MICROCHIP Libero® SoC v2021.1

Design Flow User Guide for PolarFire®

Introduction

The Microchip Libero® System-on-Chip (SoC) design suite offers high productivity with its comprehensive, easy to
learn, easy to adopt development tools for designing Resolved Microchip’s power efficient flash field-programmable
gate arrays (FPGAs), SoC FPGAs, and Rad-Tolerant FPGAs. The suite integrates industry-standard Synopsys
SynplifyPro® synthesis and Mentor Graphics ModelSim® simulation with best-in-class constraints management,
debug capabilities, and secure production programming support.

Supported Device Family
The following table lists the family of devices that Libero SoC supports. This guide covers all of these device families.

Table 1. Device Family Supported by Libero SoC

PolarFire PolarFire® FPGAs deliver the industry’s lowest power at mid-range densities with
exceptional security and reliability.

PolarFire SoC PolarFire SoC is the first SoC FPGA with a deterministic, coherent RISC-V CPU
cluster and a deterministic L2 memory subsystem enabling Linux and real-time
applications.

Helpful Links

» Data sheets, tutorials, application notes, and silicon user guides
» Development boards and kits

» Libero SoC v12.0 and later

* Programming Solutions

» XLS-based power calculator estimators for device families

* Libero licensing

+ Libero SoC PolarFire® product family

» Libero SoC PolarFire technology

» Libero SoC PolarFire documentation

» Libero SoC PolarFire software tools

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 1

https://www.microsemi.com/products/fpga-soc/fpgas
https://www.microsemi.com/products/fpga-soc/fpgas
https://www.microsemi.com/products/fpga-soc/soc-fpgas
https://www.microsemi.com/products/fpga-soc/rad-tolerant-fpgas
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/modelsim
https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
http://www.microsemi.com
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits-boards
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc
https://www.microsemi.com/product-directory/dev-tools/4970-programming
https://www.microsemi.com/products/fpga-soc/design-resources/power-calculator
https://www.microsemi.com/products/fpga-soc/design-resources/licensing
https://www.microsemi.com/product-directory/fpgas/3854-polarfire-fpgas#product-table
https://www.microsemi.com/product-directory/fpgas/3854-polarfire-fpgas#overview
https://www.microsemi.com/product-directory/fpgas/3854-polarfire-fpgas#documentation
https://www.microsemi.com/product-directory/dev-tools/5536-fpga-design-tools

Libero® SoC v2021.1

Table of Contents

a1 0T [8 o3 1] o SRR 1
P O 1YY = OSSPSR 5
1.1, Libero SOC DESIGN FIOW....c..ueiiiiiiiiiiiii ittt e e e naes 5
1.2, Software IDE INtEGration..........coiiiiiiiiii et e e e 7
P T o 14117 T (Y oo)[R 8
D .- T = Lo Lol I o7=T g EY = S PRSP 9
2.1, Microsemi License ULIlity..........ooooiiiiiii e 9
2.2. Selecting a Default License from a License List...........ccoooiiiiiiiiiiiiiiiee e 10
2.3, Setting @ Default LICENSE.c.eiiiiieeii e 12
2.4. Viewing LiICENSE DELailS........uuuuiiiiiiiiiiiiiiiiiee et e e e e e e e e e e e e e e 14
2.5. Libero SOC ONlINE HEIP......coiii et e e e et e e e e e e e araee s 15
2.6. LiDEro SOC USEr GUIAES.cocueiiiiiieeitiie ettt sttt ettt e et e s e sne e e e nbne e e 15
B T 1= 1 1] T S = o (=T 1SS 17
3.1, SHarting LIDEIrO SOC......coo it 17
B B 1= T T | I (=T o Lo o SO REOUUPRPN 17
3.3, Creating @ NEW PrOJECL.cciiiie et e e e e e e nne e e s e e eneeeennneas 17
3.4, OPENING @ PrOJECL. ...t e e ettt e e e e ettt e e e e e nnre e e e e e e nnaeeeaaean 24
4. Creating and Verifying DESIGNS.cccuiiiiiiieiiiie ettt e et et e e et e e sneeeesnreeeaeeeesnees 26
4.1, Create SMartDESIGN.......ccuui i et 26
4.2, Create Core from HDL........oooiiiii ettt et st e e e e bae e e 35
4.3, Designing With HDL.......coii ittt ettt e et e e e e et a e e e e e e nnbe e e e e e sneee 37
4.4. Designing With BIOCK FIOW.ueiiiiiii et e 39
4.5. Viewing Configured Components and SmartDesigns in a Project.............cccoccviiiiiiiiieenineenn. 39
4.6. Create a New SmartDesign TeStDeNCh........ccciiiiiiiiii e 42
4.7, HDL TeStDENCN. ...ttt e e s et e e e s e nnbe e e e e e aneee 42
4.8, IMPOIEIMSS ...ttt bttt b ettt b e h e b e a e nae e e e 44
4.9. Verify Pre-Synthesized Design - RTL Simulation............ccocceiiiiiiiiiiiee e 44
5. Libero SoC Constraint ManagemeEnt.............ceiiiiiiriiiiie et e e e s e enes 50
5.1. Invocation of Constraint Manager from the Design Flow Window.............cccoiiiniiiiniieninieennns 50
5.2, Libero SOC DeSIGN FIOW......ccccuuiiiiiieiiieie ettt ettt e e e e e e e e e e e e e e e e e snsaneaaeaan 50
5.3. Introduction to Constraint Manager...........cccooiiiiiiiiiieeie e 52
5.4. Import a Constraint File..........coii i 55
5.5, CONSITAINT TYPES. ..ttt ettt ettt e e e e et e aab e e e e e enre e naneas 59
5.6. Constraint Manager — /O Attributes Tab..........c.oooiiiiiiiiiiiee e 60
5.7. Constraint Manager — TIMING Tab.........cooiiiiiiiiiee e e 62
5.8, Derived CONSIAINTS.ueiiiiiie ettt s e e e e bt e s e e e s 64
5.9. Constraint Manager — FIoor Planner Tab..........ccooiiiiiiiiiieie e 65
5.10. Constraint Manager — Netlist Attributes Tab............cocooiiiiii e 66
6. IMPIEMENTING DESIGNS. ..o ittt ettt e e e ettt e e e e e atee e e e e e e asaeeeeaeeaanneeeeaeeaansaeeaaeeann 68
B.1. SYNINESIZE. .. ittt e et e e e nee e nnee e e neeeenes 68
6.2. Verifying Post-Synthesized DeSigNS.ooii it 74

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 2

Libero® SoC v2021.1

6.3, ComPile NEHIST......coeiie e 75
6.4. Constraint Flow in IMplementation.............cciiiiiii e 76
6.5, Place @nd ROULE.........ooiiiiiiiie e 81
6.6. Multiple Pass Layout Configuration................oooi it 85
6.7. Post Layout Editing of I/O Signal Integrity and Delay Parameters............ccccoceeiviiiniiecinieennns 88
6.8, RESOUICE USAE.......eiiiiiiiiiiii ettt st e ab et e et et e s bt e e e bt e e ene e e e nnneeesnbeee s 89
6.9, GIODAI NEE REPOI.....coii ittt e e e e e e et e e e e s et b e e e e e e s ataeeeeesenraeeas 90
6.10. Verify Post Layout Implementation................oooi e 95
7. CoNfIQUIE HAIAWATE.........eeeeeee ettt e et e e e et e e e e st e e e e e e asaeaeeaeeasasbeeaeessansseeeaesanes 113
7.1. Programming Connectivity and Interface.............cccoooiiiiiiiiii e 113
7.2. Select and Configure Actions and ProCedures.............oocuiiiiiiiiiiiiiiiie e 115
7.3, Programmer SEHINGS.ccocuuiiiiii e a e e et aaraaeaeaes 116
A S 1= = Yor g o T =T 0o =Y SR 118
L T o (e o] r= 10t T B =3 o [PRSP 120
8.1. Generating FPGA Array Data.cooiuiiiiiiiie et 120
8.2. Initializing DeSigN BIOCKS........ciiiiiiiiiiie e 120
8.3. Generating Initialization CHENTS...........cooiiiiiiiie e e e e 156
8.4. Configuring Actions and ProCEAUIES...........cccuiiiiiiieiiee et et e e see e e e eneas 156
8.5. Configuring I/0O States During JTAG Programming........c..cooccueiiiaiiiiiiieeeeeiieee e eeieee e e 160
8.6. Configuring Programming OPtiONS.ccoiuiiiiiiieiiiie it 164
8.7. CoNfIGUIING SECUTY.....uviieeieiiiiie et e e e e e e et e e e s et r e e e e e e snbeeeeeesnsseeeaeaan 166
8.8. Configure Permanent Locks for ProducChion.............cooiiiiiiiiieniiie e 176
8.9. Configure BitSIrEamMt e e e e e neaeeas 179
8.10. Generate BitSIream.........coo i s 180
8.11. Run Programming DeVICe ACHIONS.ccoiuuiiiiiie ettt a e e nraea e 181
8.12. Program SPI FIash IMage.coeiiiiiiiiieeet ettt e et e e s e e e snee e e aneeeeenes 187
L TR B LY o 10T B T= 1 [USRS TRPPRP 194
9.1. Generate SmartDebug FPGA Array Data............ooiiiiiiiiiiei et 194
9.2, SMAMDEDUG.eeeieie e 194
9.3, Identify DebUQG DESIGN.......uiiiiiiiiitiie e 195
10. Handoff Design for ProdUCHION.oo ettt e e et e e e e e neeeeaaeenes 196
O 2 R (o To o =71 €53 1 (== 1 o PSSR UT 196
10.2. EXxport FIashPro EXPress JOD........... it a e 213
10.3. Export JOb Manager Data...........ooooiiiiiiieiiiie et 217
10.4. EXPOrt SPIFIash IMage.......ccoouiiiiiiiiiii ettt 218
O 2R T 5 o To L A o T T =T o o] o FO PR 219
10.6. EXPOrt BSDL File.....ciiiiiiiiiiieieet ettt n e s 220
10.7. EXPOIt IBIS MOEL.....ccuiiiiiiiiiiiiie ettt sttt ettt e bttt sae e 220
11. Export SmartDebug Data (LIDEMO SOC).......cuuiiiiiiieiiiie et e e saee e e e e enes 223
12, REFEIENCES. ...ttt ettt ettt e st s bt e e ekt e e et e e e sneeeenaneeea 225
12.1. Archive Project Dialog BOX........couiiiiiiiiiie ittt s 225
12.2. Adding or Modifying Bus Interfaces in SmartDesign...........cocvveiiiiiiiiiic i 226
L T 7 1 - 1o s O O PSPPSR PPPR 228

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 3

Libero® SoC v2021.1

12.4. Changing Output Port CapacitanCe............ccoiiiiiiiiiiiiiie e 231
L O] (N 1V =g F= T [USSP 232
12.6. Configure Permanent Locks for ProdUucCtion.............cccoeiiiiiiiiii e 232
12.7. Importing Source Files — Copying Files Locally............ccoooiiiiiiii e 233
12.8. Create Clock Constraint Dialog BOX.......ccccuiiiiiiiiiiiiieiiciee e 233
12.9. Select Source Pins for Clock Constraint Dialog BOX..........ccouceiiiiieiiiiieeiiieeeee e 234
12.10. Specifying ClOCK CONSIrAINES........coiiiiiiieeitie e e e e eee e s e e sneeeas 235
12.11. Specifying Generated Clock CONSLraints..........oocuiiiiii i 241
12.12. Design Hierarchy in the Design EXPIOrer............coiiiiiiiiiiiieeeieeeriee et 244
L G TR I T 1= g 1T PSRRI 250
12.14. DeSigN RUIES ChECK. ... ittt e e e e et e e et e e s e e e nneee e e 251
12.15. Editable CONSraints Grid..........cooiuiiiiiieiiii e e s 252
12.16. Files Tab @nd File TYPES......coiiiiiiiiiie ettt e e as 253
12,17, IMPOTING FIlES.....eeii ettt et e et e e sbe e e anbeeenaes 253
12.18. Layout Error Message: layoutg4NoValidPlacement..............ccooiiiiiiiiiiiiieee e 254
12.19. Layout Error Message: layoutg4DesignHard.............oooi i 255
12.20. Save Project AS DIialog BOX......ciiiiiiiiiiiiiiii e 255
12.21. Project Settings Dialog BOX......cciiuuiiiiiiiiiiiie ettt 256
12.22. GlODbAl INCIUAE FlES........eeiiiiiiiiee ettt 265
12.23. Create and Configure Core COMPONENT.......c.c.ueiiiiiiiiiiii et 265
12.24. Search iN LIDErO SOC........coiiiiiiiiie ittt nre e 266
12.25. Organize Source Files Dialog Box — SYNthesis.........c.cccviiiiiiiiiiiiieece e 268
12.26. SmartDesign TeStheNCN..........ooi e 269
12.27. SUMUIUS HIEIArCRYo ettt e e e e e e e e e e e e e e e e e anenee 269
12.28. TiMiNg EXCEPHIONS OVEIVIEW.........eiiiiiiiiiiii ittt 270
12.29. Admin Profile TOOI DIalog BOX..........uiiiuiiiiiiiiiiiiie ittt e e 270
12.30. ToOol Profiles Dialog BOX.......ceiuiieiiieeiiiie ettt s e e s e e e e e snee e s sneeeeaneeeeens 271
12.31. User Preferences Dialog Box — Design Flow Preferences............ccccooiieiiiiiiiiiieeee e, 272
L2 Y | T ol o SO PR PPRRRRE 273
12.33. Force Update DeSign FIOW........coc.uiiiiiiiiiiii ettt 274
12.34. Generic/Parameter REPOIM.........cuuiiiii et e e e e e e e e e e e e e aannes 276
13, REVISION HISTOMY ..ttt e bt e et e e eb e e e sabe e e abeee e 278
The MiICroChip WEDSILE.ottt e et e e e e e e et eaaaaaaaaeeeeaeassaaasannnnnssnnnnnns 279
Product Change NOtIfiCation SEIVICE.ooiiiiiiiie e 279
(101 (o]0 g T=Y g] o] o Lo o S PP SOUPPPPN 279
Microchip Devices Code Protection FEAtUre............cuviiiiiiiiiiii ettt e 279
[ITo E= |l N o) i ot T PP PU PR PPPPRPPN 280
JLILEE Lo =T £ F=T PSPPSR PR 280
Quality ManagemeEnt SYSTEML........coiiiiiiiii ettt et e et 281
Worldwide Sales @nd SEIVICE........coouiiiiiiie ettt e e 282

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 4

Libero® SoC v2021.1

Overview

1. Overview

The following topics provide an overview of Libero SoC.

1.1 Libero SoC Design Flow
The following figure shows the Libero SoC design flow.

Figure 1-1. Libero SoC Design Flow

Create Testbench .
Create Design

i Constraint
L
: Manager
- Pre-Synthesis
Simulation Pre-Synthesis constraints
I I“ Derived Constraints SDC
mplement
Testbench - userl.sdc
__________ Netlist Attributes FDC/NDC
i— i ’ Synthesize }‘
| Post-Synthesis | E
Y Simulation :< ____________ Place & Route Constraints
: (Optional) | | Derived Constraints SDC
___________ Place and Route *—________ Liser2 cHi
__________ x | :
: Post-Layout | I/0 PDC
=== Simulation F KA A e Floor Planning PDC
L (Optional) | | Verify Timing JF 5 ; : i
—————————— Timing Verification Constraints
Derived Constraints SDC
user3.sdc

Program and Debug Design

Generate Bitstream
Program Device
SmartDebug

L J

Handoff for Firmware Dev.

Handoff for Production
Security Options

Handoff for Debugging

111 Creating Your Design
Create your design with the following design capture tools:

» System Builder
* Create SmartDesign
» Create HDL

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 5

Libero® SoC v2021.1

Overview

» Create SmartDesign Testbench (optional, for simulation only)
» Create HDL Testbench (optional, for simulation only)

After you create the design, invoke simulation for pre-synthesis verification.

You can also click the o button to invoke the Libero SoC software through Place and Route with default settings.
However, doing so bypasses constraint management.

1.1.2 Working with Constraints

In the FPGA design world, constraint files are as important as design source files. Constraint files are used
throughout the FPGA design process to guide FPGA tools to achieve the timing and power requirements of

the design. For the synthesis step, SDC timing constraints set the performance goals whereas non-timing FDC
constraints guide the synthesis tool for optimization. For the Place-and-Route step, SDC timing constraints guide
the tool to achieve the timing requirements whereas Physical Design Constraints (PDC) guide the tool for
optimized placement and routing (Floorplanning). For Static Timing Analysis, SDC timing constraints set the timing
requirements and design-specific timing exceptions for static timing analysis.

Libero SoC provides the Constraint Manager to manage your design constraint needs. Constraint Manager is a
single centralized graphical interface that allows you to create, import, link, check, delete, edit design constraints and
associate the constraint files to design tools in the Libero SoC environment. Constraint Manager also allows you

to manage constraints for SynplifyPro synthesis, Libero SoC Place-and-Route, and the SmartTime Timing Analysis
throughout the design process.

After project creation, double-click Manage Constraints in the Design Flow window to open the Constraint
Manager.

Figure 1-2. Constraint Manager

| Reports @ x | myusesdc @x | ConstraintManager & X | mddr_top_sb CCC_OFCCCsde 8 X | s
= =
/1J0 Attributes \/ Timing \/ Floor Planner \/ Netiist Attributes _l) < Constraints Tab
{ New] { Import J l Link I IEd\twnh Constraint Editor vI { Check V] {DEHVE Constramtsl IConstalntCoverage VJ I Help I + E] '
nthesis ace and Route Timing Verification

" Synth Pl d R Timing Verif
constraint\ top_derived_constraints.sdc
constraint\my.sdc] B]
constraint\my_usersdc | B [
e

Constraints
File Order

File and Tool Association

1.1.3 Implementing Your Design
The following guides and topics provide information about implementing your design.

* Netlist Viewer (User Guide)

* 6.1 Synthesize. This procedure runs synthesis on your design with the default settings, and passes to Synplify
the constraints associated with Synthesis in the Constraint Manager.

* 6.2 Verifying Post-Synthesized Designs
» #unique_9
* 6.5 Place and Route. Place and Route takes the design constraints from the Constraint Manager and uses

default settings. This is the last step in the push-button o design flow execution.
* 6.10 Verify Post Layout Implementation

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 6

https://coredocs.s3.amazonaws.com/Libero/12_3_0/Tool/stdalone_nlv_ug.pdf

1.2

Libero® SoC v2021.1

Overview

* 6.10.1 Generate Back Annotated Files
* 6.10.2 Simulate - Opens ModelSim ME
* 6.10.3 Verify Timing

* 6.10.5 SmartTime

* 6.10.6 Verify Power

* 6.10.9 Simultaneous Switching Noise

Programming and Debugging Your Design

The following topics provide information about programming and debugging your design.

Generating and Updating Data
* Generate FPGA Array Data
* Update eNVM Memory Content

Configuring Your Hardware
» Programming Connectivity and Interface
» Configure Programmer
» Device I/O States During Programming - JTAG Mode Only
» Configure Programming Options
» Configure Security Policy Manager

Programming Your Design
* Generate Bitstream
* Run PROGRAM Action

Debugging Your Design
» Identify Debug Design
* SmartDebug (User Guide)
» Configure Permanent Locks for Production (Configure OTP Security)

Handing Off Your Design to Production

The following topics provide information about handing off your design to production.

* Export Bitstream

» Export FlashPro Express Job

» Export Job Manager Data

» Export Pin Report

» Export BSDL

» Export IBIS Model

» Handoff Design for Firmware Development

» Handoff Design for Debugging (Export SmartDebug Data)

Software IDE Integration

Libero SoC simplifies the task of transitioning between designing your FPGA to developing your embedded firmware.

Libero SoC manages the firmware for your FPGA hardware design, including:

» Firmware hardware abstraction layers required for your processor.

» Firmware drivers for the processor peripherals that you use in your FPGA design.
» Sample application projects are available for drivers that illustrate the proper usage of the APlIs.

© 2021 Microchip Technology Inc. User Guide

DS00003754B-page 7

https://coredocs.s3.amazonaws.com/Libero/12_3_0/Tool/smartdebug_ug.pdf

1.3

Libero® SoC v2021.1

Overview

To see which firmware drivers Libero SoC has found to be compatible with your design, open the Firmware View.
From this view, you can change the configuration of your firmware, change to a different version, read driver
documentation, and generate sample projects for each driver.

Libero SoC manages the integration of your firmware with your preferred Software Development Environment,
including SoftConsole, Keil, and IAR Embedded Workbench. The projects and workspace for your selected
development environment are generated automatically with the proper settings and flags so you can write your
applications immediately.

Software Tools

Libero SoC integrates design tools, streamlines design flow, manages design and log files, and passes design

data between tools. The following table identifies the tools you can use to perform Libero SoC functions.

For more information about Libero SoC tools, visit https://www.microsemi.com/products/fpga-soc/design-resources/
design-software/libero-soc#overview.

Table 1-1. Matching Functions with Tools

N T S

Project Manager, HDL Editor, Core Libero SoC Project Manager, HDL Editor targets

Generation the creation of HDL code. HDL Editor
supports VHDL and Verilog with color,
highlighting keywords for both HDL
languages.

Synthesis Synplify® Pro ME SynplifyPro ME is integrated as part of
the design package, enabling designers
to target HDL code to specific devices.

Simulation ModelSim® ME Pro Allows source-level verification so
designers can verify HDL code line by
line. Designers can perform simulation at
all levels: behavioral (or pre-synthesis),
structural (or post-synthesis), and
dynamic simulation.

Timing/Constraints, Power Analysis, Libero SoC This software package includes:
Netlist Viewer, Floorplanning, Package « ChipPlanner — displays I/O and
Editing, Place-and-Route, Debugging logic macros in your design for

floorplanning

* Netlist Viewer — design schematic
viewer.

* SmartPower — power analysis tool.

* SmartTime — static timing analysis
and constraints editor.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 8

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview

21

Libero® SoC v2021.1

Managing Licenses

Managing Licenses

This chapter describes Libero SoC licensing.

Microsemi License Utility

The Microsemi License Utility allows you to check and update your license settings for the Libero SoC software. It
displays your current license settings, the license host-id for the current host, and allows you to add a new license file
to your settings.

Starting the Microsemi License Utility

Click Start > All Programs > Microsemi Libero SoC vx.xx> Microsemi License Utility.

Note: If you have more than one license available and have not selected a default license, the Select License dialog
box appears.

Requesting a License
To request a license, click Request License to display the Microsemi license website. Then right-click and copy the
disk volume value in the window, and paste the value into the Microsemi license web form.

The following table describes the available licenses.

Table 2-1. Available Licenses

1-year Platinum Purchased license that supports all devices.

1-year Gold Purchased license that supports a smaller set of devices
than Platinum.

1-year Silver Free license that supports a smaller set of devices than
Gold.

30-day Evaluation Free license that supports all devices, but disables

programming.

When you receive your license file, follow the instructions that come with it and save the license to your local disk. In
the Microsemi License Ultility window, click Add License File. browse to the license file, and then select it. If you use
a floating license, click Add License Server and enter the port number and name of the license server host.

Although the list of features for which you are licensed shows all versions, your license must have a version equal to
or greater than your design tools release version for the 1ibero.exe and designer.exe tools to run.

The list at the lower right shows the order in which the license files are read. The first file read appears at the top of
the list.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 9

2.2

Libero® SoC v2021.1

Managing Licenses

Figure 2-1. Example of Microsemi License Utility

€ Microsemi License Utility =H R
By write Report File...
|\u'a|id License Feat|Version erm |Expiration Quantity Host HostID |Souroe |Comment
Platinum (ACTEL_¢[99.99 Permanent none 200 users sage ald3c11847ab 1702@sage
4| i I
Host name: 5Jsoco120 [+ Add License File.. l I+ Add License Server...
Disk volume: 7053a3e4
Netwark card(s)™: a0d3c11847ab |sequence for searching license sources
1702
4 Reguest License (web) Teage
1717 @sage
= Multiple network cards may be listed; use 1800 @sage
only one network card identifier when
requesting a license.,

Printing the Microsemi Licenses Report

Click Write Report File to print the Microsemi Tools Licenses Report or to save it as a . txt file.

Related Information

For more information about licensing, including links to troubleshooting and FAQ documents, see the Microsemi
Libero SoC License Information Web Page.

Selecting a Default License from a License List

If you have more than one license available and have not selected a default license, the Select License dialog box
appears when you start the Microsemi License Utility. Select the feature license you want to use from the list of
available licenses shown.

+ The Quantity and Available columns show the total number of licenses and number of available licenses,

respectively.

* The License Type column shows whether an available license is a Node Locked license or a Floating or
Server-based license. Floating and Server-based Licenses can be used by multiple users, depending on the
number of seats available.

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 10

https://www.microsemi.com/product-directory/design-resources/1711-licensing#documents
https://www.microsemi.com/product-directory/design-resources/1711-licensing#documents

Libero® SoC v2021.1

Managing Licenses

Figure 2-2. License Dialog Box

= Sthect Liceria el
Feature Lune Lsense Name License Type Cruandity Available Commaents
AT PlatsrviamSand... Node lockid Und eurted Ui et end W Goodto uie
_'i.;(T['..'-"a.';. Gold Floating l 2 14-feb- 2000 K-30370. 9 Goodto ue
r
v | s | cow

Selecting a License to Use

1. Inthe Select License dialog box, click Select to activate Libero using the selected license. This button is
disabled by default, and is enabled after you select a license.

2. Check the Set Selected License as Default check box to save the selected license as the default license to
be used for future sessions. Selecting this option skips the license selection step for future sessions. Use this
option if you want to use the same license features for future sessions.

— If you select a license that was acquired by another user, the following message appears:

HE = Telect Licamse |=|o] x ||
Trstu e Line Lic reve Hame | Litemie Type Crusnitity Ao silabibe | s ation | Mot { penmenty
V{ACTEL SUMMIT PlatewomStand . | MNode lociked 1) Umcounted N-dec-2019 o st v Goesd 1o wne
1 F:(TIL,\-:&T-‘. Goid Flaating 2 2 - feds- 220 HVD-DE-D0INL. | Good 1o wie
I L-rmhnmnmdb;wmw.#&m%tmwum.

Lo]

T St Selected Lownie b Defat

el | e | cowe |
— If you select a license for which there are no valid licenses available, the following message appears:

< T =8 x |

6 There is no valid Libero license available. Please verify the available licenses.
| /]

oK |

To close the license selection window and exit Libero, click Cancel. To view the online help topic for License
Selection, click Help.

License Expiration

If a license will expire within 15 days, a warning appears in the Comments column of the dialog box and in the Log
window (see the following examples).

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 11

2.3

Libero® SoC v2021.1

Managing Licenses

Figure 2-3. Select License Dialog Box with License Expiration Warning Message

< Sabct Licomsn [=lomEm
[b | oo Mo st Ty S Loadabie Lapeation Host Comemants
1 [ACTEL SUMDAT | Puatrngm Samdl Fioating . H o [16] Byt Fiaws contact daribetin o Mu st hug Lol o o
2ACTRLVSTA Gels ey FEe 1. ¥
-
[] ia | o

Figure 2-4. Log Window with License Expiration Warning Message
Leg
(B) Messages €I Errers b Wamings @ In%e
&y

Plense contact Likero Suppezt Tea= Zor =ore detalls

Locacion = C\Users'secctharan.=addineni\Applata’ Roaming'Actel iy vaule
Jsera sestharas. maddinenii\AppData’, R:az‘.r.*;'..!.::&'.'.:ep«:.!;’.:ry_ctc?‘.z'-.:a;\.a&:a'.tq'.:acne,x_.-‘
A caming\Actel\repository_cache\www. fglore\cache . x=l

Info: Current Vaul
Reading cbjecta fr
Reading cbjects from
. Bl e am s

Ry Pl L T ppevep—. PSP s

F

Setting a Default License

After you start Libero, you can select the default Libero license that will be used for future sessions. After you select a
default Libero license, you can use this same procedure to change the default license.

Click Help > Select Default License.

Figure 2-5. Selecting Help > Select Default License

Help
& Help Topics

Reference Manuals

<=2 Microsemi Technical Support
L Microsemi SoC
& Release Notes

Check For Software Updates

Select Default License..,

License Options...

About Libero

When the following Select License dialog box appears, click a row, and then click Set Default License to specify the
Libero license you selected as the default and close the dialog box.

User Guide DS00003754B-page 12

© 2021 Microchip Technology Inc.

Libero® SoC v2021.1

Managing Licenses

Figure 2-6. Select License Dialog Box
o Sebect Lcarne L

FeatureLime | License Mame Licerse Type Chsanoey Ay wlable [| Mo £ perenents

T | PlasewmSzend.. Flosting F H ray- 2017

ok Flostrg 2 ¥ -y~ 2020

| v | | Cancel

After you select a default Libero license, you can set license options in the Libero Preferences dialog box by clicking
Project > Preferences. The following Preferences dialog box appears with the options described below.

Figure 2-7. License Options in Libero Preferences Dialog Box

| software update
|Log windaw
| .Slarlup I Reset default licanse selaction (Thiswill be effective for future s2esions anly.)
| :Interneﬁ:l Access ’7 Warn wee when my Libero Fcense is about be expire.
| |Text editor
\ |IF Cares
| Design Flaw
| iLi{ense Oplions
| |Proxy

—License Optians

| :
Help oK | Cancel |
S ——

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 13

2.4

Libero® SoC v2021.1

Managing Licenses

Table 2-2. Preferences Dialog Box Options

e]

Reset Default License Selection This option is selected when a default license is
available. When checked, the default license is cleared
and the check box is disabled.

Warn we when my Libero license is about to expire Enables or disables Notification of License expiry.
When checked, a popup message informs you about
the impending expiration when the selected license’s
expiration date is within 15 days. Use this option only
when the license’s expiration date is longer than 5 days
and shorter than 15 days.

Viewing License Details

The License Details dialog box shows detailed information about Libero SoC licenses and cores. To display this
dialog box, click Help > License Options.

Figure 2-8. Selecting Help > License Options

Help
@ Help Topics

Reference Manuals

R

Microsemi Technical Support

Microsemi SaoC

6O 60

Release Notes
Check For Software Updates

Select Default License...

License Cptions...

About Libero

The License Details dialog box has two tabs:

* Tools displays tool license details.
» IP Cores displays IP Cores license details, as shown in the following example.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 14

2.5

2.6

Libero® SoC v2021.1

Managing Licenses

Figure 2-9. IP Cores License Details
< Ligerice detasts L =

Took IF Cores

P - T f ;I Laierne hpe: Fisatng
S Com e i Lkowgs hiiiss L} Capciy] [P Eglakion Tate 12 | ost ramar MY X300 smchg s com

1 | CoRtar AIPODIRECTCOREC DRI SVEP 2 T e~ J000 Lotkep padh:
[7 |costpmsmam mwvomscTcoRscoReaPmSEAM 2 142020 e

=l A mchp: mas. (om
3 | COSEQDR APUDEREC TOOREC OREQDR i =M= 2000

4 |coRisom s APUDRLCTCOREC ORESDR_AX) : -feb- 2020
|1 | cortrsa APUDRLCTCORECORERFO 2 142020
|s |comersss APUDRECTCORECORE 1588 2 1412020

7 -(WTI'\U‘”C‘“ APUDRECTOOREC ORTEION TOP] V-feb-2020
|8 |coneane MPUDRECTCORECOREANE 2 Wefe- 2020 o |

wio | Closs

The following table describes the elements in the dialog box.
Table 2-3. Elements in the License Details Dialog Box

N

Close Closes the dialog box.
Help Displays the online help topic for License Selection.
Filter Searches for the pattern entered in the text edit box.

Filtered rows appear in the Cores table.

Lookup Path Shows the list of License hosts included in the
LM_LICENSE_FILE.

Libero SoC Online Help

The Libero SoC online help system is designed to open in the HTML Help Viewer — Microsoft's Help window for
viewing compiled HTML Help. If you do not have the HTML Help Viewer components installed on your system, you
can view the help using Microsoft Internet Explorer browser version 4.x or later.

The Libero SoC online help includes the following navigation tabs:

+ Contents. The Contents tab shows books and pages that represent the categories of information in the online
help system. When you click a closed book, it opens to display its content of sub-books and pages. When you
click an open book, it closes. When you click pages, you select topics to view in the right-hand pane of the
HTML Help viewer.

» Search. The Search tab allows you to find topics that contain key words. Full-text searching searches through
every word in the online help to find matches. When the search is completed, a list of topics appears, so you can
select a topic to view.

Note: Linux users might need to set the LINUX HTMLREADER variable to enable an HTML viewer. For example:
setenv LINUX HTMLREADER /usr/bin/firefox. If you do not set this variable, HTML files, such as the online
help, will not be available from within the software.

Libero SoC User Guides

Libero SoC includes online manuals that are in PDF format and are available from the Libero SoC Start menu. To
access these guides, click All Programs > Microsemi > Libero SoC > Libero SoC Reference Manuals. You must
have Adobe Acrobat Reader or similar PDF viewer to open and view the PDF user guides.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 15

Libero® SoC v2021.1

Managing Licenses

Note: Linux users may need to set their LINUX PDFREADER variable to enable a PDF viewer. For example:
setenv LINUX PDFREADER /usr/bin/kpdf. If you do not set this variable, some PDF files will not be available
from within software.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 16

3.1

3.2

3.3

Libero® SoC v2021.1
Getting Started

Getting Started

The following sections describe how to start using Libero SoC.

Starting Libero SoC
When you start Libero SoC, the Welcome screen appears. In the left pane, links under Projects allow you to create a
new Libero SoC project or open an existing one.

» Clicking New starts the New Project Creation Wizard. You use this wizard to create new Libero SoC projects.

» Clicking Open opens an existing Libero SoC project.

Design Report

The Design Report tab lists the reports available for your design. Reports are added automatically as you move
through design development. For example, Timing reports are added when you run timing analysis on your design.
Reports are updated each time you run a timing analysis.

To display the Design Report tab, click Design > Reports.

If a report is not listed in the tab, you might have to create it manually. For example, you must invoke Verify Power
manually before its report is available.

The following table lists the reports you can view in the Design Report tab.

Table 3-1. Reports That Can be Viewed from the Design Report Tab

Project Summary + Synthesize
» Place and Route
» Verify Timing
» Verify Power

Programming * Generate FPGA Array Data
» Generate Bitstream

Export » Export Pin Report
* Export BSDL File

Creating a New Project

To simplify project creation, Libero SoC provides a wizard that takes you step by step through the process of creating
a new Libero SoC project.

To start a new Libero SoC project, click Project > New. The following table summarizes the screens in the wizard.
Table 3-2. Screens in the New Project Wizard

e

Project Details Specify the name and location of your project, device
family and parts, I/O standards, and HDL source files
and design constraint files.

Device Selection Select a device for your project. After you select a
device, or in any wizard screen that follows, you can
click the Finish button to create the project and exit the
wizard.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 17

Libero® SoC v2021.1
Getting Started

........... continued

R

Device Settings

Add HDL Sources
Add Constraints

Specify the device I/0 technology and reserve pins for
probes.

Add HDL design source files to your Libero SoC project.

Add timing and physical constraints files to your Libero
SoC project.

3.31 New Project Creation Wizard — Project Details
Project Details is the first screen that appears in the New Project Creation wizard.

Figure 3-1. Libero SoC New Project Creation Wizard - Project Details

(o]

Project details
Spedify project details
Project Details
Device Selection
Device Settings
Design Template
‘Add HDL Sources
Add Constraints

Libe fc'>‘

o

_teb |

o [E@][=

Projectname: |

Projectlocation: [Xi/delete Browse...

Desaiption:

Preferred HDL type: [Veriog v

™ Enable block creation
Block flow enables you to publsh another design. els and
it t

s et

The following table describes the fields in the Project Details screen. After you complete the fields, click Next to go to

Device Selection.

Table 3-3. Fields in the Libero SoC New Project Creation Wizard - Project Details

T

Project Name

Project Location
Description

Preferred HDL Type

Enable Block Creation

Identifies your project name. Do not use spaces or
reserved Verilog or VHDL keywords.

Identifies your project location on disk.
General information about your design and project.

Sets your HDL type to one of the following:
* Verilog
 VHDL

Libero-generated files (SmartDesigns, SmartGen cores,
and so on) are created in the HDL type you specify.
Libero SoC supports mixed HDL designs.

Allows you to build blocks for your design. These blocks
can be assembled in other designs, with partial layout,
and been optimized for timing and power performance
for a specific Microchip device. Once optimized, you can
use the same blocks in multiple designs.

3.3.2 New Project Creation Wizard — Device Selection

The Device Selection screen is where you specify the Microchip device for your project. Use the filters and drop-
down lists to refine your search for the right part to use for your design.

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 18

Libero® SoC v2021.1
Getting Started

This screen contains a table of all the parts, with associated FPGA resource details generated based on a value you
enter in a filter. When you select a filter value:
* The parts table is updated to reflect the result of the new filtered value.

» All other filters are updated, and only relevant items are available in the filter drop-down lists. For example, if you
select PolarFire in the Family filter, the parts table includes only PolarFire parts and the Die filter includes only
PolarFire dies in the Die drop-down list.

Figure 3-2. Libero SoC New Project Creation Wizard - Device Selection

(Y New project =N ER
% Device selection
Select a part for your project from the part number list Selscted Far:MEEI00TESTIECGARIR
< i Part filter
Project Details
Family: | PolarFire 3 Die: | All 4| Package: (Al 2]
Speed: |All = Range: | All)
Device Selection
[Reset filters |
Device Settings Search part:
Part Number v | DFF User 1/0s USRAM LSRAM Math H-Chip Globald*
MPF100TS_ES-1FULLPKGE | 108600 296 1008 352 336 48
Add HDL Sources MPF200TS_ES-1FULLPKGE | 192408 368 1764 616 588 48
MPF300T ES-1FCG1152E | 299544 512 2772 952 924 48
MPF300T ES-1FCGABAE | 209544 244 2772 952 924 48
MPF300T_ES-1FCG784E | 299544 388 2772 952 924 48
. MPF300T_ES-1FCSGS36E | 299544 300 2772 952 924 48
Add Constraints MPF300T ES-1FCVG484E | 299544 284 2172 952 924 a8
MPF300T_ES-FCG1152E | 299544 512 2772 952 924 a8
MPF300T ES-FCG484E | 299544 244 2772 952 924 48
MPF300T_ES-FCG784E | 299544 388 2772 952 924 48
- II MPF300T_ES-FCSGS36E | 299544 300 2772 952 924 48
MPF300T_ES-FCVG4BAE | 299544 284 2772 952 924 48 L
1 ero MPF300TS ES-1FCG1152E 299544 512 2772 952 924 48 ~
SystemonChip \ Gl >
Help | <Back Next > Finish || Cancel

The following table describes the fields in the Device Selection screen. After you complete the fields, click Next
to go to the Device Settings screen or click Finish to complete new project creation with all remaining defaults.

Table 3-4. Fields in the Libero SoC New Project Creation Wizard - Device Selection

Foa T e

Family Specify the Microchip device family. Only devices that
belong to the family are listed in the parts table.

Die/Package/Speed Select your device die, package, and speed grade.
Use the Die/Package/Speed filters to view only the
selections that interest you. The Die/Package/Speed
grades available for selection depend on the level of
Libero SoC license you have (Evaluation, Silver, Gold,
or Platinum). For more information, see the Libero SoC
Licensing web page.

Range Defines the voltage and temperature ranges a device
might encounter in your application. Tools such as
SmartTime, SmartPower, timing-driven layout, power-
driven layout, the timing report, and back-annotated
simulation are affected by operating conditions.
Select the appropriate option for your device. Supported
operating condition ranges vary according to your device
and package. To find your recommended temperature
range, see your device datasheet.

+ All - All ranges

+ EXT — Extended
* IND - Industrial

* MIL (Military)

Reset Filters Reset all filters to the default ALL option except Family.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 19

https://www.microsemi.com/products/fpga-soc/design-resources/licensing
https://www.microsemi.com/products/fpga-soc/design-resources/licensing

3.3.3

Libero® SoC v2021.1
Getting Started

........... continued
Flld Deseripton |
Search Parts Enter a character-by-character search for parts. Search

results appear in the parts table.

New Project Creation Wizard — Device Settings
For PolarFire devices, the Device Settings page is where you set the device I/O technology and reserve pins for
probes.

Figure 3-3. Libero SoC New Project Creation Wizard — Device Settings (PolarFire)
@Newprojec! @E’ﬁ

Device settings
Choose device settings for your project

Selected part: MPF200TS_ES-1FULLPKGE

Project Details Core Voltage : (1.0~

7/0 settings

Default /0 technology: [Lvemos 1.8v | € Please use the /0 Editor to change individual /0 attributes.
Device Selection 2
V| Reserve pins for probes

Device Settings || System controller suspended mode

Add HDL Sources

Add Constraints.

o gl
Libefo

SystemonChip

[hep | [<sack |[wet>][Fmsh |[concel |

The following table describes the fields in the Device Settings screen. After you complete the fields:

» Click Next to go to the Add HDL Sources screen for PolarFire and PolarFire2 devices .
OR

» Click Finish to complete new project creation with all remaining defaults.

Table 3-5. Fields in the Libero SoC New Project Creation Wizard - Device Settings

T

Core Voltage Set the core voltage for your device.

Default I/O Technology Set all your I/Os to a default value. You can change the
values for individual 1/Os in the I/O Attribute Editor. The
I/0O technology available is family-dependent.

Reserve Pins for Probes Reserve your pins for probing if you intend to debug
using SmartDebug.

System controller suspended mode PolarFire only. If the system controller suspended mode
is enabled, the following operations will not be available
during normal operation.

» All System controller services requested after
power-up is complete and the System controller is
suspended

» System controller-generated Tamper flags

« Device reset and zeroization Tamper responses
» SPI-Master In-Application Programming (IAP)

» SPI-Slave programming mode

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 20

3.34

Libero® SoC v2021.1
Getting Started

New Project Creation Wizard — Add HDL Source Files

The Add HDL Source Files screen is where you add HDL design source files to your Libero SoC project. The HDL
source files can be imported or linked to the Libero SoC project.

Figure 3-4. Libero SoC New Project Creation Wizard - Add HDL Source Files

(-‘ New project { =3 ld_&

Add HDL source files
Specify HOL files to import/link to your project. Selected part: MPF200TS_ES-1FULLPKGE
Project Details Import file unkfile | Delete

File type File name File location
Device Selection
Device Settings
Add HDL Sources
Add Constraints
Symemonchip N8

Help | [<sack |[wet>][rmsh |[cancel

The following table describes the elements in the Add HDL Source Files screen. After you complete the fields, click
Next to go to the Add Constraints screen or click Finish to complete new project creation with all remaining defaults.

Table 3-6. Elements in the Libero SoC New Project Creation Wizard - Add HDL Source Files

N

Import File button

Link File button

Create links relative to the path set in Environment
variable

Delete button

Imports an HDL source file. When the dialog box
appears, go to the location where the HDL source
resides, select the HDL file, and click Open. The HDL
file is copied to the <prj folder>/hdl folder in your
Libero project.

Allows you to continue with an absolute or relative path
for linked files. When the Link files dialog box appears
(see the figure below), go to the location where the HDL
source resides, select the HDL file, and click Open.

The HDL file is linked to the Libero project. Check

this check box if the HDL source file is located

and maintained outside the Libero project. This option
requires you to specify an environment variable that has
a relative path set to it. Links are created relative to the
path set in the environment variable.

Note: If you select relative path and provide an
environment variable for the relative path, you cannot
switch to absolute path. After the environment variable is
set, this option becomes read-only in all other link files
dialog boxes.

Deletes the selected HDL source file from your project. If
the HDL source file is linked to the Libero project, the link
will be removed.

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 21

Libero® SoC v2021.1
Getting Started

Figure 3-5. New Project Creation Wizard — Link Files Dialog Box

@ Link files ? X
Look in: | C:\Microsemi\testcase\test1 ﬂ S '3 [[“fé- E] E]
! My C. Mame Size Type Date Modified
[] imult18X18.v 2 KB v File 21472019 5:26 PM

a C519

<l 1]
File name: |mult18?{ 18.v Open

Files of type: |HDL Source Files (= vhdl =.vhd =v =.sv =vm =vh =svh =h) | Cancel

Library: |wu:urk

™ Convert EDN To HOL ¥ Use relative path for linked files

Create links relative to the path set in Environment variable: |I'~"ISCC_ROOT_2

3.3.5 New Project Creation Wizard - Add Constraints
The Add Constraints screen is where you add timing constraints and physical constraints files to your Libero SoC
project. The constraints file can be imported or linked to the Libero SoC project.

Figure 3-6. Libero SoC New Project Creation Wizard — Add Constraints

[T — X
(-\Newproject —— - l‘:' ‘@
Add constraints
Specify constraint files for timing or physical constraints. Selected part: MPF200TS_ES-1RULLPKGE
Project Details Import file | | Linkfile | Delete
File type File name File location
Device Selection
l Device Settings
Add HDL Sources
Add Constraints
Libefo)
Spemanchiy 8
Hep | [LosBack,][wext Finish | [cancel

The following table describes the elements in the Add Constraints screen.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 22

Libero® SoC v2021.1
Getting Started

Table 3-7. Elements in the Libero SoC New Project Creation Wizard - Add Constraints

Ewow o EEeww]

Import File button

Link File button

Create links relative to the path set in Environment
variable

Delete button

Go to the location where the constraints file resides.
Select the constraints file and click Open. The
constraints file is copied to the <prj folder>/
constraint folderin your Libero project.

Click this button if the constraint file is located and
maintained outside the Libero project. When the Link
files dialog box appears (see the figure below), specify
an absolute path or choose a relative path for linked
files. Go to the location where the constraints file
resides. Select the constraints file and click Open. The
constraints file is linked to the Libero project.

The constraints file is linked to the Libero project.
Check this check box if the constraints file is located
and maintained outside the Libero project. This option
requires you to specify an environment variable that has
a relative path set to it. Links are created relative to the
path set in the environment variable.

Note: If you select relative path and provide an
environment variable for the relative path, you cannot
switch to absolute path. After the environment variable is
set, this option becomes read-only in all other link files
dialog boxes.

Deletes the selected constraints file from your project. If
the constraints file is linked to the Libero project, the link
will be removed.

Figure 3-7. New Project Creation Wizard - Link Files Dialog Box

[@
| Lookin: | Ci\testiconstraintljo j QO 0B = |
W Myc| Name |Size | Tpe [Date Modified | '
a 519 pre File..lder 11/20/201912:07 PM
| | user.pdc 1,0..tes pdcFile 11/19/2019 455 PM
[« 1]
File name: |user.pdc
Files of type: |IfO Constraint Files{ *.pdc) j Cancel
Lbrary: |
I Convert EDN To HDL W Use relative path for linked files

Create links relative to the path set in Environment variable: |MSCC_ROOT_2

After you complete the fields, click Finish to complete new project creation. The Reports tab shows the result of your

new project.

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 23

3.4

Libero® SoC v2021.1
Getting Started

Figure 3-8. Reports Tab
Reports & X StartPage & X |

4 Project Summary &3 0 Errors 4 0 Warnings P 0 Info
g5_prep_instlog

Project Name: g53_prep inst

Location: U:\proj vll B\g5 prep inst
Description:

Preferred HDL Type: Verilog

Part Number MPF200TS_ES-1FULLPEGE

Family : PolarFire

Die : MPF200TS_ES

Package : Fully Bonded Package
Speed : -1

Core Voltage : 1.0

Range : EXT

Opening a Project
To open a project:
1. From the File menu, choose Open Project.

2. Select the project file you want to open. The file ends in the extension .prjx.
3. Click Open.

Note: Opening a project created using a relative path for linked files displays the following error message if the
environment variable does not exist or the path set in the environment variable is empty and cancels opening the
project.

Figure 3-9. Error Message

] Error
(&% e Environment variabe MSCC_ROOT_I' specifid for the root directory path for inked flesin the project you are trying to open s not definedset in your environment. Please make sure to set the appropriate root directory path in this Environment variable before you apen Libero,
@Y You il nezd to exit Libero and apen a new session for any changes you mads to the drectory path setin the Envronment variable to reflect here and allow you to open the project.

When you open an existing Libero SoC project:
» A Design Flow window appears on the left side.
* Alog and message window appear at the bottom.
» Project information windows appear on the right side.

The following figure is an example of a newly created project, with only the top-level Design Flow window steps
shown.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 24

Libero® SoC v2021.1
Getting Started

Figure 3-10. Sample Design Flow Window

Project File Edit View Design Tools Help
DS 2™ 083

Design Flow
Top Module{root): sort 4

Tool

Create Design
Constraints
Implement Design
Configure Hardware
Program Design
Debug Design

- R -5

Design Flow [Design Hierarchy | Stimulus Hierarchy

Handoff Design for Production
Handoff Design for Debugging

@® Reports @ X | StartPage & X

o o m g = Prujn?cLSummari .

sort_4 rep.urtb

Catalog | Files

4

s 0

0 Errors /& 0 Warnings & 0 Info

The Design Flow window may be slightly different for each technology family. However, all flows include some version

of the following design steps:

* Create Design

+ Constraints

* Implement Design

» Configure Hardware
* Program Design

» Debug Design

» Handoff Design for Production
» Handoff Design for Debugging

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 25

41

411

Libero® SoC v2021.1
Creating and Verifying Designs

Creating and Verifying Designs
Create your design with the following design capture tools:

» Create SmartDesign

+ Create HDL

» Create SmartDesign Testbench (optional, for simulation only)
* Create HDL Testbench (optional, for simulation only)

» Verify Pre-synthesized Design

Create SmartDesign

SmartDesign is a visual block-based design creation and entry tool for instantiating, configuring, and connecting
Microchip IPs, user-generated IPs, and custom/glue-logic HDL modules. This tool provides a canvas for instantiating
and stitching together design objects. The final result from SmartDesign is a design-rule-checked and automatically
abstracted synthesis-ready HDL file. A generated SmartDesign can be the entire FPGA design or a component
subsystem to be re-used in a larger design.

The following design objects can be instantiated in the SmartDesign Canvas:

» Microchip IP Cores

» User-generated or third-party IP Cores

« HDL design files

» HDL + design files

» Basic macros

» Other SmartDesign components (* . cxf files. These files can be generated from SmartDesign in the current
Libero SoC project, or they can be imported from other Libero SoC projects.

* Re-usable design blocks (* . cxz files) published from Libero SoC. For more information, see the SmartDesign
User Guide.

Create New SmartDesign

This SmartDesign component may be the top level of the design, or it can be used as a lower level SmartDesign
component after successful generation in another design.
1. From the File menu, choose New > SmartDesign in the Design Flow window or double-click Create
SmartDesign. The Create New SmartDesign dialog box appears.

Figure 4-1. Create New SmartDesign Dialog Box

B Create New SmartDesign

Marne:
|
ox

2. Enter a name and click OK. The component appears in the Design Hierarchy tab of the Design Explorer.

Note: The component name you choose must be unique in your project. For more information, see the SmartDesign
User Guide.

Export Component Description (Tcl)

Using the Export Component Description option, you can export components such as SmartDesign components,
configured cores, and HDL+ cores separately as Tcl.

To export a SmartDesign component:

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 26

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf

Libero® SoC v2021.1
Creating and Verifying Designs

1. Right-click the component and choose Export Component Description (Tcl).

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 27

Libero® SoC v2021.1
Creating and Verifying Designs

Figure 4-2. Export as TCL Option for SmartDesign Component
@ Libero - X:\10_docs_review!\12.0. Release'\pae_demo_tcl example\DGOT56 PF_PCle_EP\new\p
Project File Edit View Design Tools Hr_h

IDeW2XN0B8 |

Design Hierardhy 8 X
Buld Hierarchy Show: |Components = a
E ﬁ work
- 3 PCle_EP_Demo
[IP] AX4 Interconnect (COREAXIINTERCONNECT v2.5.100)
= B AXitoAPB

P} cCC_111IMHz (PF_CCC_v1.0.115)
<-4 CoreDMA_IO_CTRL
[®) CoreAXM Lite (COREAXMINTERCONNECT v2.5.100)
P} CoreDMA_Controller (COREAXIMDMACONTROLLER v2.0.100)

S aiddma_init (ANMDMA, INIT v [work]
El ai_io_ctrl (AXI_IO_CTRLW) [work]

& E PCle_EP

PCle_EP_PCle REF_C1K 0 PF_XCVR_REF CLK (PCle_EP_PCle REF C..

PCle EP PClexd 0 PF PCIE [PCle EP PCled D PF PCIE.v] [work]

- [¥]) PCle TX PLL (F xport Component Description(Tcl)
L) sw_debounce
IR] PF DDR3_SS (PF_DI
B} PF_DDR4_SS (PF_DI
P) PE RESET (CORERE ~ Open HDL File
B} sSRAM_AXI (PF SR2 Check HDL File

+ il COREAXIDMACONTROLI
= j COREAHBLITE LIB Create |/O Constraint from Module
i COREAHETOAPE3 LIE
+ i} COREAXITOAHBL_LIB Create Testbench '
+ @ COReAPB3_LIB
% % Duplicate Modules Delete
¢ :I User HDL Source Files
++ [Components Copy File Path
Show Module Parameters
Properties
Show Module
Design Herarchy | Design Flow | Stmulus Hierarchy | Catsiog | Fies |
Message

[E)Messages @ Erors 4 Wamngs @ 0% [E)Manage suppressed messages

Message
= Implementation
= Synthesis [PCle_EP_Demno] [1173 Wamng(s))
b Snertfied dinds nverfliows the nimmber's oze

J

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 28

413

Libero® SoC v2021.1
Creating and Verifying Designs

Figure 4-3. Export Script Dialog Box

Script file: |C:1|,I_.Isers‘|,smudunur \Desktop\PCIe_TL_CLE. td o

Help Ok Cancel

B’ t Scrip | % || &

2. Click the Browse button to specify the location where you want to export the Tcl file, and then click OK.

Examples

The following is an example of an exported Tcl script for a SmartDesign Component (PCle_TL_CLK).

Creating SmartDesign PCIe TL_CLK set sd_name {PCIe_ TL_CLK}
create smartdesign -sd name ${sd name}

Disable auto promotion of pins of type 'pad' auto promote pad pins -promote all 0

Create top level Ports

sd_create_scalar port -sd name ${sd name} -port name {CLK 125MHz} -port direction {IN}
sd create scalar _port -sd name ${sd name} -port name {TL_CLK} -port direction {OUT}
sd_create scalar port -sd_name ${sd_name} -port name {DEVICE INIT DONE} -port direction

{OUT}
Add CLK DIV2 0 instance

sd _instantiate component -sd name ${sd name} -component name {CLK DIV2} -instance name

{CLK_DIV2 0}
Add NGMUX 0 instance

sd _instantiate component -sd name ${sd name} -component name {NGMUX} -instance name

{NGMUX_0}
Add OSC_160MHz 0 instance

sd_instantiate component -sd name ${sd name} -component name {OSC_160MHz} -instance name

{0SC_160MHz_0}
Add PCIe INIT MONITOR 0 instance

sd_ instantiate component -sd name ${sd name} -component name {PCIe INIT MONITOR} -

instance _name {PCIe INIT MONITOR 0}

sd mark pins_ unused -sd name ${sd_name} -pin _names {PCIe INIT MONITOR 0:FABRIC POR N}

sd mark _pins_ “unused —sd name ${sd name} -pin names {PCIe INIT MONITOR 0:USRAM INIT __DONE }
sd mark _pins_unused -sd name ${sd name} -pin names {PCIe INIT "MONITOR 0:SRAM INIT DONE}
sd mark _pins_unused -sd name ${sd name} -pin_ names {PCIe_INIT_MONITOR_O.XCVR_INIT_DONE}

sd mark _pins_ “unused -sd name ${sd name} -pin_names
{PCIe INIT MONITOR 0: USRAM INIT FROM SNVM DONE }

sd mark _pins_ unused -sd name ${sd name} -pin_names
{PCIe INIT MONITOR 0: USRAM INIT FROM UPROM DONE}
sd mark _pins unused -sd name ${sd name} -pin names
{PCIe INIT MONITOR 0: USRAM INIT FROM SPI DONE}

sd mark _pins_ unused -sd name ${sd name} -pin_names
{PCIe INIT MONITOR 0: SRAM INIT FROM SNVM DONE }

sd mark _pins_ unused -sd name ${sd name} -pin_names
{PCIe INIT MONITOR 0:SRAM INIT FROM UPROM DONE}
sdimarkiplnsiunused —sdiname ${sd7name} -pin names
{PCIe INIT MONITOR 0:SRAM INIT FROM SPI_ DONE}

sd mark pins unused -sd name ${sd name} -pin names {PCIe INIT MONITOR 0:AUTOCALIB DONE}

Add scalar net connections

sd_connect pins -sd_name ${sd name} -pin names {"NGMUX 0:CLK1" "CLK 125MHz" } sd connect pins

—sd name ${sd name} -pin names {"CLK DIV2 0:CLK OUT" "NGMUX 0 : CLKO"_}

sd connect _pins -sd name ${sd name} -pin : names {"PCIe INIT MONITOR 0:DEVICE INIT DONE"

"DEVICE INIT __DONE" T

sd_connect_pins -sd_name ${sd_name} -pin names {"CLK DIV2 0:CLK_IN"
"0SC_160MHz_0:RCOSC_160MHZ CLK DIV" }

sd_connect _pins -sd_name ${sd_name} -pin names {"NGMUX 0:SEL"

"PCIe INIT MONITOR 0:PCIE INIT DONE" }

sd _connect pins -sd name ${sd name} -pin names {"NGMUX 0:CLK OUT" "TL CLK" }
Re-enable auto promotion of pins of type 'pad'

auto promote pad pins -promote all 1

Save the smartDesign save smartde51gn -sd name ${sd name}

Generate SmartDesign PCIe TL CLK

generate component -component name ${sd name}

© 2021 Microchip Technology Inc. User Guide

DS00003754B-page 29

Libero® SoC v2021.1
Creating and Verifying Designs

The following is an example of an exported Tcl script for a System Builder Core (PF_DDR3_SS).

Exporting core PF_DDR3_SS to TCL

Create design TCL command for core PF DDR3 SS

create_and configure core -core vlnv {Actel:SystemBuilder:PF DDR3:2.3.120} - component name
{PF_DDR3 SS} -params {\

"ADDRESS MIRROR:false" \

"ADDRESS ORDERING:CHIP ROW BANK COL" \

"AUTO_SELF REFRESH:1" \

"AXI ID WIDTH:6" \

"AXI WIDTH:64" \

"BANKSTATMODULES: 4" \

"BANK ADDR WIDTH:3" \

"BURST LENGTH:0" \

"CAS_ADDITIVE LATENCY:0" \

"CAS LATENCY:9" \

"CAS WRITE LATENCY:7" \

"CCC_PLL_CLOCK_MULTIPLIER:6" \

"CLOCK DDR:666.666" \

"CLOCK PLL REFERENCE:111.111" \

"CLOCK_RATE:4" \

"CLOCK USER:166.6665" \

"COL ADDR WIDTH:11" \

"DLL_ENABLE:1" \

"DM MODE:DM" \

"DQ DQS GROUP SIZE:8" \

"ENABLE_ECC:0" \

"ENABLE INIT INTERFACE:false" \

"ENABLE LOOKAHEAD PRECHARGE ACTIVATE:false" \

"ENABLE PAR ALERT:false" \

"ENABLE REINIT:false" \

"ENABLE TAG_IF:false" \

"ENABLE_USER_ZQCALIB:false" \

"EXPOSE TRAINING DEBUG IF:false" \

"FABRIC INTERFACE:AXI4" \
"FAMILY:26" \
"MEMCTRLR INST NO:1" \
"MEMORY FORMAT :COMPONENT" \
"MINIMUM READ IDLE:1" \

"ODT ENABLE RD RNKO ODTO:false"
"ODT_ENABLE RD RNKO ODTl:false"
"ODT_ENABLE_RD RNK1 ODTO:false"
"ODT ENABLE RD RNK1 ODT1l:false"
"ODT_ENABLE WR RNKO ODTO:true" \
"ODT_ENABLE_WR_RNKO_ ODT1:false" \
"ODT ENABLE WR RNK1 ODTO:false" \
"ODT_ENABLE WR RNK1 ODT1:true" \
"ODT_RD_OFF_SHIFT:0" \

"ODT RD ON SHIFT:0" \

"ODT WR_OFF SHIFT:0" \
"ODT_WR_ON_SHIFT:0" \

"OUTPUT DRIVE STRENGTH:RZQ6" \
"PARAM IS _FALSE:false" \

"PARTIAL ARRAY SELF_REFRESH:FULL" \
"PHYONLY: false” \

"PIPELINE: false" \

"QOFF:0" \

"QUEUE DEPTH:3" \

"RDIMM LAT:0" \
"READ_BURST_TYPE:SEQUENTIAL" \
"ROW_ADDR WIDTH:16" \

"RTT NOM:DISABLED" \

"RTT_WR:OFF" \

"SDRAM NB RANKS:1" \
"SDRAM NUM CLK OUTS:1" \

"SDRAM TYPE:DDR3" \

"SELF REFRESH TEMPERATURE:NORMAL" \
"SHIELD ENABLED:true" \
"SIMULATION MODE:FAST" \

"TDQS ENABLE:DISABLE" \

"TGIGEN ADD PRESET WIDGET:true" \
"TIMING DH:150" \

"TIMING DQSCK:400" \

"TIMING DQSQ:200" \
"TIMING_DQSS:0.25" \

"TIMING DS:75" \

—

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 30

Libero® SoC v2021.1
Creating and Verifying Designs

"TIMING DSH:0.2" \
"TIMING DSS:0.2" \
"TIMING_FAW:30" \
"TIMING IH:275" \
"TIMING INIT:200" \
"TIMING_IS:200" \
"TIMING MODE:0" \
"TIMING MRD:4" \
"TIMING_QH:0.38" \
"TIMING QSH:0.38" \
"TIMING RAS:36" \
"TIMING_RC:49.5" \
"TIMING RCD:13.5" \
"TIMING REFI:7.8" \
"TIMING_RFC:350"
"TIMING RP:13.5"
"TIMING RRD:7.5"
"TIMING_RTP:7.5"
"TIMING WR:15" \
"TIMING WTR:5" \
"TURNAROUND RTR DIFFRANK:1"
"TURNAROUND RTW DIFFRANK:1"
"TURNAROUND WTR DIFFRANK:1"
"TURNAROUND WTW_DIFFRANK:0"
"USER_POWER DOWN:false" \
"USER SELF REFRESH:false" \
"WIDTH:16" \

"WRITE LEVELING:ENABLE" \
"WRITE RECOVERY:5" \

"ZQ CALIB_PERIOD:200" \

"ZQ CALIB_TYPE:0" \

"ZQ CALIB TYPE TEMP:0" \
"ZQ CAL_INIT_TIME:512" \
"ZQ CAL L TIME:256" \

"ZQ CAL S TIME:64" } -inhibit configurator 0
Exporting core PF_DDR3_SS to TCL done

—

—

The following is an example of an exported Tcl script for a HDL+ core.

Exporting core pattern gen checker to TCL

Exporting Create HDL core command for module pattern_gen_checker create_hdl core -file
{X:/10_docs_review/12.0 Release/pcie_demo_tcl_example/DG0756_PF PCIe EP/new/project/hdl/
PATTERN GEN CHECKER.v} -module {pattern gen checker} -library {work} -package {}

Exporting BIF information of HDL core command for module pattern gen checker

The following is an example of an exported Tcl script for a SgCore (PF_TX_PLL).

Exporting core PCIe TX PLL to TCL

Exporting Create design command for core PCIe TX PLL
create_and_configure core -core_vlnv {Actel:SgCore:PF TX PLL:1.0.115} -component name
{PCIe TX PLL} -params {\

"CORE:PF_TX_ PLL" \

"FAMILY:26" \

"INIT:0x0" \

"PARAM IS_FALSE:false" \
"SD_EXPORT HIDDEN PORTS:false" \

"TxPLL AUX LOW SEL:true" \

"TxPLL_AUX OUT:125" \

"TxPLL CLK 125 EN:true" \

"TxPLL DYNAMIC RECONFIG INTERFACE EN:false" \
"TxPLL_EXT WAVE_ SEL:0" \

"TxPLL FAB LOCK EN:false" \
"TxPLL FAB REF:200" \

"TxPLL_JITTER MODE_SEL:10G SyncE 32Bit" \
"TxXPLL MODE:NORMAL" \

"TxPLL OUT:2500.000" \

"TxPLL_REF:100" \

"TxXPLL SOURCE:DEDICATED" \
"TxXPLL SSM DEPTH:0" \

"TxPLL_SSM DIVVAL:1" \

"TxPLL SSM DOWN_ SPREAD:false" \
"TxPLL SSM FREQ:64" \
"TxPLL_SSM_RAND_PATTERN:0" \
"VCOFREQUENCY:1600" } -inhibit configurator 1
Exporting core PCIe TX PLL to TCL done

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 31

41.4

Libero® SoC v2021.1
Creating and Verifying Designs

Hierarchical Export Component Description (Tcl)

This option exports the complete design and its subcomponents to Tcl. When this option is executed on a
SmartDesign, it iterates through all the instances and collects information about the pins, groups, and nets in
the SmartDesign. All the TCL scripts generated are exported to a folder you select when the Hierarchical Export
Component Description (Tcl) option executes.

Figure 4-4. Export Script for Hierarchical Export Description (Tcl)

Elﬂi-::: t Script

>

; Script file: |C:ﬂ_lsersteskb:npftd J

' Help OK Cancel

This exported folder consists of the following files and subfolders:
Table 4-1. Subfolders in the Exported File

HDL Contains all of the imported HDL source files.

Stimulus Contains all of the imported HDL stimulus files.

Components Contains all of the Tcl files of the components used in the
SmartDesign.

Table 4-2. Files in the Exported File

Fso e]

hdl_source.tcl Contains the tcl for imported and linked files.
<component>_recursive.tcl Top-level tcl used to recreate the design.
Un_Supported_Cores_List.txt Contains all the cores for which the export function

cannot be performed.

To run this option, right-click the desired component for which the information must be exported in Tcl in the Design/
Stimulus Hierarchy, and then choose Hierarchical Export Component Description (Tcl).

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 32

Libero® SoC v2021.1
Creating and Verifying Designs

Figure 4-5. Hierarchical Export Component Description (Tcl) Option

. = TVS_Demo reg

Build Hierarchy | @ show: [components ~| B B ? + - Componel

-I- Synthesize

= il work bV
=8 S0 TVS_Demo

Design Flaw

og

. [%] Messages 'E:i' Errors

Core_UART (COREUART _v5.6.1

INIT_MONITOR (PF_INIT_MONI % Generate Component

PF_RESET (CORERESET_PF_v2.1

TVS_IP (PF_TVS_v1.0.106)

Bl TVS_to_UART (TVS_to_UARTWY)
FIFO (COREFIFO_v2.7.105)

clock gen (PF_CCC_v1.0.115)

+-] User HDL Source Files
+-] Components

Design Hierarchy | Stimulus Hierarchy]_

i B

1. Warnings

Open Component

Export Component Description(Tcl}
Hierarchical Export Component Description(Tcl)

Rename Component...

Open HDL File
Check HDL File

Create 1/O Constraint from Module

Create Testbench C
Delete

Copy File Path

Show Module Parameters

Export Parameter Report

Properties

Show Module

Figure 4-6. Hierarchical Export Component Description (Tcl) Option After Right-clicking a Component

—_

#* Q
[}
1
Ef
= F
C
f
r

v

« 4 > ThisPC > Desktop * tcl *> TVS_Demo v O 2 SearchTV..
Name Date modified Type Size
components 1/16/2020 2:47 AM File folder
hdl 7/16/2020 2:47 AM File folder
stimulus 7/16/2020 247 AM File folder
L hdl_source 7/16/2020 2:47 AM TCL File 1KB
L TVS_Demo_recursive 7/16/2020 2:47 AM TCL File 1KB

The following figure shows an example of files that have been generated in the Exported folder.

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 33

41.5

Libero® SoC v2021.1
Creating and Verifying Designs

Figure 4-7. Files and Subfolders Generated in the Exported Folder

3 5 =} TVS_Demo re
Build Hierarchy | @, show: |Componeni§ j O ? B Compone'r
-I- Synthesize
= @i work b TV
=8 SD TVS Demo
Core_UART (COREUART v5.6.1(OPen Component

INIT_MONITOR (PF_INIT_MONI E Generate Component
PF_RESET (CORERESET_PF_v2.1
TVS_IP (PF_TVS_v1.0.106) i i e
= B TVS_to_UART (TVS_to_UART.Y) Hierarchical Export Component Description(Tcl)
FIFO (COREFIFO_v2.7.105)
clock_gen (PF_CCC_v1.0.115)
- [] User HDL Source Files Open HDL File
%-[1 Components Check HDL File

Export Component Description(Tcl)

Rename Component...

Create |/O Constraint from Module
Create Testbench [
Delete

Copy File Path

Show Module Parameters

Design Flow Design Hierarchy Stimulus Hierarchy L E)(por‘t Parameter Repor‘t
og Properties
E] Messages &3 Errors 4 Warnings i} Info Show Module

Limitations
Hierarchical Export Component Description (Tcl) support is not available for blocks.

Messages
The following table lists the messages that the tool generates in the log window.

Table 4-3. Tool-generated Messages

Error: Please check the permission of the specified The folder you specified is not writable.
folder.

Error: Unable to Export Component ‘top’ to path The export operation was not successful.
Info: Component ‘top’ exported successfully to path The export operation was successful.

Generating a SmartDesign Component

Before your SmartDesign component can be used by downstream processes, such as synthesis and simulation, you
must generate it.

20
Click the Generate () button to generate a SmartDesign component. An HDL file is generated in the directory
<libero project>/components/<library>/<yourdesign>.

Note: The generated HDL file will be deleted when your SmartDesign design is modified and saved to ensure
synchronization between your SmartDesign component and its generated HDL file.

Generating a SmartDesign component may fail if there are any design rule checking (DRC) errors. DRC errors must
be corrected before you generate your SmartDesign design.

If the ports of a sub-design change, the parent SmartDesign component is annotated with the icon 9 in the Design
Hierarchy tab of the Design Explorer.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 34

4.2

421

Libero® SoC v2021.1
Creating and Verifying Designs

Generate Recursively vs. Non-Recursively
You can generate a SmartDesign component recursively or nonrecursively. These options are set in the Project
Preference Dialog Box - Design Flow Preferences section.

Table 4-4. Design Flow Preferences Options

N =

Recursive generation Clicking the Generate button generates all sub-design
SmartDesigns, depth first. The parent SmartDesign
is generated only if all the sub-designs generate
successfully.

Non-Recursive generation Clicking the Generate button generates the specified
SmartDesign only. The generation can be marked as
successful even if a sub-design is “ungenerated” (either
never attempted or unsuccessful). An ungenerated

component is annotated with the icon 6 in the Design
Hierarchy tab of the Design Explorer.

Create Core from HDL

You can instantiate any HDL module and connect it to other blocks inside SmartDesign. However, there are situations
where you may want to extend your HDL module with more information before using it inside SmartDesign.

» If you have an HDL module that contains configurable parameters or generics.

« If your HDL module is intended to connect to a processor subsystem and has implemented the appropriate bus
protocol, then you can add a bus interface to your HDL module so that it can easily connect to the bus inside of
SmartDesign.

Creating a Core from Your HDL
To create a core from your HDL:

1. Import or create a new HDL source file; the HDL file appears in the Design Hierarchy.

2. Select the HDL file in the Design Hierarchy and click the HDL+ icon.
OR

Right-click the HDL file and choose Create Core from HDL.

The Edit Core Definition — Ports and Parameters dialog box shows the ports and parameters that were
extracted from your HDL module.

3. Remove parameters that are not intended to be configurable by selecting them from the list and clicking the
X icon. Remove parameters that are used for internal variables, such as state machine enumerations. If you
removed a parameter by accident, click Re-extract ports and parameters from HDL file to reset the list so it
matches your HDL module.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 35

Libero® SoC v2021.1
Creating and Verifying Designs

Figure 4-8. Edit Core Definition - Ports and Parameters Dialog Box

Bl Edit Core Definition - Ports and Parameters

HOL: CiiDocuments and SetkingsiFarleyciDeskkoplfarlevc_Actelprijsoc_10spl_cc_hdbhdliMwaPE_Adder v

Module: MyvaPE_Adder

Extracted Ports Extracted Parameters EI
FCLE i | WIDTH
FRESETH SIZE
PADDR[4:0] APE_SIZE
P2EL FIFO_EMAEBLE
FEMABLE COUNTER _ENABLE
PWRITE

PROATA[7:0]
PWDATA[7:0]
PREADY
PSLYERR
IN_A[15:0]
IN_B[15:0]
RESULT[15:0]
OWERFLOY

Re-extract ports and parameters Fram HOL |

Help | Add/Edit bus interfaces. .. I (a]4 Zancel |

4. (Optional) To add bus interfaces to your core, click Add/Edit Bus Interfaces.

5. After you specify the information, your HDL turns into an HDL+ icon in the Design Hierarchy. Click and drag
your HDL+ module from the Design Hierarchy to the Canvas.

6. If you added bus interfaces to your HDL+ core, it appears in your SmartDesign, with a bus interface pin you
can used to connect to the appropriate bus IP core.

7. If your HDL+ has configurable parameters, double-clicking the object on the Canvas (or right-clicking and
choosing Configure) displays a configuration dialog box that allows you to set these values. On generation,
the specific configuration values per instance are written to the SmartDesign netlist.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 36

4.2.2

423

43

431

Libero® SoC v2021.1
Creating and Verifying Designs

Figure 4-9. HDL+ Instance and Configuration Dialog Box

Fii | Configurator E=ni= |iF-J

prep9_0

Configurator

User:Private:prep9:1.0

b
=
=)

Configuration |

%J‘-‘-UJGEJFH"HG:II
POV ITT-

N
2

WIDTH: 1é&

8. To open the HDL file inside the text editor, right-click the instance and choose Modify HDL.

Editing Core Definitions

After you create a core definition, you can edit it by selecting your HDL+ module in the Design Hierarchy and clicking
the HDL+ icon.

Removing Core Definitions
If you do not want the extended information on your HDL module, you can revert it to a regular HDL module.
1. Right-click the HDL+ in the Design Hierarchy and choose Remove Core Definition.

2. After removing your definition, update the instances in your SmartDesign that referenced the core you
removed by right-clicking the instance and choosing Replace Component for Instance.

Designing with HDL

This section describes how to use HDL to implement designs using the HDL Editor.

Create HDL

Create HDL opens the HDL editor with a new VHDL or Verilog file. Your new HDL file is saved to your /hd1 directory
and all modules created in the file appear in the Design Hierarchy.

You can use VHDL and Verilog to implement your design.
To create an HDL file:

1. In the Design Flow window, double-click Create HDL. The Create new HDL file dialog box opens.

2. Select your HDL Type. Choose whether to Initialize file with standard template to populate your file with
default headers and footers. The HDL Editor workspace opens.

3. Enter a name. Do not enter a file extension because Libero SoC adds one for you. The filename must follow
Verilog or VHDL file naming conventions.

4. Click OK.
5. After creating your HDL file, click the Save button to save your file to the project.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 37

4.3.2

43.3

43.4

4.3.5

4.3.6

4.3.7

Libero® SoC v2021.1
Creating and Verifying Designs

Using the HDL Editor
The HDL Editor is a text editor for editing HDL source files. In addition to regular editing features, the editor provides
keyword highlighting, line numbering, and a syntax checker.
You can have multiple files open at one time in the HDL Editor workspace. Click the tabs to move between files.
To start the editor:
1. Right-click inside the HDL Editor to show the Edit menu items. Available editing functions include the
following. These functions are also available in the toolbar.
» Cut, copy, and paste
*+ Gotoline
* Comment and Uncomment Selection
* Check HDL File
» Word Wrap mode (disabled by default)

* Font size changes. To increase or decrease the font size of text in the editor, right-click in the editor and
choose Increase Font or Decrease Font.

2. Save your file to add it to your Libero SoC project by selecting Save from the File menu.
OR

Clicking the Save icon in the toolbar.
3. To print your project, select Print from the File menu or the toolbar.

Note: To avoid conflicts between changes made in your HDL files, use one editor for all of your HDL edits.

HDL Syntax Checker
The HDL syntax checker parses through HDL files to identify typographical mistakes and syntactical errors.

To run the syntax checker:

1. From the Files list, double-click the HDL file to open it.

2. Right-click in the body of the HDL editor and choose Check HDL File. The syntax checker parses the selected
HDL file and looks for typographical mistakes and syntactical errors. Warning and error messages for the HDL
file appear in the Libero SoC Log window.

Commenting Text
You can comment text as you type in the HDL Editor, or you can comment out blocks of text by selecting a group of
text and applying the Comment command.

To comment or uncomment out text:

1. Type your text.
2. Select the text.
3. Right-click inside the editor and choose Comment Selection or Uncomment Selection.

Find
You can search for a whole or partial word, with or without matching the case.

To find an entire or partial word:

1. From the File menu, choose Find. The Find dialog box appears below the Log/Message window.
2. Enter the text you want to find.
3. Use the options to match case, whole word, and/or regular expression.

Note: The editor also supports a Find to Replace function.

Editing Columns
To select a column of text to edit, select the column, and then press ALT+click.

Importing HDL Source Files
To import an HDL source file:

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 38

4.3.8

44

4.5

Libero® SoC v2021.1
Creating and Verifying Designs

1. In the Design Flow window, right-click Create HDL and choose Import Files. The Import Files window
appears.
2. Go to the location where the HDL file is located.

3. Select the file to import and click Open.
Note: You can import SystemVerilog (* . sv), Verilog (*.v), and VHDL (* . vhd/*.vhd1l) files.

Mixed HDL Support in Libero SoC

To use mixed HDL in the Libero SoC, you require:
* ModelSim ME Pro
» SynplifyPro to synthesize a mixed HDL design

When you create a project, you select a preferred language. The HDL files generated in the flow are created in the
preferred language. If your preferred language is Verilog, the post-synthesis and post-layout netlists are in Verilog
2001.

The language used for simulation is the same language as the last compiled test bench. For example, if tb_top is in
Verilog, <fam>.v is compiled.

Designing with Block Flow

For information about designing with Block Flow, see Designing with Blocks for Libero SoC Enhanced Constraint
Flow.

Viewing Configured Components and SmartDesigns in a Project
Libero SoC supports the Components view that lists all the configured components and SmartDesigns in a project.

To open the view, click View > Windows > Components. Follow the same procedure to close the Components view.

Figure 4-10. Opening the Components View
Project File Edit | Wiew Design Tools Help

|_1 P ﬂ' :] WWindouvs v Catalog

Start Page v Components

Design Flow

-~ u

When you open the Components view, it appears as a tab in the left-side area of the Libero SoC and lists all
configured components and SmartDesigns in the project. If you open the Components view when a project is not
open, the tab is displayed as blank.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 39

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_block_flow_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_block_flow_ug.pdf

Libero® SoC v2021.1
Creating and Verifying Designs

Figure 4-11. Example of the Components View

Components

Components

ART_IMTERFACE

Design Flow I Desian Hierarchy I Shimulus Hierarchy

Core Mame | Version |Date generated
CDZ_FIFO COREFIFG 28101 03-08-2021 20:26:26
COREUART_O COREUART 5.7.100 03-08-2021 20:34:05
IMNIT _cormponent PE_IMIT_MOMNITOR 20,203 03-05-2021 02:26:02
PF_CCC_01 PF_CCC 2.2.100 03-08-2021 20:25:24
PF_CLE_DIY <0 PF_CLE_DIY 1.0,103 03-05-2021 02:26:34
PF_OSC_0 PF_05C 1.0.102 03-05-2021 02:26:44
PF_T«_PLL_D PF_Tx_PLL 20,300 03-05-2021 02:27:28
PF_=CVR_O PF_=CVR_ERM 3.1.100 03-05-2021 02:27:47
PF_=CVR_REF_CLE_O PF_XCWR_REF_CLE 1.0.103 03-05-2021 02:27:58
Reset_Block 03-08-2021 20:24:56
Resel_swnc_rx CORERESET_PF 2.2.107 03-08-2021 20:24:08
Resel_sync_tx CORERESET_PF 2.2.107 03-08-2021 20:24:27
Resel_sync_uart CORERESET_PF 2.2.107 03-08-2021 20:24:42
kop 03-08-2021 20:26:49

03-05-2021 02:28:59

Components I Zatalog I Files I

Right-clicking a component in the Components view tab displays a menu that is similar to the one that appears when
you right-click entries in the Components section of the Design Hierarchy.

© 2021 Microchip Technology Inc. User Guide

DS00003754B-page 40

Libero® SoC v2021.1
Creating and Verifying Designs

Figure 4-12. Right-Click Menu in Components View

Components
Components

Marne Core Name | Version |Date generated
-- D _FIFO COREFIFO 2.8.101 03-08-2021 20:26:26
COREUART_O COREUART 5.6.102 03-05-2021 02:25:49
| IMIT_component _PF_INIT_MOMITOR 2 I:I 203 03-05-2021 02:26:02
‘PE CCC 01 : R 021 20:25:2
PF_CLK_DIV 0 Open Component 021 02:26:34
PF_QSC_ 10 @ Generate Component 021 0212644
PF_TX_PLLO Export Component Description (Tcly p021 02:27:28
-- PF_XCYR_0O 021 02:27:47
- PF_XCWR_REF_C Replace Cormponent Yersion, .. 021 0212758
RESEt_ElCICk Rename Cgmpgnent. = 021 2002456
Reset_sync_rx 021 20:24:08
Reset_sync_tx Delete 021 20524127
Reset_sync_uart : 021 20524142
tap Copy File Path 021 20:26:49
LART_IMTERFAL Properties 021 02:23:59

HDL source files present at various levels in <project>/Component/work/<core name>/ appear under HDL
Source Files.

Figure 4-13. Example of HDL Source Files

Components
Marne: Care Mame Yersiol
E| . APES CorefPB3 4.2.10

- Stlmulus files For all Simulation tools
- companentfackelDireckCore/CoredPE3/ 4. 2, 100 mbif scriptsfwave_user.do
- componentfactel/DirectCorefCoreAPB34. 2, 100/ mtifscripts/bfmbovec_compile, bl
- componentiactel/DirectCorefCoredPES 4, 2, 100/ mtijscripts/bfmbovec, exe
- component fackelDireckCore/Core&PB3)4. 2, 100 mtifscripts/bfmbovec. lin
- camponentfactel/DirectCoref CoreAPBS4, 2, 100 mti/scripts/coreapbl_userth_master.bfm
=8 HDL source files For all Synthesis and Simulation bools
- camponentfactel/DirectCore CoreAPES4. 2, 100 vt viogfcorefcoreapb3. v
-+ componentfactel/DireckCorefCoreAPBES 4. 2, 100/ rtl fvlog/corefcoreapb3_muxptob3. v
- campanentfackelDirectCore Core&PESI4, 2, 100 vt viogfcorefcoreapb3_iaddr_reg.w
- componentiwork/APE3APES . v
[= Stirnulus Files For the current Sirnulation tool
i companentfackeliDireckCore/Core APES 4. 2, 100/ coreparameter s, v
- component/Ackel/DirectCore CoredPE3/4. 2, 100/t vlag)armba_bfrafbFm_rnain.
i componentacteliDireckCore/CoreAPE3 4, 2, 100)rH vlogfamba_bfm/bfm_ahbkoaph,s
i companentfActel/DireckCore/CareAPES 4. 2, 100/t vlog/amba_bfrmfbfm_apb.w
i componentfackeliDireckCore/Core APB3)4. 2, 100/ vt fvlogfamba_bfm/bfm_apbslaveext. v
& componentiacteliDirectCarefCore APE314, 2, 100/t vlogfamba_bfr/bfm_apbslawe.
- companentfacteliDireckCore/Core APE3 4. 2, 100/t vlog/test/user ftestbench. v
= . £14_Inkerconnect COREAXI4INTERCOMNECT 2.8.10
[Stimulus Files For all Simulation tools
HOL source files Faor all 9ynthesis and Simulation tools
[+ Stirmulus Files For the current Sirmulation tool
&[] ccc o PF_CoC 2.2.10
[[To] et o ST T YR FORFAYTTAAHRI 251N

The Vendor, Library, CoreName, and Version columns show the appropriate information.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 41

4.6

4.7

4.71

4.7.2

4.7.3

Libero® SoC v2021.1
Creating and Verifying Designs

The timestamp shown for Generation appears in the Date Generated column and gets updated when the
component gets regenerated.

Create a New SmartDesign Testbench

The SmartDesign Testbench component can be the top level of the design or, following a successful generation, it
can be used as a lower level SmartDesign Testbench component in another design.

1. From the File menu, choose New > SmartDesign Testbench.
OR

In the Design Flow window, double-click Create SmartDesign Testbench.

The Create New SmartDesign Testbench dialog box appears.
Figure 4-14. Create New SmartDesign Testbench

Name:

l

[V Setas Active Stimulus

Help | 0, Cancel

2. Enteraname.
Note: The component name must be unique in your project.

3. To make this SmartDesign Testbench your active stimulus, check Set as Active Stimulus.
4. Click OK. The component appears in the Stimulus Hierarchy tab of the Design Explorer.

For more information, see the SmartDesign User Guide.

HDL Testbench
To create an HDL testbench, right-click a SmartDesign in the Design Hierarchy and choose Create Testbench >
HDL. The HDL testbench instantiates the selected SmartDesign into the component automatically.

To create a new testbench file, double-click Create HDL Testbench to display the Create New HDL Testbench dialog
box. This dialog box allows you to create a new testbench file, with the option to include standard testbench content
and your design data.

HDL Type
Set HDL Type to Verilog or VHDL for the testbench.

Name
Specify a testbench file name. A *.v or a *.vhd file is created and opened in the HDL Editor.

Clock Period (ns)

Enter a clock period in nanoseconds (ns) for the clock to drive the simulation. The default value is 100 ns (10 MHz).
Libero creates in the testbench a SYSCLK signal with the specified frequency to drive the simulation.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 42

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartdesign_ug.pdf

Libero® SoC v2021.1
Creating and Verifying Designs

Table 4-5. Clock Period Options

e]

Set as Active Stimulus

Initialize with Standard Template

Instantiate Root Design

Sets the HDL Testbench as the stimulus file to use
for simulations. The active stimulus file/testbench is
included in the run. do file that Libero generates to
drive the simulation. Setting one testbench as the
Active Stimulus is necessary when there are multiple
testbenches in the stimulus hierarchy.

Adds boilerplate for a minimal standard test module. This
test module does not include an instantiation of the root
module under test.

Creates a test module that includes an instance of the
root module under test, and clocking logic in the test
module that drives the base clock of the root module
under test.

Figure 4-15. Create New HDL Testbench File Dialog Box

HDL Type

® Verilog
Name:

Clock Period (ns) :

« Initialize file with standard template
| Instantiate Root Design

¥ Set as Active Stimulus

Create New HDL Testbench File

VHDL

.ann::el. V-)”“

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 43

4.8

49

Libero® SoC v2021.1
Creating and Verifying Designs

Figure 4-16. HDL Testbench Example - VHDL, Standard Template, and Root Design Enabled

_L | i e o T o b e g e e
- Created by Microsemi SmartDesign Mon Mar 27 15:087:29 2817
3 -- Testbench Template
4 This is a basic testbench that instantiates your design with basic
5 clock and reset pins connected. IT your design has special
[} clock/reset or testbench driver requirements then you should
f | -- copy this fTile and modify it.
B | —------- e e e e —
g L
10 8-- = -
11 Company: <Name>
12
13 File l"LI“ﬂ'I _th.vhd
14 | -- File history
a5 | -- <Rev c._mn number>: <Date>: <Comments>
ah | -- <Revision number>: <Date>: <Comments>
17 - <Revision number>: <Date>: <Comments>
18
19 Description:
20
21 | -- <Description here=>
22 | --
23 | -- Targeted device: <Family::PolarFire> <Die::MPF200TS_ES> <Package: :Fully Bonded Package>
24 Author: <=Name>
25
RN | === =cccccscacanan s e e e
27
28 -
289 library ieee;
30 wuse ieee,std logic_1164.all;
31
32 Hlentity counter_tb is
33 Tend counter_tb;
34
35 Harchitecture behavioral of counter_tb is
36
37 constant SYSCLK_PERIOD : time := 100 ns; 10MHZ
38
39 signal SYSCLK : std_logic = '@';
4@ signal NSYSRESET : std_legic := '@';
41
42 component countlB
Import MSS

If you use a device from the PolarFire SoC family, a new tool Import MSS is added under Create Design in the
design flow process. When you run this tool, an Import MSS Component dialog box allows you to select the MSS
Component (* . cxz) files. After the selected * . cxz module file is imported, it appears in the Design Hierarchy
window preceded by a new icon, as shown in the following figure.

Figure 4-17. MSS Component File in Design Hierarchy Window

il work

] Components

Verify Pre-Synthesized Design - RTL Simulation
To perform pre-synthesis simulation, either:

» Double-click Simulate under Verify Pre-Synthesized Design in the Design Flow window.
OR

» In the Stimulus Hierarchy, right-click the testbench and choose Simulate Pre-Synth Design > Run
The default tool for RTL simulation in Libero SoC PolarFire is ModelSim™ ME Pro.

ModelSim ME Pro is a custom edition of ModelSim PE that is integrated into Libero SoC's design environment.
ModelSim for Microchip is an OEM edition of Mentor Graphics ModelSim tools. ModelSim ME Pro supports mixed
VHDL, Verilog, and SystemVerilog simulation. It works only with Microchip simulation libraries and is supported by
Microchip.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 44

Libero® SoC v2021.1
Creating and Verifying Designs

Libero SoC supports other editions of ModelSim. To use other ModelSim editions, do not install ModelSim ME from
the Libero SoC media.

Note: ModelSim for Microchip includes online help and documentation. After starting ModelSim, click the Help
menu to display the help.
For more information about simulations in Libero SoC, see the following topics:

» Simulation Options

» Selecting a Stimulus File for Simulation

» Selecting additional modules for simulation

» Performing Functional Simulation

4.9.1 Project Settings: Simulation - Options and Libraries

The Project Settings dialog box allows you to change how Libero SoC handles Do files in simulation and imports

your DO files. You can also set simulation run time, change the DUT name used in your simulation, and change your
library mapping.

To access the Project Settings dialog box:

1. From the Project menu, choose Project Settings.

2. Inthe left pane, click Simulation options or Simulation libraries to expand the options.
3. For Simulation options, click the option you want to edit:
— DO file

— Waveforms
— Vsim commands
— Timescale
4. For Simulation libraries, click the library whose path you want to change.
Figure 4-18. Project Settings: DO File

e

] Lie sutomatc 00 e

Semuission rumtme: .

stehg enndiient
i Testhendh modue rame! bestbench

4 Senulstion optees

0O file T el intmnce rame: ctops 0

Vervefcems

o Gererate VOO0 fie
Vi commands
Timezcale VED: fle rame:
+ Grnulstion Bbries
SmartFusiond User defined DO fle:

00 command perameters:

4.9.2 DO file
Table 4-6. DO File Options

opion e

Use automatic DO file Allows Project Manager to create a DO file automatically

that will allow you to simulate your design.

Simulation Run Time Specifies how long the simulation should run. If the value

is 0 or if the field is empty, the run command is omitted
from the run. do file.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 45

Libero® SoC v2021.1
Creating and Verifying Designs

........... continued
opton ______ Deserpton

Testbench module name Specifies the name of your testbench entity name.
Default is testbench, which is the value that
WaveFormer Pro uses.

Top Level instance name Default is <top_ 0>, the value that WaveFormer Pro
uses. Project Manager replaces <top> with the top-level
macro when you run simulation (presynth/postsynth/
postlayout).

Generate VCD file Clicking the check box generates a VCD file.

VCD file name Specifies the name of your generated VCD file. The
default is power . vcd. To change the name, click
power.ved and enter the new name.

User defined DO file Enter the DO file name or click the Browse button to go
to the file.

DO command parameters Text in this field is added to the DO command.

493 Waveforms
Table 4-7. Waveforms Options

N =

Include DO file Including a DO file allows you to customize the set of
signal waveforms displayed in ModelSim.

Display waveforms for You can display signal waveforms for the top-level
testbench or for the design under test.

« top-level testbench = Project Manager outputs
the line addwave/testbench/* in the DO file
run.do.

* DUT = Project Manager outputs the line add
wave/testbench/DUT/* in the run.do file.

Log all signals in the design Saves and logs all signals during simulation.

494 Vsim Commands
Table 4-8. Vsim Command Options

N

Resolution The default is 1ps. Some custom simulation resolutions might not work with
your simulation library. Consult your simulation help for information about
how to work with your simulation library and detect infinite zero-delay loops
caused by high resolution values.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 46

4.9.5

Libero® SoC v2021.1
Creating and Verifying Designs

........... continued
Opton ________ [Deseripton |
Additional options Text entered in this field is added to the vsim command.

« SRAM ECC Simulation = two options can be added to specify the
simulated error and correction probabilities of all ECC SRAMs in the
design:

— -gERROR_PROBABILITY=<value>, where 0 <= value <= 1
— -gCORRECTION PROBABILITY=<value>, where 0 <= value <=
1

* During Simulation, the SB_CORRECT and DB_DETECT flags on each
SRAM block are raised based on generated random numbers that fall
below the specified <value>s.

When you run the Post-Layout Simulation Tool, a run. do file is created,
which consists of information that must be sent to a simulator. To run a
simulation on a corner, select an SDF corner along with the type of delay
needed from one of the options in SDF timing delays section.

* SDF Corners:
— Slow Process, Low Voltage and High Temperature
— Slow Process, Low Voltage and Low Temperature
— Fast Process, High Voltage and Low Temperature
» SDF Timing Delays
— Minimum
— Typical
— Maximum
» Disable pulse filtering during SDF based simulations: This option
disables pulse filtering during SDF simulations.

» After you select the corner, appropriate files for simulation are written in
the run.do file, as shown in the following figure.

Figure 4-19. Files Written to the run.do File

vlog -sv-work postlayout “$(PROJECT DIR)/designer/sdl/sdl fast hv_ 1t ba.v”
vsim -L PolarFire -L postlayout -t lps -sdfmax

/sd1=$ (PROJECT DIR)/designer/sdl/sdl fast hv 1t ba.sdf +pulse int e/l
t+pulse int r/1 +transport _int delays postlayout.sdl

Timescale
Table 4-9. Timescale Options

e]

TimeUnit Time base for each unit. Enter a value and select s, ms,
us, ns, ps, or fs from the drop-down list. The default
setting is ns.

Precision Enter a value and select s, ms, us, ns, ps, or fs from the

drop-down list. The default setting isps.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 47

4.9.6

4.9.7

4.9.8

49.9

Libero® SoC v2021.1
Creating and Verifying Designs

Simulation Libraries
Table 4-10. Simulation Libraries Options

o =

Restore Defaults Sets the library path to default from your Libero SoC
installation.
Library path Allows you to change the mapping for your Verilog and

VHDL simulation libraries. Enter the pathname or click
the Browse button to go to your library directory.

Selecting a Stimulus File for Simulation

Before running simulation, associate a testbench. If you try to run simulation without an associated testbench, the
Libero SoC Project Manager prompts you to associate a testbench or open ModelSim without a testbench.

To associate a stimulus:

1. Run the simulation.
OR

In the Design Flow window, under Verify Pre-Synthesized Design, right-click Simulate and choose Organize
Input Files > Organize Stimulus Files.

The Organize Stimulus Files dialog box appears.

2. Associate your testbenches. In the Organize Stimulus Files dialog box, all the stimulus files in the current
project appear in Source Files in the Project list box. Files already associated with the block appear in the
Associated Source Files list box.

In most cases, you will have one testbench associated with your block. However, if you want simultaneous
association of multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files
to the Associated Source Files list.

— To add a testbench: Select the testbench you want to associate with the block in Source Files in the
Project list box and click Add to add it to the Associated Source Files list.

— To remove a testbench or change the files in the Associated Source Files list box: Select the files and
click Remove.

— To order testbenches: Use the up and down arrows to arrange the order in which you want the
testbenches compiled. The top level-entity should be at the bottom of the list.

3. When you are satisfied with the Associated Source Files list, click OK.

Selecting Additional Modules for Simulation
Libero SoC passes all the source files related to the top-level module to simulation.

If you need additional modules in simulation:

1. Right-click Simulate in the Design Flow window and choose Organize Input Files > Organize Source Files.
The Organize Files for Simulation dialog box appears.

2. From the Simulation Files in the Project list, select the HDL modules you want to add and click Add to add
them to the Associated Stimulus Files list.

Performing Functional Simulation
To perform functional simulation:

1. Create your testbench.

2. In the Design Flow window, select Implement Design > Verify Post-Synthesis Implementation.

3. Right-click Simulate and choose Organize Input Files > Organize Simulation Files from the right-click
menu. In the Organize Files for Source dialog box, all the stimulus files in the current project appear under
Source Files in the Project list box. Files associated with the block appear in the Associated Source Files
list box.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 48

Libero® SoC v2021.1
Creating and Verifying Designs

4. In most cases, you will have one testbench associated with your block. However, if you want simultaneous
association of multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files
to the Associated Source Files list.

— To add a testbench: In the Source Files of the Project list box, select the testbench you want to
associate with the block. Click Add to add it to the Associated Source Files list.

— To remove a testbench or change the files in the Associated Source Files list box: Select the files and
click Remove.

5. When you are satisfied with the Associated Simulation Files list, click OK.

6. To start ModelSim ME Pro, right-click Simulate in the Design Hierarchy window and choose Open
Interactively. ModelSim starts and compiles the appropriate source files. When the compilation completes,
the simulator runs for 1, microsecond and the Wave window shows the simulation results.

7. Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom buttons
to zoom in and out as necessary.

8. When finished, select Quit from the File menu.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 49

Libero® SoC v2021.1

Libero SoC Constraint Management

5. Libero SoC Constraint Management

In the FPGA design world, constraint files are as important as design source files. Constraint files are used
throughout the FPGA design process to guide FPGA tools to achieve the timing and power requirements of

the design. For the synthesis step, SDC timing constraints set the performance goals whereas non-timing FDC
constraints guide the synthesis tool for optimization. For the Place-and-Route step, SDC timing constraints guide
the tool to achieve the timing requirements whereas Physical Design Constraints (PDC) guide the tool for
optimized placement and routing (Floorplanning). For Static Timing Analysis, SDC timing constraints set the timing
requirements and design-specific timing exceptions for static timing analysis.

Libero SoC provides the Constraint Manager as the cockpit to manage your design constraint needs. This is a single
centralized graphical interface for you to create, import, link, check, delete, and edit design constraints and associate
the constraint files to design tools in the Libero SoC environment. The Constraint Manager allows you to manage
constraints for SynplifyPro synthesis, Libero SoC Place-and- Route and the SmartTime Timing Analysis throughout
the design process.

5.1 Invocation of Constraint Manager from the Design Flow Window
After project creation, double-click Manage Constraints in the Design Flow window to open the Constraint Manager.

Figure 5-1. Constraint Manager

| Reports & X | my_usersdc & X | Constraint Manager & X | mddr_top_sb_CCC_0_FCCC.sdc & X | =
1/0 Attributes \/ Timing \/ Floor Planner \/” Netiist Attributes \1> b_ Constraints Tab
~
[MNew] [Import] [Link:] [Editwiih Constraint Editor v] [Check v] [Derive Cnnsh'aims] [ConstraintCnverage v] [Help](f '
N—
ynthesis ace and Route iming Verification
y Synthesi Place and R Timing Verifi
constraint\ top_derived_constraints.sdc
constraint\my.sdc | [[
Qnstraint\my_user.sdc]]]

Constraints
File Ordear
File and Tool Association

5.2 Libero SoC Design Flow

The Constraint Manager is Libero SoC'’s single centralized Graphical User Interface for managing constraints files in
the design flow.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 50

Libero® SoC v2021.1

Libero SoC Constraint Management

Figure 5-2. Constraint Manager in Libero SoC Design Flow

Create Testhench

[. i Create Design
'l' Constraint
_ Manager
- Pre- Synthesis
SenartDedlgn . ;
Testberch Simulation Pre-Syn constraints
I' Derived Constraints 50
Implement
Device _,..-"fff ‘.J“r SDI:
Under Test - Metlist Attributes
I_________i [Synthesize |
.-.;.: Pt oyTineslE | Place & Route Constraints
s i Simulation Le|= = e s
' L | . Derived Constraints SOC
________Z | ke *‘—“—-____h Floor Planning PDC
i 5 L User 5DC
Dewvice ke ost- Layout k ___________ |J,-{:| POC
il el 2 "1 Simulation |
Verify Tima
L l | it Pl 4\ Timing Verification Constraints
g | | Derived Constraints 50
™ User SDC
-~ H"""\-\..__\
- Meets Timing o
~. Requirements
""\-\.__H. -
", /-/_‘,
l Yes
Configure Hardware |
Program Design
Ganerate FPGA Array Datal
Cofigure Options
Debug Design
SmartDebug
Identify Debug
Handaoff for Firmware Dev, |
Handoff for Debugging
Handoff for Production
Security Options
User Guide DS00003754B-page 51

© 2021 Microchip Technology Inc.

5.3

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

Libero® SoC v2021.1

Libero SoC Constraint Management

Introduction to Constraint Manager
The Constraint Manager manages these synthesis constraints and passes them to SynplifyPro:

» Synplify Netlist Constraint File (* . £dc)
» Compile Netlist Constraint File (* . ndc)
» SDC Timing Constraints (* . sdc)

» Derived Timing Constraints (* . sdc)

Synplify Netlist Constraints (*.fdc)

These are non-timing constraints that help SynplifyPro optimize the netlist. From the Constraint Manager Netlist

Attribute tab import (Netlist Attributes > Import) an existing FDC file or create a new FDC file in the Text Editor
(Netlist Attributes > New > Create New Synplify Netlist Constraint). After the FDC file is created or imported,
click the checkbox under synthesis to associate the FDC file with Synthesis.

Compile Netlist Constraints (*.ndc)

These are non-timing constraints that help Libero SoC optimize the netlist by combining 1/Os with registers. I/Os are
combined with a register to achieve better clock-to-out or input-to-clock timing. From the Constraint Manager Netlist
Attribute tab import (Netlist Attributes > Import) an existing NDC file or create a new NDC file in the Text Editor
(Netlist Attributes > New > Create New Compile Netlist Constraint). After the NDC file is created or imported,
click the checkbox under synthesis to associate the NDC file with Synthesis.

SDC Timing Constraints (*.sdc)

These are timing constraints to guide SynplifyPro to optimize the netlist to meet the timing requirements of the
design. From the Constraint Manager Timing tab, import (Timing > Import) or create in the Text Editor (Timing >
New) a new SDC file. After the SDC file is created or imported, click the checkbox under synthesis to associate the
SDC file with Synthesis.

After the synthesis step, you may click Edit with Constraint Editor > Edit Synthesis Constraints to edit existing
constraints or add new SDC constraints.

Derived Timing Constraints (*.sdc)

These are timing constraints Libero SoC generates for IP cores used in your design. These IP cores, available

in the Catalog, are family/device-dependent. Once they are configured, generated, and instantiated in the design,
the Constraint Manager can generate SDC timing constraints based on the configuration of the IP core and the
component SDC. From the Constraint Manager Timing tab, click Derive Constraints to generate the Derived Timing
Constraints (*.sdc). Click the *derived_constraints.sdc file to associate it with synthesis.

Place and Route Constraints
The Constraint Manager manages these constraints for the Place-and-Route step:

« 1/O PDC Constraints (*io.pdc)
* Floorplanning PDC Constraints (*fp.pdc)
» Timing SDC constraint file (*.sdc)

1/0 PDC Constraints

These are I/0O Physical Design Constraints in an *io.pdc file. From the Constraint Manager I/O Attribute tab, you may
import (I/O Attributes > Import) or create in the Text Editor (I/O Attributes > New) an *io.pdc file.

Click the checkbox under Place and Route to associate the file with Place and Route.

Floorplanning PDC Constraints

These are floorplanning Physical Design Constraints in a *fp.pdc file. From the Constraint Manager Floor Planner tab,
you may import (Floor Planner > Import) or create in the Text Editor (Floor Planner > New) a *fp.pdc file. Click the
checkbox under Place and Route to associate the file with Place and Route.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 52

5.3.8

5.3.9

5.3.10

5.3.11

Libero® SoC v2021.1

Libero SoC Constraint Management

Timing SDC Constraint File (*.sdc)

These are timing constraint SDC files for Timing-driven Place and Route. From the Constraint Manager Timing tab,
you can import (Timing > Import) or create in the Text Editor (Timing > New) a timing SDC file. Click the check box
under Place and Route to associate the SDC file with Place and Route. This file is passed to Timing-driven Place
and Route (Place and Route > Configure Options > Timing Driven).

Timing Verifications Constraints

The Constraint Manager manages the SDC timing constraints for Libero SoC’s SmartTime, which is a Timing
Verifications/Static Timing analysis tool. SDC timing constraints provide the timing requirements (e.g. create_clock
and create_generated_clock) and design-specific timing exceptions (e.g. set_false_path and set_multicycle_path) for
Timing Analysis.

From the Constraint Manager Timing tab, you may import (Timing > Import) or create in the Text Editor (Timing
New) a SDC timing file. Click the checkbox under Timing Verifications to associate the SDC timing constraints file
with Timing Verifications.

Note: You may have the same set of SDC Timing Constraints for Synthesis, Place and Route and Timing Verifications
to start with in the first iteration of the design process. However, very often and particularly when the design is not
meeting timing requirements you may find it useful in subsequent iterations to have different sets of Timing SDC files
associated with different tools. Take for example; you may want to change/modify the set of SDC timing constrains
for Synthesis or Place and Route to guide the tool to focus on a few critical paths. The set of SDC timing constraints
associated with Timing Verifications can remain unchanged.

The Constraint Manager lets you associate/dis-associate the constraint files with the different tools with a mouse
click.

Constraint Manager Components
The Constraint Manager has four tabs, each corresponding to a constraint type that Libero SoC supports:
« 1/O Attributes
* Timing
* Floor Planner
* Netlist Attribute

Clicking the tabs displays the constraint file of that type managed in the Libero SoC project.

Constraint File and Tool Association

Each constraint file can be associated or disassociated with a design tool by checking and unchecking the checkbox
corresponding to the tool and the constraint file. When associated with a tool, the constraint file is passed to the tool
for processing.

Figure 5-3. Constraint File and Tool Association

k 1/0 Attributes }/ Timing \/ Floor Planner \/ Netlist Attributes \

MNew Import Link Edit with Constraint Editor "V Check 'v Derive Constraints | Constraint Coverage rv Help + |+
Synthesis Place and Route Timing Verification
constraint/user.sdc v L4 v
constraint/mytiming2.sdc ol +
constraint/myuserl.sdc L v

Libero SoC’s Design Flow window displays the state the tool is in. A green check mark w indicates

successful completion. A warning icon indicates invalidation of the state because the input files for the tool
have changed since the last successful run. Association of a new constraint file with a tool or dis-association of an
existing constraint file with a tool invalidates the state of the tool with which the constraint file is associated.

All Constraint files except Netlist Attributes can be opened, read, and edited by the following Interactive Tools invoked
from the Constraint Manager directly:

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 53

5.3.12

5.3.13

Libero® SoC v2021.1

Libero SoC Constraint Management

» /O Editor
« Chip Planner
» Constraint Editor

Table 5-1. Constraint Types, File Extensions, Locations, and Tools

Constraint Type | Constraint File |Location Inside Project Associated with Interactive
Extension Design Tool Tool (for
Editing)
I/O Attributes PDC (*.pdc) <proj>\constraints\io*.pdc Place and Route 1/0O Editor
Floorplanning PDC (*.pdc) <proj>\constraints\fp*.pdc Place and Route Chip Planner
Timing SDC (*.sdc) <proj>\constraints*.sdc Synthesis, Place Constraint
and Route, Timing Editor
Verification
Netlist Attributes FDC (*.fdc) <proj>\constraints*.fdc Synthesis n/a
NDC (*.ndc) <proj>\constraints*.ndc Synthesis n/a

Derive Constraints in Timing Tab

The Constraint Manager can generate timing constraints for IP cores used in your design. These IP cores, available
in the Catalog, are family- and device-dependent. After they are configured, generated, and instantiated in your
design, the Constraint Manager can generate SDC timing constraints based on the configuration of the IP core and
the component SDC. A typical example of an IP core for which the Constraint Manager can generate SDC timing
constraints is the IP core for Clock Conditioning Circuitry (CCC).

Create New Constraints
From the Constraint Manager, create new constraints in one of two ways:

¢ Use the Text Editor
* Use Libero SoC'’s Interactive Tools

To create new constraints from the Constraint Manager using the Text Editor:
1. Select the Tab that corresponds to the type of constraint you want to create.
Click New.
When prompted, enter a file name to store the new constraint.
Enter the constraint in the Text Editor.
Click OK.
The Constraint file is saved and visible in the Constraint Manager in the tab you select:
— 1/O Attributes constraint file (<proj>\io*.pdc) in the 1/0O Attributes tab
— Floorplanning constraints (<proj>\fp*.pdc) in the Floor Planner tab
— Timing constraints (<proj>\constraints*.sdc) in the Timing tab

6. (Optional) Double-click the constraint file in the Constraint Manager to open and add more constraints to the
file.

ok~ wbd

Note: Netlist Attribute constraints cannot be created by an Interactive Tool. Netlist Attribute files can only be created
with a Text Editor.

Note: Except for timing constraints for Synthesis, the design needs to be in the post-synthesis state to enable
editing/creation of new constraints by the Interactive Tool.

Note: The *.pdc or *.sdc file the Constraint Manager creates is marked [Target]. This denotes that it is the target file.
A target file receives and stores new constraints from the Interactive Tool. When you have multiple constraint files of
the same type, you may select any one of them as target. When there are multiple constraint files but none of them is
set as target, or there are zero constraint files, Libero SoC creates a new file and sets it as target to receive and store
the new constraints created by the Interactive Tools.

To create new constraints from the Constraint Manager using Interactive Tools:

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 54

5.3.14

5.4

Libero® SoC v2021.1

Libero SoC Constraint Management

1. Select the Tab that corresponds to the type of constraint you want to create.
2. Click Edit to open the Interactive Tools. The Interactive Tool that Libero SoC opens varies with the constraint
type:
— |/O Editor to edit/create 1/0O Attribute Constraints. See 1/0 Editor User Guide for details.
— Chip Planner to edit/create Floorplanning constraints. See Chip Planner User Guide for details.
— Constraint Editor to edit/create Timing Constraints. See Timing Constraints Editor User Guide for details.
3. Create the Constraints in the Interactive Tool. Click Commit and Save.
4. Check that Libero SoC creates these files to store the new constraints:
— Constraints\io\user.pdc file when I/O constraints are added and saved in |/O Editor.
— Constraints\fp\user.pdc file when floorplanning constraints are added and saved in Chip Planner.
— Constraints\user.sdc file when Timing Constraints are added and saved in Constraint Editor.

Constraint File Order

When there are multiple constraint files of the same type associated with the same tool, use the Up and Down arrow
to arrange the order in which the constraint files pass to the associated tool. Constraint file order is important when
there is a dependency between constraints files. When a floorplanning PDC file assigns a macro to a region, the
region must first be created and defined. If the PDC command for region creation and macro assignment are in
different PDC files, the order of the two PDC files is critical.

1. To move a constraint file up, select the file and click the Up arrow.
2. To move a constraint file down, select the file and click the Down arrow.
Figure 5-4. Move constraint file Up or Down

[1/0 Attributes Y/ Timing \/ Floor Planner \/ Netlist Attributes \ |

| New Import Link Edit with Constraint Editor iv Check ‘v Derive Constraints | | Constraint Coverage %v Help + ¥
Synthesis Place and Route Timing Verification Move Up

constraint/top_derived_constraints.sdc L4 ud ¥
constraint/user.sdc v L4
constraint/mytiming.sdc L o
constraint/mytiming2.sdc v L4 L4
constraint/sdfsadf.sdc

Note: Changing the order of the constraint files associated with the same tool invalidates the state of that tool.

Import a Constraint File

Use the Constraint Manager to import a constraint file into the Libero SoC project. When a constraint file is imported,
a local copy of the constraint file is created in the Libero Project.

To import a constraint file:

Click the Tab corresponding to the type of constraint file you want to import.
Click Import.
Navigate to the location of the constraint file.

Select the constraint file and click Open. A copy of the file is created and appears in Constraint Manager in the
tab you have selected.

e

Link a Constraint File

Use the Constraint Manager to link a constraint file into the Libero SoC project. When a constraint file is linked, a file
link rather than a copy is created from the Libero project to a constraint file physically located and maintained outside
the Libero SoC project.

To link a constraint file:

Click the Tab corresponding to the type of constraint file you want to link.
Click Link.
Navigate to the location of the constraint file you want to link to.

Select the constraint file and click Open. A link of the file is created and appears in Constraint Manager under
the tab you have selected. The full path location of the file (outside the Libero SoC project) is displayed.

bl

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 55

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smarttime_ce_ug.pdf

Libero® SoC v2021.1

Libero SoC Constraint Management

5.41 Check a Constraint File
Use the Constraint Manager to check a constraint file.

To check a constraint file:

1. Select the tab for the constraint type to check.
2. Click Check.

Note: 1/O constraints, Floorplanning constraints, Timing constraints, and Netlist Attributes can be checked only
when the design is in the proper state. A pop-up message appears when the check is made and the design state is
not proper for checking.

All constraint files associated with the tool are checked. Files not associated with a tool are not checked.

1 Information lﬁ

For Timing Constraints, select from the one of the following from the Check drop-down menu:

0 Please run 'Synthesize' before executing Check Operation

» Check Synthesis Constraints

» Check Place and Route Constraints

» Check Timing Verification Constraints
Figure 5-5. Check Constraints

{10 Attributes /" Timing \/ Figor Planner \/” Netlist Attributes \
New Import | Link Edit with Constraint Editor i' Check :' Derive C,Dnstraint5; Constraint Coverage “’ | Help T+ +
Synthesis Place al Check Synthesis Constraints .
constraint/top_derived_constraints.sdc v v Check Place And Route Constraints
constraintfuser.sdc L Check Timing Verification Constraints
constraint/mytiming.sdc L w7
constraint/mytiming2.sdc b v s

constraint/sdfsadf.sdc

Check Synthesis Constraints checks only the constraint files associated with the Synthesis.
Check Place and Route Constraints checks only the constraint files associated with Place and Route.

Check Timing Verification Constraints checks only the Constraint Files associated with Timing Verification. For the
constraint files and tool association shown in the SDC file and Tool Association figure below:
» Check Synthesis Constraints checks the following files:
— top_derived_constraints.sdc
— user.sdc
— mytiming2.sdc

» Check Place and Route Constraints checks the following files:
— top_derived_constraints.sdc
— mytiming.sdc
— mytiming2.sdc

+ Check Timing Verification Constraints checks the following files:
— top_derived_constraints.sdc
— user.sdc
— mytiming.sdc
— mytiming2.sdc

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 56

5.4.2

Libero® SoC v2021.1

Libero SoC Constraint Management

Note: sdfsadf.sdc Constraint File is not checked because it is not associated with any tool.
Figure 5-6. Timing Constraints SDC File and Tool

["1/0 Attributes \/ Timing \[Floor Planner \/” Netlist Attributes \

k New Import | Link | Edit with Constraint Editor ‘L' | Check i' Derive Constraints | | Constraint Coverage]'| Help + ¥
Synthesis Place and Routs Timing Verification
constraint/top_derived_constraints.sdc ol o4 4
constraint/user.sdc L4 4
constraint/mytiming.sdc o 4
constraint/mytiming2.sdc Cd o v

constraint/sdfsadf sdc

Association when a constraint file is checked, the Constraint Manager:

* Checks the SDC or PDC syntax.

» Compares the design objects (pins, cells, nets, ports) in the constraint file versus the design objects in the netlist
(RTL or post-layout ADL netlist). Any discrepancy (e.g. constraints on a design object which does not exist in the
netlist) are flagged as errors and reported in the *.log file or message window.

Check Result
If the check is successful, the following message appears.
Figure 5-7. Check Successful Message

5| Information @

e 3
I:ol Checking of Timing constraints assodated with Timing Verification is successful,

%

If the check fails, the following error message appears.
Figure 5-8. Check Fails Message

xEI Error Iﬁ

Constraint Type Check for Tools Required Design State Check Result Details
Before Checks

I/0O Constraints Place and Route Post-Synthesis Libero Message Window
Floorplanning Constraints Place and Route Post-Synthesis Libero Message Window
Timing Constraints Synthesis Pre-Synthesis synthesis_sdc_check
.log
Place and Route Post-Synthesis placer_sdc_check.lo g
Timing Verifications Post-Synthesis timing_sdc_check.lo g
Netlist Attributes (*.fdc) Synthesis Pre-Synthesis *cck.srr file
Netlist Attributes (*.ndc) Synthesis Pre-Synthesis Libero Log Window

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 57

Libero® SoC v2021.1

Libero SoC Constraint Management

5.4.3 Edit a Constraint File
The Edit button in the Constraint Manager allows you to:

* Create new constraint files. See 5.3.13 Create New Constraints for details.
« Edit existing constraint files.

To edit a constraint file

Note: Netlist Attributes cannot be edited by an Interactive Tool. Use the Text Editor to edit the Netlist Attribute
constraint (*.fdc and *.ndc) files.

1. Select the tab for the constraint type to edit. An Interactive Tool is opened to make the edits.
2. Click Edit.
— All constraint files associated with the tool are edited. Files not associated with the tool are not edited.
— When a constraint file is edited, the constraints in the file are read into the Interactive Tool.
— Different Interactive Tools are used to edit different constraints/different files:
+ |/O Editor to edit I/O Attributes (<proj>\io*.pdc). For details, refer to the 1/O Editor User Guide

» Chip Planner to edit Floorplanning Constraints (<proj>\fp*.pdc). For details, refer to the_Chip
Planner User Guide (Chip Planner > Help > Reference Manuals)

» Constraint Editor to edit Timing Constraints (constraints*.sdc). For details, refer to the_Timing
Constraints Editor User Guide (Help > Constraints Editor User’s Guide)
Note: 1/O constraints, Floorplanning constraints, Timing constraints can be edited only when the
design is in the proper state. A message pops up if the file is edited when the design state is not
proper for edits. If, for example, you open the Constraints Editor (Constraint Manager > Edit) to edit
timing constraints when the design state is not post-synthesis, a pop-up message appears.

Figure 5-9. Pop-up Message

5| Information 22

IOI Please run 'Synthesize' before executing Edit Operation

3. For Timing Constraints, click one of the following to edit from the Edit with Constraint Editor drop-down menu.
— Edit Synthesis Constraints
— Edit Place and Route Constraints
— Edit Timing Verification Constraints
Figure 5-10. Edit Drop-down Menu

{1j0 Attributes /" Timing \/"Floor Planner \/” Netlist Attributes \

New Import Link | | Edit with Constraint Editor b | Check iv Derive Constraints | | Constraint Couefagefv Help + £

Edit Synthesis Constraints [Timing Verification

constraint/top_derived_constraints.sdc Edit Place And Route Constraints |9
constraint/user.sdc Edit Timing Verilitation Constraints |/
b ¥ ki

constraint/mytiming.sdc
constraint/mytiming2.sdc Ld v o
constraint/sdfsadf.sdc

For the constraint files and tool association shown in the Timing Constraint File and Tool Association
below:
» Edit Synthesis Constraints reads the following files into the Constraint Editor:
— user.sdc
— myuser1.sdc
» Edit Place and Route Constraints reads the following files into the Constraint Editor:
— user.sdc
— mytiming2.sdc
— myuser1.sdc

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 58

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smarttime_ce_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smarttime_ce_ug.pdf

Libero® SoC v2021.1

Libero SoC Constraint Management

« Edit Timing Verification Constraints reads the following files into the Constraint Editor:
— user.sdc
— mytiming2.sdc
Figure 5-11. Timing Constraint File and Tool Association

E
7 1/0 Attributes \/ Timing \/ Floor Planner \/ Netlist Attributes |

New | Import Link Edit with Constraint Editor 'v Check [' | Derive Constraints | | Constraint Coverage Ev Help | + &i
Synthesis Place and Routt Timing Verification
constraint/user.sdc L Ll v
constraint/mytiming2.sdc 4 v
constraint/myuserl.sdc v v

4. Edit the constraint in the Interactive Tool, save and exit.
5. The edited constraint is written back to the original constraint file when the tool exits.

Refer to the Timing Constraints Editor User Guide (Help > Constraints Editor User’s Guide) for details on how to
enter/modify timing constraints.

Note: When a constraint file is edited inside an Interactive Tool, the Constraint Manager is disabled until the
Interactive Tool is closed.

Note: Making changes to a constraint file invalidates the state of the tool with which the constraint file is associated.
For instance, if Place and Route has successfully completed with user.sdc as the associated constraint file, then
making changes to user.sdc invalidates Place and Route. The green checkmark (denoting successful completion)
next to Place and Route turns into a warning icon when the tool is invalidated.

Constraint Types
Libero SoC manages four types of constraints:

» 1/0 Attributes Constraints: Used to constrain placed I/Os in the design. Examples include setting 1/0
standards, 1/0 banks, and assignment to Package Pins, output drive, and so on. These constraints are used by
Place and Route.

» Timing Constraints: Specific to the design set to meet the timing requirements of the design, such as clock
constraints, timing exception constraints, and disabling certain timing arcs. These constraints are passed to
Synthesis, Place and Route, and Timing Verification.

* Floor Planner Constraints: Non-timing floorplanning constraints created by the user or Chip Planner and
passed to Place and Route to improve Quality of Routing.

* Netlist Attributes: Microchip-specific attributes that direct the Synthesis tool to synthesize/optimize the design,
leveraging the architectural features of the Microchip devices. Examples include setting the fanout limits and
specifying the implementation of a RAM. These constraints are passed to the Synthesis tool only.

The following table summarizes the features and specifics of each constraint type.

Constraint File Location Constraints Constraints Changes
Type Edited By Used By Invalidate
Design
State?
I/O Attributes | <proj>/constraints/io *.pdc Create New, |/O Editor Place and YES
folder Import, Link, Or user editin Route
Edit, Check 9
the
*.pdc file in Text
Editor
User Guide DS00003754B-page 59

© 2021 Microchip Technology Inc.

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smarttime_ce_ug.pdf

5.6

Libero® SoC v2021.1

Libero SoC Constraint Management

........... continued
Constraint File Location Constraints Constraints Changes
Type Edited By Used By Invalidate
Design
State?
Timing <proj>/constraints folder *.sdc Create New, Constraint Synplify YES
Constraints Import, Link, ' Editor
Edit, Check Place and
’ Or user editing ' Route
the Verify Timing
*.sdc file in Text (SmartTime)
Editor
Floor Planner | <proj>/constraints/fp *.pdc Create New, Chip Planner Place and YES
Constraints folder Import, Link, Or user Editin Route
Edit, Check 9
the
*.pdc file in Text
Editor
Netlist <proj>/constraints folder *.fdc Create New, User to Open in ' Synplify YES
Attributes Import, Link, Text Editor to
Check Edit
Netlist <proj>/constraints folder | *.ndc Import, Link, User to Open in | Synplify YES
Attributes Check Text Editor to
Edit

Constraint Manager - 1/O Attributes Tab

The 1/O Attributes tab allows you to manage /O attributes/constraints for your design’s Inputs, Outputs, and Inouts.
All I/O constraint files (PDC) have the *.pdc file extension and are placed in the <Project_location>/constraint/io
folder. Available actions are:

* New: Creates a new I/0O PDC file and saves it into the <Project_location>\constraint\io folder. There are two
options:
— Create New I/O Constraint

— Create New I/O Constraint From Root Module -- This will pre-populate the PDC file with information from
the Root Module

— Having selected the create method:
* When prompted, enter the name of the constraint file.
» The file is initially opened in the text editor for user entry.
» Import: Imports an existing 1/0 PDC file into the Libero SoC project. The 1/0 PDC file is copied into the
<Project_location>\constraint\io folder.

» Link: Creates a link in the project’s constraint folder to an existing /0 PDC file (located and maintained outside
of the Libero SoC project).

» Edit: Opens the I/O Editor tool to modify the I/O PDC file(s) associated with the Place and Route tool.

» View: Opens the I/O Editor tool to view the I/O PDC file(s) associated with the Place and Route tool. You cannot

save/commit any changes made to the constraints file. However, you can export the PDC file(s) using the 1/0
Editor.

» Check: Checks the legality of the PDC file(s) associated with the Place and Route tool against the gate level
netlist.

When the I/O Editor tool is invoked or the constraint check is performed, all files associated with the Place and Route
tool are being passed for processing.

User Guide DS00003754B-page 60

© 2021 Microchip Technology Inc.

Libero® SoC v2021.1

Libero SoC Constraint Management

When you save your edits in the /O Editor tool, the I/O PDC files affected by the change will be updated to reflect
the change you have made in the I/O Editor tool. New I/O constraints you add in the 1/0 Editor tool are written to
the Target file (if a target file has been set) or written to a new PDC file (if no file is set as target) and stored in the
<project>\constraint\io folder.

Figure 5-12. Constraint Manager — I/O Attributes Tab

VO Attributes | Timing | Floor Planner | Netlist Attributes|

Hew |v Import | Link ‘ Edit |' Views Check Help L] ﬂ
| Place and Route |
constraint\io\user.pdc [Target] [
B

¥ Reserve Pins for Device Migration

Select the devices you are targetting for migration. Pins not bonded on these devices will be reserved in the device selected for this

project.
Selected Device: MPF500TS - FCG1152
[CI MPF300T_ES :l
Target Devices: 0 MPF300TS_ES
O MPF300T =
M sanca>nnTc J

General

M Reserve Pins for Probes

Right-click the 1/0 PDC files to access the available actions:

» Set/UnSet as Target: Sets or clears the selected file as the target to store new constraints created in the 1/0
Editor tool. Newly created constraints only go into the target constraint file. Only one file can be set as target.
This option is not available for linked files.

* Open in Text Editor: Opens the selected constraint file in the Libero Text Editor.

» Clone: Copies the file to a file with a different name. The original file name and its content remain intact. This
option is not available for linked files.

* Rename: Renames the file to a different name. This option is not available for linked files.
» Copy File Path: Copies the file path to the clipboard.
» Delete: Deletes the file from the project and from the disk. This option is not available for linked files.

» Unlink: Removes the linked file from the project. The original file is untouched. This option is only available for
linked files.

» Unlink: Copy file locally: Removes the link and copies the file into the <Project_location>\constraint\io folder.
This option is only available for linked files.

5.6.1 File and Tool Association

Each I/O constraint file can be associated or disassociated with the Place and Route tool. Click the checkbox under
Place and Route to associate/disassociate the file from the tool.

5.6.2 1/0 Settings

Reserve Pins for Device Migration — This option allows you to reserve pins in the currently selected device that are
not bonded in a device or list of devices you may later decide to migrate your design to. Select the target device(s)
you may migrate to later to ensure that there will be no device/package incompatibility if you migrate your design to
that device.

Reserve Pins for Probes — Check this box if you plan to use live probes when debugging your design with
SmartDebug.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 61

5.7

Libero® SoC v2021.1

Libero SoC Constraint Management

Constraint Manager — Timing Tab

The Timing tab allows you to manage timing constraints throughout the design process. Timing constraints files
(SDC) have the *.sdc file extension and are placed in the <Project_location>\constraint folder.

Available actions are:
* New: Creates a new timing SDC file and saves it into the <Project_location>\constraintfolder.
— When prompted, enter the name of the constraint file.
— The file is initially opened in the text editor for user entry.
Figure 5-13. Create New SDC Dialog Box

B ' Create New SDC ? b

Name:

Help OK Cancel

» Import: Imports an existing timing SDC file into the Libero SoC project. The timing SDC file is copied into the
<Project_location>\constraint folder.

* Link: Creates a link in the project’s constraint folder to an existing timing SDC file (located and maintained
outside of the Libero SoC project).

« Edit: Opens the Timing Constraints Editor (see Timing Constraints Editor User Guide for details) to modify
the SDC file(s) associated with one of the three tools:

— Synthesis: When selected, the timing SDC file(s) associated with the Synthesis tool is loaded in the
constraints editor for editing.

— Place and Route: When selected, the timing SDC file(s) associated with the Place and Route tool is
loaded in the constraints editor for editing.

— Timing Verification: When selected, the timing SDC file(s) associated with the Timing Verification tool is
loaded in the constraints editor for editing.

Figure 5-14. Timing Constraints Edit Options in Constraint Manager

1/0 Attributes Timing ifb«mmr| Netist Attributes |

Mew | Import | Link | Edit |v Chedk I" Derive Constahts| Constraint Coverage | Help | ﬂ ﬂ
Edit Synthesis Constraints

oute | Timing Verification |
constraint\user.sdc [Target | Edit Place And Route Constraints
Edit Timing Verification Constraints

» Check: Check the legality of the SDC file(s) associated with one of the three tools described below:
— Synthesis: The check is performed against the pre-synthesis HDL design.
— Place and Route: The check is performed against the post-synthesis gate level netlist.
— Timing Verification: The check is performed against the post-synthesis gate level netlist.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 62

https://coredocs.s3.amazonaws.com/Libero/12_3_0/Tool/smarttime_ce_ug.pdf

Libero® SoC v2021.1

Libero SoC Constraint Management

Figure 5-15. Timing Constraints Check Options in Constraint Manager

1/0 Attributes Timing]smpum:r | Netist Attributes |

MNew I Import | Link | Edit |v Chedk l' Derive Curl.sh'ahts| Constraint Coverage |™ Help i ﬂﬂ
Check Synthesis Constraints

ification |

constraint\user.sdc [Target | i0 Check Place And Route Constraints

Check Timing Verification Constraints

» Derive Constraints: When clicked, Libero generates a timing SDC file based on user configuration of IP
core, components, and component SDC. It generates the create_clock and create_generated_clock SDC timing
constraints. This file is named <top_level_> derived_constraints.sdc. The component SDC and the generated
<root>_derived_constraint.sdc files are dependent on the IP cores and vary with the device family.

create -name {REF CLK PAD 0} -period 5 [get ports { REF CLK PAD 0 }]

create generated clock -name {PF TX PLL 0/txpll isnt 0/DIV_CLK} -divide by 2 - source

[get pins { PF TX PLL O0/txpll isnt O/REF CLK P }] [get pins { PF TX PLL 0/txpll isnt 0/
DIV CLK }]

» Constraint Coverage: When clicked, a pull-down list displays. Select the Constraint Coverage Reports you
want:

— Generate Place and Route Constraint Coverage Report
— Generate Timing Verification Constraint Coverage Report
Figure 5-16. Constraint Coverage Options for Timing Constraints in Constraint Manager

I/O Attributes Timing l Floor Planner | Netlist Amibuhes{

New | Import | Link | Edit |v Check |" Der:ueconstrmts| Constraint Coverage |v Help | + ﬂ

E Synthesis l Place and Route | 1 Generate Place and Route Constraint Coverage

constrainfsersdc [Target] T T =] [Generate Timing Verification Constraint Coverage

Note: Constraint Coverage Reports can be generated only after synthesis. A warning message appears if the
design is not in the post-synthesis state when this button is clicked.

The generated report will be visible in the respective nodes of the report view (Design > Reports).

When the SmartTime Constraint Editor tool is invoked or the constraint check is performed, all the files associated
with the targeted tool — Synthesis, Place and Route, Timing Verification — are being passed for processing.

When you save your edits in the SmartTime Constraint Editor tool, the timing SDC files affected by the change are
updated to reflect the changes you have made in the SmartTime Constraints Editor tool. New timing constraints you
add in the SmartTime Constraint Editor tool are written to the Target file (if a target file has been set) or written to a
new SDC file (if no file is set as target) and stored in the <project>\constraint folder.

Figure 5-17. Constraint Manager — Timing Tab

New J Import | Link ! gdt [¥| check |v Derive Constraints| Constrant Coverage [v Help ﬂ ﬂ
[synthesis | Place and Route | Timing Verification |
constraint\ TVS_Demo_derived_constraints.sde O 3

constraint\prep1_derived_constraints.sdc
constraint\newtiming.sdc [Target]
constraint\prep1_sdc.sdc

om®
oEE
HEE

Right-click the timing SDC files to access the available actions for each constraint file:

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 63

5.71

5.8

Libero® SoC v2021.1

Libero SoC Constraint Management

+ Set/Unset as Target: Sets or clears the selected file as the target to store new constraints created in the
SmartTime Constraint Editor tool. Newly created constraints only go into the target constraint file. Only one file
can be set as target, and it must be a PDC or SDC file. This option is not available for the derived constraint
SDC file. This option is not available for linked files.

» Open in Text Editor: Opens the selected constraint file in the Libero Text Editor.

» Clone: Copies the file to a file with a different name. The original file name and its content remain intact. This
option is not available for linked files.

+ Rename: Renames the file to a different name. This option is not available for linked files.
» Copy File Path: Copies the file path to the clipboard.
» Delete: Deletes the selected file from the project and from the disk. This option is not available for linked files.

» Unlink: Removes the linked file from the project. The original file is untouched. This option is only available for
linked files.

« Unlink: Copy file locally: Removes the link and copies the file into the <Project_location>\constraint folder.
This option is only available for linked files.

File and Tool Association
Each timing constraint file can be associated or disassociated with any one, two, or all three of the following tools:

* Synthesis
* Place and route
» Timing Verification

Click the check box under Synthesis, Place and Route, or Timing Verification to associate/disassociate the file
from the tool.

When a file is associated, Libero passes the file to the tool for processing.

Example
Figure 5-18. File and Tool Association Example

[170 Attributes \/ Timing \/ Floor Planner \/ Netlist Attributes \

k New | Import Link Edit with Constraint Editor "' Check :" Derive Constraints | | Constraint Coverage ;"' Help + +
Synthesis Place and Routt Timing Verification

constraint/top_derived_constraints.sdc v ¥ v

constraint/user.sdc L v

constraint/mytiming.sdc v v

constraint/mytiming2.sdc v v v

constraint/sdfsadf.sdc

In the context of the graphic above, when Edit Synthesis Constraint is selected, user.sdc,
top_derived_constraints.sdc, and mytiming2.sdc are read (because these three files are associated with Synthesis);
mytiming.sdc and sdfsadf.sdc are not read (because they are not associated with Synthesis). When the SmartTime
Constraint Editor opens for edit, the constraints from all the files except for sdfsadf.sdc are read and loaded into the
Constraint Editor. Any changes you made and saved in the Constraint Editor are written back to the files.

Note: sdfsadf.sdc Constraint File is not checked because it is not associated with any tool.

Derived Constraints

Libero SoC is capable of generating SDC timing constraints for design components when the root of the design has
been defined. Click Derive Constraints in the Constraint Manager’s Timing tab to generate SDC timing constraints
for your design’s components.

The generated constraint file is named <root>_derived.sdc and is created by instantiating component SDC files
created by IP configurators (for example, CCC) and oscillators used in the design.

The <root>_derived.sdc file is associated by default to the Synthesis, Place and Route and Timing Verification tool.
You can change the file association in the Constraint Manager by checking or unchecking the checkbox under the
tool.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 64

5.9

Libero® SoC v2021.1

Libero SoC Constraint Management

To generate SDC timing constraints for IP cores:

1. Configure and generate the IP Core.

2. From the Constraint Manager’s Timing tab, click Derive Constraints (Constraint Manager > Timing > Derive
Constraints).
The Constraint Manager generates the <root>_derived_constraints.sdc file and places it in the Timing Tab
along with other user SDC constraint file.

3. When prompted for a Yes or No on whether you want the Constraint Manager to automatically associate
the derived SDC file to Synthesis, Place and Route, and Timing Verification, click Yes to accept automatic
association or No and then check or uncheck the appropriate checkbox for tool association.
Microchip recommends the <root>_derived_constraints.sdc be always associated with all three tools:
Synthesis, Place and Route, and Verify Timing. Before running SynplifyPro Synthesis, associate the
<root>_derived_constraints.sdc file with Synthesis and Place and Route. This will ensure that the design
objects (such as nets and cells) in the <root>_derived_constraints.sdc file are preserved during the synthesis
step and the subsequent Place and Route step will not error out because of design object mismatches
between the post-synthesis netlist and the <root>_derived_constraints.sdc file.

Note: Full hierarchical path names are used to identify design objects in the generated SDC file.

Note: The Derive Constraints button is available for HDL-based and SmartDesign-based design flows. It is not
available for Netlist Designs (Project > Project Settings > Design Flow > Enable Synthesis [not checked]).

Constraint Manager — Floor Planner Tab

The Floor Planner tab allows you to manage floorplanning constraints. Floorplanning constraints files (PDC) have the
*.pdc file extension and are placed in the <Project_location>\constraint\fp folder.

Available actions are:

* New: Creates a new floorplanning PDC file and saves it into the <Project_location>\constraint\fp folder.

* Import: Imports an existing floorplanning PDC file into the Libero SoC project. The floorplanning PDC file is
copied into the <Project_location>\constraint\fp folder.

« Link: Creates a link in the project’s constraint folder to an existing floorplanning PDC file (located and
maintained outside of the Libero SoC project).

« Edit: Opens the Chip Planner tool to modify the floorplanning PDC file(s) associated with the Place and Route
tool.

» View: Opens the Chip Planner tool to view the floorplanning PDC file(s) associated with the Place and Route
tool. You cannot save/commit any changes made to the constraints file. However, you can export the PDC file(s)
using Chip Planner.

» Check: Checks the legality of the PDC file(s) associated with the Place and Route tool against the gate level
netlist.

When the Chip Planner tool is invoked or the constraint check is performed, all files associated with the Place and
Route tool are passed for processing.

When you save your edits in the Chip Planner tool, the floorplanning PDC files affected by the change are updated to
reflect the change you made in the Chip Planner tool. New floorplanning constraints that you add in the Chip Planner
tool are written to the Target file (if a target file has been set) or written to a new PDC file (if no file is set as target)
and stored in the <project>\constraint\fp folder.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 65

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/chipplanner_ug.pdf

5.9.1

5.9.1.1

5.10

Libero® SoC v2021.1

Libero SoC Constraint Management

Figure 5-19. Constraint Manager — Floor Planner Tab
Vi Adtributes | Timing Fleor Plamegs . Hastlist Attributies|

LY Imipecart Link et | Wi l O Help +| *|

: Place and Route

[lu!'\I'.!:I':'-_|.::-_|E'\'..|J:fi Bl

Right-click the floorplanning PDC files to access the available actions:

» Set/Unset as Target: Sets or clears the selected file as the target to store new constraints created in the Chip
Planner tool. Newly created constraints only go into the target constraint file. Only one file can be set as target.
This option is not available for linked files.

» Open in Text Editor: Opens the selected constraint file in the Libero Text Editor.

» Clone: Copies the file to a file with a different name. The original file name and its content remain intact. This
option is not available for linked files.

* Rename: Renames the file to a different name. This option is not available for linked files.
» Copy File Path: Copies the file path to the clipboard.
» Delete: Deletes the selected file from the project and from the disk. This option is not available for linked files.

* Unlink: Removes the linked file from the project. The original file is untouched. This option is only available for
linked files.

« Unlink: Copy file locally: Removes the link and copies the file into the <Project_location>\constraint\fp folder.
This option is only available for linked files.

File and Tool Association

Each floorplanning constraint file can be associated or disassociated to the Place and Route tool. Click the checkbox
under Place and Route to associate/disassociate the file from the tool.

When a file is associated, Libero passes the file to the tool for processing.

See Also
Chip Planner User Guide

Constraint Manager — Netlist Attributes Tab

The Netlist Attributes tab allows you to manage netlist attribute constraints to optimize your design during the
synthesis and/or compile process. Timing constraints should be entered using SDC files managed in the Timing

tab. Netlist Attribute constraints files are placed in the <Project_location>\constraint folder. Libero SoC manages two
types of netlist attributes:

» FDC constraints are used to optimize the HDL design using Synopsys SynplifyPro synthesis engine and have
the *.fdc extension.
» NDC constraints are used to optimize the post-synthesis netlist with the Libero SoC compile engine and have
the *.ndc file extension.
Available operations are:

* New: Creates a new FDC or NDC netlist attribute constraints file in the <Project_location>\constraint folder.

* Import: Imports an existing FDC or NDC netlist attribute constraints file into the Libero SoC project. The FDC or
NDC netlist attribute constraints file is copied into the <Project_location>\constraint folder.

» Link: Creates a link in the project’s constraint folder to an existing FDC or NDC netlist attribute constraints file
(located and maintained outside of the Libero SoC project).

» Check: Checks the legality of the FDC and NDC file(s) associated with the Synthesis or Compile tools.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 66

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/chipplanner_ug.pdf

5.10.1

Libero® SoC v2021.1

Libero SoC Constraint Management

When the constraint check is performed, all files associated with the Synthesis or Compile tools are passed for
processing.

Figure 5-20. Constraint Manager — Netlist Attributes Tab

{170 Atibutes \/ Timing \/ Floor Planner |/ Methst Attributes '\

Mew = | Import | ik || chesk [+ Help | 4! [$
Synthesis

constraintitest.fde e

constraintynmy.ndc <

Right-click the FDC or NDC files to access the available actions:

» Open in Text Editor: Opens the selected constraint file in the Libero SoC Text Editor.

» Clone: Copies the file to a file with a different name. The original file name and its content remain intact. This
option is not available for linked files.

+ Rename: Renames the file to a different name. This option is not available for linked files.

» Copy File Path: Copies the file path to the clipboard.

» Delete: Deletes the file from the project and from the disk. This option is not available for linked files.

» Unlink: Removes the linked file from the project. The original file is untouched. This option is only available for
linked files.

» Unlink: Copy file locally: Removes the link and copies the file into the <Project_location>\constraint folder.
This option is only available for linked files.

File and Tool Association
Each netlist attributes constraint file can be associated with or disassociated from the Synthesis tool.

Click the checkbox under Synthesis (Compile) to associate/disassociate the file from Synthesis (Compile). When a
file is associated, Libero passes the file to Synthesis (Compile) for processing when Synthesis is run.

When Synthesis is ON (Project > Project Settings > Design Flow > Enable synthesis [checked]) for a project, the
Design Flow Synthesis action runs both the synthesis engine and the post-synthesis compile engine.

When Synthesis is OFF (Project > Project Settings > Design Flow > Enable synthesis [not checked]) for a project, the
Design Flow Synthesis action is replaced by the Compile action and runs the compile engine on the gate-level netlist
(EDIF or Verilog) available in the project.

Note: Linked files in constraint manager are shown with relative path if relative option is set for linked files. When

a constraint file is missing during environment variable change or a path in an environment variable changes, the
constraint manager does show any broken links. Therefore, if a constraint file is missing, an error message appears
in the log window if the user tries to access the file.

Reports @ X ConstrantMansger 8 X | Startpage @ % | s
1o Attrbutes Timing }F\nnr Planrier | Netist Attributes|
New | mpot | uk | eat [¥ check |¥| Derive Constraints | Constraint Coverae [¥| Hep Save s | 4] 4]
[synthesis [Ploce and Route [Timing Verifcation |
S{MSCC_ROOT_1)\SourceFiles\constraints\sdc\myconst_|_empty.sdc
constraint\myconst_2_empty.sdc

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 67

6.1

6.1.1

Libero® SoC v2021.1

Implementing Designs

Implementing Designs

The following topics describe how to implement your design.

Synthesize
There are two ways to run synthesis using the synthesis tool:
* Run synthesis on your design with the default settings specified in the synthesis tool: Double-click Synthesize.
* Run the synthesis tool interactively: Right-click Synthesize and choose Open Interactively. If you open the tool
interactively, you must complete synthesis from within the synthesis tool.

The default synthesis tool included with Libero SoC is SynplifyPro ME. If you want to use a different synthesis tool,
change the settings in Tool Profiles.

You can organize input synthesis source files using the Organize Source Files dialog box.

Synthesize Options
You can set or change synthesis configuration options for your synthesis tool using the Synthesize Options dialog
box.

To display this dialog box, expand Implement Design in the Design Flow window, right-click Synthesize, and choose
Configure Options.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 68

Libero® SoC v2021.1

Implementing Designs

Figure 6-1. Synthesize Options Dialog Box

| 7 Synthesize Options ? x
; —Global Nets
Minimum number of dack pins: [2—‘
| Minimum number of asynchronous pins: 300
Minimum fanout of non-dock nets to be kept on globals: ,‘SDDD—- [
! Inumber of global resources: ’367 I

Maximum number of global nets that could be demoted to row-globals: |16

Minimum fanout of global nets that could be demoted to row-globals: 1000
[Infer Gated Clocks from Enable-registers

Minimum number of Enable pins to infer Gated Clodk global: 1000
Minimum number of Enable pins to infer Gated Clock row-global; 100

[#" Detect Clock Domain Crossings

\Minimum number of synchronizer registers: 2

Optimizations —
I~ Enable retiming

¥ Enable automatic compile point

R.AM optimized for: & High speed T Low power
Map seg-shift register components to: o Registers * pAMG4x12
Map ROM components to: & Logic ' pam

Additional options for SynplifyPro synthesis

Script file: |

Additional options:

Help oK | Cancel

6.1.2 Global Nets (Promotions and Demotions)
Use the following options to specify to the Synthesis tool the threshold value beyond which the Synthesis tool
promotes the pins to globals:

Note: You cannot use these options to control hardwired connections to global resources, such as CCC hardwired
connections to GB and I/O hardwired connections to GB.

Table 6-1. Global Nets Options

e]

Minimum number of clock pins Threshold value for Clock pin promotion.
Default: 2
User Guide DS00003754B-page 69

© 2021 Microchip Technology Inc.

Libero® SoC v2021.1

Implementing Designs

........... continued
Opton _____ Deseripton |
Minimum number of asynchronous pins Threshold value for Asynchronous pin promotion.

Default: 800

Minimum fanout of non-clock nets to be kept on globals | Threshold value for data pin promotion to global
resources. This value is the minimum fanout of non-clock
(data) nets to be kept on globals (no demotion).
Range: 1000 - 200000

Default: 5000

Number of global resources Controls the number of Global resources you want to
use in your design.
Default: 36

Maximum number of global nets that could be demoted | Maximum number of global nets that could be demoted
to row-globals to row-globals.
Range: 0 - 50

Default: 16

Minimum fanout of global nets that could be demoted to Minimum fanout of global nets that could be demoted
row-globals to row-global. It is undesirable to have high fanout nets
demoted using row globals because it may result in high
skew. If you run out of global routing resources for your
design, reduce this number to allow more globals to be
demoted to Row Globals.
Range: 25 - 5000

Default: 1000

Infer Gated Clocks from Enable-registers Enable this option to infer gated clocks from enable
registers. This option is unchecked by default. Additional
sub-options are as follows:

* Minimum number of Enable pins to Infer Gated
Clock global - Enter the minimum number of enable
pins to infer gated chip-level global. Default value is
1000.

* Minimum number of Enable pins to Infer Gated
Clock row-global - Enter the minimum number of
enable pins to infer gated clock row-global. Default
value is 100.

Detect Clock Domain Crossings Enable this option to detect all clock domain crossings
(CDC) in the RTL design that have paths either between
two asynchronous clocks or two synchronous clocks
but with a false path or max-delay constraint. For each
crossing, analyze if the RTL design contains a control or
data synchronizer circuit and report if it is considered
"safe" according to the minimum requirements you
specify below. The option is checked by default.

* Minimum number of synchronizer registers - Default
value is 2. Range of value can be from 2 - 9.

The generated CDC report will not contain any synchronizer circuits formed with macros instantiated from the
catalog. The report will contain all CDC inferred from the RTL design and explain the reason(s) of why a synchronizer
is considered "unsafe":

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 70

Libero® SoC v2021.1

Implementing Designs

» No synchronizer circuit detected
+ In case of control signals (reset,enable,set) on first and second of sync registers are not matching.
+ Combinational logic between the first and second register synchronizers.
» Diversion between first and second register synchronizers (i.e., the fanout is greater than 1).
» Only 1 register in the synchronizer circuit.
» Number of register levels in synchronizer logic is less than the specified threshold.
» Combinational logic detected at clock domain crossing.
« Combinational logic is present between the source register(start instance) and the destination register(end
instance) at the crossover.
« Divergence detected in the crossover path.
» Source register (start instance) has fanout greater than 1 at the crossover.
» Enable signal for synchronizer registers does not have a safe crossing.
+ Enable of data synchronizer doesn’t have a safe synchronizer circuit.
» Sources from different domains in fanin.
+ The destination is driven by multiple registers from different clock domains and are asynchronous to the
destination register clock domain.
» Synchronizer registers have synchronous reset or set as control signal.

» The Synchronizer registers have a synchronous set or reset even if shared by all. This is tagged as unsafe
since the reset logic can move to the data path instead of connecting to the reset port of the register and
hence lead to metastability.

6.1.3 Optimizations
The following table describes the Optimizations options

Table 6-2.

N

Enable retiming Check this box to enable Retiming during synthesis.
Retiming is the process of moving registers (register
balancing) across combinational gates automatically to
improve timing, while ensuring identical logic behavior.
Default: Not checked (no retiming during synthesis)

Enable automatic compile point Check this box to enable Automatic Compile Point during
synthesis.
Default: Checked (Automatic Compile Point enabled)

RAM optimized for Guides the Synthesis tool to optimize RAMs to achieve
your design goal.

* High speed: RAM is optimized for speed.
The resulting synthesized design achieves better
performance (higher speed) at the expense of more
dynamic power. (Default)

* Low power: RAM is optimized for power. RAMs are
inferred and configured to ensure the lowest power
consumption.

Map seg-shift register components to: Maps sequential shift registers. Choices are:

* Registers: Sequential shift logic in the RTL maps to
registers.

* RAMG64x12: Sequential shift logic in the RTL maps
to a 64x12 RAM block. This is the default setting.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 71

6.1.4

Libero® SoC v2021.1

Implementing Designs

........... continued
Opten __ Deapten |
Map ROM components to: Maps ROM components. Choices are:

* Logic: Maps ROM components to logic. (Default)
* RAM: Maps ROM components to RAM.

Additional Options for SynplifyPro Synthesis
The following table describes additional options for SynplifyPro Synthesis.
Table 6-3. Additional Options for SynplifyPro Synthesis

N T N

el Al Click the Browse (L-_-- .') button to navigate to a Synplify
Tcl file that contains the SynplifyPro-specific options.
Libero passes the options in the Tcl file to SynplifyPro
for processing.

Additional Options Enter additional Synplify options. Place each option on

a separate line. Libero passes these additional options
“as-is” to SynplifyPro for processing, without checking
syntax. All of these options are set on the Active
Implementation only.

Note: Options from the Additional Options Editor have
priority over Tcl Script file options if they are the same.

Recommended Synthesis Tcl Options

You can add or modify the following list of recommended Synthesis Tcl options in the Tcl Script File or Additional
Options Editor.

set option -use fsm explorer 0/1

set option -frequency 200.000000

set option -write verilog 0/1

set option -write vhdl 0/1

set option -resolve multiple driver 1/0
set option -rw check on ram 0/1

set option -auto constrain io 0/1

set option -run prop extract 1/0

set option -default enum encoding default/onehot/sequential/gray
set option -maxfan 30000

set option -report path 5000

set option -update models cp 0/1

set option -preserve registers 1/0
set option -continue on _error 1/0

set _option -symbolic fsm compiler 1/0
set option -compiler compatible 0/1
set option -resource sharing 1/0

set option -write apr constraint 1/0
set _option -dup 1/0

set option -enable64bit 1/0

set option -fanout limit 50
set_option -frequency auto

set option -hdl define SLE INIT=2

set option -hdl param -set "width=8"
set option -looplimit 3000

set option -fanout guide 50

set option -maxfan hard 1/0

set option -num critical paths 10

set option -safe case 0/1

Entering Additional Options

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 72

6.1.5

Libero® SoC v2021.1

Implementing Designs

You can enter any additional options using the Script File or Additional Options Editor. All of these options can be
added and modified outside of Libero through interactive SynplifyPro.

For more information about the options and supported families, see the SynplifyPro Reference Manual. The following
options are set by Libero. Do not include them in the additional options field or Script File:

add file <*>

impl <*>

project folder <*>

add_ folder <*>

constraint file <*>

project <*>

project file <*>

open file <*>

set option -part

set option -package

set option -speed grade
set_option -top module

set option -technology

set option -opcond

set _option -vlog std

set option -vhdl12008

set_option -disable io insertion
set _option -async_globalthreshold
set option -clock globalthreshold
set option -globalthreshold

set option -low power ram decomp
set option -retiming

set option -automatic compile point
set option -segshift to uram

set option -rom map logic

set option -gclkint threshold

set _option -rgclkint threshold
set option -low power gated clock
set option -report preserve cdc
set _option -min_cdc_sync_flops

SynplifyPro ME
SynplifyPro ME is the default synthesis tool for Libero SoC.

To run synthesis using SynplifyPro ME and its default settings, right-click Synthesize and choose Run.

To use custom settings, use the following procedure to run Synplify interactively.

1.

w

If Synplify is your default synthesis tool, right-click Synthesize in the Libero SoC Design Flow window and
choose Open Interactively. Synplify starts and loads the appropriate design files with preset default values.

From Synplify’s Project menu, choose Implementation Options.
Set your specifications and click OK.

Deactivate synthesis of the defparam statement. The defparam statement is only for simulation tools and is not
intended for synthesis. Embed the defparam statement between the translate_on and translate_off synthesis
directives:

/* synthesis translate off */

defparam MO.MEMORYFILE = "meminit.dat"

/*synthesis translate_on */
// rest of the code for synthesis

Click the Run button. Synplify compiles and synthesizes the design into an HDL netlist. The resulting * . vm
files appear under Synthesis Files in the Files list.

If errors appear after you click the Run button, use the Synplify editor to edit the file. Double-click the file name
in the Synplify window showing the loaded design files. Your changes are saved to the original design file in
your project.

To close Synplify, from the File menu, choose Exit. When prompted to save changes you made, click Yes.
Note: For a list of attributes related to Microchip devices, see the Microchip Attribute and Directive Summary
in the Synplify online help.

Note: To add a clock constraint in Synplify, add n:<net_name> in your SDC file. If you omit the n:, the
constraint will not be added.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 73

6.2

6.2.1

6.2.2

Libero® SoC v2021.1

Implementing Designs

Identifying Debug Designs

Libero SoC integrates the Identify RTL debugger tool. Identify debugging software allows you to probe and debug
your FPGA design directly in the source RTL. Use the software if the design behavior after programming is not in
accordance with the simulation results.

The following list summarizes the Identify key features:

* Instrument and debug your FPGA directly from RTL source code.
» Internal design visibility at full speed.

* Incremental iteration - Design changes are made to the device from the Identify environment using incremental
compile operations. This allows you to iterate in a fraction of the time it takes route the entire device.

» Debug and display results - You collect only the data you need using unique and complex triggering
mechanisms.

To open the Identify RTL debugger, in the Design Flow window, under Debug Design, double-click Instrument
Design.

The following procedure describes how to use the Identify Instrumentor and Debugger. To run the debugging flow
described below, you must have the Identify RTL Debugger and the Identify Instrumentor.

1. Create your source file and run pre-synthesis simulation.

2. Optional: Perform an entire flow (Synthesis - Compile - Place and Route - Generate a Programming File)
without starting Identify.

Right-click Synthesize and choose Open Interactively in Libero SoC to launch Synplify.

In Synplify, click Options > Configure Identify Launch to setup Identify.

In Synplify, create an Identify implementation by clicking Project > New Identify Implementation.

In the Implementations Options dialog box, make sure the Implementation Results > Results Directory

points to a location under <libero project>\synthesis\; otherwise, Libero SoC will not detect your

resulting Verilog Netlist file.

7. From the Instrumentor Ul, specify the sample clock, the breakpoints, and other signals to probe. Synplify
creates a new synthesis implementation. Synthesize the design.

8. In Libero SoC, run Synthesis, Place and Route and generate a programming file.
Note: Libero SoC works from the edit netlist of the current active implementation, which is the implementation
you created in Synplify for Identify debug.

9. Inthe Design Flow window, double-click Identify Debug Design to launch the Identify Debugger.

o ok w

To work properly, the Identify RTL Debugger, Synplify, and FlashPro must be synchronized. For more information
about which versions of the tools work together, see the Release Notes.

Verifying Post-Synthesized Designs

The following topics describe how to verify designs that have been synthesized.

Generating Simulation Files

This step generates the post-synthesis Verilog or VHDL netlist for post-synthesis simulation.
* The post-synthesis Verilog netlist end with a * . v extension.
» The VHDL netlist ends with a * . vhd extension.

Post-synthesis simulation verifies the post-synthesis implementation of the design.

The netlist file is located in the synthesis folder of the project. Libero SoC passes this file to the simulator for the
post-synthesis simulation run.

Note: Before performing post-synthesis, the design must pass the synthesis process. If you have not run synthesis,
generating Simulation Files initiates a synthesis run automatically.

Verifying Post-Synthesis Implementations - Simulate
The steps for performing functional (post-synthesis) and timing (post-layout) simulation are nearly identical.
* You perform functional simulation before place-and-route to simulate the functionality of the logic in the design.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 74

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads

6.3

Libero® SoC v2021.1

Implementing Designs

* You perform timing simulation after the design completes place-and-route. This simulation uses timing
information based on the delays in the placed-and-routed designs.

To perform functional simulation:

1. Back-annotate your design and create your testbench.

2. Inthe Design Flow window, click Implement Design.

3. Right-click Simulate and choose Organize Input Files > Organize Stimulus Files.
In the Organize Files for Source dialog box, all stimulus files in the current project appear in Source Files in
the Project list box. Files associated with the block appear in the Associated Source Files list box.

In most cases, you will have one testbench associated with your block. However, if you want simultaneous
association of multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files
to the Associated Source Files list.

4. To add a testbench, select the testbench you want to associate with the block in the Source Files in the
Project list box and click Add to add it to the Associated Source Files list.

5. To remove a testbench or change the files in the Associated Source Files list box, select the files and click
Remove.

6. To order testbenches, use the up and down arrows to define the order in which you want the testbenches
compiled. The top level-entity should be at the bottom of the list.

7. When you are satisfied with the Associated Simulation Files list, click OK.

8. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open Interactively.
ModelSim starts and compiles the appropriate source files. When the compilation completes, the simulator
runs for 1ps and the Wave window shows the simulation results.

9. Scroll in the Wave window to verify the logic works as intended. Use the cursor and zoom buttons to zoom in,
zoom out, and measure timing delays.

10. When you are done, choose Quit from the File menu.

Compile Netlist

Compile contains functions that perform legality checking and basic netlist optimization. Compile checks for netlist
errors (bad connections and fan-out problems) removes unused logic (gobbling) and combines functions to reduce
logic count and improve performance. Compile also verifies that your selected device has sufficient resources to fit
your design.

The Compile Netlist step appears in the Design Flow window after unchecking the Enable Synthesis option in the
Project > Project Settings > Design Flow page. This option appears after importing or linking your HDL Netlist files
into the project and building the design hierarchy.

To compile your device with default settings, right-click Compile Netlist in the Design Flow window and choose Run
or double-click Compile Netlist.

To compile your design with custom settings, right-click Compile Netlist in the Design Flow window and choose
Configure Options.

During compile, the Log window shows information about your design, including warnings and errors. Libero SoC
issues warnings when your design violates recommended Microchip design rules. Microchip recommends that you
address all warnings, if possible, by modifying your design before you continue.

If the design fails to compile due to errors, modify the design to remove the errors and re-Compile.

The Compile Netlist Options set the threshold value for global resource promotion and demotion when Place and
Route is executed.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 75

6.4

6.4.1

Libero® SoC v2021.1

Implementing Designs

Figure 6-2. Compile Netlist Options Dialog Box

B Compile Metlist Opticns

Global Promotion

Mumber of global resources:

Help

Maximum number of global nets that could be demoted to row-globals: J 16
Minimum fanout of global nets that could be demoted to row-globals: JlI:II]I:I

Minimum fanout of non-dock nets to be kept on globals:

|24

5000

K Cancel |

Table 6-4. Compile Netlist Options

N N

Number of global resources

Maximum Number of global nets that could be demoted
to row-globals

Minimum fanout of global nets that could be demoted to
row-globals

Minimum fanout of non-clock nets to be kept on globals

Constraint Flow in Implementation

Design State Invalidation

Number of available global resources for the die.
Maximum number of global nets that can be demoted to
row-globals.

Default: 16

Minimum fanout of global nets that can be demoted to
row-global. If you run out of global routing resources for

your design, reduce this number to allow more globals to
be demoted or select a larger die for your design.

Default: 1000

Minimum fanout of non-clock (data) nets to be kept on
globals (no demotion). If you run out of global routing
resources for your design, increase this number.

Range: 1000 - 200000
Default: 5000

The Libero SoC Design Flow window displays status icons to indicate the status of the design state. For any status
other than a successful run, the status icon is identified with a tooltip to give you additional information.

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 76

6.4.2

Libero® SoC v2021.1

Implementing Designs

v

L4
[x)

X

Tool has not run yet. NEW state.

Tool runs with no errors.
PASS state.

Tool runs
successfully.

Tool forced by user
to completed state.

Force updates the tools
state to PASS state.

W

Tool runs but with
Warnings.

Varies with the tool.
Tool fails to run.

Tool Fails.

Design State is Out
of Date.

Tool state changes from
PASS to OUT OF
DATE.

Timing Constraints
have not been met.

Timing Verification runs
successfully but the
design fails to meet
timing requirements.

Constraints and Design Invalidation

A tool in the Design Flow changes from a PASS state (green check mark) to an OUT OF DATE state when a source
file or setting affecting the outcome of that tool has changed.

The out-of-date design state is identified by the

defined as:

m Tooltip Possible Causes/Remedy

Tool has not run or it has been cleaned.

N/A

Only for Synthesize/Compile and Place and Route
tools. The remaining tools do not change states

Varies with the tool (e.g., for the Compile Netlist step,
not all I/Os have been assigned and locked).

Invalid command options or switches, invalid design
objects, invalid design constraints.

Since the last successful run, design source design
files, constraint files or constraint file/tool association,
constraint files order, tool options, and/or project
settings have changed.

Design fails Timing Analysis. Design has either set-
up or hold time violations or both. See PolarFire
FPGA Timing Constraints User Guide on how to
resolve the timing violations.

icon in the Design Flow window. Sources and/or settings are

HDL sources (for Synthesis), gate level netlist (for Compile), and Smart Design components

Design Blocks (*.cxz files) —
components in a higher-level design

Constraint files associated with a tool
Upstream tools in the Design Flow:

low-level design units which may have completed Place and Route and re-used as

— If the tool state of a Design Flow tool changes from PASS to OUT OF DATE, the tool states of all the
tools below it in the Design Flow, if already run and are in PASS state, also change to OUT OF DATE with
appropriate tooltips. For example, if the Synthesis tool state changes from PASS to OUT OF DATE, the tool
states of Place and Route tool as well as all the tools below it in the Design Flow change to OUT OF DATE.

+ If a Design Flow tool is CLEANED, the tool states of all the tools below it in the Design Flow, if already

run, change from PASS to OUT OF DATE.

+ If a Design Flow tool is rerun, the tool states of all the tools below it in the Design Flow, if already run,

are CLEANED.
— Tool Options

+ If the configuration options of a Design Flow tool (right-click the tool and choose Configure Options)
are modified, the tool states of that tool and all the other tools below it in the Design Flow, if already
run, are changed to OUT OF DATE with appropriate tooltips.

— Project Settings:
» Device selection
+ Device settings
» Design Flow
* Analysis operating conditions

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 77

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_timing_constr_flow_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/pf_timing_constr_flow_ug.pdf

6.4.3

Libero® SoC v2021.1

Implementing Designs

Setting Changed Design Flow Tools Affected New State of the Affected
Design Flow Tools

Package
Speed

Core Voltage
Range

Default 1/0 Technology

Reserve Pins for Probes

PLL Supply Voltage (V)

Power On Reset Delay

System controller
suspended mode

Preferred Language
Enable synthesis

Synthesis gate level netlist
format

Reports(Maximum number
of high fanout nets to be
displayed)

Abort flow if errors are
found in PDC

Abort flow if errors are
found in SDC

Temperature range(C)
Core voltage range(V)

Default I/0 voltage range

Part# is changed | A
Part# is changed
Part# is changed
Part# is changed

Part# is changed

All
All
All
All

Synthesize, and all tools below
it

Place and Route, and all tools
below it

Verify Power, Generate FPGA
Array Data and all other
“Program and Debug Design”
tools below it

Generate FPGA Array Data and
all other “Program and Debug
Design” tools below it

Generate FPGA Array Data and
all other “Program and Debug
Design” tools below it

None
All

Synthesize

None

None

None

Verify Timing, Verify Power
Verify Timing, Verify Power

Verify Timing, Verify Power

CLEANED/NEW
CLEANED/NEW
CLEANED/NEW
CLEANED/NEW
CLEANED/NEW
OUT OF DATE

OUT OF DATE

OUT OF DATE

OUT OF DATE

OUT OF DATE

N/A
OUT OF DATE
CLEANED/NEW

N/A

N/A

N/A

OUT OF DATE
OUT OF DATE
OUT OF DATE

Note: Cleaning a tool means the output files from that tool are deleted including log and report files, and the tool’s

state is changed to NEW.

Check Constraints

When a constraint file is checked, the Constraint Checker does the following:

» Checks the syntax

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 78

6.4.4

6.4.5

Libero® SoC v2021.1

Implementing Designs

» Compares the design objects (pins, cells, nets, ports) in the constraint file versus the design objects in the netlist
(RTL or post-layout ADL netlist). Any discrepancy (e.g., constraints on a design object which does not exist in

the netlist) are flagged as errors and reported in the *_sdc.log file

Design State and Constraints Check
Constraints can be checked only when the design is in the right state.

Constraint Type Check for Tools | Required Design State | Netlist Used for Design | Check Result
Before Checking Objects Checks

I/O Constraints

Floorplanning
Constraints

Timing Constraints

Netlist Attributes

Netlist Attributes

Place and Route

Place and Route
Synthesis

Place and Route
Timing
Verification

FDC Check

NDC Check

Post-Synthesis

Post-Synthesis

Pre-Synthesis

Post-Synthesis

Post-Synthesis

Pre-Synthesis

Pre-Synthesis

ADL Netlist

ADL Netlist

RTL Netlist

ADL Netlist

ADL Netlist

RTL Netlist

RTL Netlist

Reported in
Libero Log
Window

par_sdc.log

synthesis_sdc.|
og

par_sdc.log

vt_sdc.log

Libero Message
Window

Reported in
Libero Log
Window

A pop-up message appears when the check is made and the design flow has not reached the right state.

Figure 6-3. Pop-Up Message: Design State Insufficient for Constraints Check Operation

Edit Constraints

.| Information

Xy

IOI Please run 'Synthesize' before executing Chedk Operation
k. 4

Click the Edit with 1/O Editor/Chip Planner/Constraint Editor button to edit existing and add new constraints.
Except for the Netlist Attribute constraints (*.fdc and *.ndc) file, which cannot be edited by an interactive tool, all other
constraint types can be edited with an Interactive Tool. The *.fdc and *.ndc files can be edited using the Libero SoC

Text Editor.

The 1/O Editor is the interactive tool to edit I/O Attributes, Chip Planner is the interactive tool to edit Floorplanning
Constraints, and the Constraint Editor is the interactive tool to edit Timing Constraints.

For Timing Constraints that can be associated to Synthesis, Place and Route, and Timing Verification, you need to
specify which group of constraint files you want the Constraint Editor to read and edit:

« Edit Synthesis Constraints - reads associated Synthesis constraints to edit.
- Edit Place and Route Constraints - reads only the Place and Route associated constraints.

» Edit Timing Verification Constraints - reads only the Timing Verification associated constraints.

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 79

6.4.6

Libero® SoC v2021.1

Implementing Designs

For the three SDC constraints files (a.sdc, b.sdc, and c.sdc, each with Tool Association as shown in the table
below) when the Constraint Editor opens, it reads the SDC file based on your selection and the constraint file/tool
association.

_ Synthesis Place and Route Timing Verification
X X

a.sdc
b.sdc X X
c.sdc [target] X X X

» Edit Synthesis Constraints reads only the b.sdc and c.sdc when Constraint Editor opens.
» Edit Place and Route Constraints reads a.sdc, b.sdc and c.sdc when Constraint Editor opens.
+ Edit Timing Verification Constraints reads a.sdc and c.sdc when Constraint Editor opens.

Constraints in the SDC constraint file that are read by the Constraint Editor and subsequently modified by you will be
written back to the SDC file when you save the edits and close the Constraint Editor.

When you add a new SDC constraint in the Constraint Editor, the new constraint is added to the c.sdc file, because it
is set as target. If no file is set as target, Libero SoC creates a new SDC file to store the new constraint.

Constraint Type and Interactive Tool

Constraint Type Interactive Tool for Editing | Design Tool the Constraints | Required Design State
File is Associated Before Interactive Tool
Opens for Edit
I/0O Constraints I/O Editor Place and Route Tool Post-Synthesis
Floorplanning Chip Planner Place and Route Tool Post-Synthesis

Constraints

Timing Constraints SmartTime Constraints Editor | Synthesis Tool Place and Pre-Synthesis Post-

Route Timing Verification Synthesis Post-
Synthesis

Netlist Attributes Interactive Tool Not Available ' Synthesis Pre-Synthesis

Synplify Netlist Open the Text Editor to edit.

Constraint (*.fdc)

Netlist Attributes Interactive Tool Not Available | Synthesis Pre-Synthesis

Compile Netlist Open the Text Editor to edit.

Constraint (*.ndc)

Note: If the design is not in the proper state when Edit with <Interactive tool> is invoked, a pop-up message
appears.

i 5

| Information

'o'l Please run 'Synthesize' before executing Edit Operation
Note: When an interactive tool is opened for editing, the Constraint Manager is disabled. Close the Interactive Tool
to return to the Constraint Manager.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 80

6.5

6.5.1

Libero® SoC v2021.1

Implementing Designs

Place and Route

Double-click Place and Route to run Place and Route on your design with the default settings.

Place and Route Options

To change your place and route settings from the Design Flow window, expand Implement Design, right-click Place
and Route, and choose Configure Options. When the Layout Options dialog box appears, specify your settings,

and then click OK.

Figure 6-4. Layout Options Dialog Box

[v Timing-driven
[Power-driven
[1f0 Reqister Combining
I¥ Global Pins Demotion
[Driver Replication
[High Effort Layout

[Repair Minimum Delay Violations

[Incremental Layout

[Use Multiple Passes

-

ar

M. ..

)
-

Help OK | Cancel

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 81

Libero® SoC v2021.1

Implementing Designs

Figure 6-5. Layout Options Dialog Box with Block Flow Enabled

m Lz
v Timing-driven
[~ Power-driven
[IO Register Combining
¥ Global Pins Demotion
[Driver Replication
[High Effort Layout

[Repair Minimum Delay Violations

| Incremental Layout

[Use Multiple Passes

Configure...

Help |

0K

(2 =]

Cancel

The following table describes the place and route options.

Table 6-5. Place and Route Options

T T

Timing-Driven

Power-driven

Timing-driven Place and Route strives to meet

timing constraints specified by you or generated
automatically. Timing-driven Place and Route delivers
better performance than Standard Place and Route.

If you do not select this option, Libero SoC ignores
timing constraints, although timing reports based on
timing constraints can still be generated for the design.

Runs the Power-Driven layout. This layout reduces
dynamic power while still maintaining timing constraints.

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 82

Libero® SoC v2021.1

Implementing Designs

........... continued

e e

I/0 Register Combining

Global Pins Demotion

Driver Replication

High Effort Layout

Combines any register directly connected to an 1/0 when
it has a timing Constraint. If multiple registers are directly
connected to a bi-directional 1/0, select one register to
combine in the following order: input-data, output-data,
output-enable.

This option is selected when Timing-Driven Place and
Route is enabled. This option allows the layout tool

to select the most timing critical pins on any Global
network and moves them to the source that drives the
Global resource (proactively attempts to improve timing
by putting timing-critical pins onto routed resources).

If the driver for the global is a fabric register, the driver is
replicated and the duplicate names are printed. Each set
of names should be used in place of the original register
in any specified timing constraint.

Allows an algorithm to replicate critical net drivers to
reduce timing violations. The algorithm prints the list of
registers along with the duplicate names. Each set of
names should be used in place of the original register in
any specified timing constraint.

Improves layout success, but increases layout runtime
and may impact timing performance.

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 83

Libero® SoC v2021.1

Implementing Designs

........... continued

e e

Repair Minimum Delay Violations

Incremental Layout

Use Multiple Pass

Repairs Minimum Delay violations (Timing-Driven Place
and Route option enabled) and performs an additional
route. This is done by increasing the length of routing
paths and inserting routing buffers to add delay to the
top violating paths.

If this option is enabled, the programmable delays
through 1/Os are adjusted to meet hold time
requirements from input to registers. For register-to-
register paths, buffers are inserted.

The Repair tool analyzes paths iteratively with negative
minimum delay slacks (hold time violations), and
chooses suitable connections and locations to insert
buffers. Not all paths can be repaired using this
technique, but many common cases will benefit.

Even when this option is enabled, it will not repair a
connection or path that:

» Is a hardwired, preserved, or global net.

» Has a sink pin which is a clock pin.

+ Violates a maximum delay constraint (that is, the
maximum delay slack for the pin is negative).

* May cause the maximum delay requirement for the
sink pin to be violated (setup violations).

Typically, this option is enabled with the Incremental
Layout option when a design’s maximum delay
requirements have been satisfied.

Every effort is made to avoid creating max-delay timing
violations on worst case paths.

Min Delay Repair generates a report in the
implementation directory that lists all of the paths that
were considered.

If your design continues to have internal hold time
violations, rerun repair Minimum Delay Violations with
Incremental Layout to analyze additional paths.

Uses previous placement data as the initial placement
for the next run.

To preserve portions of your design, use Compile
Points, which are RTL partitions of the design that you
define before synthesis. The synthesis tool treats each
Compile Point as a block that allows you to preserve its
structure and timing characteristics. By executing Layout
in Incremental Mode, locations of previously placed cells
and the routing of previously routed nets is preserved.
Compile Points makes it easy to mark portions of a
design as black boxes, and let you divide the design
effort between designers or teams. for more information,
see the Synopsys FPGA Synthesis Pro ME User Guide.

Runs multiple passes of Place and Route to achieve the
best layout result. Click Configure to specify the criteria
you want to use to determine the best layout result.

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 84

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me#documents

6.6

Libero® SoC v2021.1

Implementing Designs

........... continued

e]

Block Creation

Multiple Pass Layout Configuration

This option is available only when the Block Creation
option is turned on (Project > Project Settings >
Design Flow > Enable Block Creation). The value
entered here limits the number of row-global resources
available in every row-global region of the device. During
Place and Route of the block, the tool will not exceed
this capacity on any row-global region. The default value
is the maximum number of row-globals. If you enter a
value lower than the maximum capacity (the default),
the layout of the block can integrate with the rest of the
design if it consumes the remaining row-global capacity.

Multiple Pass Layout attempts to improve layout quality by selecting results from a few number of Layout passes.
This is done by running individual place and route multiple times with varying placement seeds and measuring the

best results for the specified criteria.

When using Multiple Pass Layout, observe the following guidelines:

» Multiple Pass Layout saves your design file with the pass that has the best layout results. If you want to
preserve your existing design state, you should save your design file with a different name before proceeding. To

do this, from the File menu, choose Save As.

» The following four types of reports for each pass are written to the working directory to assist you in later
analysis: timing, maximum delay timing violations, minimum delay timing violations, and power.

— <root module name> timing r<runNum> s<seedIndex>.rpt

— <root module name> timing violations r<runNum> s<seedIndex>.rpt

— <root module name> timing violations min r<runNum> s<seedIndex>.rpt

— <root module name> power r<runNum> s<seedIndex>.rpt
— <root module name> iteration summary.rpt provides additional details about the saved files.

To configure multiple pass options:

1. When running Layout, select the Use Multiple Passes in the Layout Options dialog box.
2. Click Configure. The Multi-Pass Configuration dialog box appears.

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 85

Libero® SoC v2021.1

Implementing Designs

Figure 6-6. Multi-Pass Configuration Dialog Box

{ [87] Multi-Pass Configuration ? b4

Mumber of passes: 5

i
=)
L 25

Start at seed index (1-101): |1 3:

Measurement:

" Slowest dock

" Spedfic dock | J
g Timing violations

* Maximumdelay ¢ Minimum delay

Select by: |W0rst Slack ﬂ
[] Stop on first pass without violations

Total power

Help oK Cancel |

3. Set the options in the following table and click OK.

Table 6-6. Multi-Pass Configuration Options

N T

Number of passes Number of passes (iterations) using the slider. 1 is the
minimum and 25 is the maximum.
Default: 5

Start at seed index Index into the array of random seeds that is to be the

starting point for the passes. If not specified, the default
behavior is to continue from the last seed index that was
used.

Measurement Measurement criteria against which you want to
compare layout results.

Slowest clock Uses the slowest clock frequency in the design in a
given pass as the performance reference for the layout
pass.

Specific clock Uses a specific clock frequency as the performance
reference for all layout passes.

Timing violations Timing Violations to use the pass that best meets the
slack or timing-violations constraints. This is the default.
Note: You must enter your own timing constraints
through SmartTime or SDC.

Maximum delay Examines timing violations (slacks) obtained from
maximum delay analysis. This is the default.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 86

Libero® SoC v2021.1

Implementing Designs

........... continued

e e]

Minimum delay Examines timing violations (slacks) obtained from
minimum delay analysis.

Select by Slack criteria. Choices are:

» Worst Slack: Largest amount of negative slack (or
least amount of positive slack if all constraints are
met) for each pass is identified, and the largest
value of all passes determines the best pass.
(Default)

» Total Negative Slack. Sum of negative slacks from
the first 100 paths in the Timing Violations report for
each pass is identified, and the largest value of all
the passes determines the best pass. If no negative
slacks exist for a pass, the worst slack is used to
evaluate that pass.

» Stop on first pass without violations: Stops
performing remaining passes if all timing constraints
have been met when there are no negative slacks
reported in the timing violations report.

Total power Determines the best pass to be the one that has the
lowest total power (static + dynamic) of all layout passes.

6.6.1 Iteration Summary Report

The file <root module> iteration summary.rpt records a summary of whether the multiple pass run was
invoked through the GUI or extended_run_lib Tcl script, with arguments for repeating each run. Each new run
appears with its own header in the Iteration Summary Report with fields RUN_NUMBER and INVOKED AS, followed
by a table containing Seed Index, corresponding Seed value, Comparison data, Report Analyzed, and Saved Design
information.

Figure 6-7. Iteration Summary Report

s el dmaton_peearyost 8 K Bports & X LS § X | p— L.E] ol X | — L] =

IhsesigueT\shifs_regiil -n § -sTATTARg_ae

- B -STATTARG B

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 87

6.7

Libero® SoC v2021.1

Implementing Designs

Post Layout Editing of I/O Signal Integrity and Delay Parameters

The Edit Post Layout Design tool in the Design Flow allows you to tune 1/O signal integrity parameters and external
timing without executing Place and Route again.

Input is provided using a PDC file. From the Libero user interface, double-click Edit Post Layout Design to
open a file selection dialog box and selecting the input file. In the batch flow, you can issue the command
edit post layout design <input.pdc>.

The PDC file contains one or more invocations of two PDC commands:
* edit io
* edit instance_delay
For more information about these commands, see the PDC Command User Guide - Polarfire.

To assist you in knowing those instances on which this tool can update delays, the Place and Route tool generates a
<root> delayinstance.rpt report file. This report has an editable (Editable?) column with Yes and No values
that indicate whether or not a delay parameter can be edited by this tool.

The batch command edit post layout design fails when any commands in the input PDC file fail. The PDC
commands fail if the syntax is incorrect, the referenced instances do not exist, or the values are out of legal ranges. If
the batch command fails, the layout state of the design does not change. If the batch command succeeds:

» Layout state changes to reflect the values in the PDC commands
» Pin report and delay instance report files are regenerated to reflect the latest values

» Downstream tools Verify Timing, Verify Power, Generate FPGA Array Data, and Generate Back Annotated Files
are invalidated.

The batch command edit post layout design generates the log file <project>/designer/<root>/
top_editpostlayout log.log to provide information about the run and which PDC file was used in the run.
This log gets appended with information from each run of the command. Each run’s start message is prefixed by
the time when the run executed. The log file can be viewed from the Reports tab (Design > Reports). The log file is
removed when Place and Route is run or cleaned.

Note: In the following figure, downstream steps this tool invalidates are highlighted in yellow.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 88

6.8

6.8.1

Libero® SoC v2021.1

Implementing Designs

Figure 6-8. Edit Post Layout Design Tool in Design Flow

;Dahgn Flow

rTUDHmH'Dd.J bop 5] o wi |j

Active Synthesis Implement ation: synkheasis

Tool

¥ = » Implement Design
B Open Netlist Viewer
v T Synthesize
= P Verify Post-Synthesized Design
*[| Generate Simulation File
| B Simulate
v 5 Place and Route
'R H Edit Post Layout Design
| = P Verify Post Layout Implementation
*L Generate Back Annotated Files
B Simulate
&, venify Timing
| &, Open SmartTime
K2 Verify Power
% Open SSN Analvzer
Configure Hardware
B Programming Connectivity and Interface
’ Configure Programmeer
& Select Programmer
Program Design
*[] Generate FPGA Array Data
| *L Configure Design Initialization Data and Memones
*[] Generate Design Initialization Data
& Configure 1/0 States During JTAG Programming
» Configure Programming Options

-

-

Resource Usage
After layout, you can check the resource usage of your design.

1. From the Design menu, choose Design > Reports.
2. Click <design_name>_layout_log.log to open the log file.

The log file contains a Resource Usage report that lists the type and percentage of resource used for each resource
type relative to the total resources available for the chip.

Table 6-7. Resource Usage

S T N S

4LUT 400 86184 0.46
DFF 300 86184 0.34
I/0O Register 0 795 0.00
Logic Element 473 86184 0.55

4L UTs are 4-input Look-up Tables that can implement any combinational logic functions with up to four inputs.

The Logic Element (LE) is a logic unit in the fabric. It may contain a 4LUT, a DFF, or both. The number of LEs in the
report includes all LEs, regardless of whether they contain 4LUT only, DFF only, or both.

Overlapping of Resource Reporting

The number of 4LUTs in the report is the total number used for your design, regardless of whether they are combined
with the DFFs. Similarly, the number of DFFs in the report is the total number used for your design, regardless of
whether they are combined with 4LUT'’s.

In the report above, a total of 473 LEs are used for the design.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 89

6.9

Libero® SoC v2021.1

Implementing Designs

» 300 of the 473 LEs have DFFs inside, which means 173 (473-300) of them have no DFFs in them. These 173
LEs use only the 4LUTs portion of the LE.

* 400 of the 473 LEs have 4LUTs inside, which means 73 (473-400) of them have no 4LUTS in them. These 73
LEs use only the DFF portion of the LE.

Table 6-8. Logical Element Calculations

Logical Element Description Calculated Logical Elements

LEs using DFF Only = 473-400 = 73
LEs using 4LUTS only = 473-300= 173

= | 246 (Total of LEs using 4LUTS ONLY or DFF ONLY)
Report’s Overlapped resource = 227 (LEs using both 4LUTS and DFF)

Total number of LEs used = 473

In the following figure, the area where the two circles overlap represents the overlapped resources in the Resource
Usage report.

Figure 6-9. Overlapped Resources

LE Using
DFF
Only
(73)

LE Using
4LUTS Only
(173)

Global Net Report

The Global Net Report displays all the nets that use the global routing resources of the device. This report is
generated after the Place and Route step and is available in XML format in the Reports tab (Libero SoC >
Design>Reports > <design_name>_glb_net_report.xml).

The global routing resources in Microchip FPGA devices offer a low-skew network for effective distribution of high
fanout nets including clock signals. Global routing resources include the following:

* Fabric CCC

* Global Buffers (GB)

* Row Global Buffers (RGB)

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 90

Libero® SoC v2021.1

Implementing Designs

Figure 6-10. Global Net Report

k Reports & X

rammer reports
=l rammer

rammer_manifest. txt

<1 sram Global Net Report
sram_manifest.txt

= sram2 " b " I G -
sram2_manifest txt Microsemi Corporation - Microsem| Libero Software Release PolarFire v2.25P1 (Version 12 200.35.1)

= Synthesize

Date: Fri Jun 1 10:55:58 2018
synplify.log

/£ rammer.srr
run_options.txt
rammer_dsp_rpt.txt o
rammer_compile_n Global Nets Information
rammer_compile_n..
rammer_compil

From GB Location Net Name Fanout
= Place and Route
re 1 CLK_O_ibuf_RNIETQASUD (1165, 162) CLK_0_ibuf_RNIETQA/UO_Y 32
rammer_pinrpt_na s ;
rammer_pinrpt_nu 2 CLE_ibul_RNIVQOL/UO (1152, 162) CLE_ibuf_RNIVQO4/UD_Y 16

rammer_bankrpt.rpt
rammer_ioff.xml
¥ rammer_layout

110 to GB Connections

(none)

Fabric to GB Connections

From
From Liocailon To Net Name Net

1/ CLK 0 ibuf RNIETQA_CLK_GATING_ANDZ'Y ‘3?;

-
3

CLK_0_ibuf_RNIETQA/UD CLK_0_ibuf_Z_CLK_GATING ROLU

The following topics describe the sections in the Global Net Report.

6.9.1 Global Nets Information

Under Global Nets Information, the GB Location column refers to the location of the global routing resource/
instance name of the macro on the chip. The location is indicated by X-Y coordinates of the global resource macro.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 91

6.9.2

Libero® SoC v2021.1

Implementing Designs

Figure 6-11. Global Nets Information Section

Global Nets Information

From GB Location Net Name Fanout
1 | GB[4] (726, 156) reset_ctrl_i/R_core_reset_out_RNIFUQG/UO_YWn KLY
2 GBl[8] | (734, 158) pll_i/GLO_INST/UD_YWn 35488
3 | GB[19] | (741, 156) pll_i/GL3_INST/UD_YWn 2006
4 GB[13] (739, 158) reset_ctrl_iI/R_global_reset_RNIOT36/U0_YWn 1848
5 GB[14] (740, 156) pll_i/GL2_INST/UD_YWn_GEast 1104
6 GB[2] | (724, 156) serdes_i/SERDES_IF_O0/EPCS_1_RX CLK_keep RNIEDL3/U0_YWn 3514
T | GB[O] | (722, 156) serdes_i/SERDES_IF_0/EPCS_0_RX CLK_keep RNID1J5UO0_YWn 513
8 GB[3] |({725, 156) serdes_i/SERDES_IF_0/EPCS_2_RX CLK _keep RNIFPN1/U0_YWn 511
9 | GB[7] |(729, 156) serdes_ifpcs_gl_0_pcs_Ofrx_rst_n_i_0_RNI9T3C/UO_YWn 312
10 GB[11] (737, 136) serdes_ilpcs_gl_1_pcs_Ofrk_rst_n_i_0_RNIAGFA/UO_YWn 310
11 GB[1] | (723, 156) serdes_|/SERDES_IF_0/EPCS_0_TX CLK_keep RNIFLD&UO_YWn 178
12 GB[5] | ({727, 156) serdes_iISERDES_IF_0/EPCS_2_TX CLK_keep RNIHDI4/UO_YWn 178
13 GB[6] (728, 136) serdes_iISERDES_IF_O/EPCS_1_TX CLK_keep RNIG1G6/U0_YWn 178
14 GB[10] | (736, 156) SPI_SCLK_ibuf_RNIT4T&/U0_YWn_GEast 149
15 GB[9] | (735, 156) SRAM_CQ_ibuf RNIBNC/UO_YWn_GEast 111
16 GB[12] (738, 156) SRAM_CQn_ibuf_ RNIPMME/U0_Y Wn_GEast 18

I1/0 to GB Connections
The I/0 to GB Connections section lists all the I/Os connected to the Global Resource/instance name of the macro.
Figure 6-12. 1/0 to GB Connections Section

/0 to GB Connections

PortName Pin Number 1/O Function From From Location To Net Name Net Type Fanout
1 SPLSCLK |Da3 MSIO17TENB18 SPI_SCLK_ibulf UVU_IOIN-Y (6, 307) GB[10] SPI_SCLK_bul | ROUTED 1
2 SRAM_CQ .GIG DDRIO120NB2MDDR_DQ_ECCHCOC_NE1_CLKIA SRAM_CQ_ibutUYU_IOINY MNorth 10 #7 (1005, 313) | GBI SRAM_CQ_jbul | ROUTED 1
3 SRAM_CQn | F16 DORIO120PB2MDDR_DQ_ECCYGB1ZCCC_NE1_CLKIZ SRAM_COn_ibufiUO/U_IOPAD:Y | North 10 #6 {1002, 313) | GB[12] SRAM_COn_ibuf | HARDWIRED | 1

Table 6-9. Columns in the 1/0 to GB Connections Section

I/0O Function 1/0 connection details, such as the bank name, any

hardwired GB or hardwired CCC connections, and any
dedicated SERDES/DDR connections.
« For hardwired connections, the function
name (DDRIO120PB2/MDDR_DQ_ECC1/GB12/
CCC_NE1_CLKI2) contains the GB index (GB12 in
the example above) that matches the GB index in
the To column (GBL[12] in the example above).

For routed connections, the function name does not
contain the proper GB index.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 92

6.9.3

6.9.4

6.9.5

Libero® SoC v2021.1

Implementing Designs

........... continued
Net Type Routed or hardwired:

» Hardwired net types are dedicated wiring resources
and have lower insertion delays.

* Routed net types are implemented using fabric
routing resources and the insertion delay (generally
higher than hardwired nets) and vary from iteration
to iteration.

Fabric to GB Connections

The Fabric to GB Connections section lists all the nets originating from the fabric to the Global Resources/Instance
name of the macro. The From Location column refers to the X-Y coordinates of the driver pin of the net. The nets
are routed nets, not hardwired.

Figure 6-13. Fabric to GB Connections Section

Fabric to GB Connections

From From Location To Net Name Net Type Fanout
1 | reset_ctrl_¥R core_reset_out'Q .(720, 160) GB[4] .rese_ud_vcore_rese(_un ROUTED 1
2 1eset_clrl_VR_global_teset:Q {722, 160) GB[13] | reset_ctri_vglobal_reset_0 ROUTED 3
3 | serdes_USERDES_IF_(/SERDESIF_INST/INST_SERDESIF_IP EPCS_RXCLK_1 (72, 2) GB[2) |serdes_vSERDES_IF_O/EPCS_1_RX CLK ROUTED 1
4 | serdes_VSERDES_IF_O/SERDESIF_INSTANST_SERDESIF_IP-EPCS_RXCLK_0 (72, 2) GBI0] |serdes_VSERDES_JF_0/EPCS_0_RX_CUK ROUTED 1
5 serdes_VSERDES_IF_'SERDESIF_INST/INST_SERDESIF _IP.EPCS_RXCI.K[0] | (72, 2) GB[3] |serdes_VSERDES_IF_0WEPCS_2 RX CUK ROUTED 1
6 |serdes_vpcs_gi_0_pcs_O/rx_rst_n_i_0Y (269, 54) GB[7] |serdes_ipcs_gl 0 pcs_Oirx_rst_n_i 0_1 ROUTED | 1
7 | serdes_ipcs_g_1_pcs_O/mx_rst_n_|_0.Y (266, 96) GB[11] | serdes_vpcs_d.1.pcs_0/x_rst_n_t_0 ROUTED 1
8 | serdes_USERDES_IF_(/SERDESIF_INSTINST_SERDESIF_IP EPCS_TXCIK_ 0 | (72, 2) GB[1] |serdes_ySERDES_IF_O/EPCS_0_TX QLK ROUTED 1
o | serdes_/SERDES_IF_O'SERDESIF_INSTINST_SERDESIF_IP-EPCS_TXCLKI0] |(72, 2) GBIS) |serdes_VSERDES_IF_OEPCS_2 TX QLK | ROUTED | 1
10 serdes_USERDES_IF_0/'SERDESIF_INSTINST_SERDESIF_IP.EPCS_TXCLK_1 | (72, 2) GBI6] |serdes_VSERDES_IF_0/EPCS_1_TX QK ROUTED 1

CCC to GB Connections

The CCC to GB Connections section lists the nets originating from the Clock Conditioning Circuitry (CCC) outputs
(GLx) to the Global Resources/instance name of the macro. To minimize clock skew, CCC clock outputs usually are
hardwired dedicated connections to Global resources (GB).

Figure 6-14. CCC to GB Connections Section
CCC to GB Connections

From From Location To Net Name | Net Type Fanout
11 pll_IFCCC_INSTINST_CCC_IP:GLO | CCC-NEO (1428, SOE}IGB[B] pll_i/GLO_net HARDWIRED 1
2 pl_ifCCC_INST/INST_CCC_IP:GL3 CCC-NEO (1428, 302) GB[15] | pll_i/GL3_net HARDWIRED 1
3 pll_i/CCC_INST/INST_CCC_IP:GL2 | CCC-NED (1428, 302) | GB[14] pl_/GL2_net HARDWIRED | 1

CCC Input Connections
The CCC Input Connections section lists the nets from the 1/0 pins to the CCC inputs.
Net type can be routed or hardwired. Hardwired net types are dedicated wiring resources and have lower insertion

delays. Routed net types are implemented using fabric routing resources and the insertion delay (generally higher
than that of hardwired nets), varies from iteration to iteration.

Figure 6-15. CCC Input Connections Section

CCC Input Connections

PortName Pin Number VO Function From From Location To (Pin Swapped for Back Annotation Only) CCC Location NetName Net Type Fanout
1/FPGA_CLK P V12 MSIO35PBS/COC_NEQ_CLKIO pll_VCLKO_PAD_INST/U_IOPADP:IOUT_P East 10 #0 (1455, 112) pll_¥COC INSTANST_CCC_IP-CLKD_PAD OCC-NED (1428, 302) fixed clk | HARDWIRED 1

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 93

6.9.6

6.9.7

Libero® SoC v2021.1

Implementing Designs

Table 6-10. Columns in the CCC Input Connections Section

I/O Function 1/0 connection details, such as the bank name, any
hardwired GB or hardwired CCC connections, and any
dedicated SERDES/DDR connections. For hardwired
connections, the I/O function name contains the CCC
location (CCC_NEQ in the figure above).

To (Pin Swapped for Back Annotation Only) For hardwired connections, input pin of the CCC in the
back annotated netlist.

Local Clock Nets to RGB Connections

The Local Clock Nets to RGB Connections section lists the clock nets from the local clock nets to RGB (Row
globals). RGBs are situated on the vertical stripes of the global network architecture inside the FPGA fabric. The
global signals from the GBs are routed to the RGBs. Each RGB is independent and can be driven by fabric routing
in addition to being driven by GBs. This facilitates using RGBs to drive regional clocks spanning a small fabric area,
such as the clock network for SERDES.

Figure 6-16. Local Clock Nets to RGB Connections Section

Local Clock Nets to RGB Connections

From From Location NetMName Fanout RGB Location Local Fanout
1 serdes_i/pcs_gl_2 pes_O/mx_rst_n_i_0Y (216, 111) serdes_ilpcs_gl.2 pes_O/m_rst_n_i_0_ 0310 1 (364, 72) 15
2 (364, 75) 44
3 (364, 78) 37
4 (364, 81) 19
5 | (384, 84) 28
6 | (364, 87) 20
7 | (364, 20) 25
8 | (364, 93) 25
9 | (364, 96) 36
[10/ (364,09 |19
(1164, 102 |14
[12/ (@84, 111y |17
13| (364, 114) .11

Table 6-11. Columns in the Local Clock Nets to RGB Connections Sections

From Driver routed to different RGBs, each with different local
fanout.

From Location X-Y coordinates of the driver of the net.

Fanout Total fanout of the net and the local fanout column gives
the fanout at the local RGB only.

RGB Location X-Y coordinates on the chip.

RGB Fanout Fanout at the local RGB.

Global Clock Nets to RGB Connections
The Global Clock Nets to RGB Connections section lists all nets from Globals (GBs) to Row Globals (RGBs).

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 94

6.10

Libero® SoC v2021.1

Implementing Designs

Figure 6-17. Global Clock Nets to RGB Connections Section

Global Clock Nets to RGB Connections

From From Location Net Name

1 | GBR[16] | (736, 154) clk16_ibuf RNIGOL/UD_Y

Table 6-12. Columns in the Global Clock Nets to RGB Connections Section

Fanout

5003

[T == B > T 3 - S L B O S B

ARCIES, NN
BRRBRERIBog Iz arsn =3

27

RGB Location | Local Fanout

(1166, 114)
(1166, 120)
(1166, 123)
(1166, 129)
(1166, 132)
(1166, 135)
(1166, 138)
(1166, 141)
(1166, 144)
(1166, 147)
(1166, 150)
(1166, 156)
(1166, 159)
(1166, 162)
(1166, 165)
(1166, 168)
(1166, 171)
(1166, 174)
(1166, 177)
(1166, 180)
(1166, 183)
(1166, 186)
(1166, 189)
(1166, 192)
(1166, 195)
(1166, 198)
(1166, 201)

7
53
40
39
48
50
77
100
64
53
63
39
128
146
146
130
139
146
164
20
145
127
121
127
110
94
30

Hardwired to different RGBs each with different local

From
From Location

Local Fanout

Verify Post Layout Implementation

fanout.

X-Y coordinates on the chip. The Fanout column gives
the total fanout of the net.

Fanout local to RGB.

The following sections describe how to verify post-implementations of your design.

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 95

6.10.1

6.10.2

6.10.3

Libero® SoC v2021.1

Implementing Designs

Generate Back Annotated Files

The first step when verifying the post-layout implementation generates two files:
¢ *ba.sdf
* *ba.v/.vhd

The *ba. sdf file is a delay file in Standard Delay Format (SDF). It is used for back annotation to the simulator.

The *ba.v/.vhd file is a post-layout flattened netlist used for back-annotated timing simulation. The file can contain
low-level macros to improve design performance.

This step allows you to select Export Enhanced min delays for best case. Checking this option exports your
enhanced min delays to include the best-case timing results in your Back Annotated File.

Simulate - Opens ModelSim ME

The back-annotation functions are used to extract timing delays from your post layout data. These extracted delays
are placed into a file for use by your CAE package’s timing simulator. The default simulator for Libero SoC is
ModelSim ME. You can change your default simulator in your Tool Profile.

To perform pre-layout simulation, in the Design Flow Window, under Verify Pre-Synthesized design, double-click
Simulate.

To perform timing simulation:

1. Back-annotate your design and create your testbench.

2. Right-click Simulate in the Design Flow window (Implement Design > Verify Post-Synthesis
Implementation > Simulate) and choose Organize Input Files > Organize Simulation Files.

— In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the
Source Files in the Project list box. Files already associated with the block appear in the Associated
Source Files list box.

— In most cases, you will have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of PCI
cores, add multiple files to the Associated Source Files list.

— To add a testbench: Select the testbench you want to associate with the block in the Source Files in the
Project list box and click Add to add it to the Associated Source Files list.

— To remove or change the files in the Associated Source Files list box: select the files and click Remove.

— To order testbenches: Use the up and down arrows to define the order you want the testbenches
compiled. The top level-entity should be at the bottom of the list.

3. When you are satisfied with the Associated Simulation Files list, click OK.

4. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open Interactively.
ModelSim starts and compiles the appropriate source files. When the compilation completes, the simulator
runs for 1 microsecond and the Wave window opens to display the simulation results.

5. In the Wave window, scroll to verify the logic works as intended. Use the cursor and zoom buttons to zoom in
and out and measure timing delays. If you did not create a testbench with WaveFormer Pro, you may get error
messages with the vsim command if the instance names of your testbench do not follow the same conventions
as WaveFormer Pro. Ignore the error message and type the correct vsim command.

6. When you are done, from the File menu, choose Quit.

Verify Timing

Using the Verify Timing Configuration dialog box, you can configure the Verify Timing tool to generate a timing
constraint coverage report along with detailed static timing analysis and violation reports based on different
combinations of process speed, operating voltage, and temperature.

The following figures show an example of the Verify Timing Configuration dialog box.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 96

Libero® SoC v2021.1

Implementing Designs

Figure 6-18. Verify Timing Configuration Dialog Box — Report Tab

[87 Verify Timing Configuration ? *
Reports] Reports Settings]
Timing Report Explarer ;
|7 Interactive Report
Timing Reports
Multi Corner
[¥ Max Analysis Timing Multi Corner Repart
[Min Analysis Timing Multi Carner Repart
| Max Analysis Timing Violation Multi Corner Report
[Min Analysis Timing Violation Multi Corner Report
Slow process, Low voltage and Low temperature
[Max Delay Analysis Timing Report el
| Min Delay Analysis Timing Report
[Max Delay Analysis Timing Violations Report
| Min Delay Analysis Timing Viclations Report
Fast process, High voltage and Low temperature
| Max Delay Analysis Timing Report
[Min Delay Analysis Timing Report ﬂ

Help oK Cancel |

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 97

Libero® SoC v2021.1

Implementing Designs

Figure 6-19. Verify Timing Configuration Dialog Box — Report Settings Tab

[87 Verify Timing Configuration

Reports Reports Settings]

Format

Timing Report
Limit the number of reported paths per section:
Limit the number of expanded paths per section:

| Limit the number of parallel paths per expanded

Timing Violations Repaort
Limit the number of reported paths per section:
Limit the number of expanded paths per section:
| Limit the number of parallel paths per expanded

Maximum slack

Timing Report Explorer

Limit the max number of paths in Explorer:

[semaL

|5

|10

path to: |ID

|20

[10

path to: |1

[10

1000

Help

oK Cancel

The reports can be generated in XML or text format. The following table describes the report settings.
Note: If any options are left blank in the Report Settings tab, a tool tip error icon appears as shown in the following

figure.

Figure 6-20. Verify Timing Configuration Dialog Box - Tooltip Error

(X Verify Timing Configuration

Reports Reports Settings |

L >

=]

Format o
Timing Report
Limit the number of reported paths per section: |5

Limit the number of expanded paths per saction: |

=

Limit the number of parallel paths per expanded path to: |C|

Timing Violatons Report

O

|‘fnu must enter a number greatar than Il|

Limit the number of reported paths per saction: IZ‘EI

Limit the number of expanded paths per section: |l:l

Limit the number of parallel paths per expanded path to: [1

Masimum slack [o.0

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 98

Libero® SoC v2021.1

Implementing Designs

Table 6-13. Verify Timing Configuration Dialog Box Settings

T R N

Timing Report

Timing Violations Report

Timing Report
Explorer

Limit the number of reported paths
per section

Limit the number of expanded paths
per section

Limit the number of parallel paths per
expanded path to

Limit the number of reported paths
per section

Limit the number of expanded paths
per section

Limit the number of parallel paths per
expanded path to

Maximum Slack

Limit the max number of paths in
Explorer

Number of reported paths under
each section.
Range: 1 - 20000

Number of expanded paths under
each section.
Range: 1 - 20000

Number of parallel paths for each
expanded path.
Range: 1 - 20000

Number of reported paths under
each section.
Range: 1 - 20000

Number of expanded paths under
each section.
Range: 0 - 20000

Number of parallel paths for each
expanded path.
Range: 1 - 20000

Maximum slack threshold value in
nanoseconds. Paths are filtered
based on the slack threshold value
in Timing Violation reports.

Number of input paths in Timing
Report Explorer.

Range: 1 - 10000

Timing Report Explorer can also be
opened from Design Tab > Timing
Report Explorer.

After generating a report, the Timing
Report Explorer appears in Path
View as shown in the following
figure.

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 99

Libero® SoC v2021.1

Implementing Designs

Figure 6-21. Timing Report Explorer - Path View

| Voltage: 0.97 - Al S Max Ay | e Min Analyss |
{103V
;;‘:::;\ge: 50~ 100 All Paths save Save As
E.a:.: fia:s: | | Isousce oo | | Destnation Clock: A = | [sowce Tyoe: 1 | |Destraton Tyoe: A v | [Check Troe: A v | | More = Apghy | Path Yiew -
[Faters Courrs -
!ﬁ::i:smgmr Slack (ns) From/To EdgesArrival (ns)tequired (ns Source Clock Destination Clock perating Conditior o
g 1 |V 6585 From: .SRAM top ROCO/NST RAMIK20IPA... | RF 7592 14177 clock gen Ofclock.... clock gen O/clock_... |slow_ vt
et Cutmit 2 |W 6596 From: .SRAM_top ROCO/INST RAM1K20_IPA_... | RF 7581 14177 clock gen_0/clock_.. |clock gen Dfclock_... |slaw Iyt =
- 3 .V 6603 From: .8_g5/RAM_ROCO/INST_RAMIK20_IPA_.. | RF 7.576 14,179 clock_gen_O/clock_... |clock gen Ofclock_.. | slow vt

4 -V 6629 From: .SRAM top ROCO/INST_RAMIKZ0IPA_ .. | RF 7548 14,177 | clock_gen_0/clock_... |clock_gen_O/clock_.. |slow v it

5 -V 669 From: ..SRAM_top ROCO/INST RAMIKZ0IPA_ .. | RF 7487 14,177 cdlock_gen_0fclock_... |clock_gen_Dfclock_.. | slow Iv_It

(3 -V 6708 From: . SRAM top ROCOANST_RAMIK20PA_.. | RF 7469 14177 clock_gen_0fclock_... |clock_gen Ofclock_.. | slow_ v it

T -V 6721 From: .8_g5/RAM_ROCOANST RAMIK20IPA_.. | RF 74358 14,179 clock_gen_Ofclock_... clock gen O/fclock_ ... |slow v It

1 .V 68721 From:..2_g5/RAM_ROCO/INST RAMIKZO0 IPA .. | RF 7493 14.214 clock_gen_0fclock_... |clock gen_Ofclock ... |slow It

9 -V 6732 From: .8_g5/RAM_ROCO/INST RAMTK20IPA_.. | RF 7447 14.179 | clock_gen_0/clock_... |clock_gen_Dfclock_.. |slow v It

10 -V 6745 From: .8_g5/RAM_ROCOANST RAMIK20 IPA_.. RF 7434 14.179 clock_gen_0/clock_... |clock_gen_0/clock_.. |slow v it

11 -V 6784 From: .8_g5/RAM_ROCOANST RAMIK20IPA_.. | RF 743 14.214 clock_gen_0/clock_.. |clock_gen Ofclock .. | slow_iv_it

12 .V 6.786 From: .SRAM top ROCO/INST RAMTK20IPA_ .. | RF 739 14177 dlock_gen_Dfclock ... |clock gen Ofclock .. | slow v It -

In the figure above, click any path and select the Detailed view from the settings drop down list to display a detailed
view similar to the one in the following figure.

Figure 6-22. Timing Report Explorer - Detailed View

B Timing Report Explorer [active] - X
H = &
Voltage: 0.97 - 1.03 V S Max Analysis ¥ Min Analysis]
Speed: -1
Op_range: -40 - 100 C
Data State: Production All Paths Save Save As
Op_cond: slow_Iv_It
fast_hv_It [source Clock: Al | [Destination Clock: Al | [source Type: Al | [Destination Type: Al v | [check Type: AL+ | [More <] awey | Detailed View
slow_Iv_ht
Filters X 9914 From: ..hree_flops_with_en_0/DFN"4 | | Pin Name \Edge|Type |Cell Name]Net Name |0p| Delay (ns)|TotaI (ns)]Fanout
AllPaths : To :three flops with en O/DFN1 | [p, AT "
Input to Register ata Arrival Time Calculation
Register to Register X 4718 From: CLR clk_input_100mhz 0.000 0.000
Register to Output To :three flops 4/DFN1CO_2:ALr clk_input_100mhz r Clock source + 0.000 0.000
Input to Output X 4718 | Fom:CIR clkinput_100mhz_ibuf/.. r net cliinput 100mhz + 0,000 0.000
) 1% To : three_flops_4/DFN1CO_TALY clk input_100mhz_ibuf/.. r cell ADLIBIOPAD_IN + 0320 0320 2
S e || clk input 100mhz_buf .. © net clk input 100mhz.. + 0221 0541
e X ams 0 - three_flops_4/DFN1CO_O:ALr clk_input_100mhz_ibuf . roocell ADLIBICB_CLKINT + 0.084 0625 1
2 5 clk input 100mhz ibuf .. r net clk input 100mhz... + 0306 0931
min_4 X 1969 §;°m'_ Ll’i::’z:tang/%'mﬁ T clk_input_100mhz. ibuf . rocell ADLIB:GB + 0.121 1.052 1
e ToRs, = clkinput_100mhz_ibuf_.. r net clkinput_100mhz... + 0211 1.263
0¥ o | meiipatialn Sl clk input 100mhz ibuf .. f cel ADLIB:RGB + 0036 1.299 6
To_ :three flops 0/DFN1C0_0:D three flops_with en 0/D.. r net clk_input 100mhz.c + 0.298 1.507
3 47z |Fominputdata 12p5mhz ~three flops_withen 0/D... r cell ADLIB:SLE + 0078 1675 1
To :three flops 4/DFN1C0_0:D three flops with_en 0/D... r net three flops with_e... + 0.076 1751
X _sa3 From:reg_com.in data arrival time 1751
% To :DFNT_1D [Data Required Time Calculat...
FromEFeg Comn cli_input_100mhz Multicyle Const... 10.000 10.000
X 148a | .DFN1 2:D clk_input_100mhz r Clock source + 0.000 10,000
” From: input,data_100mhz - clkcinput 100mhz ibuf/.. r et cliCinput_100mhz ~ + 0000 10.000
10471357 e flops.3/DFN1CO.0:0 clk input 100mhz ibuf/.. r cell ADLIBIOPAD_IN + 0369 10369 E
P - clkinput_100mhz_ibuf_.. r net cliCinput_100mhz... + 0243 10612
W .goz |FemCLR clk_input_100mhz._ibuf . rocell ADLIB:ICB_CLKINT = 0.097 10.709 1
To_:threerflopsi2/DFNICOA:ALY clk_input_100mhz_ibuf .. r net clk_input_100mhz... + 0337 11.046
X 072 | From CIR clkinput_100mhz_ibuf_.. r cell ADLIB:GB + 04133 11179 1
To :three_flops 2/DFN1CO_2:ALr -~ clk_input_100mhz_ibuf . r o onet cli_input_100mhz.. + 0.232 11.411
g7, | From:CLR | clk input 100mhz ibuf .. f cell ADLIBRGB + 0042 11453 6
ﬁ] » three_flops_with_en 0/D... r net clk_input_100mhz_c + 0.337 11.790
1 | &

Observe the following guidelines:

» The following warning message appears if there are no paths for a selected filter: No paths were found to
match your filter. Choose another filter or try modifying your search criteria.
Cross Probing between Timing Report Explorer and Chip-Planner is supported for nets and cells.

Mousing over the Source/Destination clock combo boxes displays tool tips similar to the following:

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 100

6.10.4

Libero® SoC v2021.1

Implementing Designs

Figure 6-23. Example of Source Tool Tip

All Paths Save | Save As |
PF_CCC_CO_0/PF CCC_C0 0, | | Destination Clock: Al v | [Source Type: Al
Source Clock: All
P D O/P 0/0 0
Slack (ns) | | pF_ccc_co_0/PF_CCC_CO_0/pll_inst 0/0UTO] Edges | A
- From: .. ROM_O0/MACC PHYS O/INST_MACC IP:CLK .
1 | 17733 -ROM_0/ PHYS_O/INST_ = RF
To :..0/MACC_PHYS_0/INST_MACC_IP:CDIN[21]
From: .._ROM_Q/MACC_PHYS_0/INST_MACC_IP:CLK
2 | 17739 ML/ PHYSO/MNSL - RF
__TO 1 ...0/MACC_PHYS_0/INST_MACC_IP:CDIN[24]
From: .. ROM _O/MACC PHYS O/INST _MACC IP:CLK
3 (W 17742 ROM O PHISRANST. a RR
To :..0/MACC_PHYS_0/INST_MACC_IP:CDIN[16]
. From: .. ROM_0/MACC_PHYS 0O/INST_MACC IP:CLK
4 (17751 -ROM_0/ PHYS_0/INST_ = RR
To :..0/MACC PHYS 0O/INST MACC IP:CDINI[35]
v From: ..._0/data_pipe_O/delayLine_CF2[1]:CLK
5 v Y.L To :..Lline seashift 0 0/R DATA 0 inst:SLn RE
Figure 6-24. Example of Destination Tool Tip
;&MaxAna\ysis EMin Analysis I
All Paths Save Save As
‘Source Clock: All " ‘Desﬂ.natibon Clock: All - ‘Source Type: All " ‘Destination Type: All " ‘Check Type: All " ‘Mure " Apply | Path View
Esig?l%rl‘}j;;ﬁfi&stjoum [columns
2 7z;yri‘ﬁ::%;g(o,PF,CCCJ:O,O/PF,CCC,CU,O/PILinst,O/OUT% P (ns) | Required (s) | SourceClock | Destination Clock | Operating Condit
1(X 9914 $;°mi't"|:‘r'::;ffg’ss clk:m;]:;t:ZSmlr;;z: RR 1751 11,665 clk_input_100mhz dlk_input_100mhz fast_hv_t
- = = gen_clk_12p5mhz
2 | X ars ;:’mithfeeﬂopsﬁggﬁ’%ocgﬁnmhz RR 1927 6.645 clk_input_100mhz gen_clk_12p5mhz slow,_Iv_ht
:X 4718 ;;"m::f;ieﬂops’ PENTCoE RR 1.927 6.645 clk_input_100mhz gen_clk_12pSmhz slow_Iv_ht
A ;;om::f;ie,ﬂops,‘t/om1 . RR 1927 6.645 cli_input_100mhz gen_clk_12pSmhz slow_Iv_ht
I e oo A T = L e
B¢ 177 | e fops S/DPR1C000 i 8558 0331 e 0 O/l ns 0., PF-CCC €0 O/l nst 0., ot
7|X 172 ;;""“:E’::;:‘;i‘:;f/ﬁ"&?zcoio:la FF 5118 6.838 gen clk 12pSmhz gen_clk_12pSmhz slow_Iv_ht
:X -1.583 ;;omirsgﬁ?izén RR 1.303 2.886 reg_com_clk_10mhz reg_com_clk_10mhz slow_Iv_ht
:X 1484 ;:”“';g’:ﬁi’;é” RR 1.402 2.886 reg_com_clk_10mhz reg_com_clk_10mhz slow_Iv_ht

Types of Tim

ing Reports

From the Design Flow window > Verify Timing, you can generate the following reports. The following reports
organize timing information by clock domain. Four types of timing reports are available. To configure which reports to
generate, use the Verify Timing Configuration dialog box (Design Flow > Verify Timing > Configure Options).

© 2021 Microchip

Technology Inc.

User Guide

DS00003754B-page 101

Libero® SoC v2021.1

Implementing Designs

Table 6-14.

Timing reports The following reports can be generated:

» Max Delay Static Timing Analysis report based on
Slow process, Low Voltage, and High Temperature
operating conditions.

* Min Delay Static Timing Analysis report based on
Fast process, High Voltage, and Low Temperature
operating conditions.

+ Max Delay Static Timing Analysis report based on
Fast process, High Voltage, and Low Temperature
operating conditions.

* Min Delay Static Timing Analysis report based on
Slow process, Low Voltage, and High Temperature
operating conditions.

* Max Delay Static Timing Analysis report based on
Slow process, Low Voltage, and Low Temperature
operating conditions.

* Min Delay Static Timing Analysis report based on
Slow process, Low Voltage, and Low Temperature
operating conditions.

Timing violations reports Organizes timing information by clock domain. Four
types of timing violations reports are available. You can
configure which reports to generate using the Verify
Timing Configuration dialog box. The following reports
can be generated:

* Max Delay Analysis Timing Violation report
based on Slow process, Low Voltage, and High
Temperature operating conditions.

« Min Delay Analysis Timing Violation report
based on Fast process, High Voltage, and Low
Temperature operating conditions.

* Max Delay Analysis Timing Violation report
based on Fast process, High Voltage, and Low
Temperature operating conditions.

* Min Delay Analysis Timing Violation report
based on Slow process, Low Voltage, and High
Temperature operating conditions.

* Max Delay Analysis Timing Violation report
based on Slow process, Low Voltage, and Low
Temperature operating conditions.

* Min Delay Analysis Timing Violation report
based on Slow process, Low Voltage, and Low
Temperature operating conditions.

Constraints coverage report Displays the overall coverage of the timing constraints
set on the current design.
<root>_timing_constraints_coverage.xml (generated by
default)

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 102

6.10.5

6.10.5.1

Libero® SoC v2021.1

Implementing Designs

Figure 6-25. Reports Example
4 \erify Timing
pf_pcie_to_ddrd_top_max_timing_slow_h_ht.oml
? pf_pcie to_ddr3_top_min_timing_slow_kv_ht.xml
V pf_pcie_to_ddr3_top_max_timing_violations_slow_lv_ht.xml
? pf_pcie_to_ddr3_top_min_timing_violations_slow_bv_ht.xml
? pf_pcie_to_ddr3_top_max_timing_fast_hv_It.xml
pf_pcie_to_ddr3_top_min_timing_fast_hv_t.am|
? pf_pcie_to_ddr3_top_max_timing_violations_fast_hv_[t.xml
l’ pf_pcie_to_ddr3_top_min_timing_violations_fast_hv_ltxml
? pf_pcie_to_ddr3_top_max_timing_slow_iv_ltxml
? pf_pcie_to_dd3_top_min_timing_slow_Iv_lt.xml
V pf_pcie_to_ddr3_top_max_timing_violations_slow_lv_taml|
V' pf_pcie_to_ddr3_top_min_timing_violations_slow_Iv_lt.xml
pf_pcie to_ddr3_top_timing_constraints_coveragexml
pf_pcie_to_ddr3_top_timing_combinational_loopsxmi

The following tale describes the icons associated with reports.

Table 6-15. Report Listing Icon Legend

leon ——oemuion

v Timing requirement met for this report
X Timing requirement not met (violations) for this report
 §

Timing report available for generation but has not been selected/configured for generation

SmartTime

SmartTime is the Libero SoC gate-level static timing analysis tool. With SmartTime, you can perform complete timing
analysis of your design to ensure that you meet all timing constraints and that your design operates at the desired
speed, with the right amount of margin across all operating conditions.

For information about creating and editing timing constraints, see the Timing Constraints Editor User Guide.

Static Timing Analysis (STA)

Static timing analysis (STA) identifies timing violations in your design and ensures it meets your timing requirements.
You can communicate timing requirements and timing exceptions to the system by setting timing constraints. A
static timing analysis tool then checks and reports setup and hold violations as well as violations on specific path
requirements.

STA is well-suited for traditional synchronous designs. The main advantage of STA is that, unlike dynamic simulation,
it does not require input vectors. It covers all possible paths in the design and does all the above with relatively low
run-time requirements.

STA tools report all possible paths, including false paths. False paths are timing paths in the design that do not
propagate a signal. Because STA tools do not automatically detect false paths in their algorithms, you need to identify
false paths as false path constraints to the STA tool and exclude them from timing considerations to obtain a true and
useful timing analysis.

Timing Constraints
SmartTime supports a range of timing constraints to provide useful analysis and efficient timing-driven layout.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 103

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smarttime_ce_ug.pdf

6.10.5.2

6.10.5.3

6.10.5.4

6.10.5.5

6.10.6

Libero® SoC v2021.1

Implementing Designs

Timing Analysis
SmartTime provides analysis types that allow you to:
» Find the minimum clock period/highest frequency that does not result in a timing violations
» Identify paths with timing violations
* Analyze delays of paths that have no timing constraints
* Perform inter-clock domain timing verification
* Perform maximum and minimum delay analysis for setup and hold checks

To improve the accuracy of the results, SmartTime evaluates clock skew during timing analysis by computing
individual clock insertion delays for each register.

SmartTime checks the timing requirements for violations, such as multicycle or false paths, while evaluating timing
exceptions.

SmartTime and Place and Route

Timing constraints impact analysis the same way they affect place and route. As a result, adding and editing timing
constraints in SmartTime is the best way to achieve optimum performance.

SmartTime and Timing Reports
The following report files can be generated from SmartTime > Tools > Reports:

» Timing Report (for both Max and Min Delay Analysis)

» Timing Violations Report (for both Max and Min Delay Analysis)
* Bottleneck Report

» Constraints Coverage Report

» Combinational Loop Report

SmartTime and Cross-Probing into Chip Planner
From SmartTime, you can select a design object and cross-probe the same design object in Chip Planner. Design
objects that can be cross-probed from SmartTime to Chip Planner include:

* Ports

* Macros

* Timing Paths
For more information, see the SmartTime User’s Guide (Libero SoC > Help > Reference Manual > SmartTime
User’s Guide).

SmartTime and Cross-Probing into Constraint Editor

From SmartTime, you can cross-probe into the Constraint Editor. Select a Timing Path in SmartTime’s Analysis View
and add one of the following Timing Exception Constraints:

* False Path
* Multicycle Path
* Max Delay
* Min Delay

The Constraint Editor reflects the newly added timing exception constraint.

For more information, see the SmartTime Static Timing Analyzer User Guide.

Verify Power
In the Design Flow window, right-click Verify Power to display following menu options.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 104

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smarttime_sta_ug.pdf

6.10.7

Libero® SoC v2021.1

Implementing Designs

Figure 6-26. Verify Power Right-click Menu

Tool

1+

+

v -
v

ol e e o e

Create Design
Constraints
Implement Design

: ? Open Metlist Viewer

b R . .

S Synthesize
P Verify Post-Synthesized Design
+L| Generate Simulaticn File
. Simulate
% Place and Route
P Verify Post Layout Implementation

- Verify Timing
£ Open 55N Analyzer Run
Configure Hardware Clean and Run All

Program Design
Debug Design
Handoff Design for Producti Clean
Handoff Design for Debuggi

Open Interactively

Help

The following table describes the options.

Table 6-16.

opion e

Run

Clean and Run All

Open Interactively

Clean

Configuration Options

View Report

Runs the default power analysis and produces a power
report. This option is functionally equivalent to double-
clicking.

functionally equivalent to the sequence of Clean and
Run (described below).

Displays the SmartPower for Libero SoC tool (see
below)

Clears the history of any previous default power
analysis, including deletion of any reports. The flow task

completion icon v will also be cleared.

If there are options to configure, a dialog box displays
technology-specific choices.

If a report is available, clicking this option adds the
Report tab to the Libero SoC GUI window and Power
Report will be selected.

Verify Power sub-commands
Run - Runs the default power analysis and produces a power report. This is also the behavior of a double-click to

Verify Power.

Clean and Run All - Identical to the sequence of commands "Clean" (see below) and "Run"

Open interactively - Brings up the SmartPower for Libero SoC tool (see below)

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 105

6.10.8

6.10.9

Libero® SoC v2021.1

Implementing Designs

Clean - Clears the history of any previous default power analysis, including deletion of any reports. The flow task

completion icon ‘; will also be cleared.

Configure Options ... - This sub-command is only available if there are options to configure, in which case a dialog
box will pop-up presenting the user with technology-specific choices.

View Report - This sub-command is only available and visible if a report is available. When View Report is invoked,
the Report tab will be added to the Libero SoC GUI window, and the Power Report will be selected and made visible.

SmartPower

SmartPower is the Microchip SoC state-of-the-art power analysis tool. SmartPower allows you to visualize power
consumption and potential power consumption problems within your design globally and in-depth, so you can make
adjustments to reduce power.

SmartPower provides a detailed and accurate way to analyze designs for Microchip SoC FPGAs. From a top-level
summaries, you can drill down specific functions within the design, such as gates, nets, I/Os, memories, clock
domains, blocks, and power supply rails.

You can analyze the hierarchy of block instances and specific instances within a hierarchy. Each analysis can be
viewed in different ways to show the respective power consumption of the component pieces.

SmartPower allows you to analyze power by functional modes, such as Active, Flash*Freeze, Shutdown, Sleep,
or Static, depending on the specific FPGA family used. You can also create custom modes created in the design.
Custom modes can also be used for testing "what if" potential operating modes.

SmartPower allows you to create test scenario profiles. Using a profile, you can create sets of operational modes to
understand the average power consumed by a combination of functional modes, such as a combination of Active,
Sleep, and Flash*Freeze modes used over time in an application.

SmartPower generates detailed hierarchical reports of the power consumption of a design for easy evaluation. This
allows you to find power consumption sources and take appropriate action to reduce power.

SmartPower supports the Value-Change Dump (VCD) file format, as specified in the IEEE 1364 standard, generated
by the simulation runs. Support for this format allows you to generate switching activity information from ModelSim
or other simulators, and then use the switching activity-over-time results to evaluate average and peak power
consumption for your design.

For more information, see the SmartPower User Guide.

Simultaneous Switching Noise

Simultaneous Switching Noise (SSN) is the Libero SoC voltage noise analysis tool. It provides a detailed analysis
of the noise margin about each I/O pin in the design, based on the pin information and other active pins placed in
the same 1/O bank of the design. The tool computes the noise margin based on I/O standards, drive strength, and
pin placement. The SSN Analyzer helps you achieve the desired voltage noise margin, resulting in improved signal
integrity.

To open the SSN Analyzer, right-click SSN Analyzer in the Design Flow window and select Open Interactively.

6.10.10 Supported Dies and Packages

The following shows supported dies and packages. Dies and packages for which characterization data is unavailable
are not supported.
Note: In the following table, 1 ns pulse width is supported for MPF300XT/FCG1152 only.

Table 6-17. Supported Dies and Packages

I N R

PolarFire MPF300XT FCG1152
= MPF100T FCG484
— MPF200T FCG484

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 106

https://coredocs.s3.amazonaws.com/Libero/12_4_0/Tool/smartpower_ug.pdf

Libero® SoC v2021.1

Implementing Designs

..... continued

T R = S

FCG484/FCG1152

6.10.11 Supported I/O Standard
The SSN Analyzer supports the following I/O standards:

LVCMOS 3.3V
LVCMOS 2.5V
LVCMOS 1.8V
LVCMOS 1.5V
LVCMOS 1.2V
LVTTL

6.10.12 Supported I/O Types
The SSN Analyzer supports single-end I/Os only. Differential I/Os are not supported.

6.10.13 SSN Analyzer Tabs

MPF300T

MPF500T

The SSN Analyzer has three tabs:

Noise Report
Excluded I10s
Summary

6.10.13.1 Noise Report Tab

The Noise Report tab displays by default when the SSN Analyzer opens. This tab lists all of the design Output and
Inout ports. Input I/Os are not supported.

Figure 6-27. SN Analyzer — Noise Report Tab

FCG1152

£2 SSNAnalyzer | a0
| File Edrt View Hep
20 a
NoseReoort | Bxcheied 03 | Summary
Port Name ¢ Search Puise Width : (s -
Bank Name/ Pin Number Port Name Instance Name 10 Standard Drive Strength (mA) Static Oon'tCare Nose Margin (%) Within Guidefine "
4 Banko (L.5v)
Al6 wr wr_obul/U0/U_IOPAD LVCMON5 4 v 9901 Yes
ALS datao{28) datao_obuf|28)/10/U_JOPAD LVCMOSIS 4 9901 Yes
4 Banka 3.3v) £
128 datao]29) datao_obuf{29)/10/U_ICPAD LVTTL] 9338 Yes W
12 dataof25) datac_obuf[25)/U0/U_IOPAD LVCMOS33 4 9833 Yes
4 Bank2 (2.5v)
dataold) datao_obuf[d]/U0/U_IOPAD LVCMOS25 12 -1166 No
N26 addressl[7] address 1_obuf{71A0N_10P LVCMOS25 16 911 No
M8 address1[4] address 1 OO JOP. LVCMOS25 16 -50.88 No |
K30 addressi[3] oddress1_obuflSUOUIOP. LVEMOS2S 16 -1166 No
N7 addressi(2] address1_obuf{2}AU0N_JOP. LVCMOS25 16 -2504 No
M27 address1[25] eddress1_obuf{25]AAIEO. LVCMOS25 16 7485 No
128 address1[24) a6Gress1_obuf[23) Uo/U_IO. LYCMOS25 16 WA No
P23 address1(23] 2édress1_obuf[23) AW0AI_EO LVCMOS25 16 -7210 No
M26 address1(22] address1_obui22) A0N_210 LVCMOS25 16 -3203 No
N2S address1[21] address1_obufi21] U0V IO . LVCMOS2S 16 5880 No
Q8 address1[20] address]_obvf{20U0V_I0 .. LVCMOS25 16 1362 No
N2¢ addressi[1] adéress]_obuf{2]AJOAI_IOP.. LVCMOS2S 16 -49.89 No
P28 address1[19] address 1_obuf[1SJU0AS_10 LVCMO525 16 -59.92 No
29 addressl(15] address1_obufl15]AM_30. LVCMOS25 16 -76.35 No
2z addressi[14] a3 1_obuf{14ANN_IO LVCMOS25 16 6278 No
130 address1[13] address1_obuff13)UOA 30 LVCMOS2S 16 -7503 No
P30 addressi(12] address1_obuf[12J O JO LVCMOS25 16 100.00 Yes
4 Bank3 (2.5v)
ABY mio mio_obuf/U0/U_IOPAD LVCMOS25 6 7052 Yes
w29 datao{20) datao_obuf{20)/U0/U_ICPAD LVCMOS25 12 7407 Yes
u2s dataol15) datao_obuf[15)/U0/U_ICPAD LVCMOS25 12 6875 Yes
ataalld Axtan ahufNALLOAL IBDAD__JMCALOCS. 2 LS W— Ve
{ Run Analyss] [smﬂm(]
Ready Fam:Smartfugon2 | Die:M2S0S0T (PRQ:896 FBGA |Speed: -1
The following table describes the columns in the tab.
User Guide DS00003754B-page 107

© 2021 Microchip Technology Inc.

Libero® SoC v2021.1

Implementing Designs

Table 6-18. Columns in the Noise Report Tab

Bank Name/Pin Number Shows the bank number and package pin number of the
port.

Port Name Shows the name of the port.

Instance name Shows the instance name of the port.

I/O Standard Shows the I/O standards supported by SSN Analyzer.

Supported standards are:
+ LVCMOS 3.3V
+ LVCMOS 2.5V
« LVCMOS 1.8V
« LVCMOS 1.5V
» LVCMOS 1.2V

* LVTTL
Drive Strength (mA) Drive Strength selections are available from 2 to 12.
Static Checked: I/0 is considered neither as an Aggressor nor

as a Victim. It is excluded from SSN Analysis.

Don’t Care Checked: 1/0 is excluded from consideration as a Victim
for Noise Margin computation. This is considered as an
Aggressor for Noise Margin computation of other 1/Os.
Note: Static and Don’t Care are mutually exclusive.

Noise Margin (%) Noise margin number computed by the SSN Analyzer.
A red negative number indicates that it is outside the
guideline of SSN analysis.

Within Guideline Yes (Positive Noise Margin) or No (Negative Noise
Margin). The Yes (within guideline) or No (outside
guideline) guideline is different for different I/O
standards:
* LVTTL/LVCMOS (3.3V): Yes (within guideline) is
defined as follows:
— A ground bounce voltage less than or equal to
1.25V and a pulse width of less than or equal
to 1 ns.

— A VDD dip voltage greater than or equal to
VIHmin and a pulse width of less than or equal
to 1 ns.

» All other LVCMOS standards (2.5V, 1.8V, 1.5V,
1.2V): A Yes (within guideline) is defined as follows:

— A ground bounce voltage less than or equal to
VILmax for ground bounce and a pulse width
of less than or equal to 1 ns.

— A VDD dip voltage greater than or equal to
VIHmin and a pulse width of less than or equal
to 1 ns.

» Noise margin violating the criteria for “Yes” is
considered to fall outside the specified guidelines,
and is reported as a “No.”

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 108

Libero® SoC v2021.1

Implementing Designs

The following table describes the menu items available when you right-click an 1/0 in the Noise Report tab. You can
select multiple 1/0Os and then right-click to apply the menu items to all selected 1/Os.

Table 6-19. Noise Report Right-Click Menu

L N

Show in |0 Editor/Chip Planner

Mark Selected Static

Unmark Selected Static

Mark Selected Don’t Care

Unmark Selected Don’t Care

Copy Selection

Print Selection

Sort by Package Die Pad Number

Search and Filter

Pulse Width

Allows you to cross-probe or reconfigure the selected
1/Os in I/O Editor or Chip Planner.

Note: This menu item is active when the I/O Editor is
open.

Marks the selected I/Os as static (excluded from Noise
Analysis).

Unmarks the selected 1/Os as static (included for Noise
Analysis).

Marks the selected I/O as Don’t Care (not to be
considered as Victim).

Unmarks the selected I/0Os as Don’t Care (to be
considered as Victim).

Copies the selected 1/Os to the Clipboard for pasting into
other applications.

Copies the selected 1/0s and sends to the printer.

Sorts the pin number by the order of the 1/0 pad number.
Use this option to find a pin and its neighboring pins.

All used pins are arranged in order of geographical
proximity.

Filtering is available for Port Names. For example, if

you enter the search pattern “DATA*” in the Port Name
field and click Search, the list is populated with all I/O
names beginning with DATA. Names that do not begin
with DATA are excluded from the list. Filtering allows you
to focus on I/Os in which you are interested for SSN
analysis.

Settling time of the signal bounce. This is a threshold
value that the signal bounce must exceed before
the signal bounce is recognized for SSN calculation.
Choices are:
» Ons: any signal bounce with a pulse width above
Ons is recognized for SSN calculation.

* 1ns: only signal bounces with a pulse width at or
above 1ns are recognized for SSN calculation.

Changing this selection discards changes made for the
current pulse width selection and triggers a re-analysis
based on the new pulse width.

Note: 1 ns pulse width is supported for the MPF300XT/
FCG1152 die/package only.

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 109

Libero® SoC v2021.1

Implementing Designs

........... continued

e e

Run Analysis

Save Report

6.10.13.2 Excluded I/Os Tab

not active when SSN first opens. It is activated only
when you have made changes in the Noise Report.
These changes may include one or more of the
following:

» Checking/unchecking the Don’t’ Care check box for
one or more |/Os.

» Checking/unchecking the Static check box for one
or more |/Os.

When you have made your changes, click Run Analysis
to have SSN recompute the Noise Margin number.

Click to save the Noise Report in one of the following
formats:
« Text: Text file with * . txt file extension.
* CSV: Spreadsheet file with * . csv file extension.
e XML: XML file with * . xm1 file extension.

The Excluded I/O tab shows all I1/0s excluded from Noise Analysis. Excluded 1/Os include:

* 1/Os on unsupported I/O standards
* 1/Os marked as Static in the Noise Analysis tab
» JTAG 1/Os for which noise analysis is irrelevant

Figure 6-28. SSN Analyzer — Excluded 1/Os Tab

((% SSNAnalyzer

]

Bank2 (2.5v)
Bankl (3.3v)
4 Bank0 (1.5v)
D15
D14

datao[10]
datao[11]

datan_obuf[10]/U0/U_IOPAD
datao_obuf[11]/U0/U_IOPAD

Noise Report | Excuded I0s summary
Bank Name/Pin Humber Port Name Instance Name 10 Standard Comment
Banka (2.5v)
Bank7 (2.5v)
Banké (1.2v)
4 Bank5 (1.8v)
AKI9 ast? ast2_obuf/U0/U_IOPAD LPDDRI 10 Standard is not supported
AE2T astl astl_obuf/U0/U_IOPAD LPDDRI 10 Standard is not supported
AELS datao[30] datao_obuf[30]/U0/U_I0PAD SSTL18I I0 Standard is not supported
Bank3 (2.5v)

HSTLL
HSTLI

10 Standard is not supported
IO Standard is not supported

The following table describes the columns in the tab.

F‘am‘:Sman.:F.usianZ DlaMESDSDT PkgSQsFBGA Sﬁeed:.—l

Note: You can right-click an 1/O previously marked as static in the Excluded 1/Os list and select Unmarked

Selected Static to include it in Noise Report Analysis.

Table 6-20. Columns in the Excluded I/Os Tab

Bank Name/Pin Number

Shows the bank number and package pin number of the
port.

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 110

Libero® SoC v2021.1

Implementing Designs

........... continued

Port Name Shows the name of the port.

Instance name Shows the instance name of the port.

I/O Standard Shows the I/O standards supported by SSN Analyzer.

Supported standards are:
 LVCMOS 3.3V
* LVCMOS 2.5V
+ LVCMOS 1.8V
+ LVCMOS 1.5V
+ LVCMOS 1.2V
e LVTTL

Comment Reason for exclusion (for example, unsupported I/O

Standards or Marked as Static I/Os).

6.10.13.3 Summary Tab

The Summary tab summarizes the SSN Analyzer. Click Save Summary to save the summary in text, CSV, or XML
format.

Figure 6-29. SSN Analyzer - Summary Tab

SSNAnalyzer

Window Menu Help
2 B8
Noise Report Excluded 10s Summary
SSN Analyzer Summary:
Vendor: Microsemi Corporation
Program Microsemi Libero Software, Release Polarfire v2.25P1 (Version 12.200.35.1)

Copyright (C) 1989-2018
Date Mon Jun 4 13:12:00 2018

Version 1.0

Family : PolarFire
Die MPF300XT
Package FCG1152
Speed : STD

Pulse Width :1ns
SSN Analyzer Status : Successful

DRC Violations
None

Save Summary

Fam:PolarFire |Die:MPF300XT Pkg:FCG1152 Speed: STD

6.10.14 SSN Noise Analyzer Reports Failure Procedure
If the SSN Noise Analyzer reports poor noise margin or failure, perform the following procedure to improve the noise

margin:

1. Change the I/O standard to one that has a lower noise impact for the failing 1/0 Bank.

2. Select the lower Drive-Strength to reduce the noise. Open the 1/0O Advisor to see the power/timing impact of
the specific I/O cell.

3. Rerun the SSN Analyzer to see if the noise margin of the I/O Cell improves. In this scenario, Place and Route
information remains intact.

4. If the improvement is not significant, open the Pin Attributes Editor and change the placement of the pin within
the 1/0 bank to a location farther away from the noisy pins.

5. Spread the failing pins across multiple 1/0 banks. This reduces the number of aggressive outputs on the power

system of the 1/0O bank.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 111

Libero® SoC v2021.1

Implementing Designs

6. Rerun Place and Route and rerun SSN Analyzer to check the Noise Report.

Figure 6-30. SSN Analyzer in the Design Flow

s¥nthesis

Compile

Place & Route

Change |0

Re- Configure 10

Pir- Placement

55N Analyzer

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 112

7.1

711

Libero® SoC v2021.1

Configure Hardware

Configure Hardware

The following sections provide information about configuring the hardware for your designs.

Programming Connectivity and Interface

The Programming Connectivity and Interface window shows the physical chain from TDI to TDO or SPI Slave
configuration. To open this window, expand Configure Hardware in the Libero SoC Design Flow window, and then
double-click Programming Connectivity and Interface.

The Programming Connectivity and Interface view provides options for performing the following actions on non-target
devices.

Table 7-1. Programming Connectivity and Interface Options

e e]

Select Programming Interface Select JTAG or SPI Slave mode. SPI Slave mode is
supported by FlashPro6 for PolarFire devices. JTAG is
the default interface.

Construct Chain Automatically Constructs the physical chain automatically.

Add Microsemi Device Adds a Microsemi device to the chain.

Add Non-Microsemi Device Adds a non-Microsemi device to the chain.

Add Microsemi Devices From Files Adds a Microsemi device from a programming file.

Delete Selected Devices Deletes selected devices in the grid.

Scan and Check Chain Scans the physical chain connected to the programmer
and check if it matches the chain constructed in the grid.

Zoom In Zooms into the grid.

Zoom Out Zooms out of the grid.

Hover Information
If you hover your pointer over a device in the grid, the device tooltip shows the following device information.

Table 7-2.

Name User-specified device name. If you have two or more
identical devices in your chain, use this field to give them
unique names.

Device Name of the device.
File Path to the programming file.
Programming action When a programming file is loaded, select a

programming action for any device that is not a Libero
design device.

IR Length of the device instruction.

TCK Maximum clock frequency, in Hz, to program a specific
device; Libero uses this information to ensure the
programmer operates at a frequency lower than the
slowest device in the chain.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 113

Libero® SoC v2021.1

Configure Hardware

71.2 Device Chain Details
The device within the chain has the following details.

Table 7-3. Device Chain Details

I =

Libero design device Red circle within Microsemi logo. Libero design device
cannot be disabled.

Left/right arrow Moves the device left or right according to the physical
chain.
Enable device Enables the device for programming.

« Green: device is enabled.
» Gray: device is disabled.

Name Name of your specified device.

File Path to the programming file.

71.3 Right-Click Options
The following figure shows the options that appear when you right-click your design.

Figure 7-1. Right-click Properties

Reports & X Programming Connectivity and Interface®* & X I StartPage & X | ¥
21
l.i
=
H
2
*
G)\ Configure Device...
v Enable Device for Programming...
Load Programming File...
Set Serial Data...
Select and Configure Action/Procedures...
Move Device Left...

Right-clicking a device displays the following options.
Table 7-4. Right-Click Options

N

Set as Libero Design Device Sets the Libero design device when there are multiple
identical Libero design devices in the chain.

Configure Device Reconfigures the device. For a Libero SoC target device,
the dialog box appears, but only the device name can be
edited.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 114

Libero® SoC v2021.1

Configure Hardware

........... continued

e e

Enable Device for Programming Enables the device for programming.
» Green: enabled devices.
» Gray: disabled devices.

Load Programming File Loads the programming file for the selected device. This
option is not supported for Libero SoC target design
devices.

Set Serial Data Displays the Serial Settings dialog box, where you can
set your serialization data.

Select and Configure Action/Procedure This option applies to devices other than the Libero SoC
target design device. Choices are:

» Select an action to program: Selected action is
programmed in the Libero environment and saved
to an exported FlashPro Express job.

» Configure actions and procedures:

— Actions: List of programming actions for your
device.

— Procedures: Advanced option that allows you
to customize the list of recommended and
optional procedures for an action.

Move Device Left/Right Moves the device in the chain to left or right.

7.2 Select and Configure Actions and Procedures

The Libero SoC allows you to configure actions and procedures for devices other than the Libero SoC target design
device and select an action to program in the Libero environment. You perform these actions using the Configure
Actions and Procedures dialog box.

To display the Configure Actions and Procedures dialog box, in the Programming and connectivity interface, right-
click a non-target device and choose Select and Configure Actions/Procedures.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 115

7.3

Libero® SoC v2021.1

Configure Hardware

Figure 7-2. Configure Actions and Procedures Dialog Box

@ Configure Actions and Procedures X

Device: M2S005
Select an action to program

proGRamM 4

Configure actions and procedures

Actions Procedures

DEVICE_INFO
ENC_DATA_AUTHENTICATION
ERASE

PROGRAM

READ_IDCODE

VERIFY

VERIFY_DIGEST

KOKEEE

Help | OK I Cancel

The following table describes the elements in the Configure Actions and Procedures dialog box.

A

Table 7-5. Elements in the Configure Actions and Procedures Dialog Box

N R

Select an action to program The selected action will be programmed in the Libero
environment.

Configure actions and procedures Configure actions and procedures:

» Actions: List of programming actions for your
device.

* Procedures: Advanced option that allows you to
customize the list of recommended and optional
procedures for an action.

Note: You cannot select an action or configure actions
in the chain view for the target device. To configure
actions for Libero target devices, use the Configure
Actions and Procedures tool.

Programmer Settings

For the JTAG interface, you can set specific voltage and force TCK frequency values for your programmer. For the
SPI Slave interface, you can set specific voltage and force SCK frequency values for your programmer. You perform
these actions using the view the Programmer Settings dialog box.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 116

Libero® SoC v2021.1

Configure Hardware

To display the Programmer Settings dialog box, in the Libero SoC Design Flow window, expand Configure
Hardware and double-click Configure Programmer

OR

Right-click Configure Programmer and choose Programmer Settings.
Note: SPI Slave mode is supported by FlashPro6 for PolarFire devices.
Figure 7-3. Programmer Settings Dialog Box (FlashPro6)

[E7 Programmer Settings x

FlashPro6/Embedded FlashPros l FlashPro5 FlashProd | FlashPro3
JTAG interface

TCK Mode: Discrete Clocking

orce Tequency
[Force TCKF
4 MHz

mbedded FlashPro& on iCide Kit supper a z and above,
o Embedded FlashProé on iCide Kit ts TCK at 4MH. d abs
TCKis forced at 4MHz when lower frequency is selected.

SPI Slave interface (FlashPro6 only)

SCK Mode: Free Running Clock

[Force SCK Frequency

20.00 MHz

Set Defaults

|
|
| Help OK | Cancel

The Programmer Settings dialog box has options for FlashPro6/5/4/3/3X. The following table lists the TCK frequency
limitations for the selected programmer:

Table 7-6. TCK Frequency Limitations

FlashPro6 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20 MHz

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 117

7.31

7.3.2

7.3.3

7.4

Libero® SoC v2021.1

Configure Hardware

........... continued

FlashPro5 1,2,3,4,5,6, 10, 15, 30 MHz
FlashPro4 1,2,3,4,5,6 MHz
FlashPro3/3X 1,2,3,4,6 MHz

For information about TCK frequency limits by target device, see the target device data sheet.

During execution, the frequency set by the FREQUENCY statement in the PDB/STAPL file overrides the TCK
frequency setting in the Programmer Settings dialog box. To prevent this override, check Force TCK Frequency

The following list shows the SCK frequency limitations for the selected programmer:
+ 1.00 MHz
+ 2.00 MHz
+ 250 MHz
+ 3.33 MHz
* 4.00 MHz
+ 5.00 MHz
* 6.67 MHz
+ 8.00 MHz
+ 10.00 MHz
+ 13.33 MHz
+ 20.00 MHz

FlashPro5/4/3/3X Programmer Settings

By default, Force TCK Frequency is not checked. This setting instructs the FlashPro5/4/3/3X to use the TCK
frequency specified by the Frequency statement in the PDB/STAPL file(s). If you check Force TCK Frequency,
select the appropriate MHz frequency.

For FlashPro4/3X settings, you can switch the TCK mode between Free Running Clock and Discrete Clocking.
By default, TCK Mode is set to Free Running Clock. Use Discrete Clocking when there is a JTAG non-compliant
device in a chain with Microchip devices.

After you make your selections, click OK.

Note: The Set Vpump check box has been removed. For older projects prior to Libero SoC v12.5, if Set Vpump
was checked , the warning "Set Vpump parameter is obsolete. VPUMP will not be sensed or
driven for all devices." appears in the log window when the design opens for the first time in Libero SoC
v12.5.

TCK Setting (Force TCK Frequency)
If Force TCK Frequency is checked in Programmer Setting, the selected TCK value is set for the programmer and
the Frequency statement in the PDB/STAPL file is ignored.

Default TCK Frequency

If the IPD/STAPL file or Chain does not exist, the default TCK frequency is set to 4 MHz. If more than one Microchip
flash device is targeted in the chain, the FlashPro Express software passes through all the files and searches for the
freq keyword and the MAX_FREQ Note field. The FlashPro Express software uses the lowest value of all the TCK
frequency settings and the MAX_FREQ Note field values.

Select Programmer
The Select Programmer dialog box allows you to select the programmer you want to use.

To display the Select Programmer dialog box, in the Libero SoC Design Flow window, expand Configure Hardware
and double-click Select Programmer.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 118

Libero® SoC v2021.1

Configure Hardware

OR
Right-click Select Programmer.

Use the drop-down list to select the programmer you want to use. If no programmers are connected, connect a
programmer without closing the dialog box, and then click Refresh/Rescan Programmers to display the connected
programmer in the drop-down list.

Figure 7-4. Select Programmer Dialog Box

Refresh/Rescan Programmers

Programmer

89313 ~|

Type: FlashPro4

Port: usb89313 (USB 2.0)

Help | OK Cancel | ‘

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 119

8.1

8.2

Libero® SoC v2021.1

Program Design

Program Design

The following topics provide program design considerations.

Generating FPGA Array Data

The Generate FPGA Array Data tool generates database files used in the following downstream tools:
* *_map files used for Programming
* RAM structural information used in Configure Design Initialization and Memories tools

To generate FPGA array data:

1. Make sure the design completed the Place and Route step. If not, Libero SoC runs the upstream tools
(Synthesis, Compile Netlist, and Place and Route) implicitly before it generates the FPGA Array Data.

2. Double-click Generate FPGA Array Data or right-click Generate FPGA Array Data in the Design Flow
window and click Run

Figure 8-1. Generate FPGA Array Data
Design Flow g X

Top Maodule{root): top

Active Synthesis Implementation: synthesis

Tool

Create Design
Constraints
Implement Design
Configure Hardware

-
+--[F-F-F

b

Vo #l Generate FPGA Array Data
*L| Configure Design Initialization Data and Memories
*_| Generate Design Initialization Data
“&5ay Configure /0 States During JTAG Programming
» Configure Programming Options
@ Configure Security
i3 Generate Bitstream
i@ Run PROGRAM Action
Program 5Pl Flash Image
Debug Design
Handoff Design for Production
Handoff Desian for Debuaaing

v W i

Initializing Design Blocks

The Configure Design Initialization Data and Memories tool allows you to initialize design blocks such as LSRAM,
uSRAM, XCVR (transceivers), and PCle using data stored in non-volatile uPROM, sNVM, or external SPI Flash
storage memory. The tool has the following tabs for defining the specification of the design initialization sequence and
the specification of the initialization clients:

» Design Initialization tab
+ uPROM tab

* sNVMtab

* SPI Flash tab

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 120

8.21

Libero® SoC v2021.1

Program Design

+ eNVM tab (applies to PolarFire SoC only)
» Fabric RAMs tab

Note: The Configure Design Initialization Data and Memories tool can be invoked only after completing the
Generate FPGA Array Data step.

Use the tabs in the tool to configure the design initialization data and memories. If a tab title has an asterisk (*) next
to it, it means an item on that tab has been changed but not yet applied. The following table describes the buttons
common to every tab.

Table 8-1. Common Buttons on Every Tab

Buon T e

Apply Click this button to save the changes made in a tab.
The Apply button saves configuration changes only. For
the initialization of the memory block to take effect,
click Generate Initialization Clients on the Device
Initialization tab.

Discard Click this button to cancel any changes made in a tab.

After completing the configuration, perform the following steps to program the initialization data:

1. Generate initialization clients.
2. Generate or export the bitstream.
3. Program the device.
When importing memory files, note that the option Use relative path allows you to choose the relative to project or

relative to environment variable, depending on the setting used in Libero. This option is extended to all memory files
that are referenced in various configurators, as well as to sSNVM/uPROM/SPI-Flash update tools.

Figure 8-2. Import Memory File Dialog Box

B Import Memory File 7 x
Look in: C:Wsers\C51990'Downloads'yn2s_m2g.. ric\libero_project\sF2\simulation = Q =] 0 ﬁﬁ; [E] E]
- My C... Marne Size Type Date Modified
z C5199¢ postsynth File..Ider 11/21/2019 12:52 PM
presynth File..Ider 3/3/2017 2:46 PM
|] ENVM_init.mem ¢ Dbytes mem File 3/3/2017 8:45 PM
€< >
File name: |EN1-'M_init.mem | I Open
Files of type: | Microsemi-Binary Files (*.mem) - Cancel
(®) Use absolute path (file will not be copied if you move the design)
e () Use relative path
() Copy memory file to project directaory

Design Initialization Tab

Design Initialization is the first tab in the Configure Design Initialization Data and Memories tool. The following
topics describe the options in this tab.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 121

8.2.11

Libero® SoC v2021.1

Program Design

Figure 8-3. Design Initialization Tab

Desian Initialization uFROM} VM WSPl Flash} Fabric RAMs} VM }

Apply ‘

‘ Help |

In design initialization, user design blocks such as LSRAM, PSRAM, transceivers, and PCIe can be initialized as an option using data stored in the non-volatile storage memory.

The initialization data can be stored in pPROM, sNVM, or an external SPI Flash.

Follow the below steps to program the initialization data:

1. Set up your fabric RAMSs initialization data, if any, using the 'Fabric RAMS' tab
2. Define the storage location of the initialization data

3. Generate the initialization clients

4. Generate or export the bitstream

5. Program the device

Design initialization spedification

First stage (sNVM)

In the first stage, the initialization sequence de-asserts FABRIC_POR_N.
@ ¥ Broadcast instructions to initiaize RAMs to zeros

ion sequence initializes the PCIe and XCVR blocks present in the design.

Third stage (sNVM/UPROM/SP1-Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design.

To save the initialization instructions in sNVM/uPROM/SPL-Flash, please use "Fabric RAMs' tab to make your selection for each RAM client.

Time Out (s):

Auto Calibration Time Out (ms): 3000

Custom configuration file: [

- |

First Stage (sNVM)

In the first stage, the initialization sequence de-asserts the FABRIC_POR _N signal and starts the 1/O calibration
routine. The initialization client for this stage is always placed in sNVM. It uses the last two pages of the sSNVM

memory space. There is one configuration option for this stage.

Figure 8-4. Design Initialization Tab - First Stage

Desian lnmahzannn‘ UPROM } VM }SPl Flash} Fabric RAMs} VM }

Apply ‘ ‘ Help |

In design initialization, user design blocks such as LSRAM, JSRAM, transceivers, and PCIe can be initialized as an option using data stored in the non-volatile storage memory.

The initialization data can be stored in pPROM, sNVM, or an external SPI Flash.

Follow the below steps to program the initialization data:

1. Set up your fabric RAMSs initialization data, if any, using the 'Fabric RAMS' tab
2. Define the storage location of the initialization data

3. Generate the initialization clients

4. Generate or export the bitstream

5. Program the device

Design initialization specification

First stage (sNVM)

In the first stage, the initialization sequence de-asserts FABRIC_POR_N.
@ ¥ Broadcast instructions to initialize RAMs to zeros

ion sequence initializes the PCIe and XCVR blocks present in the design.

Third stage (sNVM/UPROM/SP1-Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design.
To save the initialization instructions in sNVM/uPROM/SPL-Flash, please use "Fabric RAMs' tab to make your selection for each RAM client.

Time Out (s):

Auto Calibration Time Out (ms): 3000

Custom configuration file: [

© 2021 Microchip Technology Inc. User Guide

DS00003754B-page 122

8.2.1.2

8.21.3

Libero® SoC v2021.1

Program Design

Table 8-2. First Stage Configuration Option

Broadcast instructions to initialize RAMs to zeros Affects all LSRAM and uSRAM blocks in the device.
Selecting this option initializes all RAM blocks to zeros
before FABRIC PoR is asserted. To accommodate the
additional instructions, the sNVM start page will be 202.
To initialize the individual logical RAM blocks to zeros
without using this global option, select the Content filled
with Os option in the Add Data Storage Client dialog
box, and then wait for the corresponding RAM INIT
complete signal before accessing those RAMs (see the
PolarFire FPGA Device Powerup and Reset User Guide,
which describes the INIT DONE/COMPLETE signals).

If this global option is not selected, the sNVM start page
will be 219.

Second Stage (sNVM)
In the second stage, the initialization sequence initializes the PCle and XCVR blocks present in the design. This
stage is grayed out if the design does not have PCle or XCVR Blocks.

The initialization client for this stage is named INIT_STAGE_2_SNVM_CLIENT. It is always placed in sSNVM at the
start address of your choice. The start address can be at the start of an SNVM page (page boundary) only.

Each sNVM page is 256 bytes in size, so the valid start hexadecimal addresses are 0x0, 0x100, 0x200, and so on.
Only the plain text non-authenticated client is supported for initialization.

Figure 8-5. Design Initialization Tab - Second Stage

Desian lnmahzanun‘ UPROM } ShivM }SPl Flash} Fabric RAMs} VM }

In design initialization, user design blocks such as LSRAM, pSRAM, transceivers, and PCle can be initialized as an option using data stored in the non-volatile storage memory.
The initialization data can be stored in pPROM, sNVM, or an external SPI Flash.

Follow the below steps to program the initialization data:

1. Set up your fabric RAMSs initialization data, if any, using the 'Fabric RAMs' tab
2. Define the storage location of the initialization data

3. Generate the initialization clients

4. Generate or export the bitstream

5. Program the device

Design initialization specification
First stage (sNVM)

In the first stage, the initialization sequence de-asserts FABRIC_POR_N.
@ ¥ Broadcast instructions to initilize RAMs to zeros

JFSecond stage (=)

In the second stage, the alization sequence initializes the PCIe and XCVR blocks present in the design.

“Third stage (sNVM/UPROM/SP1-Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design.
To save the initialization instructions in sNVM/uPROM/SPI-Flash, please use "Fabric RAMs' tab to make your selection for each RAM client.

] src er val
Time Out (3): 128 =l
Auto Calibration Time Out (ms}: 3000
Custom configuration file: [

Third Stage (UPROM/sNVM/SPI Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design. The initialization client
for this stage is placed in the memory type of the user’s choice (UPROM/sNVM/External SPI Flash). If the design
does not have any Fabric RAMs, this stage of the initialization sequence is not needed and is grayed out. Each
logical RAM block can be initialized from any of the three memory types. Use the Fabric RAMs configuration tab to
assign the memory type to the logical RAM blocks.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 123

http://www.microsemi.com/index.php?option=com_docman&%3Btask=doc_download&%3Bgid=136530

Libero® SoC v2021.1

Program Design

Only the memory types used by the design, as defined in the Fabric RAMs configuration tab, are selected and
enabled.

Figure 8-6. Design Initialization Tab - Third Stage
Desian lnmahzannr\‘ UPROM 1 sMNVM WSPl Flashw Fabric RAMS} eNvM 1

Apply ‘ Discard ‘ Help |

In design initialization, user design blocks such as LSRAM, PSRAM, transceivers, and PCIe can be initialized as an option using data stored in the non-volatile storage memory.
The initialization data can be stored in pPROM, sNVM, or an external SPI Flash.

Follow the below steps to program the initialization data:
1. Set up your fabric RAMSs initialization data, if any, using the 'Fabric RAMS' tab
2. Define the storage location of the initialization data
3. Generate the initialization clients
4. Generate or export the bitstream
5. Program the device
Design initialization specification

First stage (sNVM)

In the first stage, the initialization sequence de-asserts FABRIC_POR_N.
@ ¥ Broadcast instructions to initiaize RAMs to zeros

In the second stage, the

N sequence ializes the PCIe and XCVR blocks present in the design.

Start address for second

“Third stage (sNVM/UPROM/SP1-Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design.
To save the initialization instructions in sNVM/uPROM/SPL-Flash, please use "Fabric RAMs' tab to make your selection for each RAM client.

=] SPT Clock divider value: [2(20 MHz)

Time Out (s): [128 =
Auto Calibration Time Out (ms): 3000

Custom configuration file: [-

Table 8-3. Memory Types

uPROM Name of the initialization client is
INIT_STAGE_3_UPROM_CLIENT. Its start address is at
the user's choice, subject to the limitation that the start
address can only be at the start of a uPROM block. Each
uPROM block is 256 words, so the allowed hexadecimal
start addresses are 0x0, 0x100, 0x200, and so on.

sNVM Name of the initialization client is
INIT_STAGE_3_SNVM_CLIENT. Its start address is at
the user's choice, subject to the limitation that the start
address can only be at the start of an sSNVM page (page
boundary). Each sNVM page is 256 bytes long, so the
allowed hexadecimal start addresses are 0x0, 0x100,
0x200, and so on.

SPI-Flash Name of the initialization client is
INIT_STAGE_3_SPIFLASH_CLIENT.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 124

Libero® SoC v2021.1

Program Design

........... continued

SPI-Flash Binding The four Binding options that you can select are:

* No Binding Plaintext: <root> uic.binfileis a
script file that can be opened to see readable text.

* Binding Encrypted with Default Key:
<root> uic.bin file is encrypted with the default
encryption key. The design version is displayed
and can be modified from Configure Programming
Options. If Default key is selected, you do not need
to specify any other details.

* Binding Encrypted with User Encryption Key 1
(UEK1): <root> uic.bin file is encrypted with
UEKH1. The design version is displayed and can
be modified from Configure Programming Options.
You must configure SPM along with UEK1. If
UEK1 is not specified, the Generate SPI Flash
Image and Export SPI Flash Image steps cause an
error. UEK1 can be configured using the Configure
Security Tool.

» Binding Encrypted with User Encryption Key 2
(UEK2): <root> uic.bin file is encrypted with
UEK2. The design version is displayed and can
be modified from Configure Programming Options.
You must configure SPM along with UEK2. If
UEK2 is not specified, the Generate SPI Flash
Image and Export SPI Flash Image steps cause an
error. UEK2 can be configured using the Configure
Security Tool.

SPI Clock divider value Sets the clock divider value for the clock that is
generated by the System Controller. Choose the value
that meets the minimum clock width requirement of the
external SPI Flash.

Range: 1,2,4,6

Default: 2

8.2.1.4 Time Out (s)

Use the Time Out (s) drop-down list to select a time-out for completing all three stages of the initialization process.
The default setting is 128, which is the maximum value.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 125

Libero® SoC v2021.1

Program Design

Figure 8-7. Design Initialization Tab - Time Out (s)
Desian lnmahzannr\‘ UPROM 1 sMNVM WSPl Flashw Fabric RAMS} eNvM 1

In design initialization, user design blocks such as LSRAM, PSRAM, transceivers, and PCIe can be initialized as an option using data stored in the non-volatile storage memory.
The initialization data can be stored in pPROM, sNVM, or an external SPI Flash.

Follow the below steps to program the initialization data:

1. Set up your fabric RAMSs initialization data, if any, using the 'Fabric RAMS' tab
2. Define the storage location of the initialization data

3. Generate the initialization clients

4. Generate or export the bitstream

5. Program the device

Design initialization spedification

First stage (sNVM)

In the first stage, the initialization sequence de-asserts FABRIC_POR_N.
@ ¥ Broadcast instructions to initiaize RAMs to zeros

Third stage (sNVM/UPROM/SP1-Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design.
To save the initialization instructions in sNVM/uPROM/SPL-Flash, please use "Fabric RAMs' tab to make your selection for each RAM client.

I\ Time Out {s): [128 i||
T

Auto Calibration Time Out (ms):

Custom configuration file: [

8.2.1.5 Auto Calibration Time Out

8.2.1.6

The Auto Calibration Time Out value specifies the time-out before which the 1/O calibration instructions must be

completed. The default value is 3000 milliseconds. This time-out value applies to MPF100T, MPF200T, MPF300T,
and MPF500T devices.

Figure 8-8. Design Initialization Tab - Auto Calibration Time Out
Design lnmahzahnn‘ uPROM 1 sNVM WSPl Flashl Fabric RAMS} eNvM 1

In design initialization, user design blocks such as LSRAM, pSRAM, transceivers, and PCle can be initialized as an option using data stored in the non-volatile storage memory.
The initialization data can be stored in pPROM, sNVM, or an external SFI Flash.

Follow the below steps to pragram the initialization data:

1. Set up your fabric RAMs initialization data, if any, using the 'Fabric RAMs' tab

2. Define the storage location of the initialization data

3. Generate the initialization clients

4. Generate or export the bitstream

5. Program the device

Design initialization specification
First stage (sNVM)

In the first stage, the initializati d

rts FABRIC_POR_H.
@ [Broadcast instructions to initialize RAMS to zeros

lization sequence initializes the PCIe and XCVR blocks present in the design.

Third stage (sNVIM/uPROM/SPI-Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design.
To save the initialization instructions in sNVM,

fuPROM/SPI-Flash, please use "Fabric RAMs' tab to make your selection for each RAM client.

Time Out (5): 128 =

I‘ Auto Calibration Time Out (ms): |3000 I
"

Custom configuration file: |

Custom Configuration File

The Custom Configuration file contains signal integrity parameters for Transceivers. Click the Browse button at the

far right to navigate to and select a custom configuration file for Transceiver solutions. For more information, contact
Microchip Technical Support.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 126

8.2.2

Libero® SoC v2021.1

Program Design

Figure 8-9. Design Initialization Tab - Custom Configuration File

Desian lnmahzannn‘ UPROM 1 VM WSPl Flash} Fahn:RAMs] VM]

In design initialization, user design blocks such as LSRAM, PSRAM, transceivers, and PCIe can be initialized as an option using data stored in the non-volatile storage memory.
The initialization data can be stored in pPROM, sNVM, or an external SPI Flash.

Follow the below steps to program the initialization data:

1. Set up your fabric RAMSs initialization data, if any, using the 'Fabric RAMS' tab
2. Define the storage location of the initialization data

3. Generate the initialization clients

4. Generate or export the bitstream

5. Program the device
Design initialization specification

First stage (sNVM)

In the first stage, the initialization sequence de-asserts FABRIC_POR_N.
@ ¥ Broadcast instructions to initiaize RAMs to zeros

Second stage (sNVIM)

In the second stage, the initialization sequence initializes the PCIe and XCVR blocks present in the design.
Start address for second stage intislization dlient: 0x |00000000

Third stage (sNVM/uPROM/SP1-Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design.

To save the initialization instructions in sNVM/uPROM/SPL-Flash, please use "Fabric RAMs' tab to make your selection for each RAM client.
[start address for snvM dients:

I™ start address for uPROM dlents:

[start address for 5P1-Flash dlients: 0x |00000400

SPI-Flash Binding:]SPl-F\ash - No-binding Plaintext M_I SPI Clock divider value: |2(40 MHz) i
Time Out (s): 128 £|i
Auto Calibration Time Out (ms): 3000
|‘ Custom configuration file: [Jl

uPROM Tab

uPROM is the second tab in the Configure Design Initialization Data and Memories tool. Use this tab to manage data
clients targeted for uPROM memory.

Figure 8-10. uPROM Tab

-
Design Inmallzauan sNVM 1 SPL F\ash] Fabric RAMs I eNVM I

Apply | Discard | Help |
Usage statistics Clients
Available memory(9-bit words): 52224 Add ... " Edit ... | Delete | Load design configuration |
Used memory({2-bit words): 0 - -
B e : 52924 Client Mame | Start Address | 9-bit words |

oA

Add button
Edit button

Delete button

The following table describes the elements in the uPROM tab.
Table 8-4. Elements in the uPROM Tab

Adds uPROM clients.
Edits uPROM clients.
Deletes uPROM clients.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 127

Libero® SoC v2021.1

Program Design

...continued

s EEeww]

Load Design Configuration button Loads the design’s original uPROM configuration file into

the <project>/component/work/UPROM. cfq file.
This button is grayed out if the design does not have an
original uPROM configuration file.

This configuration changes when the design is updated
in the design window. If changes are made to the design
configuration after you click Apply, info icons appear next
to the Load design configuration button and the title of
the uPROM tab.

The tool-tip for both icons contains the time-stamp
information of the design configuration file. The icons
disappear the next time you click Apply.

Usage Statistics pie chart Shows memory usage for the uPROM.

8.2.21 Adding uPROM Clients

1.

2.
3.
4

In the uPROM tab, click Add.

When the Add Data Storage Client dialog box appears, complete the fields (see the following figure and table).
Click OK.

Click the Apply button. The client is added to the uPROM clients table.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 128

Libero® SoC v2021.1

Program Design

Figure 8-11. Add Data Storage Client Dialog Box

B Add Data Storage Client

Client name:

UPROM

{* Content from file: |

Format:

" Content filled with 0s

|I'~"Ii|:rn:-semi Binary 9-bit j

Start address: 0x |III

Mumber of 9-bit words: |

| Use for initizlization of RAMS

I Use content for simulation

Help

Decimal

QK Cancel |

Table 8-5. Add Data Storage Client Dialog Box

Fow T o

Client name

Content from file

Format

Content filled with Os
Start address

Name of the uPROM client to be added.

Navigate to and select a file whose content will be used
to fill the uPROM.

Memory file types. Choices are:
* Micro Binary 9-bit (default)
* Micro Binary 32-bit
¢ Intel-Hex
» Motorola-S
+ Simple-Hex

Populates the uPROM with zeros.

Start address, in hexadecimal notation, of the uPROM
client. If there are multiple uPROM clients, the

start address must not overlap; otherwise, a warning
message appears.

Range: 0 — CBFF (Hex)

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 129

8.221.1

8.2.2.2

Libero® SoC v2021.1

Program Design

........... continued
Feld Descripfon
Number of 9-bit words Number, in decimal notation, of 9-bit words to populate
the uPROM. If the number of 9-bit words exceeds
the memory size of the uPROM, an “out-of —bounds”
warning message appears.
Use for initialization of RAMs Disabled and unavailable.
Use content for simulation Disabled and unavailable.

uPROM Clients Table
The uPROM clients table shows the uPROM clients you add.

Each uPROM client appears on its own row. After you add a uPROM client, you can select it in this table to edit or
delete the client.

Figure 8-12. uPROM Clients Table

Desian Inalizaton UPROM | sNVM | SP1Ftash | FabricRams | envm |

Apply | Discard | Help |
Usage statistics Clients
Awvailable memory(3-bit words): 52224 Add ... |v Edit... | Delete | Load design configuration
Used memory{3-bit words): 100 ; ;
e (P T R EIT 52124 Client Name] Start Address] 9-bit words

ju‘l 0x0 100

-
I | »

Table 8-6. Columns in the uPROM Clients Table

Client Name Name you gave to the client.
Start Address Starting address you gave to the client.
9-bit words Number of 9-bit words in the client.

Editing uPROM Clients
If you need to change the settings for a uPROM client, you can edit the client.

To edit a uUPROM client:
1. Inthe table of the uPROM tab, perform one of the following steps:
— Double-click the client you want to edit.
— Click the client you want to edit, and then click the Edit button.
— Right-click the client you want to edit, and select Edit.
2. When the Edit Data Storage Client dialog box appears, complete the fields (see the following table).

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 130

Libero® SoC v2021.1

Program Design

3. Click OK.
4. Click the Apply button.
Table 8-7. Edit Data Storage Client Dialog Box

N

Client name Read-only field that shows the name of the uPROM
client.

Content from file Navigate to and specify a file whose content will be used
to fill the uPROM.

Content filled with Os Populates the uPROM with zeros.

Start address Start address, in hexadecimal notation, of the uPROM

client. If there are multiple uPROM clients, the

start address must not overlap; otherwise, a warning
message appears.

Range: 0 - CBFF (Hex)

Number of 9-bit words Number, in decimal notation, of 9-bit words to populate
the uPROM. If the number of 9-bit words exceeds
the memory size of the uPROM, an “out-of —bounds”
warning message appears.

Use for initialization of RAMs Disabled and unavailable.
Use content for simulation Disabled and unavailable.

8.2.2.3 Deleting uPROM Clients
If you no longer need a uPROM client, you can delete the client.

A warning message does not appear before you delete a client. Therefore, be sure you no longer need a
client before you delete it.

A\ CAUTION

To delete a uPROM client:
1. Inthe table at the bottom of the uPROM tab, perform one of the following steps:
— Click the client you want to delete, and then click the Delete button.
— Right-click the client you want to delete, and select Delete.
2. Click the Apply button.

8.2.3 sNVM Tab

sNVM is the third tab in the Configure Design Initialization Data and Memories tool. Use this tab to manage data
clients targeted for sNVM memory. The table in the tab is automatically populated if Broadcast instructions to
initialize RAM’s to zero’s is checked in the Design Initialization tab.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 131

Libero® SoC v2021.1

Program Design

Figure 8-13. sNVM Tab with Broadcast Option Enabled

Desian Intilzation | uPROM @} SPL Flash | Fabric Ravs |

Apply | Discard Help
Usage statistics Clients
Avalable memory (n pages): | 221 Add ... " Edit .. | Delete | Load design configuration |
Used memory (in pages): 18
ECRE S 28 Client Name | Start Page | Number of bytes ‘
j INIT_STAGE_1_SNVM_CLIENT | 202 4376
[] Used space o d
] Free space
-

t
Figure 8-14. sNVM Tab without Broadcast Option Enabled

Desian Initilization | uPROM @ | sPrFiash | Fabricrams|

w |

Apply Discard
Usage statistics Clients
G Brara(=r b Add .. |v Edit. | Delete Load design configuration
Used memry (in pages): 2
(= = 20 Client Name ‘ Start Page ‘ Number of bytes ‘
j INIT_STAGE_1_SNVM_CLIENT 219 504

[] Used space
[] Free space
-

‘0

The following table describes the elements in the sNVM tab.
Table 8-8. Elements in the sNVM Tab

T =

Add button Adds sNVM clients.
Edit button Edits sSNVM clients.
Delete button Deletes sNVM clients.
User Guide DS00003754B-page 132

© 2021 Microchip Technology Inc.

Libero® SoC v2021.1

Program Design

........... continued

o [EEeww]

Load Design Configuration button Loads the design’s original SNVM configuration file into
the <project>/component/work/sNVM. cfg file.
This button is grayed out if the design does not have an
original sSNVM configuration file.

This configuration changes when the design is updated
in the design window. If changes are made to the design
configuration after you click Apply, info icons appear next
to the Load design configuration button and the title of
the sNVM tab.

The tool-tip for both icons contains the time-stamp
information of the design configuration file. The icons
disappear the next time you click Apply.

Usage Statistics pie chart Shows available, used, and free memory, in pages, for
all sSNVM clients.

8.2.3.1 Adding sNVM Clients

1. Inthe sNVM tab, click the Add drop-down list, and then select the client you want to add (see the following
figure).
Figure 8-15. sNVM Client Selections

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 133

Libero® SoC v2021.1

Program Design

Desian Initialization | uPROM shyM ISPI Flash | Fabric RaMs | evM |

Apply | Discard ‘ Help ‘
Usage statistics Clients
Available memory {in pages): 221 Add ... |v Edit... | Delete Load design configuration |
Used memory (in pages): 20]]]
Free memory (in pages): 201 Add PlainText NonAuthenticated Client BT | Wil e |
Add PlainText Authenticated Client
. . . 2 4384
Add CipherText Authenticated Client 1
Add Boot Mode 2 PlainText Authenticated Client 224
Add Boot Mode 2 CipherText Authenticated Client | 12

Add USK Client -

| Used space
Free space

2. Complete the fields in the dialog box, and then click OK (see the following sections).
3. Click the Apply button. The client is added to the sNVM clients table.

8.2.3.1.1 Settings for Add PlainText and Add CipherText Clients
In the sNVM tab, click the Add drop-down list, and then select the Add Plain Text NonAuthenticated Client to add
the client to the sSNVM clients table.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 134

Libero® SoC v2021.1

Program Design

Figure 8-16. Add Plain Text NonAuthenticated Client Dialog Box

| W7 Add PlainText NonAuthenticated client ? *
| Clientname: ||
[—shvm
T Content from file: |
Format: |Microsemi-ginary af16/32bit x|

Base Address: ¥ 0x|00000000
" Content filed with Os
* No content (client is a placeholder and will not be programmed)
Start page (decmal): m 0x0
Mumber of bytes (dedmal):] 0 page

|_ Use content for simulation
Fabricaccess Read ¥ wirite [
M55 access Read ¥ wirite [

Help oK Cancel |

Table 8-9. Fields in the Add PlainText NonAuthenticated Client Dialog Box

o]

Client name Name of the sSNVM client to be added.

Content from file Navigate to and specify a file whose content will be used
to fill the sNVM.
Note: If you select the format Intel-HEX, the Base
address specified is subtracted from user address
records. Intel-Hex files have Extended Linear and
Extended Segment addresses. The Complete Starting
address of the Linear or Segment address in the Hex
file must be specified. For example, if the Intel-Hex file
has the Extended Linear address 2022, specify the base

address 20220000.
Content filled with Os Populates the sSNVM with zero’s.
No content Client is a placeholder and will not be programmed.
User Guide DS00003754B-page 135

© 2021 Microchip Technology Inc.

Libero® SoC v2021.1

Program Design

........... continued
Fed Descripon |

Start page Start page, in decimal notation, of the sNVM client.
sNVM client address starts at page boundaries. If there
are multiple sSNVM clients, their start page cannot be the
same; otherwise, a warning message appears.

Range: 0 — 220 (decimal)

Number of bytes Total number, in decimal notation, of bytes to populate
the sNVM. If the number of bytes exceeds the memory
size of the sNVM, an out-of-bounds warning message
appears.

Range: 1 — 47376

Use content for simulation Check if this client should be loaded for the simulation
run.

Fabric access Allows you to read from Fabric, write to Fabric, or both.

MSS access Allows you to read from MSS, write to MSS, or both.

8.2.3.1.2 Settings for Boot Mode 2 Clients
In this boot mode, you specify the start page in SNVM. All authenticated/encrypted clients will share the same USK. If
you add authenticated/encrypted clients, you must create a USK client to specify the USK.

Figure 8-17. Add PlainText Authenticated Boot Mode 2 Client Dialog Box

= Add PlainText Authenticated Boot Mode 2 client | ? %]

VM
(* Content from file: |
Format: | Intel Hex |
Base Address: i) 0x| 00000000
Start page (decimal): lo =~ ox0

tes (decmal): |0 g oo

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 136

Libero® SoC v2021.1

Program Design

Figure 8-18. Add CipherText Authenticated Boot Mode 2 Client Dialog Box

Add CipherText Authenticated Boot Mode 2 client |2

ShivT

* Content from file:

]

Format: | Intel-Hex

Base Address: i Ox! 00000000

Start page (decimal):

b |

=1 ox0

0 page

Table 8-10. Fields in the Boot Mode 2 Client Dialog Box

R e

Client name

Content from file

Format

Base Address

Start page

Read-only field that shows the name of the sNVM client.

Navigate to and specify a file whose content will be used
to fill the sNVM.

Note: If you select the format Intel-HEX, the Base
address specified is subtracted from user address
records. Intel-Hex files have Extended Linear and
Extended Segment addresses. The Complete Starting
address of the Linear or Segment address in the Hex
file must be specified. For example, if the Intel-Hex file
has the Extended Linear address 2022, specify the base
address 20220000.

Memory file types. Choice is Intel-Hex. The Intel-Hex file
is generated using Soft Console.

Base address that is subtracted from the user address
records for Intel-Hex files.

Start page, in decimal notation, of the sNVM client.
sNVM client address starts at page boundaries. If there
are multiple sSNVM clients, their start page cannot be the
same; otherwise, a warning message appears.

Range: 0 — 220 (decimal)

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 137

Libero® SoC v2021.1

Program Design

........... continued
Flld Deseripton |
Number of bytes Read-only field that shows the total number of bytes

to populate the sSNVM. The value is shown in decimal
notation. If the number of bytes exceeds the memory
size of the sSNVM, an out-of-bounds warning message
appears.

Range: 1 — 47376

8.2.3.1.3 Settings for Add USK Clients
Figure 8-19. Add USK Client Dialog Box

% Add USK Client |2 S

This dient holds the USKE, Itis always 1 page in size.

4|k

Start page (dedmal): b Ox0

USK Key (24 HEX chars): Ox &

Eﬂ Reprogram
[Use content for simulation

Use-as ROM

Help [ok || cancel |

L ']

Table 8-11. Fields in the Add USK Client Dialog Box

Fog T e

Start page Start page can vary between 0 and 220.

USK Key USK key (24 hexadecimal characters). A random key
can be generated by clicking the padlock icon to the right
of this field.

Reprogram Check if this client should be programmed.

Use content for simulation Check if this client should be loaded for the simulation
run.

Use as ROM Check if this client should be used as ROM.

8.2.3.1.4 sNVM Clients Table
The sNVM clients table shows the sNVM clients you add.

Each sNVM client appears on its own row. After you add an sNVM client, you can select it in this table to edit or
delete the client.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 138

8.2.3.2

Libero® SoC v2021.1

Program Design

Figure 8-20. sNVM Clients Table
Desian Initialization | LPROM sNVM } SPI Fiash | Fabric RAMs |

Apply | Discard ‘ Help |

Usage statistics —Clients

SAieme oy Ripance 2t Add ... 1' Edit ... | Delete | Load design configuration ‘

Used memory (in pages): 32

LEECEE R e i Client Name 1 Start Page l Number of bytes 1 End Page
1 [INIT_STAGE_1_SNVM_CLIENT | 202 |4368 219
2 | INIT_STAGE_2_SNVM_CLIENT |0 3500 13

[| Used space
Free space

The following table describes the columns in the sNVM clients table.
Table 8-12. Columns in the sNVM Clients Table

Client Name
Start Page
Number of bytes
End Page

Name you gave to the client.
Starting page you gave to the client.
Number of bytes in the client.

Ending page that Libero SoC ascertained based on the

start page you provided.

Editing sNVM Clients

If you need to change the settings for an sNVM client, you can edit the client.

To edit an sNVM client:

1. In the table of the sNVM tab, perform one of the following steps:

— Double-click the client you want to edit.

— Click the client you want to edit, and then click the Edit button.

— Right-click the client you want to edit, and select Edit.

2. When the dialog box appears, complete the fields (see Settings for Add PlainText and Add CipherText Clients,

Settings for Boot Mode 2 Clients, or Settings for Add USK Clients).

3. Click OK.
4. Click the Apply button.

© 2021 Microchip Technology Inc. User Guide

DS00003754B-page 139

Libero® SoC v2021.1

Program Design

8.2.3.3 Deleting sNVM Clients
If you no longer need an sNVM client, you can delete the client.

A warning message does not appear before you delete a client. Therefore, be sure you no longer need a

A\ CAUTION | jient before you delete it.

To delete an sNVM client:
1. Inthe table at the bottom of the sNVM tab, perform one of the following steps:
— Click the client you want to delete, and then click the Delete button.
— Right-click the client you want to delete, and select Delete.
2. Click the Apply button.

8.24 SPI Flash Tab

SPI Flash is the fourth tab in the Configure Design Initialization Data and Memories tool. Use this tab to enable auto
update and select the SPI flash memory size in kilobytes. The configuration is saved in the spiflash.cfqg file in the
Libero design implementation folder.

Figure 8-21. SPI Flash Tab

Desen Intaizaten | woroM | soint Fabric RAMs | —
Ap | Discard | Help]
[Ensble Auto Update
591 Flach memory sive: | 13072+ @
Usape statistics SP1 Flash Clents
Avalable memary (KE): 131071 Add... |' Edt.., Delete gy am A Eypass Al
Used memory (KE): 9254
Free memory (K8) 1 121817 ass Back Level
Start End Dasign Byp
Program Name Type Index Content File X Protection for
Address | Address | Version d
Recovery/Golden bitstream
SFI Bitstream for Recovery/ C:\Users\C51990\Downloads
v OneSA0
F testt e (i Nt ik 0 0x909d5f 1000 Enabled
B Usedspece

b [EPTBiia for A Updote | M|

4| _LI_

The following table describes the elements in the SPI Flash tab.
Table 8-13. Elements in the SPI Flash Tab

oo e

Add button Adds SPI Flash clients.

Edit button Edits SPI Flash clients.

Delete button Deletes SPI Flash clients.

Program All This option selects all clients for programming at once. It

is enabled when there is at least one unselected client.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 140

Libero® SoC v2021.1

Program Design

........... continued

N

Bypass All This option unselects all clients, except for STAGE 3
Initialization client. It is enabled if there is at least one
client besides the STAGE 3 Initialization that is selected
for programming (STAGE 3 Initialization client must
always be programmed).

Enable Auto Update check box Enables auto update on the target device. The bitstream
generated in Libero enables this feature.

If you check this option, two SPI Bitstreams can be
added.

* One for auto update.

* Another for recovery/golden.
The tool enforces the recovery/golden bitstream to be
at index 0 and the auto update bitstream to be at index
1. The auto update bitstream design version must be

greater than the design version of the recovery/golden
bitstream.

SPI Flash memory size Selects the memory size, in KB, for the SPI Flash.

Usage Statistics pie chart Shows available, used, and free memory, in KB, for all
SPI Flash clients.

8.2.41 Adding SPI Flash Clients

1. Inthe SPI Flash tab, click the Add drop-down list, and then select the client you want to add (see the following
figure).
Figure 8-23. SPI Flash Client Selections
Desion Iritiskzstion | uPROM | sM SPI Flash | Fabric Ravs| —

| D | Help ‘

" Ensble uto Update

SPI Flash memory size: 131,072 x| kB
Usage statistics 5P Fiash Clents.
Awvalable memary (KE):131071 Add... |' Edit... Delete Program Al Bypass Al
used memory (<E): 9254 = g
Free memory 0G8) 1 121817 Add SPI Bitstream Client — o - Bypass Back Level
: n esign :
Add Data Storage Client
g Type Index Content File Pt || e | o) Protection for

[Recovery/Golden bitstream
SP1 Bitstream for Recovery/ C:\Users\C51990\Downloads
¥
testl Golden o i#t32_secured_uekl.spi 0500 0x009d5f | 1000 Enabled

M Usedspace SPI Bitstream for Recovery Golden
i [SPTBitstrenm for Auts Update] x

« '_4_
2. Complete the fields in the dialog box, and then click OK (see the following sections).
3. Click the Apply button. The client is added to the SPI Flash clients table.

8.2.4.1.1 Settings for Add SPI Bitstream Client

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 141

Libero® SoC v2021.1

Program Design

Figure 8-24. Add SPI Bitstream Client Dialog Box

" ® Add SPI Bitstream Client 4

| Mame: |

Type:

D

| SPI Bitstream file for IAP
|
SPI Bitstream file for Recovery/Golden

0

i) SPI Bitstream file for Auto Update
™" Filled with 1s
Content file:

|]

Design version:

| Start address (HEX): 0x |4DD

Size in bytes (decimal): JD

Help 0K Cancel ‘

Table 8-14. Fields in the Add SPI Bitstream Client Dialog Box

N S

Name Name of the SPI bitstream client.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 142

Libero® SoC v2021.1

Program Design

........... continued

e o

Type

Start address

Size in bytes

Type of the SPI bitstream client. Choices are:

+ SPI Bitstream Client for IAP: Adds a SPI Client
for IAP. The total number of SPI Bitstream
Clients allowed including Recovery/Golden and
Auto Update Clients is 255. Index range: 2 - 255

+ SPI Bitstream Client for Recovery/Golden:
Highlighted in yellow in the client table in this tab.
Required if a SPI Bitstream is added. There can
be only one SPI Bitstream configured as Recovery/
Golden. An error message appears if none is
configured or more than one is configured. Index
0 is reserved for this client.

— If Auto Update is enabled, the SPI Bitstream
Client for Recovery/Golden must have a
Design Version smaller than the Design
Version for the SPI Bitstream Client for Auto
Update.

— Do not use the master file for Recovery/
Golden client with IAP.

— If Back Level Protection is enabled in
the Configure Security tool, Programming
Recovery fails if the Back Level Version
programmed in the device is greater than
or equal to the Design Version of the SPI
Bitstream Client for Recovery/Golden.

— To allow for programming Recovery to pass,
import a Bitstream that has been exported with
the Bypass Back Level Protection option.

Note: Bypass Back Level protection feature
is supported only for SPI Bitstream clients for
Recovery/Golden.

+ SPI Bitstream Client for Auto Update: Highlighted
in green in the client table in this tab. To add a
SPI Client for Auto Update, check the Enable Auto
Update check box in this tab. This client is optional.
The Design Version of this client must be greater
than the Design Version for the SPI Bitstream Client
for Recovery/Golden. Index 1 is reserved for this
client.
Note: The tool rejects a Bitstream file with Bypass
Back Level Protection enabled for this type of client.

» Filled with 1s: Populates the SPI bitstream client
with one’s.

Start address, in hexadecimal notation, of the SPI
bitstream client. SNVM client address starts at page
boundaries.

Size, in bytes, of the SPI bitstream client.

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 143

Libero® SoC v2021.1

Program Design

8.2.4.1.2 Settings for Add Data Storage Client
Figure 8-25. Add Data Storage Client Dialog Box

; @ Add SPI Flash Data Storage Client X
Name: ||
-Content
(Memary file: J
Format:
™ Filed with 1s

Start address (HEX): Ox |400
Size in bytes (decimal): 0

Help oK Cancel |

Table 8-15. Fields in the Add Data Storage Client Dialog Box

N

Name Name of the SPI flash data storage client.

Content Choices are:
* Intel = Hex Files (*.hex, *.ihx)

« Filled with 1s: Populates the data storage client with
one’s.

Start address Start address, in hexadecimal notation, of the data
storage client.

Size in bytes Size of bytes, in decimal notation, of the data storage
client.

8.2.4.1.3 SPI Flash Clients Table
The SPI Flash clients table shows the SPI Flash clients you add.

Each SPI Flash client appears on its own row. After you add a SPI Flash client, you can select it in this table to edit or
delete the client.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 144

Libero® SoC v2021.1

Program Design

Figure 8-26. SPI Flash Clients Table

Desian Initalization | UPROM | sNVM SPIFlash I Fabric RAMs |

[Enable Auto Update

SPI Flash memory size: 2,097,152 | KB

Usage statistics SPI Flash Clients

Available memary (KB): 2097151 Add... |v Edit... Delete Program All Bypass All

Used memory (KB): 928575

Fi : 1168578 i

e

[+ golden zz‘[dE:;stream (o (s 0 0xb30 0x38acffsf | F:\top_design_ver_1.spi 1 Disabled
¥ INIT_STAGE_3_SPL_CLIENT | Design Initialization 00 m9c3 designer\test\test_uic.bin /A
I sfsdf SFI Bitstream for IAP 2 0x09999... 0x99999... |Filled with 1s

Table 8-16. Columns in the SPI Flash Clients Table

Program Check boxes for selecting clients that will be enabled or
disabled for programming. Clients whose content is filled
with 1s cannot be enabled for programming.

Name Name you gave to the client.

Type Type of client. Choices are:
» SPI Bitstream for Recovery/Golden
» SPI Bitstream for IAP
» SPI Bitstream for Auto Update
+ Data Storage

Index * Index O is reserved for SPI Bitstream for Recovery/
Golden.

* Index 1 is reserved for auto update.

The index for an IAP client can be in the range of 2 -

255.
Start Address Starting address you gave to the client.
End Address Ending address that Libero SoC ascertained based on

the start address you provided.

Content Choices are:
» .spifile: spi bitstream clients.
+ intel-hex(.hex or .ihx): data storage clients.

Design Version Client design version.
Bypass Back Level This feature is enabled for only the SPI Bitstream clients
Protection for Recovery/Golden bitstream for Recovery/Golden.

8.2.4.2 Editing SPI Flash Clients
If you need to change the settings for a SPI Flash client, you can edit the client.

To edit a SPI Flash client:
1. Inthe table of the SPI Flash tab, perform one of the following steps:
— Double-click the client you want to edit.
— Click the client you want to edit, and then click the Edit button.
— Right-click the client you want to edit, and select Edit.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 145

Libero® SoC v2021.1

Program Design

2. When the dialog box appears, complete the fields (see 8.2.4.1.1 Settings for Add SPI Bitstream Client or
8.2.4.1.2 Settings for Add Data Storage Client).

3. Click OK.
4. Click the Apply button.
8.2.4.3 Deleting SPI Flash Clients
If you no longer need a SPI Flash client, you can delete the client.

A warning message does not appear before you delete a client. Therefore, be sure you no longer need a

4b CAUTION client before you delete it.

To delete a SPI Flash client:
1. Inthe table at the bottom of the SPI Flash tab, perform one of the following steps:
— Click the client you want to delete, and then click the Delete button.
— Right-click the client you want to delete, and select Delete.
2. Click the Apply button.

8.2.5 Fabric RAMs Tab

The Fabric RAMs tab allows you to select initialization options for Dual-Port SRAM, Two-Port SRAM, and ySSRAM
memory blocks in your design.

Figure 8-27. Fabric RAMs Tab

Desian Initiazation | uPROM | shvM | 5P Fiash ((Fabric RAMS) i

Usage statistics Cients
il ey Load design configuration Edit... Initialize all clients from: |[Initialize all Clients from sNVM -
Available Memory(Bytes): 1576960 [S —
Used Memory(Bytes): 2560
Free Memory (Bytes) : 1574400 . PORTA PORTB
Logical Instance Name e ns e ar Memory Content | Storage Type | Memaory Source
B Depth * Width | Depth * Width v ge Typ v
JTVS_to_UART_O/ﬁfo_O/FIFO_O,Igenblk24.UI_ram_wrap..‘ 1024x8 1024x8 No content sNVM Configurator

| | Used space

[] Free space
USRAM Memory
Available Memory(Bytes): 160344
Used Memary(Bytes): 0
Free Memory(Bytes) : 160344

[] Used space

[Free space

-
4| »

The following table describes the elements in the Flash RAMs tab.

Table 8-17. Elements in the Flash RAMs Tab

Load design configuration button Resets all Fabric RAM clients to the initial configuration
that was in effect the first time you clicked Apply. Clicking
this button overrides any subsequent commands you
applied and resets the Fabric RAM clients table.

Edit button Edits Fabric RAMs clients.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 146

Libero® SoC v2021.1

Program Design

........... continued

Eemet [Deseripton

Initialize all clients from drop-down list Initializes clients from SmartDesign.

Filtered out Inferred RAMs check box Filters out the inferred RAMs and shows only the RAMs
that were generated using the Configurator.

Usage Statistics, LSRAM pie chart Shows available, used, and free memory, in bytes, for
large static random access memory (LSRAM).

Usage Statistics, uUSRAM pie chart Shows available, used, and free memory, in bytes, for

micro SRAMs (USRAM).

8.2.5.1 Initializing Fabric RAM Clients

1. In the Fabric RAMSs tab, click the Initialize all clients from drop-down list, and then select the client you want

to initialize (see the following figure). Your selection appears in the Storage Type column in the Fabric RAMS
client table.

Note: Selecting User Selection indicates that each Fabric RAM client will be configured separately.

Figure 8-28. Fabric RAMs Client Selections

Desian Initiaization | uPROM | stvM | SPIFiash Fabri:RAMs] e | M

Apply | Discard | Help |
Usage statistics Clients
LSRAM Memary @ Load design confguration | Edt.. | Initsize al cents from: [Tnitalze ol Clents from LPROM |~
Available Memory(Bytes): 2078720 Initialize all Clients from sNvM
Used M (Bytes): 2560 [Filter out Inferred RAMs Initialize all Clients from uPROM
sed Memory\Bytes): Initialize all Clients from SP1-Flash |
Free Memory (Bytes) : 2076160 . PORTA PORT User Selection
Logical Instance Name Depth * Width| Depth * Widthl ¥ | uge Type | Memory Source
IT PF_TPSRAM_CO_0/PF_TPSRAM_CO_0 | 1024x20 1024x20 Content filled with 0s | uPROM Configurator
ﬂ PF_URAM_CO_O/PF_URAM_COD | 6dx12 64x12 Content filled with 0s | UPROM Configurator _
| | Used space
[] Free space
USRAM Memory

Available Memory (Bytes): 225792 -
1| »

8.2.5.1.1 Fabric RAMs Clients Table
The Fabric RAMs clients table shows the Fabric RAM clients you initialize.

Each Fabric RAM client appears on its own row. After you add a Fabric RAM client, you can select it in this table to
edit the client.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 147

Libero® SoC v2021.1

Program Design

Figure 8-29. Fabric RAMs Clients Table

Desian Initaization | uPROM | shvM | SPIFiash FabricRams | envm | T

Apply | Discard ‘ Help |
Usage statistics Clients
LSRAM Memary @ Load design configuration Edit... Initizlize all dients from: |Initialize all Clients from uPROM ﬂ
Available Memory (Bytes): 2078720 B T e e
Used Memory (Bytes): 2560
Free Memoary{Bytes) : 2076160 = PORTA PORTB
Logical Instance Name Depth * Width| Depth * Width Memory Content | Storage Type | Memory Source
F PF_TPSRAM_CO_O/PF_TPSRAM_CO_0 | 102420 1024x20 Content filled with 0s | uPROM Configurator
ﬂ PF_URAM_CO_O/PF_URAM_CO_0 B2 Gdx12 Content filled with 0s | uPROM Configurator |

[| Used space
] Free space

USRAM Memory

Available Memory (Bytes): 225792 -
i

v |

Table 8-18. Columns in the Fabric RAMs Clients Table

Logical Instance Name Name of the logical instance that indicates the memory
type.

PortA Depth and width of Port A.

Depth*Width

PortB Depth and width of Port B.

Depth*Width

Memory Content Shows information about the content held in memory.

Storage Type Storage type you selected for the client.
Memory Source Shows the memory source (for example, Synthesis,
Configurator, and so on).

8.2.5.2 Editing Fabric RAM Clients
If you need to change the settings for a Fabric RAM client, you can edit the client.
To edit a Fabric RAM client:
1. In the table of the Fabric RAM tab, perform one of the following steps:
— Double-click the client you want to edit.
— Click the client you want to edit, and then click the Edit button.
— Right-click the client you want to edit, and select Edit.

2. When the Edit Fabric RAM Initialization dialog box appears, complete the fields (see the following figure and
table).

3. Click OK.
4. Click the Apply button.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 148

Libero® SoC v2021.1

Program Design

Figure 8-30. Edit Fabric RAM Initialization Client Dialog Box

(O

T - - s ey
|__; tousram fusr

Physical Name: Itx.'.—'.'"'._': usram_usram_0_PF_Ul

RAM Initialization Options

" Content from file: I

i~ Content filled with Os
{* No content (dient is a placeholder and will not be programmed)

Optimize for: (¢ High Speed

Storage Type lSF'I-FIash vl

" Low power

Help

Close |

Table 8-19. Fields in the Edit Fabric RAM Initialization Client Dialog Box

N

Client name

Physical Name
client.

RAM Initialization Options Choices are:

Read-only field that shows the name of the client.

Read-only field that shows the physical name of the

» Content from file: Click the Browse button to go
to the location of a memory file, and then import
the file to the memory block. By default, the same
memory file specified in the memory configurator is
used. Supported memory file formats are:

— Intel-HEX (*.hex)

— Motorola (*.s)

— Simple-Hex (*.shx)
— Microsemi-Binary (*.mem)

» Content Filled with Os: Memory block is filled with
zeros for initialization.

* No Content: Memory block is not initialized.

Optimize for Read-only field.

© 2021 Microchip Technology Inc. User Guide

DS00003754B-page 149

8.2.6

8.2.6.1

Libero® SoC v2021.1

Program Design

........... continued
Opton ______ Deseripton |
Storage Type If you change the storage type for a client to a selection

other than the one previously chosen for all clients, the
Initialize all clients from value also changes. Choices

are:
*« sNVM
* uPROM

» SPI-Flash (default)

eNVM Tab (PolarFire SoC Only)
PolarFire SoC users can use the eNVM tab to manage and configure eNVM clients. Libero SoC supports 512 pages.

The procedures for adding, editing, and deleting eNVM clients are similar as those for adding, editing, and deleting
sNVM clients, except that you can add only Add Plaintext Boot Mode 1 and Add Plaintext Boot Mode 3.

Figure 8-31. eNVM Tab

Desian Initialization | wPROM | snvM | SPIFlash | FabricRAMS i

Apply | Discard ‘ Help ‘
Usage statistics Clients
e EEEBTEE R ErmE B Add ... I' Edt ... | Delete Load desian configuration
Used memory (in pages): 0
FeRmImEaEEOr ER Client Name I Start Page ‘ Number of bytes l End Pagel

[| Used space
L] Free space

]|

Adding eNVM Clients

1. Inthe eNVM tab, click the Add drop-down list, and then select the client you want to add (see the following
figure).

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 150

Libero® SoC v2021.1

Program Design

Figure 8-32. eNVM Client Selections

Desian Iniiaization | PROM | M | 5PIFiash | FabricRaMs — envm® | M

Apply | Discard ‘ Help |
Usage statistics Clients
Available memory (in pages): 512 Add ... |v Edit... | Delete Load design configuration
Used memery (in pages): a
EremeT (st 512 Add Boot Mode 1 Client mber of bytes | End Page

Add Boot Mede 3 Client

J | of
2. Complete the fields in the dialog box, and then click OK (see the following sections).
3. Click the Apply button. The client is added to the eNVM clients table.

8.2.6.1.1 Settings for Boot Mode 1 Clients

In this boot mode, the Core Complex boots directly from a specified address in eNVM with no authentication. The
Start Page of of Boot Mode 1 client cannot be modified.

Note: eNVM memory can have one client only: Boot Mode 1 or Boot Mode 3.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 151

Libero® SoC v2021.1

Program Design

Figure 8-33. Boot Mode 1 Client Dialog Box

B Add PlainText Boot Mode 1 client 7 =

Client name; |BOCT_MODE_1_EMVM_CLIEMT

eMyVM

{* Content from file: | J
Format: |Inte|-Hex j
Base Address: P -:-:.;| 20220000

Start page (decmal): |'Z' il Qi

Mumber of bytes (dedmal): |EI 0 page

Help | Ok Cancel |

Table 8-20. Fields in the Boot Mode 1 Client Dialog Box

N

Client name Read-only field that shows the name of the eNVM client.

Content from file Navigate to and specify a file whose content will be used
to fill the eNVM.
Note: If you select the Intel-HEX format, the Base
address specified is subtracted from user address
records. Intel-Hex files have Extended Linear and
Extended Segment addresses. The Complete Starting
address of the Linear or Segment address in the Hex
file must be specified. For example, if the Intel-Hex file
has the Extended Linear address 2022, specify the base

address 20220000.

Format Memory file types. Choice is Intel-Hex. The Intel-Hex file
is generated using Soft Console.

Base Address Read-only field that shows the base address that is
subtracted from the user address records for Intel-Hex
files.

User Guide DS00003754B-page 152

© 2021 Microchip Technology Inc.

Libero® SoC v2021.1

Program Design

........... continued

o e]

Start page

Number of bytes

8.2.6.1.2 Settings for Boot Mode 3 Clients

Read-only field that shows the start page, in decimal
notation, of the eNVM client. eNVM client address

starts at page boundaries. If there are multiple eNVM
clients, their start page cannot be the same; otherwise, a
warning message appears.

Range: 0 — 220 (decimal)

Read-only field that shows the total number of bytes
to populate the eNVM. The value is shown in decimal
notation. If the number of bytes exceeds the memory
size of the eNVM, an out-of-bounds warning message
appears.

Range: 1 — 47376

In this boot mode, you specify the start page in eNVM. You must specify the public keys x and y, along with SBIC

reset.

Note: An eNVM client can have one client only: Boot Mode 1 or Boot Mode 3.

Figure 8-34. Boot Mode 3 Client Dialog Box

B Add PlainText Boot Mode 3 client

eMVM

Client name: |BOCOT_MODE_3_ENVM_CLIENT

{* Content from file: |

Format: IntelHex -

Base Address: §# -:-:.;| 20220000

Start page (decmal): |-:|

o

Mumber of bytes (dedmal): |EI

0 page

Public Key X 0x |

Public Key ¥ 0x |

Help |

(04 Canicel

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 153

Libero® SoC v2021.1

Program Design

Table 8-21. Fields in the Boot Mode 3 Client Dialog Box

o e]

Client name

Content from file

Format

Base Address

Start page

Number of bytes

Public Key X

Public Key Y

8.2.6.1.3 eNVM Clients Table

Read-only field that shows the name of the eNVM client.

Navigate to and specify a file whose content will be used
to fill the eNVM.

Note: If you select the format Intel-HEX, the Base
address specified is subtracted from user address
records. Intel-Hex files have Extended Linear and
Extended Segment addresses. The Complete Starting
address of the Linear or Segment address in the Hex
file must be specified. For example, if the Intel-Hex file
has the Extended Linear address 2022, specify the base
address 20220000.

Memory file types. Choice is Intel-Hex. The Intel-Hex file
is generated using Soft Console.

Read-only field that shows the base address that is
subtracted from the user address records for Intel-Hex
files.

Read-only field that shows the start page, in decimal
notation, of the eNVM client. eNVM client address

starts at page boundaries. If there are multiple eNVM
clients, their start page cannot be the same; otherwise, a
warning message appears.

Range: 0 — 220 (decimal)

Read-only field that shows the total number of bytes
to populate the eNVM. The value is shown in decimal
notation. If the number of bytes exceeds the memory
size of the eNVM, an out-of-bounds warning message
appears.

Range: 1 —47376

A unique secret number is generated and known only to
the generated person. For more information, see x9.org/.

A number that corresponds to a private key, but does
not need to be kept secret. The public key can be used
to determine whether a signature is genuine without
requiring the private key to be divulged. For more
information, see x9.org/.

The eNVM clients table shows the eNVM clients you initialize.

Each eNVM client appears on its own row. After you add an eNVM client, you can select it in this table to edit the

client.

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 154

https://x9.org/
https://x9.org/

Libero® SoC v2021.1

Program Design

Figure 8-35. eNVM Clients Table

|»

Desian Initialization | uPROM | sNVM | SPIFish | FabricRAMs — ehvm]

Apply | Discard ‘ Help |
Usage statistics Clients
Available memory (in pages): 512 Add ... d Edit... Delete Load design configuration
Used memory (in pages): i
Free memory {in pages): 511 Client Name Start Page | Number of bytes | End Page
|T BOOT_MODE_3_ENVM_CLIENT |0 224 1]

' g

Table 8-22. Columns in the eNVM Clients Table

Client Name Name you gave to the client.

Start Page Starting page you gave to the client.

Number of bytes Number of bytes in the client.

End page Ending page that Libero SoC ascertained based on the

start page you provided.

8.2.6.2 Editing eNVM Clients
If you need to change the settings for an eNVM client, you can edit the client.

To edit an eNVM client:
1. In the table of the eNVM tab, perform one of the following steps:
— Double-click the client you want to edit.
— Click the client you want to edit, and then click the Edit button.
— Right-click the client you want to edit, and select Edit.

2. When the dialog box appears, complete the fields (see 8.2.6.1.1 Settings for Boot Mode 1 Clients or
8.2.6.1.2 Settings for Boot Mode 3 Clients).

3. Click OK.
4. Click the Apply button.

8.2.7 Deleting eNVM Clients
If you no longer need an eNVM client, you can delete the client.

A warning message does not appear before you delete a client. Therefore, be sure you no longer need a

A\ CAUTION | jicnt before you delete it.

To delete an eNVM client:
1. In the table at the bottom of the eNVM tab, perform one of the following steps:

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 155

8.3

8.4

Libero® SoC v2021.1

Program Design

— Click the client you want to delete, and then click the Delete button.
— Right-click the client you want to delete, and select Delete.
2. Click the Apply button.

Generating Initialization Clients
To generate the initialization clients, perform one of the following steps in the Design Flow window:

* Double-click Generate Design Initialization Data.
OR

* Right-click Generate Design Initialization Data and choose Run.
Either step causes Libero SoC to perform the following actions:

» Generates memory files corresponding to the three stages of the initialization sequence.
* Removes all pre-existing initialization clients.

» Creates initialization clients for each stage and places them in their target memories (see the following table).
For more information, see 8.2 Initializing Design Blocks.

Table 8-23. Client Initialization Stages

e ==

First stage initialization client Client is always placed in sNVM. The default start
address is either 0xca00 (page 202), or 0xdb00 (page
219) if Broadcast instructions to initialize RAM’s to
zero’s is disabled in the Design Initialization tab.

Second stage initialization client Client is created when there are PCle blocks or
Transceiver blocks in the design. The client is always
placed in sSNVM at the start address you specified in
the Design Initialization tab of the Configure Design
Initialization Data and Memories tool.

Third stage initialization client Client is created only when there are Fabric RAMs in
the design. The client can be placed in any uPROM,
sNVM, or SPI memories at a start address you specify.
You specify the target memory and target start address
in the Design Initialization tab of the Configure Design
Initialization Data and Memories tool.

Configuring Actions and Procedures
The Configure Actions and Procedures tool allows you to configure actions with optional or recommended
procedures for a Libero target device. The information is saved and can be used by the Run Action tool.
Observe the following guidelines when using this tool:
» Available actions and their procedures depend on current bitstream components selected in the Generate
Bitstream and Configure Options tools.
» Changing procedures for the action selected to run invalidates the Run Action tool state. Changing any other
action does not affect the Run Action tool state.

To run the Configure Actions and Procedures tool, from the Libero Design Flow window, expand Program Design
and double-click Configure Actions and Procedures.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 156

8.41

Libero® SoC v2021.1

Program Design

S i’rogram Design
Vv +LJ Generate FPGA Array Data

+L] Configure Design Initialization Data and Memories

v +L] Generate Design Initialization Data

&8 Configure I/O States During JTAG Programming

» Configure Programming Options

@ Configure Security

5 Generate Bitstream
&c) Configure Actions and Procedures

& Run VERIFY_DIGEST Action
= » Program SPI Flash Image
i3 Generate SP| Flash Image
& Run PROGRAM_SPI_IMAGE Action

The Configure Actions and Procedures dialog box opens. The actions and procedures shown depend on the device
family you use and the bitstream components selected in the Generate Bitstream and Configure Options tools.

Figure 8-36. Configure Actions and Procedures Dialog Box

B Configure Actions and Procedures

Mandatory procedures are always included.

Available actions and procedures depend on the selected bitstream components in the Generate Bitstream toal.

You can include optional procedures(marked in blue) and exclude recommended procedures(marked in green).

Help

Actions Procedures
DEVICE_INFO INIT_VARIABLES_FOR_ACTION
ENC_DATA_AUTHENTICATION VERIFY_IDCODE
ERASE PROC_ENABLE
PROGRAM DO_ENABLE_FABRIC
READ_IDCODE DO_ENABLE_SNVM
VERIFY DO_ENABLE_ENVM

VERIFY DIGEST DO_ENABLE_SECURITY

DO VERIFY DIGEST
DO _EXIT

Restore Default Procedures for the Action ‘

OK Cancel ‘

Programming File Actions and Supported Procedures
The following table lists programming file actions and supported procedures.

» Mandatory procedures are grayed out and not selectable, and must be performed.
» Recommended procedures are shown in green, and can be included or excluded.
» Optional procedures are shown in blue, and can be included or excluded.

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 157

Libero® SoC v2021.1

Program Design

Table 8-24. Programming File Actions and Supported Procedures

DEVICE_INFO

ENC_DATA_AUTHENTICATION

ERASE

PROGRAM

READ_IDCODE

VERIFY

VERIFY_DIGEST

INIT_VARIABLES_FOR_ACTION
SET_DEVICE_INFO_ACTIONTYPE
VERIFY_IDCODE
DO_DEVICE_INFO

DO_EXIT

INIT_VARIABLES_FOR_ACTION
SET_AUTHORIZATION_ACTIONTYPE
VERIFY_IDCODE
DO_AUTHENTICATION

DO_EXIT

INIT_VARIABLES_FOR_ACTION
SET_ERASE_ACTIONTYPE
VERIFY_IDCODE
PROC_ENABLE

DO ERASE DO_EXIT

INIT_VARIABLES_FOR_ACTION
SET_PROGRAM_ACTIONTYPE
VERIFY_IDCODE
PROC_ENABLE

DO_PROGRAM

DO_VERIFY (optional)

DO_EXIT

INIT_VARIABLES_FOR_ACTION
SET_READ_IDCODE
VERIFY_IDCODE
PRINT_IDCODE

DO_EXIT

INIT_VARIABLES_FOR_ACTION
SET_VERIFY_ACTIONTYPE
VERIFY_IDCODE
PROC_ENABLE

DO_VERIFY

DO_EXIT

INIT_VARIABLES_FOR_ACTION
VERIFY_IDCODE PROC_ENABLE
DO_ENABLE_FABRIC (recommended)
DO_ENABLE_SNVM (recommended)
DO_ENABLE_ENVM(recommended)
DO_ENABLE_SECURITY (recommended)
DO_VERIFY_DIGEST (recommended)
DO_EXIT

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 158

8.4.2

8.4.3

Libero® SoC v2021.1

Program Design

........... continued

ZEROIZE_LIKE_NEW

ZEROIZE_UNRECOVERABLE

« INIT_VARIABLES_FOR_ACTION
- VERIFY_IDCODE
- DO_ZEROIZE_LIKE_NEW DO_EXIT

- INIT_VARIABLES_FOR_ACTION
- VERIFY_IDCODE

- DO_ZEROIZE_UNRECOVERABLE
- DO_EXIT

Programming File Actions and Descriptions
The following table lists programming file actions and descriptions.

Table 8-25. Programming File Actions

PROGRAM

ERASE

VERIFY_DIGEST

VERIFY

ENC_DATA_AUTHENTICA
TION

READ_IDCODE

DEVICE_INFO

Programs all selected family features:
* FPGA Array
» Targeted sNVM clients
» Targeted eNVM clients
+ Security settings

Erases the selected family features for:
* FPGA Array
» Security settings

Calculates the digests for the components (Custom Security, Fabric, or sSNVM or
eNVM) included in the bitstream and compares them against the programmed
values.

Verifies all selected family features for:
* FPGA Array
» Targeted sNVM clients
» Targeted eNVM clients
» Security settings

Encrypted bitstream authentication data.

Reads the device ID code from the device.

Displays the IDCODE, design name, checksum, and device security settings and
programming environment information programmed into the device.

Options for Specific Programming Actions
The following table lists the options available for specific programming actions.

To configure actions for other JTAG devices, use the Programming Connectivity and Interface tool.
Note: The eNVM feature is available for PolarFire SoC devices only.

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 159

8.5

8.5.1

8.5.2

Libero® SoC v2021.1

Program Design

Table 8-26. Programming File Actions - Options

heton i arpion

PROGRAM DO_VERIFY Enable or disable programming
verification.

VERIFY_DIGEST DO_ENABLE_FABRIC Include Fabric and Fabric configuration in
the digest check.

VERIFY_DIGEST DO_ENABLE_SNVM Include the sSNVM in the digest check.

VERIFY_DIGEST DO_ENABLE_ENVM Include the eNVM in the digest check.

VERIFY_DIGEST DO_ENABLE_SECURITY Include security policy settings, and

UPK1, UEK1, User Key Set 2 (UPK2 and
UEK?2), DPK, and SMK security segments
in the digest check.

Configuring I/0 States During JTAG Programming

You can specify /O states either prior to programming or during programming. The following topics describe both
methods.

Specifying 1/0 States Prior to Programming
This feature is not supported for PolarFire SoC. The Libero SoC v12.5 hard-codes all I/Os to tri-state after you
complete the layout.

In the Libero SoC Design Flow window, expand Program Design and double-click Configure I/O States During
JTAG Programming. The default state for all I/Os is Tri-state.

Specifying I/0 States During Programming
Use the following procedure to specify I/O states during programming or when exporting a bitstream.

1. Click a column header to sort the entries by that header, and then select the 1/0Os you want to modify.

2. Set the I/O output state using either basic I/O settings to accept default I/0 settings for your pins (see the
following table) or custom 1/O settings to customize the settings for each pin.

Table 8-27. Basic I/O State Settings

N N

1 1/0 is set to drive out logic High.
0 I/O is set to drive out logic Low.
Last Known State 1/0 is set to the last value that was driven out prior to

entering the programming mode, and then held at that
value during programming.

Z - Tri-State 1/O is tristated with weak pull up (10k Q).

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 160

8.5.2.1

Libero® SoC v2021.1

Program Design

Figure 8-37. 1/O States During Programming Window

] Specify 1/O States During Programming - JTAG Mode Only

Load from file.. | | Save to file...

Show BSR Details

x

Port Name Macro Cell Pin Number I/O State (Output Only)
1 UNUSED UNUSED 31 s
2| UNUSED UNUSED 30 Zz

3. Click OK to save your settings.

Configuring Custom Settings

Cancel

The 1/0O States During Programming dialog box allows you to specify custom settings for 1/0Os in your programming
file. This is useful if you want to set an /O to drive out specific logic, or if you want to use a custom |/O state to
manage settings for each Input, Output Enable, and Output associated with an I/O.

Figure 8-38. 1/O States During Programming Dialog Box

Specify I/0 States During Programming

Load from file. .. | Save ko file... | [™ show BSR Details

Port Hame Macro Cell Pin Humber 1/0 State [Output Only) j
BIST ADLIB:INBUF T2 1
BvPASS_I0 ADLIB:INBUF K1 1
CLK ADLIB:INBUF B1 1
ENOUT ADLIB:INBUF J16 1
LED ADLIB:OUTBUF M3 a
MONITOR[O] ADLIB:OUTBUF ES a
MOMITOR[] ADLIB:OUTBUF c7 d
MOMITOR[Z] ADLIB:OUTBUF k] d
MONITOR[3] ADLIB:OUTBUF D7 d
MONITOR[4] ADLIB:OUTBUF A1 d
OEa ADLIB:INBUF E4 d
OEb ADLIB:INBUF F1 d
O5C_EN ADLIB:INBUF K3 d
PAD[10] ADLIB:BIBUF_LYCMOS33U ME d
PAD[11] ADLIB:BIBUF_LYCMOS33D R? d
PAD[12] ADLIB:BIBUF_LYCMOS33U D11 d
PAD[13] ADLIB:BIBUF_LYCMOS33D c12 d

PAD[14] ADLIB:BIBUF_LYCMOS33U RE d ﬂ

Help | OF I Cancel |

User Guide DS00003754B-page 161

© 2021 Microchip Technology Inc.

Libero® SoC v2021.1

Program Design

Table 8-28. Elements in the 1/0 States During Programming Dialog Box

N

Load from file button

Save to file button

Port Name column
Macro Cell column
Pin Number column

I/O State (Output Only) column

Boundary Scan Registers - Enabled with Show BSR
Details

Table 8-29. Default I/O Output Settings

Loads an /O settings (* . ios) file that you can use to
import saved custom settings for your 1/Os. The exported
10S file has the following format:

* Used I/Os have a file entry with the following
format:
set prog io state -portName
{<design port name>} -input <value> -
outputEnable <value> - output <value>

* Unused I/Os have a file entry with the following
format:
set prog io state -pinNumber
{<device pinNumber>} -input <value> -
outputEnable <value> - output <value>

In the above formats, <value> is one of the values
shown in the key in the following table.

Saves your |/O Settings File (*.ios) for future use. This is
useful if you set custom states for your I/Os and want to
use them again later with a PDC file.

Names of all the ports in your design.
1/0 types, such as INBUF, OUTBUF, PLLs, and so on.
Package pin associated with the 1/O.

Sets your I/O states during programming (see the
Default I1/0 Output Settings table below). This column
header changes to Boundary Scan Register if you select
the Show BSR Details check box.

Sets your I/O state to a specific output value during
programming and allows you to customize the values
for the Boundary Scan Register (Input, Output Enable,
and Output). You can change any Don't Care value in
Boundary Scan Register States without changing the
Output State of the pin (as shown in the BSR Details
1/0 Output Settings table below).

Examples:

» To Tri-State a pin during programming, set Output
Enable to 0; the Don't Care indicates that the other
two values are immaterial.

+ To have a pin drive a logic High and have a logic
1 stored in the Input Boundary scan cell during
programming, set all the values to 1.

Output State

Z (Tri-State)

0 (Low) 1

1 0 0

1 0

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 162

Libero® SoC v2021.1

Program Design

........... continued

it conra uput bl [ouput
1 (High) 0 1 1
Last_Known_State Last_Known_State Last_Known_State Last_Known_State
Table Key:

* 1: High: I/Os are set to drive out logic High.
* 0: Low: I/Os are set to drive out logic Low.

» Last_Known_State: I/Os are set to the last value that was driven out prior to entering the programming mode,
and then held at that value during programming.

« Z: Tri-State: I/O is tristated.

Table 8-30. BSR Details I/O Output Settings

Output State

i JoupuEnabe
Z (Tri-State) Don't Care 0 Don't Care
0 (Low) Don't Care 1 0
1 (High) Don't Care 1 1
Last Known State Last State Last State Last State

Table Key:

* 1 —High: I/Os are set to drive out logic High.
* 0-Low: I/Os are set to drive out logic Low.
» Don't Care — Don’t Care values have no impact on the other settings.

+ Last_Known_State — Sampled value: I/Os are set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming.

« Z: Tri-State: I/O is tristated.

The following figure shows an example of Boundary Scan Register settings.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 163

Libero® SoC v2021.1

Program Design

Figure 8-39. 1/0 States During Programming Dialog Box

Specify I/0 States During Programming
Load from file. .. | Save ko file... | ¥ show BSR. Details

_ Boundary Scan Registers -

Port HName Macro Cell Pin Number Input %l:.lapl;‘::g Dutput j
BIST ADLIB:INBUF T2 a 1 1
BvPASS_I0 ADLIB:INBUF K1 a 1 1
CLK ADLIB:INBUF B1 a 1 1
ENOUT ADLIB:INBUF J16 a 1 1
LED ADLIB:OUTBUF M3 1 1 a
MONITOR[O] ADLIB:OUTBUF ES 1 1 a
MOMITOR[] ADLIB:OUTBUF c7 1 a a
MOMITOR[Z] ADLIB:OUTBUF k] 1 a a
MONITOR[3] ADLIB:OUTBUF D7 1 a a
MONITOR[4] ADLIB:OUTBUF A1 1 a a
OEa ADLIB:INBUF E4 1 a a
OEb ADLIB:INBUF F1 1 a a
O5C_EN ADLIB:INBUF K3 1 a a
PAD[10] ADLIB:BIBUF_LYCMOS33U ME 1 a a
PAD[11] ADLIB:BIBUF_LYCMOS33D R? 1 a a
PAD[12] ADLIB:BIBUF_LYCMOS33U D11 1 a a
PAD[13] ADLIB:BIBUF_LYCMOS33D c12 1 a a

PAD[14] ADLIB:BIBUF_LYCMOS33U RE 1 a a LI

Help | OF I Cancel |

Configuring Programming Options
The program options you can configure depend on the device you are programming. The following topics describe
the options available to all product families.

To configure programming options, from the Design Flow window, double-click Configure Programming Options
or right-click it and choose Configure Options. The Configure Programming Options dialog box appears with the
appropriate options (see the remaining topics in this section for more information).

User Guide DS00003754B-page 164

© 2021 Microchip Technology Inc.

8.6.1

Libero® SoC v2021.1

Program Design

Figure 8-40. Selecting Configure Programming Options

Design Flow

Top Module(root): top g o]

Active Synthesis Implementation: synthesis

Tool

v S Synthesize
= # Verity Post-Synthesized Design
*_| Generate Simulation File
B simulate
v ?!n- Place and Route
= » Verify Post Layout Implementation
v +_l Generate Back Annotated Files
! Simulate
& Verify Timing
@_‘1 Open SmartTime
£1 Venfy Power
= » 10 Analyzer
£" SSN Analyzer
= » Program and Debug Design
+_] Generate FPGA Array Data
% Update uPROM Memory Content
= # Configure Hardware
I Programming Connectivity and Interface
’. Configure Programmer
& Select Programmer
=t Configure I/0 States During JTAG Programming
P Configure Programming O
= » Program Design
‘ta Generate Bitstream
3 Run PROGRAM Action

E L

PolarFire Programming Options

The following figure shows the programming options for PolarFire. The table following the figure describes the

options.

Note: SPI file programming for Auto Programming, Auto Update (IAP), and IAP/ISP Services can program security
only one time with the master file. Update files cannot update the Security settings. In addition, Silicon signature and

Tamper Macro can be programmed with the master file only and cannot be updated.

© 2021 Microchip Technology Inc. User Guide

DS00003754B-page 165

Libero® SoC v2021.1

Program Design

Figure 8-41. PolarFire Programming Options

17 Configure Programming Options (=]

Design name: fftousram_new

Design version (number between 0 and 65535): | 3

1. Back Level version (number between 0 and 65535): | 3

Silicon signature {max length is 8 HEX chars): Ox | 2

Help | Ok Cancel |

Table 8-31. PolarFire Programming Options

N

Design name Read-only field that identifies your design.

Design version Design version to be programmed into the device. This
value is also used for Back Level protection in the
Update Policy step of the Configure Security tool.

Black Level version Back Level version to be programmed to the device. This
value must be less than or equal to the Design version
number. This value is used for Back Level protection
(if enabled) in the Update Policy step of the Configure
Security tool.

Silicon signature 32-bit user configurable silicon signature to be
programmed into the device. This field can be read
from the device using the JTAG (IEEE 1149-1)
USERCODE instruction or by running the DEVICE_INFO
programming action.

8.7 Configuring Security

The following topics describe how to configure custom security settings using the Configure Security Wizard, and
provide answers to frequently asked questions about security.

8.71 Configure Security Wizard

The Configure Security Wizard is a GUI-based wizard that guides you through the procedure for configuring custom
security settings. The wizard consists of the following five steps:

1. User keys

2. Update Policy

3. Debug Policy

4. Microsemi Policy

5. JTAG/SPI Slave Commands

The following table describes the elements in the Configure Security Wizard.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 166

Libero® SoC v2021.1

Program Design

Figure 8-42. Configure Security Wizard

Encrypt bitstream with default key. No user keys or security settings are enabled.

Security key mode

' Bitstream encryption with defaut key " custom security options

User Keys
Update Policy

Debug Policy

JTAG/SPI Slave
| Commands

| Help Back Next | Finish Cancel |
|

Table 8-32. Elements in the Configure Security Wizard

N

Summary window Displays the summary of the current configuration
settings. The window scrolls to the current page as you
move from page to page.

Security key mode Two security key modes are available:

» Bitstream encryption with default key: Use the
default encryption key for security. The Next and
Back buttons are disabled. All steps are disabled.
Custom User Keys and security settings are
disabled.

* Custom security Mode: Configures custom security
keys and settings. All steps are enabled, as are the
Next and Back buttons.

Back button Click to return to previous step.
Next button Click to proceed to next step.
Finish button Click to skip steps and complete the configuration.

8.7.2 Step 1: User Keys
In step 1 of the Configure Security Wizard, you configure user keys. All keys are 256 bits (64 HEX characters).

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 167

Libero® SoC v2021.1

Program Design

Figure 8-43. Configure Security Wizard - User Keys

7| Configure Security Wizard o
Disable all factory key modes and configured security settings. =
Use FlashLock/UPK1 to temporarily enable settings during one programming /debugging session. |

UPK 1 and UEK1 will be programmed and available for use.
UPK:2 and UEK2 will be programmed and available for use.

mn

Update Policy
Fabric can be updated using a bitstream encrypted with UEK1 or UEKZ.
SMVM can be updated using a bitstream encrypted with UEK1 or UEK2.

Debug Policy
DPK has not been provided and will not be programmed.
SmartDebug user debug access and active probes are enabled.
SmartDebug Live Probe debug access is enabled.
SmartDebug sNVM debug is enabled.
JTAG or SPI Slave UJTAG is enabled. B

Security key mode

(7 Bitstream encryption with default key @) Custom security options
I
User Key Set 1 (UKS1)
User keys FlashLock/UPK1 protects all security settings. You are required to configure it.

FlashLock/UPK1 (64 HEX chars):

A ox

You can use User Encryption Key 1 (UEK1) for updating the Fabric, uPROM, and sMYM or disable it.
[”] Disable UEK1

3

Update policy

UEK1 {User Encryption Key 1) (64 HEX chars):

5 o

User Key Set 2 (UKS2)

"

Debug policy

You can optionally configure User Key Set 2 (UKS2) for a second encryption key.
| [7] Disable UEK2

UEK2 {User Encryption Key 2) (64 HEX chars):

& ox

| User Pass Key 2 (UPK2) protects UEK2 and Is required if you use UEK2.

UPK2 (User Pass Key 2) (64 HEX chars):

@Ox

Help save Summary to File... Back Next | [Fmsh | [cancel |

The following table describes the options in this step.

Table 8-33. Options in the User Keys Step

N T

FlashLock/UPK1 Protects all security settings. This key is required and
must be a string of 64 HEX characters.
Enter the key or click the padlock icon at the far right to
generate a random key.

Default: enabled

User Encryption Key 1 (UEK1) Used for updating the Fabric, uPROM, and sNVM.
This key is required and must be a string of 64 HEX
characters.

Enter the key or click the padlock icon at the far right to
generate a random key. To disable it, click Disable.

Default: enabled

User Encryption Key 2 (UEK2) Used as a second encryption key for updating the
Fabric, uPROM, and sNVM. This key is required and
must be a string of 64 HEX characters.

Enter the key or click the padlock icon at the far right to
generate a random key. To disable it, click Disable.

Default: enabled

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 168

Libero® SoC v2021.1

Program Design

........... continued
Opton ____ Deseripton |
User Pass Key 2 (UPK2) UPK2 is required if UEK2 is enabled.

Enter the key or click the padlock icon at the far right to
generate a random key.

8.7.3 Step 2: Update Policy

In step 2 of the Configure Security Wizard, you disable field updates and specify field-update protection parameters.
Field updates are enabled by default.

Figure 8-44. Configure Security Wizard - Update Policy

[
| [Configure Security Wizard x|

Update Policy :‘ |
|

Fabric can be updated using a bitstream encrypted with UEK1 or LUEK2,

sMVM can be updated using a bitstream encrypted with UEK1 or UEK2,

| Back Level protection is disabled.

| Auto Programming, Auto Update, IAP Services, and Programming Recovery are enabled for update. ‘
| JTAG interface is enabled for update. |
SPI Slave interface is enabled for update. |
Program action is enabled for JTAG and SPI Slave interfaces. |
Authenticate action is enabled for JTAG and SPI Slave interfaces.

Verify action is enabled for JTAG and 5PI Slave interfaces.

Debug Policy

DPK has not been provided and will not be programmed.
SmartDebug user debug access and active probes are enabled. -
Crmmrtinkiin Lins Penbe deboin mmmmmn in cmehklad

Security key mode -

" Bitstream encryption with default key * Custom security options

Field updates are enabled by default. You can disable updates by setting options below.
Use FlashLodk/UPK 1 to temporarily enable disabled settings.

User Keys

Fabric/sMyM update protection: |Updabes allowed using user defined encryption keys; FlashLodk/UPK1 is not required for updates | v |

[Enable Back Level protection

ﬂ Design version:

Update Policy i Back Level version: 0
I— Disable Auto Programming and IAP Services

Disable programming interfaces:

Debug Policy [ac
[sprslave
—Ii Disable bitstream programming actions (JTAG/SPI Slave):
Microsemi [Program
e [Authenticate I

Access
—Ii [Verify |
ITAG/SPI Slave Reset to default

Commands |
Palicy

Help Back Mext | Finish | Cancel l

The following table describes the options in this step.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 169

Libero® SoC v2021.1

Program Design

Table 8-34. Options in the Update Policy Step

e e

Fabric/sNVM update protection

eNVM Update Protection

Enable Back Level protection

Disable Auto Programming and IAP Services

Disable programming interfaces

Choices are:
+ Disable Erase/Write operations.

Note: The field-update STAPL files _uek1 and
_uek2 include plain-text FlashLock/UPK1.

» Updates allowed using user-defined encryption
keys: FlashLock/UPK1 is not required for updates.

(PolarFire SoC only) Updates allowed using user-defined
encryption keys; FlashLock/UPK1 is not required for
updates.

When checked, a field update design being programmed
must be a version higher than the Back Level version
value in the programmed device. This safeguard
prevents field update designs with back level versions
less than or equal to the design version programmed in
the device.

» Design version (number between 0 to 65535):
Display the current Design version set in the
Configure Programming Options tool.

» Back Level version (number between 0 to 65535):
Display the current Back Level version set in the
Configure Programming Options tool). Back Level
version uses the Design version value to determine
which bitstreams are allowed for programming. The
Back Level version must be smaller than or equal to
Design version.

Note: If Back Level Protection is disabled and Back
Level version is greater than zero, Generate Bitstream
and Export Bitstream tools error out.

The examples in the following tables show Back Level
protection enabled in the Configure Security tool.

When this option is selected, Auto Programming, Auto
Update, IAP Services, and Programming Recovery are
disabled. FlashLock/UPK1 unlocking is only available for
JTAG and SPI Slave interfaces.

You can disable the following programming interfaces:
« JTAG
+ SPI Slave

Note: You cannot disable Auto Programming and IAP

Services and both the programming interfaces. If you try,
an error message appears.

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 170

Libero® SoC v2021.1

Program Design

........... continued
Disable bitstream programming actions (JTAG/SPI Choices are:
Slave) + Program
* Authenticate
* Verify
Note: The field-update STAPL files _uek1 and _uek2
include plain-text FlashLock/UPK1. The summary at the
top of the wizard summarizes the result of the selection.
Reset to default Reset the options to default values. All options are

unchecked.

Table 8-35. Example 1: Programming the Back Level Version to the Same Version as the Design Version

Bitstream Bitstream Bitstream Device
Design Back Level |Back
version version Level
version
1 _master PROGRAM 1 1 1 Pass
2 _master VERIFY 1 1 1 Pass if device has
UPKA1
3 _master ERASE 1 1 1 Pass if device has
UPK1
4 _master AUTHENTICATE 1 1 1 Pass if device has
UPK1
5 _master DEVICE_INFO Always passes
6 _uek1 PROGRAM Pass
7 _master PROGRAM Fail due to back

level protection

Table 8-36. Example 2: Programming the Back Level Version Less Than the Design Version

Bitstream Bitstream Bitstream Device
Design Back Level Back
version version Level
version
1 _master PROGRAM 2 1 1 Pass
2 _uek1 PROGRAM 8 1 1 Pass
3 _uek1_1 PROGRAM 4 1 1 Pass
4 _uekl 2 PROGRAM 5 4 4 Pass
5 _master PROGRAM 2 1 4 Fail due to back

level protection

6 _uek1 PROGRAM 3 1 4 Fail due to back
level protection

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 171

8.74

Libero® SoC v2021.1

Program Design

........... continued

Bitstream Bitstream
Back Level

version

Bitstream
Design

Action

version

Device
Back
AV
version

7 _uekl_1 PROGRAM 4 1

8 uek1_2 VERIFY 5 4

Step 3: Debug Policy
Debugging is enabled by default. Use this page to configure Debug Protections.

1 Fail due to back
level protection

4 Pass

| | Configure Security Wizard

)

Debug Folicy
DPK has not been provided and will not be programmed.
SmartDebug user debug access and active probes are enabled.
SmartDebug Live Probe debug access is enabled.
SmartDebug sNVM debug is enabled.
JTAG or SPI Slave UITAG is enabled.
JTAG (1149.1) boundary scan is enabled.
ITAG or SPI Slave reading of temperature and voltage sensor is enabled.

Microsemi Factory Access
Allow Microsemi factory test mode access. This is required to perform Failure Analysis on the device.

Security key mode

Bitstream encryption with default key @) Custom security options

L Debugging is enabled by default at this stage for design and debug.
User keys

DPK (Debug Pass Key) (64 HEX chars):

L 1 OX
Update policy SmartDebug access control

j || Disable user debug access and active probes

| || Disable Live Probe
I Debug policy [~] pisable shvM

 — Disable UJTAG command through JTAG interface
l ["] pisable ITAG (1149.1) boundary scan
Microsemi

| ?oac,:g || Disable reading temperature and voltage sensor (JTAG/SPI Slave)

| Reset to default

1 Use FlashLock/UPK1 or DPK to temporarily enable access to disabled debug features during one debugging session.

;SmSummarvtoﬁle... [Back I { Next J |

) T]

L

Table 8-37. Elements in Debug Policy Step

N

Debug with DPK (Debug Pass Key) - Optional

Protect Debug with a 256-bit (64-character HEX) Debug
Pass Key. Enter the key in the field or click the padlock
icon at the far right to generate a random key. This key
is optional if you want a separate passkey to enable
access to disabled debug features during one debugging

© 2021 Microchip Technology Inc.

session.
If the DPK key is entered, then at least one option must
be checked.
User Guide DS00003754B-page 172

Libero® SoC v2021.1

Program Design

........... continued
Element ___ Deseripton |
SmartDebug Access Control All of the following are enabled by default for

SmartDebug access. Check to disable access.
» Disable User Debug Access and Active Probe
» Disable Live Probe
* Disable sSNVM

Leaving SmartDebug access control enabled
on production devices will allow anyone to
debug or access active probes, access Live
Probe, or read the content of SNVM.

A WARNING

Three additional options are:

» Disable UJTAG command through JTAG Interface.

» Disable JTAG (1149.1) boundary scan. Disables
JTAG (1149.1) commands. The following JTAG
commands will be disabled: HIGHZ, EXTEST,
INTEST, CLAMP, SAMPLE, and PRELOAD. I/Os
will be tri-stated when in JTAG programming mode
and BSR control during programming is disabled.
BYPASS, IDCODE, and USERCODE instructions
will remain functional.

» Disable reading temperature and voltage sensor
(JTAG/SPI Slave). The summary at the top of the
page displays the results of the selection.

8.7.5 Step 4: Microsemi Factory Access Policy

In step 4 of the Configure Security Wizard, you configure the policy for Microsemi test mode access. Field updates
are enabled by default. Test mode access is required for failure analysis on the device.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 173

8.7.6

Libero® SoC v2021.1

Program Design

Figure 8-45. Configure Security Wizard - Microsemi Access Policy

[| Configure Security Wizard

L e e e e
JTAG or SPI Slave UITAG is enabled.

JTAG (1149.1) boundary scan is enabled.

JTAG or SPI Slave reading of temperature and voltage sensor is enabled.

Microsemi Factory Access
JTAG/SFI Slave User Commands Policy
PUF emulation is available.

External zeroization through JTAG/SFI Slave is available.
Security key mode

b Microsemi factory test mode access is allowed by default.
This is required to perform Failure Analysis on the device.

| User keys Use FlashLock/UPK1 to change access level.
Microsemi factory test mode access level
Update policy 0 Allow factory test mode access
(”) Disable factory test mode access
Debug policy
Reset to default
Microsemi
factory
(|
access

JTAG/SPI Slave
commands

policy

Allows Microsemi factory test mode access. This is required to perform Failure Analysis on the device.

External Fabric/sNVM design digest check requests through JTAG and SFI Slave are available.

(") Bitstream encryption with default key @ Custom security options

Help ISave Summary to F\\e...l l Back l [Next J I Finish I [Cancel

Table 8-38. Option in the Microsemi Access Policy Step

N =

Microsemi factory access level Choices are:

Step 5: JTAG/SPI Slave Command Policy

Allow factory test mode access: (default)

Note: Do not use this setting for production
devices.

Disable factory test mode access.

Note: Use FlashLock/UPK1 to change access
level.

In step 5 of the Configure Security Wizard, you configure the policy for JTAG/SPI slave user commands.

© 2021 Microchip Technology Inc. User Guide

DS00003754B-page 174

Libero® SoC v2021.1

Program Design

Figure 8-46. Configure Security Wizard - JTAG/SPI Slave Commands Policy

| | Configure Security Wizard

Cx

JTAG or SPI Slave UITAG is enabled.
JTAG (1149.1) boundary scan is enabled.
JTAG or SFI Slave reading of temperature and voltage sensor is enabled.

Microsemi Factory Access

Allow Microsemi factory test mode access. This is required to perform Failure Analysis on the device.

JTAG/SPI Slave User Commands Palicy
PUF emulation is available.
External Fabric/sMvM design digest check requests through JTAG and SPI Slave are available.
External zeroization through JTAG/SPI Slave is available.

Security key mode

(") Bitstream encryption with default key @) Custom security options

PUF emulation is available by default

E\ Disable all external access to PUF emulation

n

access

ITAG/SPI Slave
commands
policy

User keys
i
External Fabric/sNVM digest requests JTAG/SPI Slave are available by default
|| Disable external Fabric/sNvM digest requests through JTAG/SPI Slave
Update policy External zeroization through JTAG/SPI Slave is available by default
E\ Disable external zeroization through JTAG/SPI Slave
Debug policy
Microsemi et
factory |Reset to default

[Save Summary to FI\E...‘ ‘

Back I Next Finish I I Cancel

b

Table 8-39. Options in the JTAG/SPI Slave Command Policy Step

N

Disable all external access to PUF emulation

Disable external Fabric/sNVM digest requests through
JTAG/SPI Slave

Determines whether PUF emulation is available by
default. Choices are:

» Checked: Disable all external access to PUF
emulation through the JTAG/SPI slave.

* Not checked: Enable all external access to PUF
emulation through the JTAG/SPI slave. (default)

Determines whether external Fabric/sNVM digest
requests through the JTAG/SPI slave are available by
default. Choices are:

» Checked: Disable external Fabric/sNVM digest
requests through JTAG/SPI slave.

* Not checked: Enable external Fabric/sNVM digest
requests through JTAG/SPI slave. (default)

AWARNING Repgated exter.nal Fa.brllc.dlgest calculations
can impact device reliability. For more
information, see the datasheet.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 175

8.7.7

8.8

Libero® SoC v2021.1

Program Design

........... continued
Opten ________ beepten |
Disable external zeroization through JTAG/SPI Slave Determines whether external zeroization through the

JTAG/SPI slave is available by default. Choices are:
» Checked: Disable external zeroization through
JTAG/SPI slave.
* Not checked: Enable external zeroization through
JTAG/SPI slave. (default)

Do not enable zeroization for production

WARNING .
4 devices.

Security Features Frequently Asked Questions

| have configured the Security Wizard and enabled security in my design but | do not want to program my
design with the Security Policy Manager features enabled. What do | do?

Go to Configure Bitstream and uncheck Security.
What is programmed when | click Program Device?

All features configured in your design and enabled in the Configure Bitstream tool. Any features you have configured
(such as sNVM or Security) are enabled for programming by default.

When | click Program Device is the programming file encrypted?

All programming files are encrypted. To generate programming files encrypted with UEK1 or UEK2, you must
generate them from Export Bitstream for field updates.

Note: Once security is programmed, you must erase the security before attempting to reprogram the security.
How do | generate encrypted programming files with User Encryption Key 1/2?

» Configure the Security Wizard and specify User Key Set 1, User Key Set 2. Ensure the Security programming
feature is enabled in Configure Bitstream; it is enabled by default once you configure the Security Policy
Manager.

» Export Bitstream from Handoff Design for Production - <filename>_uek1.(stp/spi/dat),
<filename>_uek2.(stp/spi/dat) files are encrypted with UEK1, UEK2, respectively. See Security Programming
File Descriptions below for more information on programming files.

What are Security Programming Files?

See the Security Programming Files topic for more information.

Configure Permanent Locks for Production

Configure Permanent Locks for Production is a GUI-based tool that guides the user step by step on how to configure
the Permanent Locks for Production. The wizard has six steps/pages executed in sequential order. One Time
Programmable (OTP) settings in the Permanent Locks page are applied to configured Security settings from the
Configure Security tool. The subsequent pages have read only fields, which will be affected by Permanent Lock
settings. These settings can only be configured by the Configure Security tool.

If you configure any Permanent Lock settings, you will be forced to go through each page to review the Security
settings to make sure they are as desired. The settings cannot be changed once they have been programmed.

Note: This feature is not supported for PolarFire SoC devices.

1. Permanent Locks
2. User keys in Configure Security
3. Update Policy in Configure Security

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 176

8.8.1

8.8.2

8.8.3

8.8.4

8.8.5

8.8.6

Libero® SoC v2021.1

Program Design

4. Debug Policy in Configure Security
5. Microsemi Factory Access in Configure Security
6. JTAG/SPI Slave Commands Policy in Configure Security

Summary Window

The summary window displays the summary of the current page configuration settings. Based on the selection made
in the first page, the summary for the subsequent pages change. The window will scroll to the current page as you
move from page to page.

Back
Click Back to return to the previous step.

Next
Click Next to proceed to the next step.

Finish
Click Finish to complete the configuration after executing the all the steps in sequential order.

Save Summary to File
Click Save Summary to File to save the display in the Summary field to a file.

Permanent Locks

This page allows you to configure Permanent Locks for Production programming. Permanent Locks should be
configured after the Design/Debug phase has been completed. The Permanent Lock settings will not be applied

to programming within Libero. They are only applied to the Export tools used for Production programming. Once
the Permanent Locks are programmed, they cannot be changed. Configuring the Permanent Locks will affect the
settings on the subsequent pages and should be reviewed carefully. The settings cannot be changed once they are
programmed.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 177

Libero® SoC v2021.1

Program Design

Figure 8-47. Configure Permanent Lock for Production

B Configure Permanent Locks for Preduction *

Permanently disable all factory key modes and configured security settings. -
Permanent Locks

Permanently disable UPK1.
User Keys

Permanently enable UEK 1. UEK 1 wil be permanently programmed and available for use.
Permanently disable UEK2.

Update Palicy

Update policy is one-time programmable. Settings cannot be changed once device is programmed.

Fabric can be updated using a bitstream encrypted with UEK1.

sMYM can be updated using a bitstream encrypted with UEK 1.

Back Level protection is permanently disabled. j

User keys and security polices are protected with FlashLock.
‘fou can make any of the settings below permanent (one-time programmable).

Permanent
Locks
All one-time programming bits are located in the same segment.
Once one of these bits is programmed they cannot be changed,
this entire segment becomes nen-changeable.
User Ke
L ¥ Permanently disable UPK1
User Encryption Key 1 (UEK1) and security polides will be permanently write-protected.
[Permanently disable UPK2
User Encryption Key 2 (UEKZ) will be permanently write-protected,
Update Pol

r Permanently disable SmartDebug access control and
reading temperature and voltage sensor {JTAG/SPI)

[~ Permanently disable Debug Pass Key (DPK)
[Permanently write-protect Fabric
[Permanently disable Microsemi factory test mode access
Thiz will permanently disable access to the programming interfaces. All pins are disabled.

r Permanently disable Auto Programming, JTAG, and SPI Slave
programming interfaces

Remove Permanent Locks

Help Back | Mext | Finish Cancel |

All the user keys and security policies are protected with FlashLock and can be made One-Time Programmable, by
configuring the Permanent Lock settings.

You can select one or more of the below options to be locked permanently:

* Permanently disable UPK1 - This will permanently disable FlashLock/UPK1 from being able to be matched
by the device. Any feature that is disabled will be permanently disabled. Any feature that is available will be
permanently available.

* Permanently disable UPK2 - This will permanently disable FlashLock/UPK2 from being able to be matched by
the device. If UEK2 is enabled and selected for programming, then it cannot be changed.

* Permanently disable SmartDebug access control and reading temperature and voltage sensor -This will
permanently disable SmartDebug access control for user debug and active probes, live probes and, sSNVM
along with the ability to read the temperature and voltage sensor.

* Permanently disable Debug Pass Key (DPK) - This will permanently disable the FlashLock/DPK from being
able to be matched by the device. If DPK was programmed, then it can no longer be used for SmartDebug
access.

* Permanently write-protect Fabric - This will make the Fabric One-Time Programmable. Verify of the Fabric will
still be possible. Erase/Program of the Fabric is permanently disabled.

+ Permanently disable Microsemi factory test mode access - This will permanently disable Microsemi factory
test mode access. Microsemi will not be able to perform a Failure Analysis on this device.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 178

8.8.7

8.8.71

8.9

Libero® SoC v2021.1

Program Design

* Permanently disable Auto Programming, JTAG and SPI Slave programming interfaces - This will
permanently disable all programming interfaces. The actual JTAG and SPI Slave ports are disabled and you
cannot access the device for any operations including reading the IDCODE of the device. The device will
become One-Time Programmable and there will be no way to Erase/Program/Verify the device.

The summary window displays the summary of the current configuration set in Permanent Locks page. The summary
can be exported to a file and is recommended to keep a record of the settings configured. It is important to review the
summary carefully and ensure the settings and behaviors are as expected since they cannot be changed once the
device is programmed.

Remove Permanent Locks
You can remove the Permanent Lock settings by either right-clicking on the tool in the Design Tree or by clicking the
button in the UL.

When selected removes all the Permanent Locks selected and restores to initial security settings configured in
Configure Security tool. This option is highlighted only when at least one of the Permanent Locks is enabled.

See Also
Configure Security

Tcl command for Permanent Locks remove _permanent_locks

Configure Bitstream

Right-click Generate Bitstream in the Design Flow window and choose Configure Options to open the Configure
Bitstream dialog box.

The Configure Bitstream dialog box enables you to select which components you wish to program. Only features that
have been added to your design are available for programming.

sNVM sanitize option is supported for PolarFire and PolarFire SoC. The sNVM sanitization option is enabled in the
Configure Bitstream if Fabric/sNVM component is selected.

If the design includes uPROM, it will be included in the Fabric.
Figure 8-48. Configure Bitstream

[87 Configure Bitstream

Program

|7 Custom security

¥ Fabric/sNym =

| Sanitize all sNVM pages in ERASE action Help

duip

eNVM option will available only if eNVM clients are present and are being programmed and is available for PolarFire
SoC devices only.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 179

8.10

Libero® SoC v2021.1

Program Design

Figure 8-49. Configure Bitstream with eNVM option
B ' Configure Bitstream

Program
OK
I custom security

Cancel

il

I\ Fabric/sNyM Help

IJ Sanitize all sMVM pages in ERASE action I

g envm

I Sanitize all eNVM pages in ERASE action |

Notes:

» Custom security is enabled if security was configured.
« All available features are selected by default.
* sNVM is always programmed with Fabric.

See Also

Generate Bitstream

Generate Bitstream
Generates the bitstream for use with the Run PROGRAM Action tool.

The tool incorporates the Fabric design, sNVM configuration, eNVM configuration (if configured) and custom security
settings (if configured) to generate the bitstream file. You need to configure the bitstream before you generate

the bitstream. Otherwise, default settings with all available features included will be used. Right-click Generate
Bitstream and choose Configure Options to open the Configure Bitstream dialog box to select which components
you wish to program. Only features that have been added to your design are available for programming.

If the design includes uPROM, it will be included in the Fabric.

eNVM option will available only if eNVM clients are present and are being programmed and is available for PolarFire
SoC devices only.

Modifications to the Fabric design, sSNVM configuration, eNVM configuration or security settings will invalidate this
tool and require regeneration of the bitstream file.

The Fabric programming data will only be regenerated if you make changes to the Fabric design, such as in the
Create Design, Create Constraints and Implement Design sections of the Design Flow window.

When the process is complete a green check appears next to the operation in the Design Flow window (as shown in
the figure below) and information messages appear in the Log window.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 180

Libero® SoC v2021.1

Program Design

Figure 8-50. Generate Bitstream (Complete)

- # Program and Debug Design
*[| Generate FPGA Array Data
@‘ Update uPROM Mermory Content
- # Configure Hardware
Il Programming Connectivity and Interface
- & Configure Programmer
& Select Programmer
- gy Configure I/0 States During JTAG Programming
» Configure Programming Options

‘% Run PROGRAM Action
=t- ¢ Debug Design
: -Q [dentify Debug Design
€0 SmartDebug Design

See Also

Configure Bitstream Dialog Box

8.11 Run Programming Device Actions

If you have a device programmer connected, you can double-click Run PROGRAM Action to execute your
programming in batch mode with default settings.

If your programmer is not connected, or if your default settings are invalid, the Reports view lists the error(s). To
select a programming action to run:

1. Right-click Run PROGRAM Action and choose Select Action. The Select Action dialog box opens.
Figure 8-51. Select Action Dialog Box

B Select Action X

Action:
[verIFY_DIGEST |

Procedures:

F NIT_V&
¥ VER

Available actions and procedures depend on the selected

0 bitstream components in the Generate Bitstream tool.
To configure actions and procedures for the Libero design
device, double-dick the Configure Actions and Procedures tool.

Help I OK | Cancel

2. Select a programming action from the drop-down list and click OK.

To configure programming actions, use the Configure Actions and Procedures tool.
See Also

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 181

8.11.1

Libero® SoC v2021.1

Program Design

Configure Actions and Procedures

Programming File Actions
Libero SoC enables you to program security settings, FPGA Array, sNVM and eNVM features.

Note: eNVM features are available for PolarFire SoC devices only.
Note: If the design includes UPROM, it will be included in the Fabric.

You can program these features separately using different programming files or you can combine them into one
programming file.

In the Design Flow window, expand Program Design, click Run PROGRAM Action, and right-click Select Action.
The Select Action dialog box opens.

Figure 8-52. Select Action Dialog Box

B Select Action X

Action:
[VERIFY_pIGEST |

Procedures:

M
EJ VE

‘o ?
o @
o
m O m

m o

—
O
a9
X
(
=
L

- B

I..
mmmm

000000 :;

o Il B e il o e I B

Available actions and procedures depend on the selected

0 bitstream components in the Generate Bitstream tool.
To configure actions and procedures for the Libero design
device, double-dick the Configure Actions and Procedures tool.

Help I OK | Cancel

For details about configuring actions and procedures, see Configure Actions and Procedures.

Table 8-40. Exit Codes (PolarFire)

Error Exit Message Exit Possible Cause Possible Solution
Code Code

Passed (no error)

0x8002 Failed to disable 5 Unstable voltage level Monitor related power supplies that
programming mode cause the issue during programming;

check for transients outside of

Microchip specifications. See your device

datasheet for more information on

transient specifications.

Signal integrity issues on
Failed to set JTAG pins
programming mode

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 182

Libero® SoC v2021.1

Program Design

........... continued

Error Exit Message Exit Possible Cause Possible Solution
Code Code

0x8032 Device is busy

0x8003 Failed to enter 5
programming mode

0x8004 Failed to verify 6

IDCODE

0x8005 Failed to verify FPGA 11

oxgo0s ATy

0x8007 Falleld to vgrlfy Fabric
Configuration

DL Failed to verify

0x8009 Security Failed to
verify sSNVM Failed to
verify eNVM

0x8013 External digest check | -18
via JTAG/SPI Slave is
disabled.

0x8015 FPGA Fabric digest -20

verification: FAIL

Deselect procedure
'DO_ENABLE_FABRI
Cl

to remove this digest
check.

Unstable VDDIx voltage
level

Unstable voltage level

Signal integrity issues on

JTAG pins DEVRST_N
is tied to LOW

Incorrect programming
file

Incorrect device in chain

Signal integrity issues on

JTAG pins

Device is programmed

with a different design or

the component is blank

Unstable voltage level

Signal integrity issues on

JTAG pins

External Digest check
via JTAG/SPI Slave is
disabled

FPGA Fabric is either
erased or the data
has been corrupted or
tampered with

Monitor related power supplies that
cause the issue during programming;
check for transients outside of

Microchip specifications. See your device
datasheet for more information on
transient specifications.

Monitor related power supplies that
cause the issue during programming;
check for transients outside of

Microchip specifications. See your device
datasheet for more information on
transient specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

Tie DEVRST _N to HIGH prior to
programming the device.

Choose the correct programming file and
select the correct device in the chain.

Measure JTAG pins and noise for
reflection. If TRST is left floating then
add pull-up to pin.

Reduce the length of Ground connection.

Verify the device is programmed with the
correct data/design.

Monitor related power supplies that
cause the issue during programming;
check for transients outside of

Microchip specifications. See your device
datasheet for more information on
transient specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

Need to use a bitstream file which has a
valid FlashLock/UPK1 to enable external
digest check via JTAG/SPI Slave.

If the Fabric is erased, deselect
procedure "DO_ENABLE_FABRIC" from
action "VERIFY_DIGEST"

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 183

Libero® SoC v2021.1

Program Design

........... continued

Error Exit Message Exit Possible Cause Possible Solution
Code Code

0x8016

0x8018

0x8019

0x801A

0x801B

0x801C

sNVM digest
verification: FAIL

Deselect procedure
'DO_ENABLE_SNVM'

to remove this digest
check.

User security policies
segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_SECU
RI

TY' to remove this
digest check.

UPK1 segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_SECU
RI

TY' to remove this
digest check.

UPK2 segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_UKS2'
to

remove this digest
check.

Factory row and
factory key segment
digest verification:
FAIL

Fabric configuration
segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_FABRI
CI

to remove this digest
check.

-20

If the sSNVM is erased, deselect
procedure "DO_ENABLE_SNVM" from
action "VERIFY_DIGEST"

sNVM is either erased
or the data has been
corrupted or tampered
with

Security segment is If the security is erased, deselect
either erased or the data procedure "DO_ENABLE_SECURITY"
has been corrupted or from action "VERIFY_DIGEST"
tampered with

If the UPK1 is erased, deselect
procedure "DO_ENABLE_SECURITY"
from action "VERIFY_DIGEST"

UPK1 segment is either
erased or the data

has been corrupted or
tampered with

If the UPK2 is erased, deselect
procedure "DO_ENABLE_UKS2" from
action "VERIFY_DIGEST"

UPK2 segment is either
erased or the data

has been corrupted or
tampered with

Factory row and factory
key segment have
been erased through
zeroization or the data
has been corrupted or
tampered with

Fabric configuration If the Fabric configuration

segment is either erased is erased, deselect procedure

or has been corrupted or "DO_ENABLE_FABRIC" from action
tampered with "VERIFY_DIGEST"

© 2021 Microchip Technology Inc.

User Guide DS00003754B-page 184

Libero® SoC v2021.1

Program Design

........... continued

Error Exit Message Exit Possible Cause Possible Solution
Code Code

0x8052

0x8053

0x8054

0x8057

0x8058

0x801D

0x801F

UEK1 segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_UEK1'
to remove this digest
check.

UEK2 segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_UEK2'
to remove this digest
check.

DPK segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_DPK'
to remove this digest
check.

SMK segment digest
verification: FAIL

User Public Key
segment digest
verification: FAIL

Device security
prevented operation

Programming Error.

Bitstream or data is
corrupted or noisy

UEK1 segment is either
erased or the data

has been corrupted or
tampered with

UEK2 segment is either
erased or the data

has been corrupted or
tampered with

DPK segment is either
erased or the data
has been corrupted or
tampered with

SMK segment is either
erased or the data

has been corrupted or
tampered with

User Public Key

segment is either erased

or the data has been
corrupted or tampered
with

The device is protected

with user pass key 1 and

the bitstream file does
not contain user pass
key 1

User pass key 1 in the
bitstream file does not
match the device

Bitstream file has
been corrupted or was
incorrectly generated

Unstable voltage level

Signal integrity issues on

If the UEK1 is erased, deselect
procedure "DO_ENABLE_UEK1" from
action "VERIFY_DIGEST"

If the UEK2 is erased, deselect
procedure "DO_ENABLE_UEK2" from
action "VERIFY_DIGEST"

If the DPK is erased, deselect
procedure "DO_ENABLE_DPK" from
action "VERIFY_DIGEST"

If the SMK is erased, deselect
procedure "DO_ENABLE_SMK" from
action "VERIFY_DIGEST"

If the User Public Key

is erased, deselect procedure
"DO_ENABLE_USER_PUBLIC_KEY"
from action "VERIFY_DIGEST"

Run DEVICE_INFO to view security
features that are protected.

Provide a bitstream file with a user pass
key 1 that matches the user pass key 1
programmed into the device.

Regenerate bitstream file

Monitor related power supplies that
cause the issue during programming;
check for transients outside of
Microchip specifications. See your
device datasheet for more information

© 2021 Microchip Technology Inc.

LTI on transient specifications. Monitor
JTAG supply pins during programming;
measure JTAG signals for noise or
reflection.
User Guide DS00003754B-page 185

Libero® SoC v2021.1

Program Design

........... continued

Error Exit Message Exit Possible Cause Possible Solution
Code Code

0x8021 Programming Error. -2
Invalid/Corrupted
encryption key

0x8023 Programming Error. -24
Back level not
satisfied

0x8001 Failure to read DSN -24

0x8027 Programming Error. -26
Insufficient device
capabilities

0x8029 Programming Error. -27
Incorrect DEVICEID

0x802B Programming Error. -28
Programming file is
out of date, please
regenerate.

0x8030 Programming Error -31
Invalid or inaccessible
Device Certificate

0x8032 Instruction timed out | -32

0x8034

0x8036

0x8038

0x8010 Failed to unlock user -35

pass key 1

File contains an
encrypted key that does
not match the device

File contains user
encryption key, but
device has not been
programmed with the
user encryption key

Design version is

not higher than the
back-level programmed
device

Device is in System
Controller Suspend
Mode Check board
connections

Device does not support
the capabilities specified
in programming file

Incorrect programming
file

Incorrect device in chain

Signal integrity issues on
JTAG pins

Programming file version
is out of date

FAB_RESET N is tied to
ground

Unstable voltage level

Signal integrity issues on
JTAG pins

Pass key in file does not
match device

Provide a programming file with an
encryption key that matches that on the
device

First program security with master
programming file, then program with user
encryption 1/2 field update programming
files

Generate a programming file with a
design version higher than the back level
version

TRSTB should be driven High or disable
"System Controller Suspend Mode".

Generate a programming file with the
correct capabilities for the target device

Choose the correct programming file and
select the correct device in chain

Measure JTAG pins and noise or
reflection. If TRST is left floating, then
add pull-up to pin

Reduce the length of ground connection

Generate programming file with latest
version of Libero SoC

FAB_RESET_N should be tied to HIGH

Monitor related power supplies that
cause the issue during programming;
check for transients outside of

Microchip specifications. See your device
datasheet for more information on
transient specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

Provide a programming file with a pass
key that matches pass key programmed
into the device.

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 186

8.12

8.12.1

8.12.2

Libero® SoC v2021.1

Program Design

........... continued
Error Exit Message Exit Possible Cause Possible Solution
Code Code
0x8011 Failed to unlock user | -3 Pass key in file does not | Provide a programming file with a pass
pass key 2 match device key that matches pass key programmed
into the device.
0x804F Bitstream -38 Unstable voltage level Monitor related power supplies that

programming action is cause the issue during programming;

Bitstream programming

disabled . . check for transients outside of
action has been disabled
. . . Microchip specifications. See your device
in Security Policy) .
datasheet for more information on
Manager . P
transient specifications.
Need to use a bitstream file which has
a valid FlashLock/UPK1 to enable the
bitstream programming action.
0x805B Error, security must -42 Security only bitstream | Use this bitstream on a blank device or
be either programmed programming on a generate a new bitstream that contains
on a blank device or programmed device the FPGA Fabric design along with the
with the FPGA Fabric security
design
0x805C eNVM digest -20 eNVM is either erased If the eNVM is erased, deselect
verification: FAIL or the data has been procedure ‘DO_ENABLE_ENVM’ from
corrupted or tampered action ‘VERIFY_DIGEST’
Deselect procedure with

‘DO_ENABLE_ENVM’
to remove this digest
check

Program SPI Flash Image

Generate SPI Flash Image
This tool generates the <design> spi flash.bin file in the implementation folder.

To run this tool; under the Program SPI Flash Image, right-click Generate SPI Flash Image and choose Run.

Figure 8-53. Selecting the Run Command

-li@ Run PROGRAM Action
=0 Program 5PI Flash Image

- % Run PROGRA Run
} Debug Design Clean and Run All
¢ Handoff Design fo

Clean
» Handoff Design fo

Help

This tool depends on the Configure Design Initialization Data and Memories tool and the Generate Design
Initialization Data tool. When running, the tool verifies that the SPI Flash configuration data is saved and valid;
and that the SPI Flash initialization client was generated successfully (if required).

Configure SPI Flash Image Actions and Procedures

If SPI Flash is configured, you can select supported SPI Flash Image actions and procedures in the Select Action and
Procedures dialog box. See the following example.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 187

8.12.3

Libero® SoC v2021.1

Program Design

Figure 8-54. Select Action and Procedures Dialog Box

| | Select Action and Procedures
Action:
|PROGRAM_SP1_IMAGE -]
Procedures:

PROGRAM_IMAGE

= JCem]

The following table lists the actions and procedures for the Run PROGRAM_SPI_Flash tool.

PROGRAM_SPI_IMA | VERIFY_DEVICE_I This action will erase the entire SPI flash then program
GE D ERASE_DIE the SPI image.
PROGRAM_IMAGE
VERIFY_SPI_IMAGE VERIFY_DEVICE_I D This action verifies the SPI Image on the SPI Flash.
VERIFY_IMAGE
READ_SPI_IMAGE VERIFY_DEVICE_I D This action reads the SPI Image from the SPI Flash.
READ_IMAGE
ERASE_SPI_FLASH VERIFY_DEVICE_| D This action erases the entire SPI Flash.
ERASE_DIE

Note: If the device ID does not match when running any action, the action will fail.

Run Programming SPI Flash Actions

This tool allows the user to program the SPI Flash device connected to the PolarFire device through the JTAG
programming interface. Currently, only the Micron 1Gb SPI flash is supported, and is included with the Evaluation Kit.
This feature minimizes cost by not requiring a mux and external SPI pins on the board for SPI flash programming by
another tool. This tool always erases the entire SPI flash prior to programming. Programming starts at address 0 of
the SPI flash until the last client. Any gaps in the SPI flash are programmed with all 1’s.

Note: This version of the programmer does not support SPI Flash security. Device security options such as
"Hardware Write Protect" should be disabled for the External SPI Flash device.

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 188

Libero® SoC v2021.1

Program Design

VD DIx (x = JTAG/DEDIO Bank Number)

FolarFire FPGA

Extemnal
SPI Flash

Host PO witn
SP] Flazh Binary Foe

System Controller
-1 o
SPL " o
200 e S0 == 0.1 pF
SO St
ITAG
Controlier ITAG Programmer

Note: The SPI pins are controlled by the Boundary Scan Regis
Figure 8-55. SPI Flash Programming with PolarFire Device

Tool

& Select Programmer
4 F Program Design
(L] Generate FPGA Array Data

+] Configure Design Initialization Data and Memories

+(| Generate Design Initialization Data

s Configure /O States During JTAG Programming

= Configure Programming Options
@ Configure Security
@ Configure Permanent Locks (OTP)
'S Generate Bitstream
o Run PROGRAM Action
» Program SPI Flash Image
4 Generate SPI Flash Image

ter one bit at a time.

& Run PROGRAM_SPLIMAGE Action
Debug Design
+] Generate SmartDebug FPGA Array Da
€ SmartDebug Design
&, Identify Debug Design
Handoff Design for Production
+ Export Bitstream
¥ Export FlashPro Express Job
#) Export SPI Flash Image
«] Export Pin Report
+[] Export BSDL

|

Run
Clean and Run All
Clean

Configure Action/Procedures...

Help

The following table provides the expectations of programming the SPI flash with a FP5 programmer. Future
programmers are planned, and should greatly improve programming times. All times are in hh:mm:ss.

Ew S e -

00:00:45 00:10:46

4MHz | FP5

© 2021 Microchip Technology Inc. User Gu

ide DS00003754B-page 189

8.124

Libero® SoC v2021.1

Program Design

........... continued

PROGRAM VERIFY/READ Programmer

1 MB 3:55 00:00:28 00:10:05 15MHz FP5
9 MB 3:55 00:06:38 01:19:15 4MHz | FP5
9 MB 3:55 00:04:26 01:08:49 10MHz FP5
18 3:55 00:09:04 02:32:43 10MHz | FP5
MB

128 3:55 00:58:38 22:07:55 15MHz FP5
MB

Recommendations:

1. Since the verify time is currently not optimized, it is recommended to authenticate the SPI bitstreams with
system services for quicker verification.

2. Since this tool erases the SPI flash prior to programming and currently does not support Data Storage clients
for user data, it is recommended to program the SPI flash with Libero prior to programming other data on the
SPI flash.

3. Since programming time is currently not optimized, it is recommended to not have huge gaps between clients
in the SPI flash, since gaps are currently programmed with 1’s.

If SPI Flash is configured, you can execute Run PROGRAM_SPI_IMAGE Action and select SPI Flash Image actions
and procedures.

In the Design Flow window, under Program SPI Flash Image, right-click Run PROGRAM_SPI_Image Action and
choose Configure Action/Procedures.

Note: In this release, SPI Flash programming is supported for MICRON devices only.

See Configure SPI Flash Image Actions and Procedures for information about supported actions and procedures.

Partial Programming Support

eFP6/FP6 Partial Support
This feature allows you to program clients anywhere within the SPI-Flash memory space connected to PolarFire and
PolarFire SoC devices.

Every client is programmed at a specified target Start Address, from the lowest address to the highest. The
Libero generated lookup table is programmed first, followed by INIT_STATGE_3_SPI_CLIENT, SPI bitstream for
IAP, Recovery/Golden, and Auto Update.

The following image is a sample list of clients:

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 190

Libero® SoC v2021.1

Program Design

. Start End
Program Name Type Index Content File Address Adie
) C:\Workspace'\Projects\Libero
3 i1 SPI Bitstream for IAP 2 \hex_flesihex_files\al na_bypas... 0x700 Ox143f
C:\Workspace'Projects'Libero
v SP] Bitstream for Recovery/Golden |0 \hex_files\hex_files\al_golden.spi 0x1500 Ox228f
i __-_--\
v INIT_STAGE_3_SPI_CLIENT Design Initialization designertestitest_uic.bin 0x666 0x685
) C:\Workspace'\Projects\Libero
[Client1 Data Storage \hex_files\hex_files\random_256k OxfHf Ox 140000
[Emptyl Data Storage Ox1afffcd Ox 1b000&S
. C:\Workspace'\Projects\Libero
[Middle Data Storage \hex_files\hex_files\random_13b... Ox3fffffa Ox4000006

The memory regions between the clients are left intact. However, SPI-Flash erase erases data in the selected sector,
subsector, or block if clients target Start Address is outside of sector, subsector, or block boundaries.

The software reports an error code along with messages that indicate whether original data has been lost.
The verify operation verifies only the data of the selected clients.

The following example is a sample log from FPExpress SPI Flash programming:

programmer '138000A' : Scan Chain...

programmer '138000A' : Scan and Check Chain PASSED.

programmer '138000A' : device 'MPF200T' : Executing action PROGRAM SPI IMAGE
programmer '138000A' : JTAG TCK frequency = 4 MHz

Performing SPI-Flash actlon Please wait.

Warning: It is recommended that the target client addresses align to sector, subsector or
block boundaries. Else, during erase or program actions, the software will erase and restore
data that is partly outside of target memory regions. If restoring data operation fails, the
user must reprogram the original clients covering the affected failed areas.

Processing SPI-Flash Client 0: Target Address = 0x0. Size = 1024 Bytes

FP6 acceleration mode enabled with PPD file. Please wait...

Programmer '138000A' : JTAG TCK frequency = 4 MHz

FP6 Messages:

JTAG DirectC Version: 5.1

Identifying FPGA device...

ActID = 0x0f8121cf

Micron device is found.

SPI-Flash IDCode = 0x21ba20

Device size (MBytes) = 128

Performing SPI Flash Program Action:

SPI-Flash memory target address = 0x00. Image byte size = 1024
SPI Flash memory region to erase: 0x00 - 0x03ff. Please wait...
Restoring data at address = 0x0400 - OxO0fff

Programming image from address = 0x00 - 0xO03ff

Programming data at address: 0x00 - OxO03ff

Operation Status: Passed

Processing SPI-Flash Client 1: Target Address = 0x666. Size = 32 Bytes
FP6 acceleration mode enabled with PPD file. Please wait...

Programmer '138000A' : JTAG TCK frequency = 4 MHz

FP6 Messages:

JTAG DirectC Version: 5.1

Identifying FPGA device...

ActID = 0x0£f8121cf

Micron device is found.

SPI-Flash IDCode = 0x21ba20

Device size (MBytes) = 128

Performing SPI Flash Program Action:

SPI-Flash memory target address = 0x0666. Image byte size = 32
SPI Flash memory region to erase: 0x0666 - 0x0685. Please wait...
Restoring data at address = 0x00 - 0x0665

Restoring data at address = 0x0686 - Ox0fff

Programming image from address = 0x0666 - 0x0685

Programming data at address: 0x0666 - 0x0685

Operation Status: Passed

© 2021 Microchip Technology Inc. User Guide DS00003754B-page 191

Libero® SoC v2021.1

Program Design

Processing SPI-Flash Cli
FP6 acceleration mode en
Programmer '138000A' J
FP6 Messages:

Ox1AFFFCD.
Please wait...
4 MHz

ent 6: Target Address Size
abled with PPD file.

TAG TCK frequency

157 Bytes

JTAG DirectC Version: 5.

1

Identifying FPGA device...

ActID 0x0£f8121cf
Micron device is found.
SPI-Flash IDCode 0x21b
Device size (MBytes) 1

az0
28

Performing SPI Flash Image Erase Action:

SPI-Flash memory target address 0Ox0lafffcd. Image byte size 157

SPI Flash memory region to erase: 0OxOlafffcd - 0x01b00069. Please wait...
Restoring data at address = 0x01aff000 - 0xO0lafffcc

Restoring data at address 0x01b0006a - O0x01lbOOfff

Operation Status: Passed

FlashPro3/FlashPro4/FlashPro5 Partial Support

The partial programming support described for eFP6/FP6 does not apply for FP3/FP4, or FP5 programmers. FP3/4/5

programmers deal with partial

clients by generating on the fly one bitstream containing the data of all the clients, as

shown in the previous example. Memory gaps between the clients are filled with Oxff. The entire SPI-Flash memory

device is erased first, and then the generated bitstream is programmed, starting with address 0.
The verify operation verifies that the client data and the memory gaps between the clients are verified against Oxff.

The following example is a sample output for programming the previous clients using FP5 programmer.

programmer 'S2001KZSR7' Scan Chain...

Programmer 'S2001KZSR7' JTAG TCK / SPI SCK frequency = 1 MHz

programmer 'S2001KZSR7' Check Chain...

programmer 'S2001KZSR7' Scan and Check Chain PASSED.

programmer 'S2001KZSR7' device 'MPF200T' Executing action PROGRAM SPI IMAGE
Programmer 'S2001KZSR7' JTAG TCK / SPI SCK frequency = 4 MHz

?Warning: FP3, FP4, and FP5 programmers do not support partial SPI-Flash programming. The
entire SPI-Flash device will be erased and programmed with the currently enabled clients.
ID: 00441021ba20

Erasing SPI flash die...
ERASE SPI Flash Finished
Programming SPI image...
Program SPI image Finished

Fri Feb 19 15:31:05 2021 (Elapsed time 00:00:05)

Fri Feb 19 15:31:07 2021 (Elapsed time 00:00:02)
programmer 'S2001KZSR7' device 'MPF200T' Executing action PROGRAM SPI IMAGE PASSED.
programmer 'S2001KZSR7' Chain programming PASSED.

Chain Programming Finished: Fri Feb 19 15:31:07 2021 (Elapsed time 00:00:07)

Notes:
Backward Compatibility:

FP3/4/5/6 that use the software version 2021.1 release support all jobs created using older versions of the
Libero software.

Do not use older FPExpress versions of software with FPExpress jobs created by Libero version 2021.1 and
later releases. If used, the entire bitstream, including header contents, will be programmed into the SPI-Flash
memory device, which is not the intended behavior.

Programmers used:

Jobs programmed with FP6 but verified with FP3/4/5 programmers may fail using software version 2021.1
release. Such jobs fail because the memory gap between clients is skipped during verification but are verified
against Oxff if FP3/4/5 programmers are used.

SPI address table:

If only storage clients are created, Libero generates a 1024-byte SPI address lookup table automatically while
adding any SPI-Flash client.

Erasing a client using eFP6/FP6 programmers also erases the SPI lookup address table. For FP3/4/5
programmers, erase operations erase the entire SPI-Flash memory device.

© 2021 Microchip Technology Inc. User Guide

DS00003754B-page 192

8.12.5

Libero® SoC v2021.1

Program Design

SPI-Flash Bitstream Format

For versions prior to Libero SoC v2021.1, the SPI-Flash Bitstream is the payload.

For Libero SoC v2021.1 and later, the SPI-Flash Bitstream format is as follows:

Table 8-41. SPI-Flash Bitstream Format

4

A~ B NN

A~ X

FF FF FF FF

XX XX
XX XX

XX XX XX XX
FF FF FF FF
XX

X

XX XX XX XX
XX XX XX XX
XX

Repeat for other clients

FF FF FF FF

Tag to indicate new version of
bitstream.

Major Version of bitstream.
Minor Version of bitstream.
Client0 Target Address.
Client0 Byte Size.

Flag.
If set to 1, Payload will follow.

If set to 0, Payload is not present and
memory region will be erased.

Payload based on previous flag
Client1 Target Address
Client1 Byte Size

Flag.
If set to 1, Payload will follow.

If set to 0, no Payload is present and
memory region will be erased only

Payload based on previous flag

End Tag

© 2021 Microchip Technology Inc.

User Guide

DS00003754B-page 193

9.1

9.2

9.21

Libero® SoC v2021.1
Debug Design

Debug Design

Generate SmartDebug FPGA Array Data

The Generate SmartDebug FPGA Array Data tool generates database files used in downstream tools:
» *.db used for debugging FPGA Fabric in SmartDebug

Double-click Generate SmartDebug FPGA Array Data or right-click Generate SmartDebug FPGA Array Data
in the Design Flow window and click Run to generate SmartDebug FPGA Array Data. Before running this tool,
the design should have completed the Place and Route step. If not, Libero SoC runs implicitly the upstream tools
(Synthesis, Compile Netlist, and Place and Route) before it generates the FPGA SmartDebug Array Data.

Figure 9-1. Generate SmartDebug FPGA Array Data

Design Flow g X

Top Module (root): top

Active Synthesis Implementation: synthesis

Tool

Create Design

Constraints

Implement Design

Configure Hardware

Program Design

Debug Design

+[| Generate SmartDebug FPGA Array Data
€D SmartDebug Design

C‘ Identify Debug Design

» Handoff Design for Production
* Handoff Design for Debugging

S
[[E

b A

SmartDebug

Design debug is a critical phase of FPGA design flow. Microchip's SmartDebug tool complements design simulation
by allowing verification and troubleshooting at the hardware level. SmartDebug can provide access to Microchip
FPGA device's built-in probe logic, which enables designers to check the state of inputs and outputs in real-time
without re-layout of the design.

SmartDebug can be run in two modes:

* Integrated mode from the Libero Design Flow
+ Standalone mode

Integrated Mode

When run in integrated mode from Libero, SmartDebug can access all design and programming hardware
information. No extra setup step is required. In addition, the Probe Insertion feature is available in Debug FPGA
Array.

To open SmartDebug in the Libero Design Flow window, expand Debug Design and double-click SmartDebug
Design.

© 2021 Micr