file formats are the default file formats. If Auto programming is disabled in SPM, neither
master nor update files can be exported in SPI format.

For PolarFire, Auto programming is disabled if Fabric is disabled for updates or if Fabric is open but disable
Auto programming option is selected. If Auto programming is enabled and an action is locked, plaintext
options are disabled if only SPI format is selected and enabled otherwise.

– Export files for Microsemi In House Programming (IHP) – Exports DAT and STP file formats if ‘Yes’ is
selected.

• File types –

Note: Refer to Include Plaintext Pass Keys to check the availability of Include Plaintext Pass keys option for the
following Bitstream files.

Lists all the bitstream files to be exported

• Master file – Click to include:
– Fabric/sNVM.
– Bypass Back Level protection for Recovery/Golden bitstream

(This option is available only if Back Level protection is enabled in the Configure Security tool and SPI file
format is selected.

For update files, this option is available if Back Level protection is enabled in Configure Security Tool, SPI
file format is selected and Fabric is selected. By default, Back Level bypass is “off” for update files).

– Include Plaintext Pass Keys is available if UPK1 is not permanently locked and the Update Policy Fabric /
sNVM is passcode protected or any of program, authenticate or verify action is locked.

Notes:

1. Custom Security is always programmed in the Master file.
2. Security-only programming must be performed only on erased or new devices. If performed on a device

with fabric programmed, the fabric will be disabled after performing security-only programming. You must
reprogram the fabric to re-enable it.

3. Depending on the Permanent Locks configured in the Configure Permanent Locks for Production tool, some of
the bitstream components for Master file are selected by default and are unavailable for users to change.
3.1. File encrypted with UEK1 to program at untrusted facility or for Broadcast field update - Click to

include:
• Fabric/sNVM.
• Bypass Back Level protection for Recovery/Golden bitstream (For master files, this option is

available only if Back Level protection is enabled in the Configure Security tool and SPI file
format is selected. By default, Back Level bypass is "on" for master file.
For update files, this option is available if Back Level protection is enabled in Configure Security
Tool, SPI file format is selected and Fabric is selected. By default, Back Level bypass is “off” for
update files).

• Include Plaintext Pass Keys is available if UPK1 is not permanently locked and the Update
Policy Fabric /sNVM is passcode protected or any of program, authenticate or verify action is
locked.

3.2. File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to
include:

• Fabric/sNVM.
• Bypass Back Level protection for Recovery/Golden bitstream (For master files, this option is

available only if Back Level protection is enabled in the Configure Security tool and SPI file
format is selected. By default, Back Level bypass is "on" for master file.
For update files, this option is available if Back Level protection is enabled in Configure Security
Tool, SPI file format is selected and Fabric is selected. By default, Back Level bypass is “off” for
update files).

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 211

• Include Plaintext Pass Keys is available if UPK1 is not permanently locked and the Update
Policy Fabric /sNVM is passcode protected or any of program, authenticate or verify action is
locked.

Note:  If sNVM/Fabric is One Time Programmable, it is precluded from bitstream encrypted with UEK1/2.

• Zeroization Actions – Select the Like New checkbox to erase all user data to make the device like new
and reprogram the device immediately, or select the Unrecoverable checkbox to erase all data and destroy
reprogrammability (in this case, the device must be scrapped).

• Sanitization settings for ERASE Action -

The sNVM sanitization option is enabled if Fabric/sNVM component is selected for at least one file type (master
or update).

Default for both options when they are enabled is “off”.

The sanitization options do not depend on OTP security setting; ERASE action will fail if there is OTP security.

Bypass Back Level protection for Recovery/Golden bitstream- If Back Level protection is enabled in the
Configure Security tool, you can bypass the back level protection for SPI bitstreams to prevent Programming
Recovery failures.

The following examples show the usage of Bypass Back Level Protection.

Table 10-4. Example 1 – Fails without Bypass Back Level Protection

Step Bitstream Action Result Design
version

Back
Level
version

Device
Back
Level
version

1 Golden/Recovery Auto Programming Pass 2 1 1

2 IAP/Update Bitstream Auto Update/IAP Pass 3 2 2

3 IAP/Update Bitstream Auto Update/IAP Fail, Attempt
Programming
Recovery

4 N/A 2

In the above example, the device will have Back Level version 2 after step 2. If you attempt to program with
bitstream in step 3, it will fail. If the device attempts to reprogram, it will initiate Programming Recovery with the
Golden/Recovery bitstream. Since the Golden/Recovery Bitstream has Design version 2, which is less than or equal
to the Back Level version in the device, it will fail. If the Bypass Back Level version option is selected, this back level
protection check will be bypassed for the Golden/Recovery Bitstream only and it will succeed.

Table 10-5. Example 2 – Does not Require Bypass Back Level Protection

Step Bitstream Action Result Design
version

Back
Level
version

Device
Back
Level
version

1 Golden/Recovery Auto Programming Pass 2 1 1

2 IAP/Update Bitstream Auto Update/IAP Pass 3 1 1

3 IAP/Update Bitstream Auto Update/IAP Fail, Attempt
Programming
Recovery

4 N/A 1

In this example, the device will have Back Level version 1 after step 2. If you attempt to program with bitstream
in step 3, it will succeed, since the Golden/Recovery Design version is greater than the Back Level version on the
device.

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 212

Table 10-6. Example 3 – Requires Bypass Back Level Protection

Step Bitstream Action Result Design
version

Back
Level
version

Device
Back
Level
version

1 Golden/Recovery Auto Programming Pass 1 1 1

2 IAP/Update Bitstream Auto Update/IAP Pass 2 1 1

3 IAP/Update Bitstream Auto Update/IAP Fail, Attempt
Programming
Recovery

3 N/A 1

In this example, the device will have Back Level version 1 after step 2. If you attempt to program with bitstream in
step 3, it will fail. If the device attempts to reprogram, it will initiate Programming Recovery with the Golden/Recovery
bitstream. Since the Golden/Recovery Bitstream has Design version 1, which is less than or equal to the Back Level
version in the device, it will fail. If the Bypass Back Level version option is selected, this back level protection check
will be bypassed for the Golden/Recovery Bitstream only and it will succeed.

10.1.4 Security Programming Files
Export Bitstream (expand Handoff Design for Production in the Design Flow window) creates the following files:

<filename>_master.(stp/spi/dat) - Created when Enable custom security options is specified in the Security Wizard.
This is the master programming file; it includes all programming features enabled, User Key Set 1, User Key Set 2
(optionally if specified), and your security policy settings.

<filename>_security_only_master.(stp/spi/dat) – Created when Enable custom security options is specified in the
Security Wizard. Master security programming file; includes User Key Set 1, User Key Set 2 (optionally if specified),
and your security policy settings.

<filename>_uek1.(stp/spi/dat) – Programming file encrypted with User Encryption Key 1 used for field updates;
includes all your features for programming except security.

<filename>_uek2.(stp/spi/dat) – Programming file encrypted with User Encryption Key 2 used for field updates;
includes all your features for programming except security.

10.2 Export FlashPro Express Job
To program the design using standalone FlashPro Express tool on Linux or Windows, the user must export a
FlashPro Express Job. The job file will include chain configuration, Programmer Settings and programming files
loaded from Programming Connectivity and Interface.

Note:  SPI Slave mode is supported by FlashPro6 for PolarFire devices. JTAG is the default interface.

Note:  The Export FlashPro Express Job uses Permanent Locks for Production configuration, if Permanent Locks
are configured. If Permanent Locks are not configured, it uses the Configure Security configuration.

Use the Configure Security tool before you export the programming job to add security. The Export FlashPro Express
Job dialog box displays the Security Options you have configured through the Configure Security tool or Configure
Permanent Locks for Production tool.

The Export FlashPro Express Job dialog box options vary depending on the device you are using and the Security
Settings.

Note:  The eNVM option is visible when eNVM is used in the design. eNVM features are available for PolarFire SoC
devices only.

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 213

Figure 10-19. Export FlashPro Express Job Dialog Box with Bitstream Encryption with Default Key

Design Settings:

• Programming Options set with Configure Programming Options tool- Displays the Design version and
Back Level version set in the Configure Programming Options tool. They are read-only options and cannot be
modified.

Note:  Info and warning messages appear based on the value set for Back Level version.

• Security options set with the Configure Security tool- Provides a brief description of current security
settings.

• Note: eNVM option is only visible when eNVM is used in the design. eNVM features are available for
PolarFireSoC devices only.

FlashPro Express Job file:

• Name - Sets the name of your bitstream file. The default name is the design name.
• Location - Location of the file to be exported.

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 214

• Existing files - Lists any existing programming job files at the selected location.

• Program (JTAG Programming Interface) - Existing files - Click Design or SPI Flash or both to include
the configured device chain with bitstream files and/or SPI flash binary file. JTAG is the default programming
interface for PolarFire Devices. SPI Flash option is only available if SPI Flash is configured in Configure Design
Initialization Data and Memories tool. Otherwise it remains grayed out. Info message appears based on the
configuration selected.

• Design bitstream file format- Lists all the available bitstream files, one of which will be included in the
programming job for the current target device. The format of the Bitstream file can be selected from the Format
drop down menu. PPD is the default bitstream file format.

• Design bitstream file type
– File to Program at trusted facility(only available when the design is configured with Bitstream Encryption

with Default Key in the Configure Security tool- Click to enable programming for Fabric/sNVM and eNVM
bitstream components at a trusted facility.

– Master file to program at trusted facility (available when the design is configured with Custom Security
options in the Configure Security tool or when the design is configured with Permanent Locks in the
Configure Permanent Locks for Production tool) – Click to include:

• Fabric/sNVM.
• eNVM
• Include Plaintext Pass Keys into the bitstream files to be programmed at a trusted facility. It is

available if UPK1 is not permanently locked and the Update Policy Fabric /sNVM or eNVM (available
in PolarFire SoC only) is passcode protected or any of program, authenticate, or verify action is
locked.

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 215

Figure 10-20. Export FlashPro Express Job Dialog Box with Custom Security Options Set with
the Configure Security Tool

Notes:

– Custom Security is always programmed in the Master file.
– Security-only programming must be performed only on erased or new devices. If performed

on a device with fabric programmed, the fabric will be disabled after performing security-only
programming. You must reprogram the fabric to re-enable it.

– File encrypted with UEK1 to program at untrusted facility or for Broadcast field update – Click to
include:

• Fabric/sNVM.
• eNVM
• Include Plaintext Pass Keys into the bitstream files to be programmed is available if UPK1

is not permanently locked and the Update Policy Fabric /sNVM or eNVM (available in
PolarFireSoC only) is passcode protected or any of program, authenticate or verify action is
locked.

– File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to
include:

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 216

• Fabric/sNVM.
• eNVM
• Include Plaintext Pass Keys into the bitstream files to be programmed is available if UPK1

is not permanently locked and the Update Policy Fabric /sNVM or eNVM (available in
PolarFireSoC only) is passcode protected or any of program, authenticate or verify action is
locked.

Note:  Refer to Export Pass Keys for Plaintext to check the availability of Export Pass keys for
Plaintext option for the following Bitstream files.

• Zeroization Actions – Click the Like New option to erase all user data to make the device like new
and reprogram the device immediately, or click the Unrecoverable option to erase all data and destroy
reprogrammability (in this case, the device must be scrapped).

Prepare Design for Production Programming in FlashPro Express

After you have exported a programming job you can handoff this programming job to the FlashPro Express tool for
production programming. To do so:

In FlashPro Express, from the File menu choose Create Job Project From a Programming Job. You will be
prompted to specify the Programming Job location that you just exported from Libero and the location of where to
store the Job Project. The Job Project name automatically uses the programming job name and cannot be changed.
Click OK and a new Job Project will be created and opened for production programming.

10.3 Export Job Manager Data
Job Manager is Microchip's HSM-based security software for job management.

As a part of the SPPS flow, the Export Job Manager Data dialog box allows a design engineer (user) to export Libero
design data to Job Manager. Exported data is used by an operation engineer (OE) using Job Manager to prepare the
manufacturing process for HSM or non-HSM flow.

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 217

Figure 10-21. Export Job Manager Data Dialog Box

Programming data file – export Job Data Container (JDC) file.

Name - All names use a prefix as shown in your software.

Location - Location of the file to be exported.

Existing programming job files - Lists any existing programming job files already in your project.

Include bitstream components - Lists the components of the design that can be saved to the file.

10.4 Export SPI Flash Image
This tool depends on the “Configure Design Initialization Data and Memories” tool. The SPI Flash configuration can
be exported to a binary file here. Use this dialog to export a SPI Flash Image file.

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 218

Figure 10-22. Export SPI Flash Image

10.4.1 Name
This is the top level design name by default. Use this field to change the default name. SPI Flash Image files are
exported in binary format and have the *.bin file extension and are named <design_name>.bin.

10.4.2 Location
The default location for the exported image file is <project_folder>\designer\<top_level_design>\export. Use the
browse button to navigate to and specify a different location for the exported SPI Flash Image file.

10.4.3 Existing files
Existing SPI Flash Image files are listed.

10.5 Export Pin Report
In the Design Flow window, expand Handoff Design for Production. Right-click Export Pin Report to export a pin
report.

The Export Pin Reports dialog box opens. Click Browse to navigate to a disk location where you want the pin report
to be saved to.

Check the checkbox to make your selections:

• Pin Report sorted by Port Name
• Pin Report sorted by Package Pin Name

• I/O Bank Report
• I/O Register Combining Report

The pin report lists the pins in your device sorted according to your preference: sort by Port Name or Sorted by
Package Pin Name. The pin report generates two files:

• <design>_pinrpt_name.rpt - Pin report sorted by name.

• <design>_pinrpt_number.rpt - Pin report sorted by pin number. You must select at least one report.
Export Pin Report generates a Bank Report by default; the filename is <design>-bankrpt.rpt. Export Pin Report
also generates an I/O Register Combining Report listing the I/Os which have been combined into a Register for
betting timing performance.

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 219

Figure 10-23. Export Pin Report Dialog Box

10.6 Export BSDL File
Double-click Export BSDL File (in the Libero SoC Design Flow window, Handoff Design for Production > Export
BSDL File) to generate the BSDL File report to your Design Report.

The BSDL file provides a standard file format for electronics testing using JTAG. It describes the boundary scan
device package, pin description and boundary scan cell of the input and output pins. BSDL models are available as
downloads for many Microchip SoC devices.

See the Microchip website for more information on BSDL Models.

10.7 Export IBIS Model
Note:  Export Input Output Buffer Information Specification (IBIS) is supported for all the “T” devices of PolarFire
Family except the “XT” device.

Export IBIS feature is supported in the following two stages:

• Pre-Layout Flow
• Post-Layout Flow

To export the IBIS Model in the Pre-Layout Flow, the design has to pass until the Synthesis/Compile stage. You
need to provide the I/O placement and configuration details in the I/O PDC files to export the resultant IBIS files in
Pre-Layout Flow.

To export the IBIS Model in the Post-Layout Flow, the design has to pass until the Place and Route stage. If a design
has run through the Place and Route tool, the IBIS model for the Post-Layout Flow will be exported by default.

Double-click Export IBIS Model (in the Libero SoC Design Flow window, Handoff Design for Production > Export
IBIS Model) to open the Export IBIS Model dialog box.

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 220

Figure 10-24. Export IBIS Model Dialog Box

10.7.1 Output File
Click Browse to specify the location to export the IBIS output file along with the output file name.

10.7.2 Export Options
The IBIS report *.ibs file exported from Libero SoC can optionally support the [Model Selector] keyword as specified
in the IBIS 5.0 Specifications. To generate Model Selector support in the exported IBIS file, check the Enable Model
Selector box in the Export Options. Using this, the user can also optionally limit the maximum signal name to 40
characters.

Click OK to export the IBIS Model.

The IBIS model report provides an industry-standard file format for recording parameters like driver output
impedance, rise/fall time, and input loading, which may then be used by software applications such as Signal Integrity
tools or IBIS simulators.

The exported IBIS file has the file extension *.ibs (named <root>.ibs) and is displayed in the Files tab.

In the [Pin] section of the IBIS *.ibs file, listed under the model_name are the Model Selector tag. The IBIS *.ibs file
has a [Model Selector] section that describes the model selector and its list of models. The Model Selector tag in the
[Pin] section establishes the relationship between the pin and the [Model Selector].

Figure 10-25. Model Selector *.ibs File

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 221

https://ibis.org/ver5.0

The advantage of Model Selector feature is that you can load the *.ibs file from Libero SoC into Signal Integrity
applications or IBIS simulators and switch the I/O to different models for individual I/Os on-the-fly in the tools. There
is no need to go back to the Libero SoC I/O Attribute Editor to change the I/O settings and run Compile to switch to
different I/O settings.

See the Microchip Website for more information on IBIS Models.

 Libero® SoC v2021.1
Handoff Design for Production

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 222

https://www.microsemi.com/products/fpga-soc/design-resources/ibis-models

11. Export SmartDebug Data (Libero SoC)
Export SmartDebug Data allows the export of SmartDebug Data from Libero to be handed off to the Standalone
SmartDebug environment.

In the Libero SoC Design Flow window, expand Handoff Design for Debugging, right-click Export SmartDebug
Data and click Export to open the Export SmartDebug Data dialog box. Specify the design debug data file (*.ddc) to
be exported. This file is also used as one of the ways to create a Standalone SmartDebug project. See the following
figure for an example.

Figure 11-1. Export SmartDebug Data Dialog Box

Note:  SmartDebug data can be exported without connecting the hardware.

Design debug data file (*.ddc)

• Name: The name of the design.
• Location: The location of the exported debug file. By default, the *.ddc file is exported to the

<project_location>/designer/<design>/export folder and has the *.ddc file extension.
• Existing Design Debug Data Files: The existing *.ddc file, if any, in the export folder. SmartDebug data can

be exported after you run Generate FPGA Array Data for the design in the Libero Design Flow. You can also
directly export SmartDebug data after running Synthesize on the design. Other tools, such as Place and Route,
Generate FPGA Array Data, and so forth) are implicitly run before the Export SmartDebug Data dialog box is
displayed.

• Include design components: A DDC file can contain the following components:
– FPGA Array Probe Points – When checked, Libero SoC exports Live and Active probes information

(<design>_probe.db file) into the *.ddb container file.

 Libero® SoC v2021.1
Export SmartDebug Data (Libero SoC)

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 223

– FPGA Array Memory Blocks – When checked, Libero SoC exports information about FPGA memories
(<design>_sii_block.db) into the *.ddb container file:

• names and addresses of the memory blocks instantiated by the design
• data formats selected by the user in the design

– sNVM – When checked, Libero SoC exports sNVM components.
– Security – This contains the security locks, keys, and security policy information needed for debug. This

may be default or custom security (<design>.spm file). It is hidden if security is not supported for the
device.

• Display DPK or UPK1 in SmartDebug - This option is enabled only when custom security is
provided, and is unchecked by default.

– JTAG Chain (device chain information configured using Programming Connectivity and Interface in Libero).
When checked, Libero SoC exports chain data including devices, their programming files if loaded, device
properties, and so on (<design>.pro file). If JTAG chain is unchecked, the default JTAG chain with Libero
design device only is added to the *.ddc file.

– Programming Options set with Configure Programming Options tool- Displays the Design version and
Back Level version set in the Configure Programming Options Wizard. They are read only options and
cannot be modified.

• Programming Options set with Configure Programming Options tool- Displays the Design version and Back
Level version set in the Configure Programming Options Wizard. They are read only options and cannot be
modified.

• Device I/O States During Programming (<design>.ios file) – This setting is used by some SmartDebug
features, for example, for programming sNVM. It is NOT used during device programming in SmartDebug;
programming files used to program devices already have I/O states data.

In addition, you can include bitstream file information, which can be used for programming the device in Standalone
SmartDebug.

Note:  Info and warning messages appear based on the value set for the Back Level version.

Include Bitstream file to program at trusted facility

• Bitstream components: Fabric
• Bitstream components: sNVM
• Bitstream components: Custom security (this option is only visible if Custom Security Option is selected in

Configure Security wizard).

Note:  If the Fabric Bitstream component is programmed, the sNVM Bitstream component must be programmed and
it is selected by default. In this case, sNVM is disabled for the user to unselect. Otherwise, the sNVM component can
either be enabled or disabled for programming.

The default location of the DDC file is: <Libero_Project_directory>/designer/<design_name>/export.

The DDC file can be exported to any user-specified location if the location has read and write permission.

 Libero® SoC v2021.1
Export SmartDebug Data (Libero SoC)

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 224

12. References

12.1 Archive Project Dialog Box
The Archive Project dialog box enables you to create an archive (*.zip file) of your existing project and save it at the
specified location. This is useful if you want to create a quick zip file of your project. Internally, Archive Project and
Save As Project do the same task, but if you are saving your Libero application to the SVN repository, it is important
to archive your project. When you do an SVN checkout after checkin, there is a chance that the timestamps will be
outdated and the tool states will remain invalidated. Archive Project helps in retaining the tool states by preserving
the database in compressed format.

To access this dialog box, choose Archive Project from the Project menu.

Figure 12-1. Archive Project Dialog Box

Project Location

Accept the default location or Browse to a new location where the archive (*.zip) file is to be created and stored. The
*.zip file is named <project_name>.zip.

Content

Copy links locally - Select this checkbox to copy the links from your current project into your archive. If you do not
select this checkbox, the links will not be copied and you must add them manually.

Files: Specifies what kind of files are archived.

• All - Includes in the archive all your project and source files; the state of the project is retained.
• Project files only – Includes in the archive only the project-related information required to retain the state of the

project.
• Source files only - Includes in the archive only the source files. This means the configuration of all the tools

in the tool chain is retained but the states are not. Source files means constraint information and component
information available in the component, hdl and smartgen directories.

Files are archived as shown in the table below for the different selections.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 225

Folder Name Files

All Project Files Only Source Files Only

component All Files All Files All Files

constraint All Files All Files All Files

hdl All Files All Files All Files

stimulus All Files All Files All Files

viewdraw All Files All Files All Files

smartgen All Files All Files All Files

firmware All Files All Files All Files

CoreConsole All Files All Files All Files

SoftConsole/Keil/IAR All Files All Files All Files

simulation All Files *.ini, *.bfm, *.do., *.vec *.ini, *.bfm, *.do., *.vec

synthesis All Files *.edn, *.vm, *.sdc, *.so,

*.prj, *.srr, *.v,
run_options.txt, synplify.log

*.prj files

Designer/impl1 All Files All Files *.ide_des files

Designer/<root> All Files All Files Not archived

tooldata All Files All Files All Files

Note:  *edn files are not supported in PolarFire.

12.2 Adding or Modifying Bus Interfaces in SmartDesign
SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters. You can
add a bus interface from your HDL module or you can add it from the Catalog.

To add a bus interface using your custom HDL block:

If your block has all the necessary signals to interface with the AMBA bus protocol (such as address, data, and
control signals):

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your core
and asks if you want to add bus interfaces.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as
necessary.

3. Click OK to continue.

Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto Connect
find a compatible connection.

To add (or modify) a bus interface to your Component:

1. Right-click your Component and choose Edit Core Definition. The Edit Core Definition dialog box opens, as
shown in the figure below.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 226

Figure 12-2. Edit Core Definition Dialog Box

2. Click Add Bus Interface. Select the bus interface you wish to add and click OK.
3. If necessary, edit the bus interface details.
4. Click Map by Name to map the signals automatically. Map By Name attempts to map any similar signal names

between the bus definition and pin names on the instance. During mapping, bus definition signal names are
prefixed with text entered in the Map by Name Prefix field.

5. Click OK to continue.

Bus Interface Details
• Bus Interface: Name of bus interface. Edit as necessary. Bus Definition: Specifies the name of the bus

interface. Role: Identifies the bus role (master or slave).
• Vendor: Identifies the vendor for the bus interface.
• Version: Identifies the version for the bus interface.

Configuration Parameters

Certain bus definitions contain user configurable parameters.
• Parameter: Specifies the parameter name.
• Value: Specifies the value you define for the parameter.
• Consistent: Specifies whether a compatible bus interface must have the same value for this bus parameter. If

the bus interface has a different value for any parameters that are marked with consistent set to yes, this bus
interface will not be connectable.

Signal Map Definition

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 227

The signal map of the bus interface specifies the pins on the instance that correspond to the bus definition signals.
The bus definition signals are shown on the left, under the Bus Interface Definition. This information includes the
name, direction and required properties of the signal.

The pins for your instance are shown in the columns under the Component Instance. The signal element is a
drop-down list of the pins that can be mapped for that definition signal.

If the Req field of the signal definition is Yes, you must map it to a pin on your instance for this bus interface to be
considered legal. If it is No, you can leave it unmapped.

12.2.1 Bus Interfaces
When you add a bus interface the Edit Core Definition dialog box provides the following Microchip Libero SoC-
specific bus interfaces:

• AHB – Master, Slave, Mirrored Master, MirroredSlave
• APB – Master, Slave, Mirroredmaster, MirroredSlave
• AXI – Master, Slave, MirroredMaster, MirrorSlave, System
• AXI 4 - Master, Slave, MirroredMaster, MirrorSlave

12.3 Catalog
In the Libero SoC, from the View menu choose Windows > Catalog.

The Catalog displays a list of available cores, busses, and macros (see image below).

Figure 12-3. Libero SoC Catalog

From the Catalog, you can create a component from the list of available cores, add a processor or peripheral, add a
bus interface to your SmartDesign component, instantiate simulation cores or add a macro (Arithmetic, Basic Block,
etc.) to your SmartDesign component.

Double-click a core to configure it and add it to your design. Configured cores are added to your list of Components/
Modules in the Design Explorer.

Click the Simulation Mode checkbox to instantiate simulation cores in your SmartDesign Testbench. Simulation cores
are basic cores that are useful for stimulus, such as driving clocks, resets, and pulses.

Viewing Cores in the Catalog

The font indicates the status of the core:

• Plain text - In vault and available for use
• Asterisk after name (*) - Newer version of the core (VLN) available for download
• Italics - Core is available for download but not in your vault
• Strikethrough - core is not valid for this version of Libero SoC

The colored icons indicate the license status. Blank means that the core is not license protected in any way. Colored
icons mean that the core is license protected, with the following meanings:

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 228

Green Key - Fully licensed; supports the entire design flow.

Yellow Key - Has a limited or evaluation license only. Precompiled simulation libraries are provided, enabling the
core to be instantiated and simulated within Libero SoC. Using the Evaluation version of the core it is possible to
create and simulate the complete design in which the core is being included. The design is not synthesizable (RTL
code is not provided). No license feature in the license.dat file is needed to run the core in evaluation mode. You can
purchase a license to generate an obfuscated or RTL netlist.

Yellow Key with Red Circle - License is protected; you are not licensed to use this core.

Right-click any item in the Catalog and choose Show Details for a short summary of the core specifications. Choose
Open Documentation for more information on the Core. Right-click and choose Configure Core to open the core
generator.

Click the Name column heading to sort the cores alphabetically.

You can filter the cores according to the data in the Name and Description fields. Type the data into the filter field to
view the cores that match the filter. You may find it helpful to set the Display setting in the Catalog Options to List
cores alphabetically when using the filters to search for cores. By default the filter contains a beginning and ending
‘*’, so if you type ‘controller’ you get all cores with controller in the core name (case insensitive search) or in the core
description. For example, to list all the Accumulator cores, in the filter field type:

accu
Catalog Options

Click the Options button (or the drop-down arrow next to it) to import a core, reload the Catalog, or modify the
Catalog Options.

You may want to import a core from a file when:

• You do not have access to the internet and cannot download the core, or
• A core is not complete and has not been posted to the web (you have an evaluation core)

Manually Downloading MegaVaults and Individual CPZ files

When Libero is used in an environment without automatic access to Microchip's online IP repositories via the Internet;
see this article explaining how to download MegaVaults and individual CPZ files.

12.3.1 Catalog Options Dialog Box
The Catalog Options dialog box (as shown below) enables you to customize your Catalog. You can add a repository,
set the location of your vault, and change the View Settings for the Catalog. To display this dialog box, click the
Catalog Options button .

Figure 12-4. Catalog Display Options Dialog Box

• Vault/Repositories Settings
– Repositories:

A repository is a location on the web that contains cores that can be included in your design.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 229

https://soc.microsemi.com/kb/article.aspx?id=SL5608

The Catalog Options dialog box enables you to specify which repositories you want to display in your Vault.
The Vault displays a list of cores from all your repositories, and the Catalog displays all the cores in your
Vault.

The default repository cannot be permanently deleted; it is restored each time you open the Manage
Repositories dialog box.

Any cores stored in the repository are listed by name in your Vault and Catalog; repository cores displayed
in your Catalog can be filtered like any other core.

Type in the address and click the Add button to add new repositories. Click the Remove button to remove
a repository (and its contents) from your Vault and Catalog. Removing a repository from the list removes
the repository contents from your Vault.

– Vault location
Use this option to choose a new vault location on your local network. Enter the full domain pathname in the
Select new vault location field. Use the format:

\\server\share
and the cores in your Vault will be listed in the Catalog.

Set ENV variable to set vault location - In addition to setting the vault location using the Catalog dialog
box, you can set the vault location using the environment variable MSCC_IDE_VAULT_LOCATION. Setting
the vault through the environment variable takes precedence over all other options to set vault location.

To set the vault location on Linux, type the following command:

setenv MSCC_IDE_VAULT_LOCATION /home/temp_dir
To set the vault location on Windows:

Add a new environment variable MSCC_IDE_VAULT_LOCATION in System Properties and specify your
vault location.

– Read only vault
In read only Mega Vault mode, you cannot download, add, or remove cores. However, you can configure
and generate cores by creating a temporary extract location to extract the core. This temporary extract
location can be set by setting the environment variable MSCC_IDE_VAULT_EXTRACT_LOCATION. By
setting this environment variable, your configured cores are retained across sessions.

To set the extract location on Linux, type the following command:

setenv MSCC_IDE_VAULT_EXTRACT_LOCATION /home/vault_extract
To set the extract vault location on Windows:

Add a new environment variable MSCC_IDE_VAULT_EXTRACT_LOCATION in System Properties and
specify your extract location.

If you do not specify the extract location, a temporary location will be created by Libero and it will be
accessed only while the current session is active. If the session is no longer active, the temporary extract
location will be cleaned up by Libero. If you specify the extract location, it will be available for any instance
of libero on that machine, and it is your responsibility to clean up the extract location.

• View Settings
– Display

Group cores by function - Displays a list of cores, sorted by function. Click any function to expand the list
and view specific cores.

List cores alphabetically - Displays an expanded list of all cores, sorted alphabetically. Double click a
core to configure it. This view is often the best option if you are using the filters to customize your display.

Show core version - Shows/hides the core version.
– Filters

Filter field - Type text in the Filter Field to display only cores that match the text in your filter. For example,
to view cores that include 'sub' in the name, set the Filter Field to Name and type sub.

Display only latest version of a core - Shows/hides older versions of cores; this feature is useful if you
are designing with an older family and wish to use an older core.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 230

Show all local and remote cores - Displays all cores in your Catalog.

Show local cores only - Displays only the cores in your local vault in your Catalog; omits any remote
cores.

Show remote cores that are not in my vault - Displays remote cores that have not been added to your
vault in your Catalog.

12.4 Changing Output Port Capacitance
Output propagation delay is affected by both the capacitive loading on the board and the I/O standard. The
I/O Attribute Editor in Chip Planner provides a mechanism for setting the expected capacitance to improve the
propagation delay model. SmartTime automatically uses the modified delay model for delay calculations.

To change the output port capacitance and view the effect of this change in SmartTime Timing Analyzer, refer to the
following example. The figure below shows the delay from DFN1 to output port Q. It shows a delay of 6.603 ns based
on the default loading of 5 pF.

Figure 12-5. Maximum Delay Analysis View

If your board has output capacitance of 15 pf on Q, you must perform the following steps to update the timing
number:

1. Open the I/O Attribute Editor and change the output load to 15 pf.
Figure 12-6. I/O Attribute Editor View

2. Select File > Save.
3. Select File > Close.
4. Open the SmartTime Timing Analyzer.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 231

You can see that the Clock to Output delay changed to 5.952 ns.

12.5 Core Manager
The Core Manager only lists cores that are in your current project. If any of the cores in your current project are not in
your vault, you can use the Core Manager to download them all at once.

For example, if you download a sample project and open it, you may not have all the cores in your local vault. In this
instance you can use the Core Manager to view and download them with one click. Click Download All to add any
missing cores to your vault. To add any individual core, click the green download button.

To view the Core Manager, from the View menu, choose Windows > Cores. The following table describes the
column headings in the Core Manager.
Table 12-1. Columns in the Core Manager

Column Description

Name Name of the core.

Vendor Source of the core.

Core Type Core type.

Version Version of the core used in your project. If the version is
a later version than the one in your vault, click Download
All to download the latest version.

12.6 Configure Permanent Locks for Production
Configure Permanent Locks for Production is a GUI-based tool that guides the user step by step on how to configure
the Permanent Locks for Production. The wizard has six steps/pages executed in sequential order. One Time
Programmable (OTP) settings in the Permanent Locks page are applied to configured Security settings from the
Configure Security tool. The subsequent pages have read only fields, which will be affected by Permanent Lock
settings. These settings can only be configured by the Configure Security tool.

If you configure any Permanent Lock settings, you will be forced to go through each page to review the Security
settings to make sure they are as desired. The settings cannot be changed once they have been programmed.

1. Permanent Locks
2. User keys in Configure Security
3. Update Policy in Configure Security
4. Debug Policy in Configure Security
5. Microsemi Factory Access in Configure Security
6. JTAG/SPI Slave Commands Policy in Configure Security

Summary Window

The summary window displays the summary of the current page configuration settings. Based on the selection made
in the first page, the summary for the subsequent pages change. The window will scroll to the current page as you
move from page to page.

Back

Click Back to return to the previous step.

Next

Click Next to proceed to the next step.

Finish

Click Finish to complete the configuration after executing the all the steps in sequential order.

Save Summary to File

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 232

Click Save Summary to File to save the display in the Summary field to a file.

12.7 Importing Source Files – Copying Files Locally
Designer in Libero SoC cannot import files from outside your project without copying them to your local project folder.
You may import source files from other locations, but they are always copied to your local folder. Designer in Libero
SoC always audits the local file after you import; it does not audit the original file.

When the Project Manager asks you if you want to copy files "locally", it means 'copy the files to your local project
folder'. If you do not wish to copy the files to your local project folder, you cannot import them. Your local project folder
contains files related to your Libero SoC project.

Files copied to your local folders are copied directly into their relevant directory: netlists are copied to the synthesis
folder; source files are copied to hdl folder and constraint files to constraint folder, etc. The files are also added to the
Libero SoC project; they appear in the Files tab.

12.8 Create Clock Constraint Dialog Box
Use this dialog box to enter a clock constraint setting.

It displays a typical clock waveform with its associated clock information. You can enter or modify this information,
and save the final settings as long as the constraint information is consistent and defines the clock waveform
completely. The tool displays errors and warnings if information is missing or incorrect.

To open the Create Clock Constraint dialog box (shown below) from the SmartTime Constraints Editor, choose
Constraints > Clock.

Figure 12-7. Create Clock Constraint Dialog Box

Clock Source

Enables you to choose a pin from your design to use as the clock source.

The drop-down list is populated with all explicit clocks. You can also select the Browse button to access all potential
clocks. The Browse button displays the Select Source Pins for Clock Constraint Dialog Box.

Clock Name

Specifies the name of the clock constraint. This field is required for virtual clocks when no clock source is provided.

Period

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 233

When you edit the period, the tool automatically updates the frequency value. The period must be a positive real
number. Accuracy is up to 3 decimal places.

Frequency

When you edit the frequency, the tool automatically updates the period value.

The frequency must be a positive real number. Accuracy is up to 3 decimal places.

Starting Clock Edge Selector

Click the Up or Down arrow to use the rising or falling edge as the starting edge for the created clock.

Offset

Indicates the shift (in nanoseconds) of the first clock edge with respect to instant zero common to all clocks in the
design.

The offset value must be a positive real number. Accuracy is up to 2 decimal places. Default value is 0.

Duty Cycle

This number specifies the percentage of the overall period that the clock pulse is high.

The duty cycle must be a positive real number. Accuracy is up to 4 decimal places. Default value is 50%.

Add this clock to existing one with same source

Check this box if you want to add a new clock constraint on the same source without overwriting the existing clock
constraint. The new clock constraint name must be different than the existing name. Otherwise, the new constraint
will overwrite the existing one even if you check this box.

Comment

Enables you to save a single line of text that describes the clock constraints purpose.

See Also

Specifying Clock Constraints

12.9 Select Source Pins for Clock Constraint Dialog Box
Use this dialog box to find and choose the clock source from the list of available pins.

To open the Select Source Pins for the Clock Constraint dialog box (shown below) from the SmartTime Constraints
Editor, click the Browse button to the right of the Clock source field in the Create Clock Constraint dialog box.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 234

Figure 12-8. Select Source Pins for Clock Constraint Dialog Box

Filter Available Pins
• Type – Displays the Type of the Available Pins in the design. The Pin Type options available for the Source are:

– All Pins
– Input Ports
– All Nets

• Pattern – The default is *, which is a wild-card match for all. You can specify any string value. Click Search to
filter the available pins based on the specified pin Type and Pattern.

Available Pins

The list box displays the available pins. If you change the pattern value, the list box shows the available pins based
on the filter.

Use Add, Add All to add the pins from the Available Pins list to Assigned Pins or Remove, Remove All to delete the
pins from the Assigned Pins list.

Assigned Pins

Displays pins selected from the Available Pins list. Select Pins from this list and click OK to add the Source Pins for
Clock Constraint.

See Also

Specifying clock constraints

12.10 Specifying Clock Constraints
Specifying clock constraints is the most effective way to constrain and verify the timing behavior of a sequential
design. Use clock constraints to meet your performance goals.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 235

To specify a clock constraint:

1. Add the constraint in the editable constraints grid or open the Create Clock Constraint dialog box using one of
the following methods:

– Click the icon in the Constraints Editor.
– Right-click the Clock in the Constraint Browser and choose Add Clock Constraint.
– Double-click Clock in the Constraint Browser.
– Choose Clock from the Constraints drop-down menu (Constraints > Clock)

The Create Clock Constraint dialog box appears (as shown below).

Figure 12-9. Create Clock Constraint Dialog Box

2. Select the pin to use as the clock source. You can click the Browse button to display the 12.9 Select Source
Pins for Clock Constraint Dialog Box (as shown below).
Note:  Do not select a source pin when you specify a virtual clock. Virtual clocks can be used to define a clock
outside the FPGA that is used to synchronize I/Os.

Use the Choose the Clock Source Pin dialog box to display a list of source pins from which you can choose.
By default, it displays the explicit clock sources of the design. To choose other pins in the design as clock
source pins, select Filter available objects - Pin Type as Explicit clocks, Potential clocks, All Ports, All
Pins, All Nets, Pins on clock network, or Nets in clock network. To display a subset of the displayed clock
source pins, you can create and apply a filter.

Multiple source pins can be specified for the same clock when a single clock is entering the FPGA using
multiple inputs with different delays.

Click OK to save these dialog box settings.
3. Specify the Period in nanoseconds (ns) or Frequency in megahertz (MHz).
4. Modify the Clock Name. The name of the first clock source is provided as default.
5. Modify the Duty cycle, if needed.
6. Modify the Offset of the clock, if needed.
7. Modify the first edge direction of the clock, if needed.
8. Select the check box for Add this clock to an existing one with the same source, if needed.
9. Click OK. The new constraint appears in the Constraints List.

Note:  When you choose File > Save, the Timing Constraints Editor saves the newly created constraint in the
database.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 236

Figure 12-10. Timing Constraint View

12.10.1 Create Generated Clock Constraint Dialog Box
Use this dialog box to specify generated clock constraint settings.

It displays a relationship between the clock source and its reference clock. You can enter or modify this information,
and save the final settings as long as the constraint information is consistent. The tool displays errors and warnings if
the information is missing or incorrect.

To open the Create Generated Clock Constraint dialog box (shown below) from the SmartTime Constraints Editor,
choose Constraints > Generated Clock.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 237

Figure 12-11. Create Generated Clock Constraint

Clock Pin

Enables you to choose a pin from your design to use as a generated clock source.

The drop-down list is populated with all unconstrained explicit clocks. You can also select the Browse button to
access all potential clocks and pins from the clock network. The Browse button displays the Select Generated Clock
Source dialog box.

Reference Pin

Enables you to choose a pin from your design to use as a generated reference pin. You can select the Browse button
to access all the available reference pins. The Browse button displays the Select Generated Clock Reference dialog
box.

Generated Clock Name

Specifies the name of the Generated clock constraint. This field is required for virtual clocks when no clock source is
provided.

Generated Frequency

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 238

Specify the values to calculate the generated frequency: a multiplication factor and/or division factor (must be positive
integers) is applied to the reference clock to compute the generated clock.

Generated Clock Edges

Frequency of the generated clock can also be specified by selecting the Generated Clock Edges option. Specify the
integer values that represent the edges from the source clock that form the edges of the generated clock.

Three values must be specified to generate the clock. If you specify less than three, a tool tip indicates an error. The
following example shows how to specify the clock edges.

If LSB is the generated clock from CLK clock source, the edge values must be [1 3 5].

If MSB is the generated clock from CLK clock source, the edge values must be [1 5 9].

Edge Shift

Specify a list of three floating point numbers that represents the amount of shift, in library time units, that the specified
edges are to undergo to yield the final generated clock waveform. These floating point values can be positive or
negative. Positive value indicates a shift later in time, while negative indicates a shift earlier in time.

For example: An edge shift of {1 1 1} on the LSB generated clock, would shift each derived edge by 1 time unit. To
create a 200MHz clock from a 100MHz clock, use edge { 1 2 3} and edge shift {0 -2.5 -5.0}

Generated Waveform

Specify whether the generated waveform is the same or inverted with respect to the reference waveform. Click OK.

Phase

This field is primarily used to report the information captured from the CCC configuration process, and when
constraint is auto-generated. Meaningful phase values are: 0, 45, 90, 135, 180, 225, 270, and 315. This field is used
to report the information captured from the CCC configuration process, and when the constraint is auto-generated.

PLL Output

This field refers to the CCC GL0/1/2/3 output that is fed back to the PLL (in the CCC). This field is primarily used to
report the information captured from the CCC configuration process, and when constraint is auto-generated.

PLL Feedback

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 239

This field refers to the manner in which the GL/0/1/2/3 output signal of the CCC is connected to the PLL's FBCLK
input. This field is primarily used to report the information captured from the CCC configuration process, and when
constraint is auto-generated.

Add Clock to Existing Clock

Specifies that the generated clock constraint is a new clock constraint in addition to the existing one at the same
source. The name of the clock constraint should be different from the existing clock constraint. When this option is
selected, master clock must be specified.

Master Clock

Specifies the master clock used for the generated clock when multiple clocks fan into the master pin. It can be
selected from the drop-down menu. This option is used in conjunction with the add option of the generated clock.

Comment

Enter a single line of text that describes the generated clock constraints purpose.

12.10.2 Select Generated Clock Source Dialog Box
Use this dialog box to find and choose the generated clock source from the list of available pins.

To open the Select Generated Clock Source dialog box (shown below) from the Timing Constraints Editor, open
the Create Generated Clock Constraint dialog box and click the Browse button for the Clock Pin.

Figure 12-12. Select Generated Clock Source Dialog Box

Filter Available Pins
• Pin type – Displays the Available Pin types. The Pin Type options for Generated Clock Source are:

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 240

• Output Ports
• All Register Output Pins
• All Pins
• All Nets
• Input Ports

• Pattern – The default pattern is *, which is a wild-card match for all. You can specify any string value.

Select Filter to filter the available pins based on the specified Pin Type and Pattern.

The list box displays the list of available pins based on the filter. Select the pins from the list and click OK to
select the Generated Clock Source Pin.

12.11 Specifying Generated Clock Constraints
Specifying a generated clock constraint enables you to define an internally generated clock for your design and verify
its timing behavior. Use generated clock constraints and clock constraints to meet your performance goals.

To specify a generated clock constraint:

1. Open the Create Generated Clock Constraint dialog box using one of the following methods:

– Click the icon.
– Right-click the Generated Clock in the Constraint Browser and choose Add Generated Clock.
– Double-click the Generated Clock Constraints grid. The Create Generated Clock Constraint dialog box

appears (as shown below).

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 241

Figure 12-13. Create Generated Clock Constraint

2. Select a Clock Pin to use as the generated clock source. To display a list of available generated clock source
pins, click the Browse button. The Select Generated Clock Source dialog box appears (as shown below).

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 242

Figure 12-14. Select Generated Clock Source Dialog Box

3. Specify a Reference Pin. To display a list of available clock reference pins, click the Browse button. The
Select Generated Clock Reference dialog box appears.

4. Specify the Generated Clock Name(optional).
5. Specify the values to calculate the generated frequency: a multiplication factor and/or a division factor (both

positive integers).
6. Specify the orientation of the generated clock edges based on the reference edges by entering values for the

edges and the edge shifts. This is optional.
7. Specify the first edge of the generated waveform either same as or inverted with respect to the reference

waveform.
8. Specify the PLL output and PLL feedback pins, if an External feedback is used to generate the clock.
9. Specify the Phase shift applied by the PLL in degrees.
10. Specify the Master Clock, if you want to add this to an existing one with the same source.
11. Click OK. The new constraint appears in the Constraints List.

Tip: From the File menu, choose Save to save the newly created constraint in the database.

12.11.1 Select Generated Clock Reference Dialog Box
Use this dialog box to find and choose the generated clock reference pin from the list of available pins.

To open the Select Generated Clock Reference dialog box (shown below) from the SmartTime Constraints Editor,
open the Create Generated Clock Constraint Dialog Box dialog box and click the Browse button for the Clock
Reference.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 243

Figure 12-15. Select Generated Clock Reference Dialog Box

Filter Available Pins
• Pin type – Displays the Available Pin types. The Pin Type options for Generated Clock Reference are:

– Input Ports
– All Pins

• Pattern – The default pattern is *, which is a wild-card match for all. You can specify any string value.
Select Filter to filter the available pins based on the specified Pin Type and Pattern.

The list box displays the list of available pins based on the filter. Select the pins from the list and click OK to
select the Generated Clock Reference Pin.

See Also

Specifying generated clock constraints

12.12 Design Hierarchy in the Design Explorer
The Design Hierarchy tab displays a hierarchical representation of the design based on the source files in the project.
It also displays elaborated hierarchy constructed by propagating correct values for parameters and generics. The
software continuously analyzes the source files and updates the content. The Design Hierarchy tab (see figure
below) displays the structure of the modules and components as they relate to each other along with parameter/
generic names and its values on the tool tip for which the module is instantiated. It also displays architecture name
for a given entity and Configuration for VHDL modules.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 244

Figure 12-16. Design Hierarchy

A module can have multiple elaborations depending on the different parameters/generics used in the instantiation
of the module and all of these elaborated modules will be shown in the Design Hierarchy. The parameterized
instantiated module will be shown as elab<num>:<modulename>.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 245

Modules are instantiated with their actual names in the SmartDesign. If a module with elaborated name in the
Design Hierarchy has to be instantiated in the SmartDesign, an instance of the original module is created in the
SmartDesign. The following figure shows the design hierarchy with elaborated modules.

Figure 12-17. Design Hierarchy with Elaborated Modules (Verilog)

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 246

Figure 12-18. Design Hierarchy with Elaborated Modules (VHDL)

Modules which are not part of the elaboration will be shown in the complete hierarchy but they remain grayed out.
When you create a core from a module, all the elaborated modules of that module will be shown as HDL+ core
modules. You can get the parameter value of an elaborated module by selecting Show Module parameters on the
right click menu of the elaborated module.

Note:  A tool tip on each module shows all the parameters with their values for the instantiated module.

Note: Synthesis output will be the same for different elaborations of the same module i.e. elab0:module1 and
elab1:module1 will have the same synthesis output. When one of the elaborated module is set as root, all the
elaborations will be highlighted in the Design Hierarchy as shown in the below figure.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 247

Figure 12-19. Design Hierarchy When one of the Elaborated Module is Set as Root

You can change the display mode of the Design Hierarchy by selecting Components or Modules from the Show
drop-down list. The components view displays the entire design hierarchy; the modules view displays only schematic
and HDL modules.

You can build the Design Hierarchy and Simulation Hierarchy by clicking the Build Hierarchy button.

A yellow icon indicates that the Design Hierarchy is out of date (invalidated). Any change to
the design sources/stimuli invalidates the Design Hierarchy/Stimulus Hierarchy. Click the Build Hierarchy button to
rebuild the Design Hierarchy.

The file name (the file that defines the block) appears next to the block name in parentheses.

To view the location of a component, right-click and choose Properties. The Properties dialog box displays the path
name, created date, and last modified date.

All integrated source editors are linked with the SoC software. If a source is modified and the modification changes
the hierarchy of the design, the Build Hierarchy automatically updates to reflect the change.

If you want to update the Design Hierarchy, from the View menu, choose Refresh Design Hierarchy.

To open a component:

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 248

Double-click a component in the Design Hierarchy to open it. Depending on the block type and design state, several
possible options are available from the right-click menu. You can instantiate a component from the Design Hierarchy
to the SmartDesign Canvas. See the SmartDesign User Guide for more information.

Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.

Table 12-2. Design Hierarchy Icons

Icon Description

SmartDesign component

SmartDesign component with HDL netlist not generated

IP core was instantiated into SmartDesign but the HDL netlist has not been generated

Core

Error during core validation

Updated core available for download

HDL netlist

Shows ungenerated components

Shows unknown modules

Expands all the files and folders in the Design Hierarchy

Collapses all the files and folders in the Design Hierarchy

Finds the files in the Design Hierarchy

Linked Files with Relative Path in Design Hierarchy with Environment Variable

The following figure shows linked files that have a relative path in the design hierarchy with the Environment variable.
Linked files that are in a drive different to the drive specified in Environment variable path are shown as absolute files
in Windows.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 249

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf

Figure 12-20. Linked Files with Relative Path in Design Hierarchy with Environment Variable

Properties of file in Design Hierarchy shows Relative Path and Relative Path root directory

Figure 12-21. File Path Properties in Design Hierarchy Representing Relative Path and Relative Path Root
Directory

12.13 Digest File
Users can verify which bitstream file was programmed onto their devices by running the VERIFY or VERIFY_DIGEST
actions on each device that was programmed. This is a costly and time-consuming process. To speed up the
verification process, digests are printed during bitstream generation and bitstream programming.

These digests can be compared to verify that all of the devices were programmed with the correct bitstream file.

The bitstream file is divided into three major component sections: FPGA fabric, eNVM, and Security. A valid bitstream
will contain a combination of any of the three primary bitstream components.

Use Case

When a customer creates a design in Libero and then exports the STAPL file (for FlashPro) or programming job (for
FlashPro Express), the digest of each of the primary components is printed in the Libero log window and saved in
a digest file under the export folder. The digest file is a text file containing the bitstream component name with its
corresponding digest. The name of the digest file will match the name of the STAPL/programming job exported, and
will be appended with a “.digest” extension.

The customer then sends the STAPL/programming job to a production programming house. Now, when the devices
are programmed, the digest of each of the primary components is printed in the log window. The production
programming house saves the log files and sends the devices along with log files back to the customer. The
customer can then verify that the correct design was programmed on the device by matching the digests in the log
file with that in the *.digest file under the Libero export folder.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 250

Note: 
Digest printed during programming (same as in *.digest file) is bitstream payload digest. It is meant for device to
confirm that it receives the correct bitstream payload.

Digest exported from DEVICE_INFO is the digest of the actual memory content. It does not have other metadata that
is included in the encrypted bitstream payload, so it will be different than one generated during programming.

See Also

Export Bitstream

12.14 Design Rules Check
The Design Rules Check runs automatically when you generate your SmartDesign; the results appear in the Reports

tab. You can also initiate a Design Rules Check by clicking on the button of the SmartDesign
Canvas tab menu.

To view the results, from the Design menu, choose Reports.

• Status displays an icon to indicate if the message is an error or a warning (as shown in the figure below). Error
messages are shown with a small red sign and warning messages with a yellow exclamation point.

• Message identifies the specific error/warning (see list below); click any message to see where it appears on the
Canvas.

• Details provides information related to the Message.

Figure 12-22. Design Rules Check Results

Fi 147 D i R l Ch k R lt
Message Types:

Unused Instance - You must remove this instance or connect at least one output pin to the rest of the design.

Out-of-date Instance - You must update the instance to reflect a change in the component referenced by this
instance.

Undriven Pin - To correct the error you must connect the pin to a driver or change the state, i.e. tie low (GND) or tie
high (VCC).

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 251

Floating Driver - You can mark the pin unused if it is not going to be used in the current design. Pins marked unused
are ignored by the Design Rules Check.

Unconnected Bus Interface - You must connect this bus interface to a compatible port because it is required
connection.

Required Bus Interface Connection – You must connect this bus interface before you can generate the design.
These are typically silicon connection rules.

Exceeded Allowable Instances for Core – Some IP cores can only be instantiated a certain number of times for
legal design because of silicon limitations. You must remove the extra instances.

Incompatible Family Configuration – The instance is not configured to work with this project’s Family setting. Either
it is not supported by this family or you need to re-instantiate the core.

Incompatible Die Configuration – The instance is not configured to work with this project’s Die setting. Either it is
not supported or you need to reconfigure the Die configuration.

No RTL License, No Obfuscated License, No Evaluation License – You do not have the proper license to
generate this core. Contact Microchip SoC to obtain the necessary license.

No Top level Ports - There are no ports on the top level. To auto-connect top-level ports, right-click the Canvas and
choose Auto-connect.

Self-Instantiation - A component cannot instantiate itself-This is reported only in the Log/Message Window.

12.15 Editable Constraints Grid
The Constraints Editor enables you to add, edit, and delete.

Figure 12-23. Constraints Editor

To add a new constraint:

1. Select a constraint type from the constraint browser.
2. Enter the constraint values in the first row and click the green check mark to apply your changes. To cancel the

changes, press the red cancel mark.
3. The new constraint is added to the Constraint List. The green syntax flag indicates that the constraint was

successfully checked.

To edit a constraint:

1. Select a constraint type from the constraint browser.
2. Select the constraint, edit the values and click the green check mark to apply your changes. To cancel the

changes, press the red cancel mark. The green syntax flag indicates that the constraint was successfully
checked.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 252

https://www.microsemi.com/products/fpga-soc/design-resources/ip-cores

To delete a constraint:

1. Select a constraint type from the constraint browser.
2. Right-click the constraint you want to delete and choose Delete Constraint.

12.16 Files Tab and File Types
The Files tab displays all the files associated with your project, listed in the directories in which they appear.

Right-clicking a file in the Files tab provides a menu of available options specific to the file type. You can delete files
from the project and the disk by selecting Delete from the right-click menu.

You can instantiate a component by dragging the component to a SmartDesign Canvas or by selecting Instantiate in
SmartDesign from the right-click menu. See the SmartDesign User Guide for more details.

You can configure a component by double-clicking the component or by selecting Open Component from the
right-click menu.

File Types

When you create a new project in the Libero SoC it automatically creates new directories and project files. Your
project directory contains all of your 'local' project files. If you import files from outside your current project, the
files must be copied into your local project folder (The Project Manager enables you to manage your files as you
import them).

Depending on your project preferences and the version of Libero SoC you installed, the software creates directories
for your project.

The top level directory (<project_name>) contains your PRJ file; only one PRJ file is enabled for each Libero SoC
project.

component directory - Stores your SmartDesign components (SDB and CXF files) for your Libero SoC project.

constraint directory - All your constraint files (SDC, PDC).

designer directory - *_ba.sdf, *_ba.v(hd), STP, TCL (used to run designer), designer.log (logfile) hdl directory - all hdl
sources. *.vhd if VHDL, *.v and *.h if Verilog, *.sv if SystemVerilog simulation directory - meminit.dat, modelsim.ini
files.

smartgen directory - GEN files and LOG files from generated cores.

stimulus directory - BTIM and VHD stimulus files.

synthesis directory - *.edn, *_syn.prj (Synplify log file), *.srr (Synplify logfile), *.tcl (used to run synthesis) and many
other files generated by the tools (not managed by Libero SoC).

tooldata directory - includes the log file for your project with device details.

12.17 Importing Files
Anything that describes your design, or is needed to program the device, is a project source. These may include
schematics, HDL files, simulation files, testbenches, etc. Import these source files.

To import a file:

1. From the File menu, choose Import Files.
2. In Files of type, choose the file type.
3. In Look in, navigate to the drive/folder where the file is located.
4. Select the file to import and click Open.

Note:  You cannot import a Verilog File into a VHDL project and vice versa.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 253

https://coredocs.s3.amazonaws.com/Libero/pf_2_4_0/Tool/smartdesign_ug.pdf

Table 12-3. File Types for Import

File Type File Extension

Behavioral and Structural VHDL; VHDL Package *.vhd, *.vhdl

Design Block Core *.gen

Verilog Include *.h

Behavioral and Structural Verilog *.v, *.sv

Netlist Verilog *.vm

Stimulus *.vhd, * .vhdl,

*.v, *.sv

Memory file *.mem

Components (Designer Blocks, Synplify DSP) *.cxf

MSS Components *.cxz

12.18 Layout Error Message: layoutg4NoValidPlacement
This is a generic error produced by the placer when it is unable to place a design. The most common cause for this
failure is that the placer was unable to find a solution which could fit the design into the chip, either because the
design is close to maximum utilization, or logic cannot be fit into user-defined region constraints.

If Libero is unable to find a legal placement, a list of unplaced cells will be provided in the log. The cells in this list
may not be the cause of the placement problem; it is quite possible that some other constrained block of logic was
placed first and now prohibits further placement. However, starting with the unplaced cell list is the easiest and most
likely course:

• The simplest potential solution is to remove all placement constraints of the unplaced cells, and re-run Place
and Route.

However, the cells in this list may not be the cause of the placement problem; it is quite possible that some other
constrained block of logic which was placed first and now prohibits further placement. If removing the placement
constraints on the unplaced cells does not succeed:

• Remove all region constraints and re-run Place & Route. Some designers make it a practice to put all their
region constraints in a single, separate PDC file; in which case they need only disable that file.

– If this Place & Route re-run still fails, there may be wider issues with the design's size and complexity that
cannot be addressed by changes to P&R options.

– If the unconstrained Place & Route re-run succeeds, then the user should add back constraints a few
regions at a time in order of "simplicity". Usually, big regions with lots of free space are "simpler" for
the placer, whereas tall/narrow regions with high utilization are "harder". Re-run Place & Route with each
constraint restoration and repeat the process until the failing region(s) is identified.
Depending on requirements, the failing region may be handled by removing or changing its constraints, or
revising its design to use less resources.

The user may also re-run the Placer in high-effort mode. Applying high-effort mode to a design which is very full can
incur additional runtime and may produce a placement solution which may not meet tight timing constraints, owing to
the fact that the placer will aggressively attempt to fit the design. In practice, customers are encouraged to apply the
previous suggestions first; and utilize high-effort mode only when other approaches have been exhausted.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 254

12.19 Layout Error Message: layoutg4DesignHard
This design is very difficult to place, and high-effort techniques were required to make it fit. This may lead to
increased layout runtime and diminished timing performance.

This message typically appears in designs with high utilization — a very full design, or a design with region
constraints which are, themselves, very full. It can also occur in designs with moderate utilization but with numerous,
long carry chains.

No immediate action is required on the user's part. However, if this notice is observed during Layout, the resultant
performance of the design and the runtime of the Layout tools may not be optimal, and there is a strong possibility
that reducing the size of the design, or relaxing region and floorplanning constraints, will help to improve timing
closure and runtime.

12.20 Save Project As Dialog Box
The Save Project As dialog box enables you to save your entire project with a new name and location. To access this
dialog box, choose Save Project As from the Project menu.

Figure 12-24. Save Project As Dialog Box

Project Name

Type the project name for your modified project.

Project Location

Accept the default location or Browse to the new location where you can save and store your project. All files for your
project are saved in this directory.

Content

Copy links locally - Select this checkbox to copy the links from your current project into your new project. If you do
not select this checkbox, the links will not be copied and you must add them manually.

Files

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 255

• All - Includes all your project and source files; the state of the project is retained.

• Project files only - Copies only the project-related information required to retain the state of the project.

• Source files only - Copies all the source files into the specified location. This means the configuration of all
the tools in the tool chain is retained but the states are not. Source files means constraint information and
component information available in the component, hdl and smartgen directories.

Files are saved as shown in the table below.

Folder Name Files

All Project Source

component All Files All Files All Files

constraint All Files All Files All Files

hdl All Files All Files All Files

stimulus All Files All Files All Files

smartgen All Files All Files All Files

firmware All Files All Files All Files

CoreConsole All Files All Files All Files

SoftConsole/Keil/IAR All Files All Files All Files

Phy_Synthesis All Files All Files Not Copied

simulation All Files *.ini, *.bfm, *.do., *.vec *.ini, *.bfm,

*.do., *.vec

synthesis All Files *.edn, *.vm, *.sdc, *.so, *.prj,

*.srr, *.v, run_options.txt, synplify.log

*.prj files

Designer/impl1 All Files All Files *.ide_des files

Designer/<root> All Files All Files Not Copied

tooldata All Files All Files All Files

Note:  *.edn files are not supported in PolarFire.

12.21 Project Settings Dialog Box
The Project Settings dialog box enables you to modify your Device, HDL, and Design Flow settings and your
Simulation Options. In Libero SoC, from the Project menu, click Project Settings.

The following figure shows an example of the Project Settings dialog box.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 256

Figure 12-25. Project Settings Dialog Box

Device Selection

Sets the device Die and Package for your project. See the New Project Creation Wizard - Device Selection page for a
detailed description of the options.

Device Settings

Default I/O Technology - Sets all your I/Os to a default value. You can change the values for individual I/Os in the
I/O Attributes Editor.

System controller suspended mode. If the System controller suspended mode is enabled in any PolarFire design,
the following operations will not be available during normal operation. For more information, refer to the System
Services section in the PolarFire FPGA Security User Guide (UG0753).

• All System controller services requested after power-up is complete and the System controller is suspended
• System controller generated Tamper flags
• Device reset and zeroization Tamper responses
• SPI-Master In-Application Programming (IAP)
• SPI-Slave programming mode

For RT PolarFire devices, the System controller suspended mode is enabled by default for all new RT PolarFire
projects. If the System controller suspended mode is disabled, it increases vulnerability to radiation single event
effects in the System controller.

Design Flow

See the Project Settings: Design flow topic for more information.

Analysis Operating Conditions

Sets the Operating Temperature Range, the Core Voltage Range, and Default I/O Voltage Range from the pick list's
provided. Typical values are COM/IND/MIL; but others are sometimes defined.

Only EXT and IND ranges are available for PolarFire at present.

Once the "Range" value is set, the Minimum/Typical/Maximum values for the selected range are displayed.

These settings are propagated to Verify Timing, Verify Power, and Backannotated Netlist for you to perform Timing/
Power Analysis.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 257

Simulation Options and Simulation Libraries

Sets your simulation options. See the Project Settings: Simulation Options topic for more information.

12.21.1 Project Settings: Simulation - Options and Libraries
Using this dialog box, you can set change how Libero SoC handles Do files in simulation, import your own Do
files, set simulation run time, and change the DUT name used in your simulation. You can also change your library
mapping.

To access this dialog box, from the Project menu choose Project Settings and click to expand Simulation options
or Simulation libraries.

For Simulation options click the option you wish to edit: DO file, Waveforms, Vsim commands, Timescale. For
Simulation libraries click on the library you wish to change the path for.

Figure 12-26. Project Settings: DO File

DO file:

• Use automatic DO file - Select if you want the Project Manager to automatically create a DO file that will enable
you to simulate your design.

• Simulation Run Time - Specify how long the simulation should run. If the value is 0, or if the field is empty,
there will not be a run command included in the run.do file.

• Testbench module name - Specify the name of your testbench entity name. Default is “testbench,” the value
used by WaveFormer Pro.

• Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Project Manager
replaces <top> with the actual top level macro when you runsimulation(presynth/postsynth/postlayout).

• Generate VCD file - Click the checkbox to generate a VCD file.
• VCD file name - Specifies the name of your generated VCD file. The default is power.vcd; click power.vcd and

type to change the name.
• User defined DO file - Enter the DO file name or click the browse button to navigate to it.

• DO command parameters - Text in this field is added to the DO command.
Waveforms

• Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be displayed
in ModelSim.

• Display waveforms for - You can display signal waveforms for either the top-level testbench or for the design
under test. If you select top-level testbench then Project Manager outputs the line 'addwave /testbench/*' in
the DO file run.do. If you select DUT then Project Manager outputs the line 'add wave /testbench/DUT/*' in the
run.do file.

– Log all signals in the design - Saves and logs all signals during simulation.

Vsim Commands

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 258

Figure 12-27. Vsim Commands

• Resolution - The default is 1ps. Some custom simulation resolutions may not work with your simulation library.
Consult your simulation help for more information on how to work with your simulation library and detect infinite
zero-delay loops caused by high resolution values.

• Additional options - Text entered in this field is added to the vsim command.
– SRAM ECC Simulation -

Two options can be added to specify the simulated error and correction probabilities of all ECC SRAMs in
the design.

• -gERROR_PROBABILITY=<value>, where 0 <= value <= 1
• -gCORRECTION_PROBABILITY=<value>, where 0 <= value <= 1

– During Simulation, the SB_CORRECT and DB_DETECT flags on each SRAM block will be raised based
on generated random numbers being below the specified<value>s.

– When a user runs the Post-Layout Simulation Tool, a run.do file is created, which consists of information
which needs to be sent to a simulator. To run a simulation on a corner, user should select one of the SDF
corners along with the type of delay needed from one of the options in SDF timing delays section.

• SDF Corners:
– Slow Process, Low Voltage and High Temperature
– Slow Process, Low Voltage and Low Temperature
– Fast Process, High Voltage and Low Temperature

• SDF Timing Delays:
– Minimum
– Typical
– Maximum

• Disable pulse filtering during SDF based simulations: This option disables the pulse filtering during
SDF simulations.

• After the user selects the corner, appropriate files needed for simulation are written in the run.do file as
shown below.
vlog -sv -work postlayout “$(PROJECT_DIR)/designer/sd1/sd1_fast_hv_lt_ba.v” vsim
-L PolarFire -L postlayout -t 1ps -sdfmax
/sd1=$(PROJECT_DIR)/designer/sd1/sd1_fast_hv_lt_ba.sdf +pulse_int_e/1
+pulse_int_r/1 +transport _int_delays postlayout.sd1

– To run a simulation on a design having Crypto core, user needs to enter the PLI path in the PLI Path field.
User can use the browse button to select the appropriate file. After the file is selected the PLI Path field is
populated with the path and file. The user can also manually enter the path in the PLI path field.

• Errors will be generated in case of wrong path or wrong file extension as follows:
1. If the user enters a wrong PLI path and clicks on Save

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 259

2. If the user enters a wrong file extension.

– To compile all the files under System Verilog Multi-File Compilation Unit (MFCU) mode, group them based
on the library. This applies to all the .hdl files, simulation files and core files. The code example below
provides a general syntax to compile the files in System Verilog MFCU mode.

vlog "+incdir+<incdir1>" "+incdir+<incdir2>" -sv -mfcu -work library1 "file1"
"file2" "file3"
vlog "+incdir+<incdir1>" "+incdir+<incdir2>" -sv -mfcu -work library2 "file4"
"file5" "file6"

Timescale

• TimeUnit - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list, which is the time base for
each unit. The default setting is ns.

• Precision - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list. The default setting isps.

Simulation Libraries

• Restore Defaults- Sets the library path to default from your Libero SoC installation.
• Library path - Enables you to change the mapping for your simulation library (both Verilog and VHDL). Type the

pathname or click the Browse button to navigate to your library directory.

12.21.2 Project Settings: Design flow
To access the Design flow page, from the Project menu choose Project settings. From the Project settings window
that appears, select the Design flow from the left pane.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 260

Figure 12-28. Project Settings Dialog Box – Design Flow Tab

HDL source files language options

Libero SoC supports mixed-HDL language designs. You can import Verilog and VHDL in the same project.

You can set HDL to VHDL or Verilog. For VHDL, choose VHDL-2008 or VHDL-93. For Verilog, choose System
Verilog (if your Verilog files contain System Verilog constructs) or Verilog 2001.

SystemVerilog defines the notion of "compilation unit." Enabling the Multi-File Compilation Unit (MFCU) option,
compiles all the files in the same compilation unit, and macros defined in one file will be seen by other files compiled
later based on the file order. Disable the option to compile each file as a separate compilation unit.

When a New Project is created, Multi-File Compilation Unit option is enabled by default. This option will be
disabled/greyed out if Verilog-2001 option is selected.

Notes:  Libero SoC supports the following Verilog and VHDL IEEE standards for ModelSim and SynplifyPro:
• Verilog 2005 (IEEE Standard 1364-2005)
• Verilog 2001 (IEEE Standard 1364-2001)
• Verilog 1995 (IEEE Standard 1364-1995)
• SystemVerilog 2012 (IEEE Standard 1800-2012)
• VHDL-2008 (IEEE Standard 1076-2008)
• VHDL-93 (IEEE Standard 1076-1993)

HDL generated files language options

HDL files generated by Libero SoC can be set to use VHDL or Verilog. If there are no other considerations, it is
generally recommended to use the same HDL language as you are using for HDL source files, as this may reduce
the cost of simulation licenses.

Block flow

Enable block creation - Enables you to create and publish design blocks (*.cxz files) in Libero SoC. Design blocks
are low-level components that may have completed the place-and-route step and met the timing and power
requirements. These low-level design blocks can then be imported into a Libero SoC project and re-used as
components in a higher level design. See Designing with Designer Block Components in Online Help for more
information.

Root <module_name>

Enable synthesis - Option to enable or disable synthesis for your root file; useful if you wish to skip synthesis on your
root file by default.

Enable FPGA Hardware Breakpoint Auto Instantiation - The FPGA Hardware Breakpoint (FHB) Auto Instantiation
feature automatically instantiates an FHB instance per clock domain that is using gated clocks (GL0/GL1/GL2/GL3)

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 261

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_block_flow_ug.pdf

from an FCCC instance. The FHB instances gate the clock domain they are instantiated on. These instances can be
used to force halt the design or halt the design through a live probe signal. Once a selected clock domain or all clock
domains are halted, you can play or step on the clock domains, either selectively or all at once. FPGA Hardware
Breakpoint controls in the SmartDebug UI provide control of the debugging cycle.

Note:  The default format for Synthesis gate level netlist is Verilog for PolarFire devices.

Reports

Maximum number of high fanout nets to be displayed - Enter the number of high fanout nets to be
displayed. The default value is 10. This means the top 10 nets with the highest fanout will appear in the
<root>_compile_netlist_resource.xml> report.

Abort Flow Conditions

Abort Flow if Errors are found in Physical Design Constraints (PDC) – Check this checkbox to abort Place and Route
if the I/O or Floorplanning PDC constraint file contains errors.

Abort Flow if Errors are found in Timing Constraints (SDC) – Check this checkbox to abort Place and Route if the
Timing Constraint SDC file contains errors.

Abort flow if 3.3V I/Os are found in the design – Check this checkbox to abort Place and Route if 3.3 V I/Os are found
in the design. This allows the tool to generate an error as shown below. However, if the checkbox is unchecked,
the Place and Route tool will generate the same error message as a warning without interrupting the design flow
process.

Error: I/Os at 3.3V are vulnerable to Single Event Latch-up at low LET levels. Please review RT PolarFire radiation
data at Microsemi.com

12.21.3 Project Settings: General Settings
To access the General Settings page, from the Project menu choose Project Settings and click the General Settings
tab.
Figure 12-29. Project Settings Dialog Box – General Settings Tab

Absolute/Relative path for linked files

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 262

Users can choose to use either "absolute path for linked files" or "relative path for the linked files" for the files linked
in the project. The path set in the environment variable is read only.

If the user selects "Use absolute path for linked files" option, all the linked files are stored with the absolute path.

If the user selects "Use relative path for linked files "option, the user is given an option to provide an environment
variable that contains the root directory path that will be used as base location for the relative paths. All the files
linked will be relative to the base location specified in environment variable by the user.

After the user sets the relative path and provides an environment variable that has a valid path, the following
message appears in the log window.

Figure 12-30. Message Displayed in Log Window After Environment Variable is Set

This message can appear in the log window when the user:

• Opens a project that was created using relative path for linked files.
• Creates a project with relative path for linked files.
• Changes the environment variable from the project settings.

The environment variable set by the user is validated before proceeding. If the environment variable set by the user is
not present or if it is set after invoking Libero, the tool issues the following error.

Error message: The Environment variable <env_variable_name> specified for the root directory path for linked files is
not defined/set in your environment. Please make sure to set the appropriate root directory path in the Environment
variable before you open Libero. You will need to exit Libero and open a new session for any changes you made to
the directory path set in the Environment variable to reflect here.

Other error messages that can occur are:
• Empty path in Environment variable

Error message: The root directory path for linked files set in the Environment variable <env_variable_name> is
empty. Please set a valid path for the root directory in the Environment variable. You will need to exit Libero and open
a new session for any changes you made to the directory path set in the Environment variable to reflect here.

• Inaccessible path in environment variable

Error message: The root directory path <env_variable_directory> for linked files set in the Environment variable
<env_variable_name> does not exist. Please set a valid accessible directory path in the Environment variable.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 263

You will need to exit Libero and open a new session for any changes you made to the directory path set in the
Environment variable to reflect here.

• Project location is set as root directory in environment variable

Error message: The root directory path <env_variable_path> for the linked files set in the Environment variable

<env_variable_name> should not match with the current project directory path. Please set a different directory path
in the Environment variable. You will need to exit Libero and open a new session for any changes you made to the
directory path set in the Environment variable to reflect here.

• Project settings are saved by selecting relative path and the environment variable is not specified

Error message: Please specify an Environment variable for the root directory path for linked files in the project.

Note:  Users should set the Environment Variable before invoking Libero. Otherwise, Libero will not be able to get
the path set in Environment Variable.

12.21.4 Project Settings: Global Include Paths
This setting facilitates the user with an option to provide Global Include paths in Libero and manage how the files are
sent to downstream tools. It is the user’s responsibility to provide the paths in order (Include Paths Order).
Figure 12-31. Project settings with Global Include Paths Option

Example:

If a user has a defines file which exists in all the three paths – source file path(default), global_inlcude_path_1 and
global_include_path_2; the order of priority of files will be as follows:

• Source file path(default)
• Global_include_path_1
• Global_inlcude_path_2

Absolute and Relative paths in Global Include Paths

Users are given an option to specify both relative and absolute files in global include paths. Example -

Absolute Path : { E:/User/GLOBAL_INCLUDE_PATH_1 } Relative Path: { ../hdl/GLOBAL_INCLUDE_PATH_1 }

Relative Path w.r.t Environment Variable: { ${ENV_VAR}/GLOBAL_INCLUDE_PATH_1 }

Here, the environment variable should be the one used in absolute ad relative paths options only.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 264

1. Changing the Global Include Paths will invalidate the Design Hierarchy but not the Design flow.
2. Change in content of Include Files present in Global Include Paths has impact as in cases below:

– Case 1: If the Global Include Path is part of the project – Design flow will be invalidated.
– Case 2: If the Global Include Path is outside the project – Design flow will not be invalidated.

The files are audited only if they are part of the project.

12.22 Global Include Files
This option facilitates the users to provide global include file/s in Libero and manage how these files are sent to
downstream tools occurring in Design Flow process.

Libero GUI facilitates user to provide Global Include Files. On right clicking a file in Design Hierarchy view, user can
either set a file as global include by selecting “Set Global Include” option or unset a file as global include by selecting
“Unset Global Include” option.

Linked files can also be set as Global Include files. The files that are set are highlighted in Design hierarchy view as
shown below.

The selected order of global include files is shown in Info tab in log window as below:

Note: 
Setting Global Include File will use System Verilog MFCU mode internally. An info message will be generated in the
log window as below:

Info: Global Include file requires System Verilog setting to be in MFCU mode.
Enabling Multi File Compilation Unit internally.

12.23 Create and Configure Core Component
The user can create, configure, and generate a component for any core in the Libero SoC Catalog window. Select a
core in the Catalog window by double clicking or right clicking on it and choose the option 'Configure core'. Specify a
name to the core component to be created in the pop-up dialog box. The core's configurator window appears where
the user can specify any desired configuration and click on the OK button to generate the core component.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 265

Figure 12-32. Configure Core Option

Once the core component is created and generated, the component related files like the generated HDL netlist
file are also generated to the directory <project directory>/component/work/<component_name>. The
generated HDL netlist file of the core component now contains the component description/configuration information
in Tcl as comments. These comments also include Family Name and Part Number of the device used. The following
figure shows a sample Tcl component description of the core COREAXI4INTERCONNECT.

Figure 12-33. Component Description of COREAXI4INTERCONNECT_C0 Showing Family Name and Part
Number

12.24 Search in Libero SoC
Search options vary depending on your search type.

To find a file:

1. Use CTRL + F to open the Search window.
2. Enter the name or part of name of the object you wish to find in the Find field. '*' indicates a wildcard, and [*-*]

indicates a range, such as if you search for a1, a2, ... a5 with the string a[1-5].
3. Set the Options for your search (see below for list); options vary depending on your search type.
4. Click Find All (or Next if searching Text).

Searching an open text file, Log window or Reports highlights search results in the file itself. All other results
appear in the Search Results window (as shown in the figure below).

Match case: Select to search for case-sensitive occurrences of a word or phrase. This limits the search so it only
locates text that matches the upper- and lowercase characters you enter.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 266

Match whole word: Select to match the whole word only.

Figure 12-34. Search Results

Current Open SmartDesign

Searches your open SmartDesign, returns results in the Search window.

Type: Choose Instance, Net or Pin to narrow your search.

Query: Query options vary according to Type.

Type Query Option Function

Instance Get Pins Search restricted to all pins

Get Nets Search restricted to all nets

Get Unconnected Pins Search restricted to all unconnected pins

Net Get Instances Searches all instances

Get Pins Search restricted to all pins

Pin Get Connected Pins Search restricted to all connected pins

Get Associated Net Search restricted to associated nets

Get All Unconnected Pins Search restricted to all unconnected pins

Current Open Text Editor

Searches the open text file. If you have more than one text file open you must place the cursor in it and click CTRL +
F to search it.

• Find All: Highlights all finds in the text file.
• Next: Proceed to next instance of found text.
• Previous: Proceed to previous instance of found text.
• Replace with: Replaces the text you searched with the contents of the field.
• Replace: Replaces a single instance.
• Replace All: Replaces all instances of the found text with the contents of the field.

Design Hierarchy

Searches your Design Hierarchy; results appear in the Search window.

Find All: Displays all finds in the Search window.

Stimulus Hierarchy

Searches your Stimulus Hierarchy; results appear in the Search window.

Find All: Displays all finds in the Search window.

Log Window

Searches your Log window; results are highlighted in the Log window - they do not appear in the Search Results
window.

Find All: Highlights all finds in the Log window.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 267

Next: Proceed to next instance of found text.

Previous: Proceed to previous instance of found text.

Reports

Searches your Reports; returns results in the Reports window.

Find All: Highlights all finds in the Reports window.

Next: Proceed to next instance of found text.

Previous: Proceed to previous instance of found text.

Files

Searches your local project file names for the text in the Search field; returns results in the Search window.

Find All: Lists all search results in the Search window.

Files on disk

Searches the files' content in the specified directory and subdirectories for the text in the Search field; returns results
in the Search window.

Find All: Lists all finds in the Search window.

File type: Select a file type to limit your search to specific file extensions, or choose *.* to search all file types.

12.25 Organize Source Files Dialog Box – Synthesis
The Organize Source Files dialog box enables you to set the source file order in the Libero SoC.

Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.

To specify the file order:

1. In the Design Flow window under Implement Design, right-click Synthesize and choose Organize Input Files
> Organize Source Files. The Organize Source Files dialog box appears.

2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.
3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to change the

order of the Associated Source files.
4. Click OK.

Figure 12-35. Organize Source Files Dialog Box

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 268

12.26 SmartDesign Testbench
SmartDesign Testbench is a GUI-based tool that enables you to design your testbench hierarchy. Use SmartDesign
Testbench to instantiate and connect stimulus cores or modules to drive your design.

You can create a SmartDesign Testbench by right-clicking a SmartDesign component in the Design Hierarchy and
choosing Create Testbench > SmartDesign.

SmartDesign Testbench automatically instantiates the selected SmartDesign component into the Canvas.

You can also double-click Create SmartDesign Testbench in the Design Flow window to add a new SmartDesign
testbench to your project.

New testbench files appear in the Stimulus Hierarchy.

SmartDesign Testbench automatically instantiates your SmartDesign component into the Canvas.

You can instantiate your own stimulus HDL or simulation models into the SmartDesign Testbench Canvas and
connect them to your DUT (design under test). You can also instantiate Simulation Cores from the Catalog.

Simulation cores are simulation models (such as DDR memory simulation models) or basic cores that are useful for
stimulus generation (such as Clock Generator, Pulse Generator, or Reset Generator).

Click the Simulation Mode checkbox in the Catalog to view available simulation cores. Refer to the SmartDesign User
Guide for more information.

12.27 Stimulus Hierarchy
To view the Stimulus Hierarchy, from the View menu choose Windows > Stimulus Hierarchy.

The Stimulus Hierarchy tab displays a hierarchical representation of the stimulus and simulation files in the project.
The software continuously analyzes and updates files and content. The tab in the following figure displays the
structure of the modules and component stimulus files as they relate to each other.

Figure 12-36. Stimulus Hierarchy Dialog Box

Expand the hierarchy to view stimulus and simulation files. Right-click an individual component and choose Show
Module to view the module for only that component.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 269

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf

Select Components, instance or Modules from the Show drop-down list to change the display mode. The
Components view displays the stimulus hierarchy; the modules view displays HDL modules and stimulus files.

The file name (the file that defines the module or component) appears in parentheses. Click Show Root
Testbenches to view only the root-level testbenches in your design.

Right-click and choose Properties; the Properties dialog box displays the pathname, created date, and last modified
date.

All integrated source editors are linked with the SoC software; if you modify a stimulus file the Stimulus Hierarchy
automatically updates to reflect the change.

To open a stimulus file:
1. Double-click a stimulus file to open it in the HDL text editor.
2. Right-click and choose Delete from Project to delete the file from the project. Right-click and choose Delete

from Disk and Project to remove the file from your disk.

The following table shows the icons in the hierarchy indicate the type of component and the state.

Table 12-4. Design Hierarchy Icons

Icon Description

SmartDesign component

SmartDesign component with HDL netlist not generated

SmartDesign testbench

SmartDesign testbench with HDL netlist not generated

IP core was instantiated into SmartDesign but the HDL netlist has not been generated

HDL netlist

12.28 Timing Exceptions Overview
Use timing exceptions to overwrite the default behavior of the design path. Timing exceptions include:

• Setting multicycle constraint to specify paths that (by design) will take more than one cycle.
• Setting a false path constraint to identify paths that must not be included in the timing analysis or the

optimization flow.

• Setting a maximum/minimum delay constraint on specific paths to relax or to tighten the original clock constraint
requirement.

12.29 Admin Profile Tool Dialog Box
This allows the users a way to use same set of tools and same vault location if Libero SoC is invoked from the same
installed location. An admin (the person who generally takes care of Libero SoC installation) creates an admin profile.
This profile will be common to all the users who are using Libero SoC from the same installed location. Individual
users do not need to have to create the tool profile and vault location.

To create an admin profile, user needs to invoke adminprofile.exe from <Libero installation directory>/
Designer/bin location in case of windows and from <Libero installation directory>/bin64 location in
case of Linux.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 270

Figure 12-37. Admin Profile Tool Dialog Box

This admin profile will be common to all users who are using Libero SoC from the installed path, by providing the
following values:

• Synplify location
• Modelsim location
• Vault location
• Any other tool mentioned in admin profile utility

Note:  It is not mandatory for the user to create admin profile. If the user skips the creation of admin profile, the tool
will continue to work normally.

If the user wishes to create admin profile, all the fields in the dialog box must be entered correctly. The vault location
provided during admin profile creation will have precedence and will be used by all the other users.

Vaults and tools location

Vault location: Location of megavault consisting of all the cores for the current Libero SoC version must be
mentioned.

Tools location: Correct tool executable location must be entered which is accessible by all users of Libero SoC.

Using admin profile, users will also have an option to use Libero SoC provided tools (which are a part of Libero SoC
Design Suite) by selecting the Use the tool from Libero SoC Design Suite installation option. In this case, location
of specific tools will be used from Libero SoC installation.

12.30 Tool Profiles Dialog Box
The Tool Profiles dialog box enables you to add, edit, or delete your project tool profiles.

Each Libero SoC project can have a different profile, enabling you to integrate different tools with different projects.

The following table shows the supported tool versions in this release.

Table 12-5. Table for Supported Tool Versions

Tool Supported Version

Modelsim ME 10.5c

Modelsim ME Pro 10.5c

SynplifyPro ME N-2017.09M SP1-1

Identify ME N-2017.09M SP1

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 271

To set or change your tool profile:

1. From the Project menu, choose Tool Profiles. Select the type of tool you wish to add.
– To add a tool: Select the tool type and click the Add button. Fill out the tool profile and click OK.
– To change a tool profile: After selecting the tool, click the Edit button to select another tool, change the

tool name, or change the tool location.
– To remove a tool from the project: After selecting a tool, click the Remove button.

Figure 12-38. Libero SoC Tool Profiles Dialog Box

2. When you are done, click OK.

The tool profile with the padlock icon indicates that it is a pre-defined tool profile (the default tool that comes with the
Libero SoC Installation).

To export the tool profile and save it for future use, click the Export Tool Profiles dialog box and save the tool profile
file as a tool profile *.ini file. The tool profile *.ini file can be imported into a Libero SoC project (File > Import >
Others) and select Tool Profiles (*.ini) in the File Type pull-down list.

12.31 User Preferences Dialog Box – Design Flow Preferences
This dialog box allows you to set your personal preferences for how Libero SoC manages the design flow across the
projects you create.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 272

Figure 12-39. Preferences Dialog Box – Design Flow Preferences

Constraint Flow

• Warn me when derived timing constraints generation override existing constraints (enhanced constraint flow).
Libero SoC can generate/derive timing constraints for known hardware blocks and IPs such as SerDes, CCC.
Check this box to have Libero SoC pop up a warning message when the generated timing constraints for these
blocks override the timing constraints you set for these blocks. This box is checked by default.

Design Flow Rule Checks

• Warn me when Firmware applications must be recompiled because of hardware configuration changes.
Check this box if you want Libero SoC to display a warning message. This box is checked by default.

• Warn me when I/Os are not all assigned and locked before programming data generation.
I/Os should always be assigned and locked before programming data generation. Check this box if you want
Libero SoC to display a warning message. This box is checked by default.

SmartDesign Generation Options

• Generate recursively
In this mode, all subdesigns must be successfully generated before a parent can be generated. An attempt to
generate a SmartDesign results in an automatic attempt to generate all subdesigns.

• Generate non-recursively
In this mode, the generation of only explicitly selected SmartDesigns is attempted. The generation of a design
can be marked as successful even if a subdesign is ungenerated (either never attempted or unsuccessful).

Note:  These preferences are stored on a per-user basis across multiple projects; they are not project-specific.

12.32 IP Report
Libero tool generates a report listing all the IPs used in the design project.

The report consists of the following:

• Project Information
• List of components in the project with the below information:

– Component name
– Component State

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 273

– IP Core (Vendor,Library,Name,Version) used to create the component
– TCL Parameters of the core used to create the component

• Information of core instances used in the Smart Design.
– Component Name – In the form of "smartdesign_name>_<instance_name>"
– Component State – State of the instance in the Smart Design
– Vendor, Library, Name, and Version of the core used to create the instance
– TCL Parameters of the core used to create the instance

• Single Page System Builder components
• Multi Page System Builder components without parameter list of latest core versions available for the cores

used in the project. This is the list that is present at the end of open project.

In order to export the IP CORE Usage Report, go to File > Export > IP Core Usage Report. When clicked, a file
dialog box launched asking for the location and file format to dump the report. The file can be generated in either
“JSON” or “txt” format.

Once the report is generated successfully, the location to where the report is exported is shown in log window.
p g y, p p g

12.33 Force Update Design Flow
A global option to force update the design flow to Pass state has been added to Libero SoC v12.5. The tool’s state is
force updated to PASS state only for Synthesize/Compile and Place and Route tools. The remaining tools remain in
the same state they were in before the force update action was performed.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 274

Figure 12-40. Force Update Action Button at Top of Design Flow Window

To differentiate between PASS state and FORCE UPDATE PASS state, the following icon and tooltip for the FORCE
UPDATE PASS state (force update action) has been added.

Figure 12-41. Force Update Action Icon with Tool Tip

If you click the Force update action button, the following warning message appears. If you click OK in the message,
the action proceeds. Otherwise, the action is canceled.
Figure 12-42. Warning Message Pop-up

The message log window shows when the Force Update Action is performed.
Figure 12-43. Warning Message in Log Window

g g g p p

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 275

After the tool states are force updated to PASS state from Out of Date Design state, the following message appears
in the log window.

p g g g p g

On running programming tool – Generate FPGA Array Data, a warning message pops up if Synthesize, Place and
Route, or both are in the Force Update Pass state.

The log window shows the following message.

12.34 Generic/Parameter Report
Libero tool generates hierarchical reports that show parameter/generic values used in instantiation of the modules.
Report is generated for the active top module. Report will be generated for only that active top module which is not
instantiated in any other modules. The report is generated in xml format.

In below example, report will not be generated for the active root(top) module COREABC_C0 because it is
instantiated in sd1. The file sd1 needs to be set as a root to generate the report.

The report can be generated by right clicking on the active top module and selecting Export Parameter Report
option in Design Hierarchy window. Once the report is generated successfully, the location to where the report is
exported is shown in log window.

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 276

Error message is flagged in cases where the user tries to generate report for a module that is instantiated in another
module.

"Error: Parameter/Generic report cannot be exported for a module that is instantiated in any other module. It can
only be exported for top level modules. Set a top level module as the root or specify a top level module in the Tcl
command ‘export_parameter_report’ to be able to export the report."

 Libero® SoC v2021.1
References

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 277

13. Revision History
Revision Date Description

B 4/2021 The following changes are made in this revision:
• 4.5 Viewing Configured Components and SmartDesigns in a Project: added

this new topic.
• 6.1.2 Global Nets (Promotions and Demotions): added Clock Domain

Crossing and effects of synchronizer.
• 6.7 Post Layout Editing of I/O Signal Integrity and Delay Parameters: added

this new topic.
• 8.2 Initializing Design Blocks: reorganized and described Boot Mode 1 and

Boot Mode 3.
• 8.7 Configuring Security: added GUI screens and greater detail about

security options.
• Update Policy: updated this section.
• 8.12.4 Partial Programming Support: added this new section.
• Export Bitstream: added Advanced Options.
• 12. References: removed commands.
• 12.21.2 Project Settings: Design flow: added Multi-File Compilation Unit.
• 12.33 Force Update Design Flow: added this new section.

A 11/2020 Initial Revision

 Libero® SoC v2021.1
Revision History

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 278

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.
• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features

of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

 Libero® SoC v2021.1

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 279

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip
Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC,
ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge,
In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-7770-9

 Libero® SoC v2021.1

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 280

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 Libero® SoC v2021.1

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 281

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 282

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Overview
	1.1. Libero SoC Design Flow
	1.1.1. Creating Your Design
	1.1.2. Working with Constraints
	1.1.3. Implementing Your Design
	1.1.4. Programming and Debugging Your Design
	1.1.5. Handing Off Your Design to Production

	1.2. Software IDE Integration
	1.3. Software Tools

	2. Managing Licenses
	2.1. Microsemi License Utility
	2.2. Selecting a Default License from a License List
	2.3. Setting a Default License
	2.4. Viewing License Details
	2.5. Libero SoC Online Help
	2.6. Libero SoC User Guides

	3. Getting Started
	3.1. Starting Libero SoC
	3.2. Design Report
	3.3. Creating a New Project
	3.3.1. New Project Creation Wizard – Project Details
	3.3.2. New Project Creation Wizard – Device Selection
	3.3.3. New Project Creation Wizard – Device Settings
	3.3.4. New Project Creation Wizard – Add HDL Source Files
	3.3.5. New Project Creation Wizard - Add Constraints

	3.4. Opening a Project

	4. Creating and Verifying Designs
	4.1. Create SmartDesign
	4.1.1. Create New SmartDesign
	4.1.2. Export Component Description (Tcl)
	4.1.3. Examples
	4.1.4. Hierarchical Export Component Description (Tcl)
	4.1.5. Generating a SmartDesign Component

	4.2. Create Core from HDL
	4.2.1. Creating a Core from Your HDL
	4.2.2. Editing Core Definitions
	4.2.3. Removing Core Definitions

	4.3. Designing with HDL
	4.3.1. Create HDL
	4.3.2. Using the HDL Editor
	4.3.3. HDL Syntax Checker
	4.3.4. Commenting Text
	4.3.5. Find
	4.3.6. Editing Columns
	4.3.7. Importing HDL Source Files
	4.3.8. Mixed HDL Support in Libero SoC

	4.4. Designing with Block Flow
	4.5. Viewing Configured Components and SmartDesigns in a Project
	4.6. Create a New SmartDesign Testbench
	4.7. HDL Testbench
	4.7.1. HDL Type
	4.7.2. Name
	4.7.3. Clock Period (ns)

	4.8. Import MSS
	4.9. Verify Pre-Synthesized Design - RTL Simulation
	4.9.1. Project Settings: Simulation - Options and Libraries
	4.9.2. DO file
	4.9.3. Waveforms
	4.9.4. Vsim Commands
	4.9.5. Timescale
	4.9.6. Simulation Libraries
	4.9.7. Selecting a Stimulus File for Simulation
	4.9.8. Selecting Additional Modules for Simulation
	4.9.9. Performing Functional Simulation

	5. Libero SoC Constraint Management
	5.1. Invocation of Constraint Manager from the Design Flow Window
	5.2. Libero SoC Design Flow
	5.3. Introduction to Constraint Manager
	5.3.1. Synplify Netlist Constraints (*.fdc)
	5.3.2. Compile Netlist Constraints (*.ndc)
	5.3.3. SDC Timing Constraints (*.sdc)
	5.3.4. Derived Timing Constraints (*.sdc)
	5.3.5. Place and Route Constraints
	5.3.6. I/O PDC Constraints
	5.3.7. Floorplanning PDC Constraints
	5.3.8. Timing SDC Constraint File (*.sdc)
	5.3.9. Timing Verifications Constraints
	5.3.10. Constraint Manager Components
	5.3.11. Constraint File and Tool Association
	5.3.12. Derive Constraints in Timing Tab
	5.3.13. Create New Constraints
	5.3.14. Constraint File Order

	5.4. Import a Constraint File
	5.4.1. Check a Constraint File
	5.4.2. Check Result
	5.4.3. Edit a Constraint File

	5.5. Constraint Types
	5.6. Constraint Manager – I/O Attributes Tab
	5.6.1. File and Tool Association
	5.6.2. I/O Settings

	5.7. Constraint Manager – Timing Tab
	5.7.1. Example

	5.8. Derived Constraints
	5.9. Constraint Manager – Floor Planner Tab
	5.9.1. File and Tool Association
	5.9.1.1. See Also

	5.10. Constraint Manager – Netlist Attributes Tab
	5.10.1. File and Tool Association

	6. Implementing Designs
	6.1. Synthesize
	6.1.1. Synthesize Options
	6.1.2. Global Nets (Promotions and Demotions)
	6.1.3. Optimizations
	6.1.4. Additional Options for SynplifyPro Synthesis
	6.1.5. SynplifyPro ME
	6.1.6. Identifying Debug Designs

	6.2. Verifying Post-Synthesized Designs
	6.2.1. Generating Simulation Files
	6.2.2. Verifying Post-Synthesis Implementations - Simulate

	6.3. Compile Netlist
	6.4. Constraint Flow in Implementation
	6.4.1. Design State Invalidation
	6.4.2. Constraints and Design Invalidation
	6.4.3. Check Constraints
	6.4.4. Design State and Constraints Check
	6.4.5. Edit Constraints
	6.4.6. Constraint Type and Interactive Tool

	6.5. Place and Route
	6.5.1. Place and Route Options

	6.6. Multiple Pass Layout Configuration
	6.6.1. Iteration Summary Report

	6.7. Post Layout Editing of I/O Signal Integrity and Delay Parameters
	6.8. Resource Usage
	6.8.1. Overlapping of Resource Reporting

	6.9. Global Net Report
	6.9.1. Global Nets Information
	6.9.2. I/O to GB Connections
	6.9.3. Fabric to GB Connections
	6.9.4. CCC to GB Connections
	6.9.5. CCC Input Connections
	6.9.6. Local Clock Nets to RGB Connections
	6.9.7. Global Clock Nets to RGB Connections

	6.10. Verify Post Layout Implementation
	6.10.1. Generate Back Annotated Files
	6.10.2. Simulate - Opens ModelSim ME
	6.10.3. Verify Timing
	6.10.4. Types of Timing Reports
	6.10.5. SmartTime
	6.10.5.1. Static Timing Analysis (STA)
	6.10.5.2. SmartTime and Place and Route
	6.10.5.3. SmartTime and Timing Reports
	6.10.5.4. SmartTime and Cross-Probing into Chip Planner
	6.10.5.5. SmartTime and Cross-Probing into Constraint Editor

	6.10.6. Verify Power
	6.10.7. Verify Power sub-commands
	6.10.8. SmartPower
	6.10.9. Simultaneous Switching Noise
	6.10.10. Supported Dies and Packages
	6.10.11. Supported I/O Standard
	6.10.12. Supported I/O Types
	6.10.13. SSN Analyzer Tabs
	6.10.13.1. Noise Report Tab
	6.10.13.2. Excluded I/Os Tab
	6.10.13.3. Summary Tab

	6.10.14. SSN Noise Analyzer Reports Failure Procedure

	7. Configure Hardware
	7.1. Programming Connectivity and Interface
	7.1.1. Hover Information
	7.1.2. Device Chain Details
	7.1.3. Right-Click Options

	7.2. Select and Configure Actions and Procedures
	7.3. Programmer Settings
	7.3.1. FlashPro5/4/3/3X Programmer Settings
	7.3.2. TCK Setting (Force TCK Frequency)
	7.3.3. Default TCK Frequency

	7.4. Select Programmer

	8. Program Design
	8.1. Generating FPGA Array Data
	8.2. Initializing Design Blocks
	8.2.1. Design Initialization Tab
	8.2.1.1. First Stage (sNVM)
	8.2.1.2. Second Stage (sNVM)
	8.2.1.3. Third Stage (uPROM/sNVM/SPI Flash)
	8.2.1.4. Time Out (s)
	8.2.1.5. Auto Calibration Time Out
	8.2.1.6. Custom Configuration File

	8.2.2. uPROM Tab
	8.2.2.1. Adding uPROM Clients
	8.2.2.1.1. uPROM Clients Table

	8.2.2.2. Editing uPROM Clients
	8.2.2.3. Deleting uPROM Clients

	8.2.3. sNVM Tab
	8.2.3.1. Adding sNVM Clients
	8.2.3.1.1. Settings for Add PlainText and Add CipherText Clients
	8.2.3.1.2. Settings for Boot Mode 2 Clients
	8.2.3.1.3. Settings for Add USK Clients
	8.2.3.1.4. sNVM Clients Table

	8.2.3.2. Editing sNVM Clients
	8.2.3.3. Deleting sNVM Clients

	8.2.4. SPI Flash Tab
	8.2.4.1. Adding SPI Flash Clients
	8.2.4.1.1. Settings for Add SPI Bitstream Client
	8.2.4.1.2. Settings for Add Data Storage Client
	8.2.4.1.3. SPI Flash Clients Table

	8.2.4.2. Editing SPI Flash Clients
	8.2.4.3. Deleting SPI Flash Clients

	8.2.5. Fabric RAMs Tab
	8.2.5.1. Initializing Fabric RAM Clients
	8.2.5.1.1. Fabric RAMs Clients Table

	8.2.5.2. Editing Fabric RAM Clients

	8.2.6. eNVM Tab (PolarFire SoC Only)
	8.2.6.1. Adding eNVM Clients
	8.2.6.1.1. Settings for Boot Mode 1 Clients
	8.2.6.1.2. Settings for Boot Mode 3 Clients
	8.2.6.1.3. eNVM Clients Table

	8.2.6.2. Editing eNVM Clients

	8.2.7. Deleting eNVM Clients

	8.3. Generating Initialization Clients
	8.4. Configuring Actions and Procedures
	8.4.1. Programming File Actions and Supported Procedures
	8.4.2. Programming File Actions and Descriptions
	8.4.3. Options for Specific Programming Actions

	8.5. Configuring I/O States During JTAG Programming
	8.5.1. Specifying I/O States Prior to Programming
	8.5.2. Specifying I/O States During Programming
	8.5.2.1. Configuring Custom Settings

	8.6. Configuring Programming Options
	8.6.1. PolarFire Programming Options

	8.7. Configuring Security
	8.7.1. Configure Security Wizard
	8.7.2. Step 1: User Keys
	8.7.3. Step 2: Update Policy
	8.7.4. Step 3: Debug Policy
	8.7.5. Step 4: Microsemi Factory Access Policy
	8.7.6. Step 5: JTAG/SPI Slave Command Policy
	8.7.7. Security Features Frequently Asked Questions

	8.8. Configure Permanent Locks for Production
	8.8.1. Summary Window
	8.8.2. Back
	8.8.3. Next
	8.8.4. Finish
	8.8.5. Save Summary to File
	8.8.6. Permanent Locks
	8.8.7. Remove Permanent Locks
	8.8.7.1. See Also

	8.9. Configure Bitstream
	8.10. Generate Bitstream
	8.11. Run Programming Device Actions
	8.11.1. Programming File Actions

	8.12. Program SPI Flash Image
	8.12.1. Generate SPI Flash Image
	8.12.2. Configure SPI Flash Image Actions and Procedures
	8.12.3. Run Programming SPI Flash Actions
	8.12.4. Partial Programming Support
	8.12.5. SPI-Flash Bitstream Format

	9. Debug Design
	9.1. Generate SmartDebug FPGA Array Data
	9.2. SmartDebug
	9.2.1. Integrated Mode
	9.2.2. Standalone Mode
	9.2.3. See Also

	9.3. Identify Debug Design

	10. Handoff Design for Production
	10.1. Export Bitstream
	10.1.1. Export Bitstream tool when the device is configured with Bitstream Encryption with Default Key in the Configure Security Tool
	10.1.2. Export Bitstream tool when the Device is Configured with Custom Security option in the Configure Security Tool
	10.1.3. Export Bitstream Tool when the Device is Configured with Permanent Locks for Production Tool
	10.1.4. Security Programming Files

	10.2. Export FlashPro Express Job
	10.3. Export Job Manager Data
	10.4. Export SPI Flash Image
	10.4.1. Name
	10.4.2. Location
	10.4.3. Existing files

	10.5. Export Pin Report
	10.6. Export BSDL File
	10.7. Export IBIS Model
	10.7.1. Output File
	10.7.2. Export Options

	11. Export SmartDebug Data (Libero SoC)
	12. References
	12.1. Archive Project Dialog Box
	12.2. Adding or Modifying Bus Interfaces in SmartDesign
	12.2.1. Bus Interfaces

	12.3. Catalog
	12.3.1. Catalog Options Dialog Box

	12.4. Changing Output Port Capacitance
	12.5. Core Manager
	12.6. Configure Permanent Locks for Production
	12.7. Importing Source Files – Copying Files Locally
	12.8. Create Clock Constraint Dialog Box
	12.9. Select Source Pins for Clock Constraint Dialog Box
	12.10. Specifying Clock Constraints
	12.10.1. Create Generated Clock Constraint Dialog Box
	12.10.2. Select Generated Clock Source Dialog Box

	12.11. Specifying Generated Clock Constraints
	12.11.1. Select Generated Clock Reference Dialog Box

	12.12. Design Hierarchy in the Design Explorer
	12.13. Digest File
	12.14. Design Rules Check
	12.15. Editable Constraints Grid
	12.16. Files Tab and File Types
	12.17. Importing Files
	12.18. Layout Error Message: layoutg4NoValidPlacement
	12.19. Layout Error Message: layoutg4DesignHard
	12.20. Save Project As Dialog Box
	12.21. Project Settings Dialog Box
	12.21.1. Project Settings: Simulation - Options and Libraries
	12.21.2. Project Settings: Design flow
	12.21.3. Project Settings: General Settings
	12.21.4. Project Settings: Global Include Paths

	12.22. Global Include Files
	12.23. Create and Configure Core Component
	12.24. Search in Libero SoC
	12.25. Organize Source Files Dialog Box – Synthesis
	12.26. SmartDesign Testbench
	12.27. Stimulus Hierarchy
	12.28. Timing Exceptions Overview
	12.29. Admin Profile Tool Dialog Box
	12.30. Tool Profiles Dialog Box
	12.31. User Preferences Dialog Box – Design Flow Preferences
	12.32. IP Report
	12.33. Force Update Design Flow
	12.34. Generic/Parameter Report

	13. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

